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Abstract

This dissertation considers two key problems in multi-agent systems: coordination (including both

synchronization and desynchronization) and privacy preservation.

For coordination in multi-agent systems, we focus on synchronization/desynchronization of dis-

tributed pulse-coupled oscillator (PCO) networks and their applications in collective motion coordination.

Pulse-coupled oscillators were originally proposed to model synchronization in biological systems such as

flashing fireflies and firing neurons. In recent years, with proven scalability, simplicity, accuracy, and ro-

bustness, the PCO based synchronization strategy has become a powerful clock synchronization primitive for

wireless sensor networks. Driven by these increased applications in biological networks and wireless sen-

sor networks, synchronization of pulse-coupled oscillators has gained increased popularity. However, most

existing results address the local synchronization of PCOs with initial phases constrained in a half cycle,

and results on global synchronization from any initial condition are very sparse. In our work, we address

global PCO synchronization from an arbitrary phase distribution under chain or directed tree graphs. More

importantly, different from existing global synchronization studies on decentralized PCO networks, our work

allows heterogeneous coupling functions and perturbations on PCOs’ natural frequencies, and our results

hold under any coupling strength between zero and one, which is crucial because a large coupling strength

has been shown to be detrimental to the robustness of PCO synchronization to disturbances.

Compared with synchronization, desynchronization of PCOs is less explored. Desynchronization

spreads the phase variables of all PCOs uniformly apart (with equal difference between neighboring phases).

It has also been found in many biological phenomena, such as neuron spiking and fish signaling. Recently,

phase desynchronization has been employed to achieve round-robin scheduling, which is crucial in applica-

tions as diverse as media access control of communication networks, realization of analog-to-digital convert-

ers, and scheduling of traffic flows in intersections. In our work, we systematically characterize pulse-coupled

oscillators based decentralized phase desynchronization and propose an interaction function that is more gen-
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eral than existing results. Numerical simulations show that the proposed pulse based interaction function also

has better robustness to pulse losses, time delays, and frequency errors than existing results.

Collective motion coordination is fundamental in systems as diverse as mobile sensor networks,

swarm robotics, autonomous vehicles, and animal groups. Inspired by the close relationship between phase

synchronization/desynchronization of PCOs and the heading dynamics of connected vehicles/robots, we pro-

pose a pulse-based integrated communication and control approach for collective motion coordination. Our

approach only employs simple and identical pulses, which significantly reduces processing latency and com-

munication delay compared with conventional packet based communications. Not only can heading control

be achieved in the proposed approach to coordinate the headings (orientations) of motions in a network, but

also spacing control for circular motion is achievable to design the spacing between neighboring nodes (e.g.,

vehicles or robots).

The second part of this dissertation is privacy preservation in multi-agent systems. More specifically,

we focus on privacy-preserving average consensus as it is key for multi-agent systems, with applications

ranging from time synchronization, information fusion, load balancing, to decentralized control. Existing

average consensus algorithms require individual nodes (agents) to exchange explicit state values with their

neighbors, which leads to the undesirable disclosure of sensitive information in the state. In our work, we

propose a novel average consensus algorithm for time-varying directed graphs which can protect the privacy

of participating nodes’ initial states. Leveraging algorithm-level obfuscation, the algorithm does not need

the assistance of any trusted third party or data aggregator. By leveraging the inherent robustness of con-

sensus dynamics against random variations in interaction, our proposed algorithm can guarantee privacy of

participating nodes without compromising the accuracy of consensus. The algorithm is distinctly different

from differential-privacy based average consensus approaches which enable privacy through compromising

accuracy in obtained consensus value. The approach is able to protect the privacy of participating nodes even

in the presence of multiple honest-but-curious nodes which can collude with each other.
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Chapter 1

Introduction

Our work focuses on coordination (including both synchronization and desynchronization) and pri-

vacy preservation in multi-agent systems. In the following two sections, we will introduce these two parts in

more details, respectively.

1.1 Coordination in Multi-Agent Systems

It is well known that coordination is a key characteristic of multi-agent systems. In our work, we

consider coordination (including both synchronization and desynchronization) in pulse-coupled oscillator

(PCO) networks. Pulse-coupled oscillators (PCOs) are limit cycle oscillators coupled through exchanging

pulses at discrete time instants. They were originally proposed to model the synchronization phenomena in

biological systems, such as contracting cardiac cells, flashing fireflies, and firing neurons [31, 47, 95, 122].

Due to their amazing scalability, simplicity, and robustness, recently they have found applications in wireless

sensor networks [60, 61, 114, 143, 143, 151, 158, 159, 161], image processing [131], and motion coordination

[42].

1.1.1 PCO Synchronization

Early results on PCO synchronization were motivated by biological applications, and normally as-

sume a fixed interaction or coupling mechanism [95, 122]. In engineering applications, such restrictions do

not exist any more. In fact, the interaction mechanism becomes a design variable that provides opportunities

to achieve desired performance. For example, [92] and [106] designed the interaction to improve the robust-

1



ness to communication delays. The work in [157] optimized the interaction, i.e., phase response function

(PRF), to improve the speed of synchronization. However, most of these results are for local synchronization

assuming that the initial phases are restricted within a half cycle [1,2,14,26,31,32,47,54,66,70,79,93,106,

127, 128, 147, 148, 153, 157, 158, 160].

Assuming restricted initial phase distribution severely hinders the application of PCO based syn-

chronization, since in distributed networks it is hard to control the initial phase distribution. Recently, efforts

have emerged to address global PCO synchronization from an arbitrary initial phase distribution. However,

these results focus on special graphs, such as all-to-all graph [15, 74, 78, 110], cycle graph [109], strongly-

rooted graph [110], or master/slave graph [111]. Moreover, they rely on sufficiently large coupling strengths,

which may not be desirable as large coupling strengths are detrimental to robustness to disturbances [60].

In our work, we address the global synchronization of PCOs under arbitrary initial conditions and

heterogeneous coupling functions (PRFs). Our main focus is on the global synchronization of PCOs un-

der undirected chain graphs, but the results are easily extendable to PCO synchronization under directed

chain/tree graphs. Note that the chain or directed tree graphs are basic elements for constructing more com-

plicated graphs and are desirable in engineering applications where reducing the number of connections is

important to save energy consumption and cost in deployment/maintenance. Furthermore, the chain graph

has been regarded as the worst-case scenario for synchronization due to its minimum number of connections

[73]. We also consider oscillators with perturbations on their natural frequencies.

Compared with existing results on PCO synchronization (cf. Table 1.1), our work has the following

contributions:

1. Different from most existing results which focus on local PCO synchronization and assume that the

initial phases of oscillators are restricted within a half cycle, our work addresses global synchronization

from an arbitrary initial phase distribution;

2. Different from existing global synchronization studies on decentralized PCO networks, our work allows

heterogeneous phase response functions, and we analyze the behavior of oscillators with perturbations

on their natural frequencies. These scenarios, to our knowledge, have not been considered in any

existing global synchronization results on decentralized PCO networks;

3. In contrast to existing global PCO synchronization results requiring a strong enough coupling strength,

our results guarantee global synchronization under any coupling strength between zero and one, which

is more desirable since a very strong coupling strength, although can bring fast convergence, has been

2



Table 1.1: Comparison of our work with other existing results on PCO synchronization

Homogeneous coupling Heterogeneous coupling

PCO network
having (at least)

a global node1

Decentralized
PCO networks

PCO network
having (at least)

a global node

Decentralized
PCO networks

Non-global
synchronization

Local
synchronization

[31, 32, 54, 153]
[2, 47, 70, 78]
[1, 14, 110]

[47, 79, 106, 148]
[66, 93, 127, 147]

[110, 157, 158, 160]
[109]

[111] [26, 128]

Almost global
synchronization

or synchronization
with probability one

[18, 91, 95] [75, 76, 86] � �

Global
synchronization

Discrete state
synchronization

[6] [86] � �

(Continuous) phase
synchronization

[15, 74, 78, 110] [87, 109, 110]2 [111] Our work

1 A node is called as a global node if it is directly connected to all the other nodes.
2 Note that when the maximum degree of an undirected tree graph is not over 3, [87] obtained global
synchronization results for the conventional phase-only PCO model, though results were also obtained under
general undirected tree graphs for a more complicated PCO model with multiple additional state variables.

shown to be detrimental to the robustness of synchronization to disturbances [60].

1.1.2 PCO Desynchronization

Compared with synchronization, desynchronization of PCOs is less explored. Desynchronization

spreads the phase variables of all PCOs uniformly apart (with equal difference between neighboring phases).

It has also been found in many biological phenomena, such as neuron spiking [144] and fish signaling [9].

What’s more, desynchronization is also very important for Deep Brain Stimulation (DBS) which has been

proven an effective treatment for Parkinson’s disease [100]. Recently, phase desynchronization has also been

employed to perform time-division multiple access (TDMA), a medium access control (MAC) protocol for

communications [8, 22, 146].

In the literature, a number of papers have emerged on PCO based desynchronization. Based on the

PCO model in [95], the authors in [120] proposed a desynchronization algorithm (INVERSE-MS) for an all-

to-all network. The convergence properties of INVERSE-MS were further explored in [113, 123, 124], using

an algebraic framework and a hybrid systems framework, respectively. However, these results are about the

achievement of uniform firing time interval (equal time interval between two consecutive firings), which is
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referred to as weak desynchronization [113, 120]. Weak desynchronization relies on persistent phase jumps

to maintain equal firing intervals, and hence cannot guarantee a uniform spread of phases. Furthermore, it is

sensitive to disturbances such as pulse loss and time delay because a lost or delayed pulse will directly lead

to errors in the spread of firing time instants.

Recently, algorithms also emerged for phase desynchronization which is also referred to as strict

desynchronization. Existing phase desynchronization algorithms can be divided into two categories based on

the employed interaction mechanism. In the first mechanism, an oscillator adjusts its phase according to the

firing information of its two immediate firing neighbors (the one fires before it and the one after). Typical

examples include [12, 13, 23, 24, 82, 120, 142]. Generally speaking, performance of these desynchronization

algorithms are difficult to rigorously analyze since an oscillator can never know the exact current phases of

its two immediate neighbors (the one fires before it and the one after). Furthermore, because each oscillator

only updates once during its cycle, such desynchronization algorithms tend to have very slow convergence

rates, as confirmed by our numerical results in Section 3.4.

The second mechanism is using phase response function (PRF) based interaction. In this mechanism,

each oscillator will make phase adjustments every time it receives a pulse, and the adjustment is determined

by the phase response function which describes the phase shift induced by a pulse. As in an all-to-all network

with N PCOs, every oscillator will receive N − 1 pulses when its phase evolves one cycle, and will make

N − 1 adjustments during its phase cycle, which significantly improves the convergence speed. Existing

results [12, 13, 35, 36, 113] fall within this category.

In our work, we rigorously analyze the category of phase response function (PRF) based phase

desynchronization algorithms. Our contributions can be summarized as follows:

1. We rigorously characterize the decentralized phase desynchronization process and propose a general

phase-desynchronizing phase response function (PRF) that includes previous results as special cases;

2. The proposed PRF provides high robustness to pulse losses, time delays, and frequency errors which

will significantly degrade the performance of all existing phase desynchronization approaches, as illus-

trated in numerical simulations in Chapter 3;

3. The proposed PRF can significantly improve convergence speed compared with existing results, ac-

cording to our numerical simulations.
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1.1.3 Pulse-Based Collective Motion Coordination

Inspired by the pulse-based synchronization/desynchronization of PCOs and the close relationship

between the phase dynamics of PCOs and the heading dynamics of vehicles, we aim to propose a pulse-based

approach for collective motion coordination. Recently, the collective motion (coordination of movement) of

multiple vehicle systems has received great attention because of its broad range of engineering applications.

Typical applications include the formation control of unmanned aerial vehicles [28, 34, 65, 129], cooperative

robotics [19, 94], the coordination of autonomous underwater vehicles [3], and the deployment of mobile

sensor networks [20, 59, 158].

In the past decade, numerous results have been published on collective motion coordination of multi-

agent systems. In order to simplify the mathematical treatment, early results used an integrator to model the

dynamics of vehicles, which restricts their practical applications. Moreover, most existing results on collec-

tive motion coordination were based on special communication structures such as all-to-all structure [140],

cyclic structure [90, 116], and circulant structure [118]. The authors in [25] and [97] showed that collective

motion can be achieved under a general communication structure in the synchronized-state collective motion

(aligning vehicles to the same heading). Furthermore, the authors in [141] showed that circular collective

motion can be achieved under a general communication structure if additional information about the relative

estimates of averaged quantities can be exchanged among vehicles.

However, in the above results, all the cooperative motion controllers are designed in the continuous-

time domain assuming that neighbor’s information is continuously available, which contradicts the fact that

information can only be exchanged at discrete-time instants among vehicles in practical applications. In

order to simplify the design and analysis, the controller is usually designed in the continuous-time domain,

and then discretized in implementation to conform to the discrete-time nature of communication. But this

commonly used approach cannot work in many cases, because a very small discretization period is required

to guarantee the original design performance which significantly increases the communication frequency and

causes heavy communication burden [49]. To make things worse, discretization can harm or even destabilize

the closed-loop system.

Motivated by pulse-based synchronization/desynchronization of PCOs, which only relies on ex-

changing simple identical pulse at discrete-time instants, we propose a pulse-based integrated communica-

tion and control approach for collective motion coordination. Based on the close relationship between the

phase dynamics of PCOs and the heading dynamics of vehicles, the communication design is solved natu-
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rally in the proposed approach, which circumvents the problem of discretization and guarantees the original

design performance in implementation. Both heading control and spacing control are achieved in the unified

approach.

1.2 Privacy Preservation in Multi-Agent Systems

Our work focuses on privacy preservation for average consensus as achieving average consensus

is an important problem in multi-agent systems. For a multi-agent system of N nodes (agents) interacting

on a connected graph, average consensus can enable all nodes converge to the average of their initial values

through iterations based on local interaction between neighboring nodes.

In recent years, average consensus is finding increased applications in load balancing [11, 21], net-

work synchronization [85], distributed information fusion [136, 162], and decentralized control [112, 130].

To ensure all nodes converge to the average value of their initial values, conventional average consensus ap-

proaches require individual nodes to exchange explicit state values with their neighbors. This results in the

disclosure of sensitive state information, which is sometimes undesirable in terms of privacy. In fact, in many

applications such as the smart grid, health-care or banking networks, privacy is crucial for promoting par-

ticipation in collaboration since individual nodes tend not to trade privacy for performance [58, 84, 88]. For

instance, a group of people using average consensus to reach a common opinion may want to keep their indi-

vidual opinions secret [150]. Another typical example is power systems in which multiple generators have to

reach agreement on cost while maintaining their individual generation information private [165]. Moreover,

exchanging information in the plaintext form (without encryption) is vulnerable to adversaries which try to

steal sensitive information through hacking into communication links. As the number of reported attack-

events increases and the awareness of security grows, keeping data encrypted in communications becomes

necessary in many applications, particularly in a lot of real-time sensing and control systems like wireless

sensor networks and power systems.

To enable privacy preservation in average consensus, recently results have started to emerge. A

commonly used privacy-preserving mechanism is differential privacy from the database literature [45, 62,

63, 67, 107, 108, 163] (and its variants [68, 154]) which injects independent (and hence uncorrelated) noises

directly to nodes’ states in order to enable privacy preservation in average consensus. However, the use of

independent noises on the states in these approaches prevents converging to the exact average value [156]. To

improve consensus accuracy, which is crucial in cyber-physical systems and sensor networks, [17,50,55–57,

6



89,96,125] inject carefully calculated correlated additive noises to nodes’ states, instead of independent (and

hence uncorrelated) noises used in differential-privacy based approaches. (A similar approach was proposed

in [27] to achieve maximum consensus.) However, these prior works only consider average consensus under

balanced and static network topologies. Different from injecting noises to nodes’ states in the aforementioned

approaches, [5] employed carefully designed mask maps to protect the actual states. Observability based

approaches have also been reported to protect the privacy of multi-agent consensus [4, 121, 132]. Its idea is

to design the topology of interactions such that the observability from a compromised node is minimized,

which amounts to minimizing the ability of the compromised node to infer the initial states of other nodes.

Recently, encryption based approaches have been proposed to protect the privacy by encrypting exchanged

messages with the assistance of additive homomorphic encryption [33,52,71,135], with the price of increasing

computation and communication overhead. Another privacy-preserving approach was proposed in [155]

where each node’s privacy is protected by decomposing its state into two sub-states. However, [155] relies

on undirected interactions and is inapplicable to time-varying directed graphs considered in our work.

In our work, we address privacy preservation of average consensus under time-varying directed

graphs that are not necessarily balanced. Building on the conventional push-sum based average consensus

algorithm, we enable privacy by judiciously adding uncertainties in interaction dynamics and leverage the

inherent robustness of the push-sum algorithm to ensure consensus to the exact average value. More specifi-

cally, in the first several steps, each node sends completely independent random numbers to its out-neighbors

and updates its own state under a sum-invariant (column-stochastic) constraint to completely obfuscate its

initial value without affecting the final convergence result. This is in distinct difference from differential-

privacy based average consensus approaches which enable privacy through sacrificing accuracy in obtained

consensus value. The proposed approach is able to preserve privacy even when multiple honest-but-curious

nodes collude with each other. Numerical simulations are provided to verify the effectiveness and efficiency

of the proposed approach.

1.3 Outline of this Dissertation

The outline of this dissertation is as follows. Chapters 2 and 3 focus on PCO synchronization

and desynchronization, respectively. In Chapter 4, we study the applications of PCO in collective motion

coordination. Chapter 5 addresses privacy preservation for average consensus in multi-agent systems. Finally,

we conclude the dissertation in Chapter 6.
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It is worth noting that the dissertation is comprised of six papers from my research work [39–44].

More specifically, [43], [40], [39, 42], and [41, 44] are included in Chapters 2, 3, 4, and 5, respectively.
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Chapter 2

Synchronization of Pulse-Coupled

Oscillators

2.1 Introduction

In this chapter, we consider synchronization of pulse-coupled oscillators (PCOs). Pulse-coupled

oscillators are limit cycle oscillators coupled through exchanging pulses at discrete time instants. They were

originally proposed to model the synchronization phenomena in biological systems, such as contracting car-

diac cells, flashing fireflies, and firing neurons [31, 95, 122]. Due to their amazing scalability, simplicity, and

robustness, the PCO based synchronization strategy has become a powerful clock synchronization primitive

for wireless sensor networks [143, 151, 158, 159, 161].

Driven by increased applications in biological networks and wireless sensor networks, synchroniza-

tion of pulse-coupled oscillators has gained increased popularity. However, most existing results are for local

synchronization assuming that the initial phases are restricted within a half cycle [1, 2, 14, 26, 31, 32, 47, 54,

66, 70, 79, 93, 106, 127, 128, 147, 148, 153, 157, 158, 160].

Assuming restricted initial phase distribution severely hinders the application of PCO based syn-

chronization, since in distributed networks it is hard to control the initial phase distribution. Recently, efforts

have emerged to address global PCO synchronization from an arbitrary initial phase distribution. However,

these results focus on special graphs, such as all-to-all graph [15, 74, 78, 110], cycle graph [109], strongly-

rooted graph [110], or master/slave graph [111]. Moreover, they rely on sufficiently large coupling strengths,
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which may not be desirable as large coupling strengths are detrimental to robustness to disturbances [60].

In our work, we address the global synchronization of PCOs under arbitrary initial conditions and

heterogeneous phase response functions (PRFs). Due to the hybrid nature of PCO dynamics, we present

a hybrid model for PCO networks by using the hybrid systems framework in [46]. Our main focus is on

the global synchronization of PCOs under undirected chain graphs, but the results are easily extendable to

PCO synchronization under directed chain/tree graphs. We also analyze the behavior of oscillators with

perturbations on their natural frequencies.

The remainder of this chapter is organized as follows. In Section 2.2, we introduce some prelim-

inary concepts, such as basic notations, hybrid systems, and communication graphs. A hybrid model for

PCO networks and its dynamical properties are presented in Section 2.3. In Section 2.4, we analyze global

synchronization on both chain and directed tree graphs and provide robustness analysis under frequency per-

turbations. Numerical experiments are given in Section 2.5. Finally, we conclude this chapter in Section

2.6.

2.2 Preliminaries

2.2.1 Basic Notations

R, R≥0, and Z≥0 denote real numbers, nonnegative real numbers, and nonnegative integers, respec-

tively. Rn denotes the Euclidean space of dimension n, and Rn×n denotes the set of n × n square matrices

with real coefficients. B denotes the closed unit ball in the Euclidean norm. A set-valued map M : A ⇒ B

associates an element α ∈ A with a set M (α) ⊆ B ; the graph of M is defined as graph(M ) := {(α, β) ∈

A × B : β ∈ M (α)}. M is outer-semicontinuous if and only if its graph is closed [134]. The range of

a function f : Rn → Rm is denoted as rge f . The closure of set A is denoted as A. The distance of a

vector x ∈ Rn to a closed set A ⊂ Rn is denoted as |x|A = infy∈A |x − y|. The µ-level set of function

V : domV → R is denoted as V −1(µ) = {x ∈ domV : V (x) = µ} [46].
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2.2.2 Hybrid Systems

We use hybrid systems framework with state x ∈ Rn [46]

H :


ẋ = f(x), x ∈ C

x+ ∈ G(x), x ∈ D
(2.1)

where f , C, G, and D are the flow map, flow set, jump map, and jump set, respectively. The hybrid system

can be represented by H = (C, f,D, G). In hybrid system, a hybrid time point (t, j) ∈ E is parameterized

by both t, the amount of time passed since initiation, and j, the number of jumps that have occurred. A

subset E ⊂ R≥0 × Z≥0 is a hybrid time domain if it is the union of a finite or infinite sequence of interval

[tk, tk+1] × {k}. A solution to H is a function φ : E → Rn where φ satisfies the dynamics of H, E is a

hybrid time domain, and for each j ∈ N, the function t 7→ φ(t, j) is locally absolutely continuous on Ij =

{t : (t, j) ∈ E}. φ(t, j) is called a hybrid arc. A hybrid arc φ is nontrivial if its domain contains at least two

points, is maximal if it is not the truncation of another solution, and is complete if its domain is unbounded.

Moreover, a hybrid arc φ is Zeno if it is complete and supt domφ < ∞, is continuous if it is nontrivial

and domφ ⊂ R≥0 × {0}, is eventually continuous if J = supj domφ < ∞ and domφ ∩ (R≥0 × {J})

contains at least two points, is discrete if it is nontrivial and domφ ⊂ {0} × Z≥0, and is eventually discrete

if T = supt domφ <∞ and domφ ∩ ({T} × Z≥0) contains at least two points. Given a setM, we denote

SH(M) the set of all maximal solutions φ toH with φ(0, 0) ∈M.

Some notions and results for the hybrid system H from [46] which will be used in this chapter are

given as follows.

Definition 2.1. H = (C, f,D, G) satisfies the hybrid basic conditions if: 1) C and D are closed in Rn;

2) f : Rn → Rn is continuous and locally bounded on C ⊂ dom f ; and 3) G : Rn ⇒ Rn is outer-

semicontinuous and locally bounded on D ⊂ domG.

Definition 2.2. A set S ⊂ Rn is said to be strongly forward invariant if for every φ ∈ SH(S), rgeφ ⊂ S.

Definition 2.3. Given a set S ⊂ Rn, a hybrid system H on Rn is pre-forward complete from S if every

φ ∈ SH(S) is either bounded or complete.

Definition 2.4. A compact set A ⊂ Rn is said to be uniformly attractive from a set S ⊂ Rn if every

φ ∈ SH(S) is bounded and for every ε > 0 there exists τ > 0 such that |φ(t, j)|A ≤ ε for every φ ∈ SH(S)

and (t, j) ∈ domφ with t+ j ≥ τ .
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Definition 2.5. A compact set A ⊂ Rn is said to be

• stable for H if for every ε > 0 there exists δ > 0 such that every solution φ to H with |φ(0, 0)|A ≤ δ

satisfies |φ(t, j)|A ≤ ε for all (t, j) ∈ domφ;

• locally attractive forH if every maximal solution toH is bounded and complete, and there exists µ > 0

such that every solution φ to H with |φ(0, 0)|A ≤ µ converges to A, i.e., limt+j→∞ |φ(t, j)|A = 0

holds;

• locally asymptotically stable forH if it is both stable and locally attractive forH.

Definition 2.6. LetA ⊂ Rn be locally asymptotically stable forH. Then the basin of attraction ofA, denoted

by BA, is the set of points such that every φ ∈ SH(BA) is bounded, complete, and limt+j→∞ |φ(t, j)|A = 0.

Definition 2.7. Given τ, ε > 0, two hybrid arcs φ1 and φ2 are (τ, ε)-close if

• ∀ (t, j) ∈ domφ1 with t+ j ≤ τ there exists s such that (s, j) ∈ domφ2, |t− s| < ε and |φ1(t, j)−

φ2(s, j)| < ε;

• ∀ (t, j) ∈ domφ2 with t+ j ≤ τ there exists s such that (s, j) ∈ domφ1, |t− s| < ε and |φ2(t, j)−

φ1(s, j)| < ε.

Lemma 2.1. (Theorem 8.2 in [46]) Consider a continuous function V : Rn → R, any functions uC , uD :

Rn → [−∞, ∞], and a set U ⊂ Rn such that uC(z) ≤ 0, uD(z) ≤ 0 for every z ∈ U and such that

the growth of V along solutions to H is bounded by uC , uD on U . Let a precompact solution φ∗ ∈ SH be

such that rgeφ∗ ⊂ U . Then, for some r ∈ V (U), φ∗ approaches the nonempty set that is the largest weakly

invariant subset of V −1(r) ∩ U ∩
[
u−1
C (0) ∪

(
u−1
D (0) ∩G(u−1

D (0))
)]

.

Lemma 2.2. (Proposition 7.5 in [46]) Let H be nominally well-posed. Suppose that a compact set A ⊂ Rn

has the following properties: 1) it is strongly forward invariant, and 2) it is uniformly attractive from a

neighborhood of itself, i.e., there exists µ > 0 such that A is uniformly attractive from A + µB. Then the

compact set A is locally asymptotically stable.

Lemma 2.3. (Proposition 6.34 in [46]) Let H be well-posed. Suppose that H is pre-forward complete from

a compact set K ⊂ Rn and ρ : Rn → R≥0. Then for every ε > 0 and τ ≥ 0, there exists δ > 0 with the

following property: for every solution φδ toHδρ with φδ(0, 0) ∈ K + δB, there exists a solution φ toH with

φ(0, 0) ∈ K such that φδ and φ are (τ, ε)-close.
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Figure 2.1: Illustration of graphs: (a) undirected chain graph with six nodes; (b) directed chain graph with
six nodes; (c) directed tree graph with ten nodes.

2.2.3 Communication Graphs

We use a graph G = (V, E , W) to represent the interaction pattern of PCOs, where the node set

V = {1, 2, . . . , N} denotes all oscillators. E ⊆ V×V is the edge set, whose elements are such that (i, j) ∈ E

holds if and only if node j can receive messages from node i. We assume that no self edge exists, i.e.,

(i, i) /∈ E . W = [wij ] ∈ RN×N is the weighted adjacency matrix of G with wij ≥ 0, where wij > 0 if and

only if (i, j) ∈ E holds. The out-neighbor set of node i, which represents the set of nodes that can receive

messages from node i, is denoted as N out
i := {j ∈ V : (i, j) ∈ E}.

We focus on chain graphs (both undirected and directed) and directed tree graphs which are defined

as follows:

Definition 2.8. An undirected chain graph G is a graph whose nodes can be indexed such that there exist two

edges (i, i+ 1) and (i+ 1, i) between nodes i and i+ 1 for i = 1, 2, . . . , N − 1.

Definition 2.9. A directed chain graph G is a graph whose nodes can be indexed such that there is only one

edge between nodes i and i + 1 for i = 1, 2, . . . , N − 1 and all edges are directed in the same direction.

Without loss of generality, we suppose that the edge between nodes i and i+ 1 is (i, i+ 1).

Definition 2.10. A directed tree graph G is a cycle-free graph with a designated node as a root such that the

root has exactly one directed chain to every other node.

Examples of undirected chain graph, directed chain graph, and directed tree graph are given in Fig.
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2.1.

2.3 Problem Statement

2.3.1 PCO Model

We consider a network of N PCOs interacting on a graph G = (V, E , W). Each oscillator has a

phase variable xi ∈ S1 for each i ∈ V where S1 denotes the one-dimensional torus. Each phase variable xi

evolves continuously towards 2π according to integrate-and-fire dynamics, i.e., ẋi = ω, where ω ∈ R>0 is

the natural frequency of the oscillators. When xi reaches 2π, oscillator i fires (emits a pulse) and resets xi to

0, after which the cycle repeats. When a neighboring oscillator j receives the pulse from oscillator i, it shifts

its phase according to its coupling strength lj ∈ (0, 1) (a scalar value) and its phase response function (PRF)

Fj , which is defined below [1, 14, 26, 31, 54, 64].

Definition 2.11. Phase response function (PRF) Fj of PCO j is defined as the phase shift (or jump) induced

by a pulse as a function of phase at which the pulse is received.

Therefore, the interaction mechanism of PCOs can be described as follows.

1. Each PCO has a phase variable xi ∈ [0, 2π] for each i ∈ V . Each phase variable xi evolves continu-

ously towards 2π with its natural frequency ω;

2. When the phase variable xi of PCO i reaches 2π, this PCO fires, i.e., emits a pulse, and simultaneously

resets xi to 0. Then the same process repeats;

3. When PCO j receives a pulse from neighboring PCO i, it updates its phase variable xj according its

coupling strength lj and its PRF Fj :

x+
j = xj + ljFj(xj) (2.2)

where x+
j denotes the phase of PCO j right after phase shift.
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2.3.2 Hybrid Model and Dynamical Properties of PCO Networks

Due to the hybrid behavior of PCOs similar to [36, 109, 110], we model them as a hybrid system H

with state x = [x1, . . . , xN ]T . To this end, we define the flow set C and the flow map f(x) as follows

C = [0, 2π]N , f(x) = ω1N ∀x ∈ C (2.3)

According to [109,110], the jump setD and the jump map G(x) can be defined as the union of the individual

jump sets Di and individual jump maps Gi(x), respectively

D :=
⋃
i∈V
Di, G(x) :=

⋃
i∈V:x∈Di

Gi(x) (2.4)

where Di is defined as Di = {x ∈ C : xi = 2π} and ∀x ∈ Di, Gi(x) is given by

Gi(x) = {x+ : x+
i = 0, x+

j ∈ xj + wijFj(xj) ∀ j 6= i} (2.5)

Note wij = lj ∈ (0, 1) if j ∈ N out
i ; otherwise, wij = 0.

To makeH an accurate description of PCOs, we make the following assumptions on the PRF Fj .

Assumption 2.1. The graph of Fj for j ∈ V is such that graph(Fj) ⊆ {(xj , yj) : xj ∈ [0, 2π],−xj ≤

yj ≤ 2π − xj}.

This assumption ensures thatG(D) ⊂ C∪D = C since lj ∈ (0, 1) holds, which avoids the existence

of solutions ending in finite time due to jumping outside C.

Assumption 2.2. The PRF Fj for j ∈ V is an outer-semicontinuous set-valued map with Fj(0) = Fj(2π) =

0.

The constraint Fj(0) = Fj(2π) = 0 rules out discrete and eventually discrete solutions, meaning

that PCOs will not fire continuously without rest [110, 111]. In fact, there are at most N consecutive jumps

with no flow in between because an incoming pulse cannot trigger an oscillator who just fired to fire again

under the constraint Fj(0) = Fj(2π) = 0.

The dynamical properties ofH are characterized as follows.

Lemma 2.4. Under Assumptions 2.1 and 2.2, we have

1. H satisfies the hybrid basic conditions in Definition 2.1;
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2. For every initial condition ξ ∈ C ∪ D = C, there exists at least one nontrivial solution to H. In

particular, every solution φ ∈ SH(C) is maximal, complete, and non-Zeno;

3. For every solution φ ∈ SH(C), supj domφ = ∞ holds, which rules out the existence of continuous

and eventually continuous solutions.

Proof. First we prove statement 1. According to the hybrid model in (2.3)–(2.5), C and D are closed, and f

is continuous and locally bounded on C. Also G is locally bounded since the PRF Fj satisfies Assumption

2.1. To prove G is outer-semicontinuous on D, it suffices to show that graph(G) =
⋃
i∈V{(x, x+) : x ∈

Di, x+ ∈ Gi(x)} is closed. According to [109–111], the outer-semicontinuity of Fj in Assumption 2.2

ensures that {(x, x+) : x ∈ Di, x+ ∈ Gi(x)} is closed for i ∈ V , and hence G is outer-semicontinuous on

D. Therefore,H satisfies the hybrid basic conditions in Definition 2.1.

Next we prove statement 2. Since H satisfies the hybrid basic conditions, according to Proposition

6.10 in [46], there exists at least one nontrivial solution to H for every initial condition ξ ∈ C ∪ D = C, and

every solution φ ∈ SH(C) is complete due to the facts that G(D) ⊂ C ∪ D = C holds and C is compact,

which also implies that φ is maximal. Since G(D) ⊂ C holds, we have rgeφ ⊂ C for every φ ∈ SH(C).

So, according to Definition 2.2, C is strongly forward invariant. Since the constraint Fj(0) = Fj(2π) = 0 in

Assumption 2.2 rules out complete discrete solutions, from Proposition 6.35 in [46] we have that SH(C) is

uniformly non-Zeno, which means that every φ ∈ SH(C) is non-Zeno.

Finally we prove statement 3. Since every φ ∈ SH(C) is complete and the length of each flow

interval is at most 2π
ω , we have supj domφ = ∞. So the existence of continuous and eventually continuous

solutions is ruled out. �

Remark 2.1. As indicated in [109], such hybrid model H is able to handle multiple simultaneous pulses,

i.e., if an oscillator receives multiple pulses simultaneously, it will respond to these pulses sequentially (in

whatever order), but the oscillation behavior is the same as if the components of x jumped simultaneously.

2.3.3 General Delay-Advance PRF

In this chapter, we consider general delay-advance PRFs.
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Assumption 2.3. A delay-advance PRF Fj is such that

Fj(xj) =


F

(1)
j (xj), if xj ∈ [0, π){
F

(1)
j (π), F

(2)
j (π)

}
, if xj = π

F
(2)
j (xj), if xj ∈ (π, 2π]

(2.6)

where F (1)
j (xj) and F (2)

j (xj) are continuous functions on [0, π] and [π, 2π], respectively, and satisfy


F

(1)
j (0) = 0, F

(1)
j (xj) ∈ [−xj , 0) if xj ∈ (0, π]

F
(2)
j (2π) = 0, F

(2)
j (xj) ∈ (0, 2π − xj ] if xj ∈ [π, 2π)

(2.7)

Similar to [109–111], Fj is an outer-semicontinuous set-valued map. Note that oscillators with

phases in (0, π) will be delayed after receiving a pulse, meaning that their phases will be pushed closer to

zero by each pulse received, whereas oscillators with phases in (π, 2π) will be advanced, meaning that their

phases will be pushed toward 2π by each pulse. If an oscillator has phase 0 (or 2π) upon receiving a pulse,

its phase is unchanged by the pulse.

Since Assumption 2.3 implies Assumptions 2.1 and 2.2, the properties ofH in Lemma 2.4 still hold.

Several examples of delay-advance PRF are illustrated in Fig. 2.2.

Remark 2.2. It is worth noting that our PRF can be heterogeneous and is also very general. In fact, it

includes the PRFs used in [66, 109, 110, 157, 158, 160, 164] as special cases. Therefore, our work has broad

potential applications in engineered systems [159] as well as biological systems [64].

2.4 Global Synchronization of PCOs

In this section, we analyze global PCO synchronization on both chain and directed tree graphs, and

provide robustness analysis in the presence of frequency perturbations.

To this end, we first define the synchronization set A:

A = {x ∈ C : |xi − xj | = 0 or |xi − xj | = 2π, ∀ i, j ∈ V} (2.8)

The PCO network synchronizes if the state x converges to the synchronization setA. Note thatA is compact

since it is closed and bounded (included in C that is bounded).
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Figure 2.2: Examples of the general delay-advance PRF Fj(xj).

In the following, we refer to an arc as a connected subset of [0, 2π] where 0 and 2π are associated

with each other. So phase difference ∆i that measures the length of the shorter arc between xi and xi+1 on

the unit cycle is given by

∆i = min{|xi − xi+1|, 2π − |xi − xi+1|} (2.9)

where xN+1 is mapped to x1 in ∆N . It is straightforward to show that ∆i satisfies 0 ≤ ∆i ≤ π.

To measure the degree of synchronization, we define L as

L =

N∑
i=1

∆i (2.10)

Since 0 ≤ ∆i ≤ π holds, we have 0 ≤ L ≤ Nπ. Note that both ∆i for i ∈ V and L are dependent

on x, and L is positive definite with respect to A on C ∪ D = C because L = 0 holds if and only if

∆1 = ∆2 = · · · = ∆N = 0 holds. Therefore, in order to prove synchronization, we only need to show that

L will converge to 0. It is worth noting that L is continuous in x ∈ C but not differentiable with respect to it.
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2.4.1 Global Synchronization on Undirected Chain Graphs

Lemma 2.5. For N PCOs interacting on an undirected chain, if the PRF Fj(xj) satisfies Assumption 2.3

and lj ∈ (0, 1) holds for all j ∈ V , then L in (2.10) is non-increasing along any solution φ ∈ SH(C).

Proof. Since there is no interaction among oscillators during flows and all oscillators have the same natural

frequency, we have that L is constant during flows and its dynamics only depends on jumps. Without loss of

generality, we assume that at time (t∗i , k
∗
i ), we have x(t∗i , k

∗
i ) ∈ Di, i.e., xi(t∗i , k

∗
i ) = 2π. (In the following,

we omit time index (t∗i , k
∗
i ) to simplify the notation.) When oscillator i fires and resets its phase to x+

i = 0,

an oscillator j ∈ N out
i has x+

j ∈ xj + ljFj(xj) but an oscillator j /∈ N out
i still has x+

j = xj .

For the undirected chain graph, we call oscillator i − 1 as the left-neighbor of oscillator i for i =

2, 3, . . . , N , and call oscillator i + 1 as the right-neighbor of oscillator i for i = 1, 2, . . . , N − 1. Upon

the firing of oscillator i, if the left-neighbor oscillator i − 1 exists, it will update its phase and affect ∆i−2

and ∆i−1. Note that for i = 2, ∆i−2 is mapped to ∆N . Similarly, if the right-neighbor oscillator i + 1

exists, ∆i and ∆i+1 will be affected. No other ∆ks will be affected by this pulse, i.e., ∆+
k = ∆k holds for

k /∈ {i− 2, i− 1, i, i+ 1} where ∆+
k denotes the phase difference between oscillators k and k + 1 after the

jump. Therefore, we only need to consider two situations when oscillator i fires, i.e., how ∆i−2 and ∆i−1

change if the left-neighbor oscillator i−1 exists and how ∆i and ∆i+1 change if the right-neighbor oscillator

i+ 1 exists.

Situation I: If the left-neighbor oscillator i− 1 exists, from (2.5) and (2.6) we have

x+
i−1 =


xi−1 + li−1F

(1)
i−1(xi−1), if xi−1 ∈ [0, π]

xi−1 + li−1F
(2)
i−1(xi−1), if xi−1 ∈ [π, 2π]

(2.11)

To facilitate the proof, we use an nonnegative variable δi−1 to denote the jump magnitude of oscillator i− 1.

According to (2.7) and li−1 ∈ (0, 1), δi−1 is determined by

δi−1 =


− li−1F

(1)
i−1(xi−1), if xi−1 ∈ [0, π]

li−1F
(2)
i−1(xi−1), if xi−1 ∈ [π, 2π]

(2.12)

Since xi = 2π and x+
i = 0 hold, from (2.11) and (2.12) we know that oscillator i − 1 jumps δi−1

towards oscillator i, as illustrated in Fig. 2.3. So we have ∆+
i−1 = ∆i−1 − δi−1.

Now we analyze how ∆i−2 changes upon oscillator i’s firing. Note that x+
i−2 = xi−2 holds as
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Figure 2.3: Illustration of Situation I.

i − 2 /∈ N out
i . According to the direction of oscillator i − 1’s jump and the relationship between δi−1 and

∆i−2, we have four following cases:

Case 1: If oscillator i− 1 jumps δi−1 towards oscillator i− 2 and δi−1 ≤ ∆i−2 holds (cf. Fig. 2.3

(a) and (e)), we have ∆+
i−2 = ∆i−2 − δi−1, which leads to

∆+
i−1 + ∆+

i−2 = ∆i−1 + ∆i−2 − 2δi−1 ≤ ∆i−1 + ∆i−2 (2.13)

Note that the equality holds if and only if δi−1 = 0 exists, i.e., ∆+
i−1 + ∆+

i−2 = ∆i−1 + ∆i−2 holds if and

only if ∆+
i−2 = ∆i−2 − δi−1 = ∆i−2 + δi−1 holds.

Case 2: If oscillator i− 1 jumps δi−1 towards oscillator i− 2 and δi−1 > ∆i−2 holds (cf. Fig. 2.3

(b) and (f)), we have ∆+
i−2 = δi−1 −∆i−2. So it follows

∆+
i−1 + ∆+

i−2 = ∆i−1 −∆i−2 ≤ ∆i−1 + ∆i−2 (2.14)

where the equality occurs when ∆i−2 = 0, i.e., ∆+
i−1 + ∆+

i−2 = ∆i−1 + ∆i−2 holds if and only if ∆+
i−2 =

δi−1 −∆i−2 = ∆i−2 + δi−1 holds.

Case 3: If oscillator i − 1 jumps δi−1 away from oscillator i − 2 and ∆i−2 + δi−1 ≤ π holds (cf.

Fig. 2.3 (c) and (g)), we have ∆+
i−2 = ∆i−2 + δi−1, which leads to

∆+
i−1 + ∆+

i−2 = ∆i−1 + ∆i−2 (2.15)

Case 4: If oscillator i − 1 jumps δi−1 away from oscillator i − 2 and ∆i−2 + δi−1 > π holds (cf.
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Fig. 2.3 (d) and (h)), we have ∆+
i−2 = 2π −∆i−2 − δi−1 < π < ∆i−2 + δi−1 and

∆+
i−1 + ∆+

i−2 < (∆i−1 − δi−1) + (∆i−2 + δi−1) = ∆i−1 + ∆i−2 (2.16)

Summarizing the above four cases, we have

∆+
i−1 + ∆+

i−2 ≤ ∆i−1 + ∆i−2 (2.17)

where the equality occurs when ∆+
i−2 = ∆i−2 + δi−1.

Situation II: If the right-neighbor oscillator i + 1 exists, it will update its phase according to (2.5)

and (2.6) as follows

x+
i+1 =


xi+1 + li+1F

(1)
i+1(xi+1), if xi+1 ∈ [0, π]

xi+1 + li+1F
(2)
i+1(xi+1), if xi+1 ∈ [π, 2π]

(2.18)

Also the nonnegative magnitude of oscillator i+ 1’s phase jump (denoted by δi+1) is given as

δi+1 =


− li+1F

(1)
i+1(xi+1), if xi+1 ∈ [0, π]

li+1F
(2)
i+1(xi+1), if xi+1 ∈ [π, 2π]

(2.19)

Since xi = 2π and x+
i = 0 hold, and oscillator i + 1 jumps δi+1 towards oscillator i, we have

∆+
i = ∆i − δi+1.

According to the relationship between δi+1 and ∆i+1, there are also four cases on the change of

∆i+1. Similar to Situation I, we can obtain the following result

∆+
i + ∆+

i+1 ≤ ∆i + ∆i+1 (2.20)

where the equality occurs when ∆+
i+1 = ∆i+1 + δi+1.

Summarizing Situation I and Situation II, we can see that L will not increase during jumps. There-

fore, L is non-increasing along any solution φ ∈ SH(C). �

Now we are in position to introduce our results for global synchronization on undirected chain

graphs.

Theorem 2.1. For N PCOs interacting on an undirected chain, if the PRF Fj(xj) satisfies Assumption 2.3
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and lj ∈ (0, 1) holds for all j ∈ V , then the synchronization set A in (2.8) is globally asymptotically stable,

i.e., global synchronization can be achieved from an arbitrary initial condition.

Proof. According to the derivation in Lemma 2.5, the continuous functionL in (2.10) is constant during flows

and will not increase during jumps, which implies that L(g)− L(x) ≤ 0 holds for all x ∈ D and g ∈ G(x).

Defining uC(x) = 0 for each x ∈ C and uC(x) = −∞ otherwise; uD(x) = maxg∈G(x){L(g)− L(x)} ≤ 0

for each x ∈ D and uD(x) = −∞ otherwise, we can bound the growth of L along solutions by uC and uD

on C [46]. According to Lemma 2.4, every solution φ ∈ SH(C) is precompact, i.e., complete and bounded,

and satisfies rgeφ ⊂ C ∪ D = C. From Lemma 2.1, for some r ∈ L(C) = [0, Nπ], φ approaches the

nonempty set that is the largest weakly invariant subset of L−1(r) ∩ C ∩
[
u−1
C (0) ∪

(
u−1
D (0) ∩G(u−1

D (0))
)]

where L−1(r) denotes the r-level set of L defined in Section 2.2.1 (note that Lemma 2.1 does not need L to

be continuously differentiable in x ∈ C [46]). Since u−1
C (0) = C and u−1

D (0) ∩ G(u−1
D (0)) ⊂ D hold, we

have L−1(r) ∩ C ∩
[
u−1
C (0) ∪

(
u−1
D (0) ∩G(u−1

D (0))
)]

= L−1(r) ∩ C.

According to Lemma A.1 in Appendix A, L cannot be retained at any nonzero value along a com-

plete solution φ. So the largest weakly invariant subset of L−1(r)∩ C is empty for every r ∈ (0, Nπ], which

implies that every solution φ ∈ SH(C) approaches L−1(0) ∩ C = A.

Next we show that A is locally asymptotically stable. Since every solution φ ∈ SH(C) approaches

A, from Definition 2.4, A is uniformly attractive from C. As Assumption 2.2 guarantees that rgeφ ⊂ A for

every φ ∈ SH(A), A is strongly forward invariant according to Definition 2.2. Therefore, from Lemma 2.2,

A is locally asymptotically stable.

To show A is globally asymptotically stable, it suffices to show that A’s basin of attraction BA

contains C ∪ D = C. Since we have shown that the largest weakly invariant subset of L−1(r) ∩ C is empty

for every r ∈ (0, Nπ] and every solution φ ∈ SH(C) approaches A, according to Definition 2.6, A’s basin

of attraction BA contains C. Therefore, A is globally asymptotically stable.

In summary,A is globally asymptotically stable, meaning that global synchronization can be achieved

from an arbitrary initial condition. �

Remark 2.3. Because using four phase differences (∆i−2, ∆i−1, ∆i, and ∆i+1, which requires N ≥ 4)

is essential to describe and characterize the dynamics of a general number of N oscillators in a uniform

manner, we assumed N ≥ 4 in the proof. However, the results are also applicable to N = 2 and N = 3. In

fact, following the analysis in Lemma 2.5, we can obtain that L is non-increasing when N = 2 or 3. Then

using the Invariance Principle based derivation in Theorem 2.1 gives the convergence of L to 0 and thus the

22



achievement of global synchronization for N = 2 and 3.

Remark 2.4. Compared with existing results in [47] which show that local synchronization on chain graphs

can be obtained as long as the coupling is not too strong, our results can guarantee global synchronization

under any coupling strength between zero and one.

Remark 2.5. It is worth noting that different from local PCO synchronization analysis [47, 60] and global

PCO synchronization analysis under all-to-all topology [15,110] where the firing order is time-invariant, the

coupling strength l ∈ (0, 1) cannot guarantee invariant firing order in our considered scenarios, as confirmed

by numerical simulations in Fig. 2.5.

2.4.2 Global Synchronization on Directed Chain and Tree Graphs

In this subsection, we extend the global synchronization results to directed chain and tree graphs.

Theorem 2.2. For N PCOs interacting on a directed chain, if the PRF Fj(xj) satisfies Assumption 2.3 and

lj ∈ (0, 1) holds for all j ∈ V , then the synchronization set A in (2.8) is globally asymptotically stable, i.e.,

global synchronization can be achieved from an arbitrary initial condition.

Proof. The proof is similar to Theorem 2.1 and omitted. �

Remark 2.6. Different from the cycle graph in [109] where a strong enough coupling strength is required,

global synchronization can be achieved here under any coupling strength between zero and one. This is

because in the chain case, the absence of interaction between oscillators 1 and N allows ∆N to increase

freely until it triggers L to decrease; in other words, the absence of interaction between oscillators 1 and

N breaks the symmetry of the chain graph [48], which is key to remove undesired equilibria where L keeps

unchanged. In comparison, the symmetry of the cycle graph can make L stay at some undesired equilibria

under a weak coupling strength. So a strong enough coupling strength is required in the cycle graph case to

achieve global synchronization.

Theorem 2.3. For N PCOs interacting on a directed tree, if the PRF Fj(xj) satisfies Assumption 2.3 and

lj ∈ (0, 1) holds for all j ∈ V , then global synchronization can be achieved from an arbitrary initial

condition.

Proof. Suppose in a directed tree graph there are m nodes without any out-neighbors which are represented

as v1, v2, . . . , vm. Take the graph in Fig. 2.1 (c) as an example, nodes 5, 8, 9, and 10 do not have any out-

neighbors. According to Definition 2.10, for every node vi (i = 1, 2, . . . ,m) there is a unique directed chain
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from the root vr to node vi. So the directed tree graph is composed of m directed chains. Note that for every

directed chain from the root vr to node vi, it is not affected by oscillators outside the chain. So them directed

chains are decoupled from each other. According to Theorem 2.2, global synchronization can be achieved

on the directed chain from an arbitrary initial condition if Fj(xj) satisfies Assumption 2.3 and if lj ∈ (0, 1)

holds. Adding the fact that the root oscillator vr belongs to all m directed chains implies synchronization of

all PCOs. �

Remark 2.7. Different from the arguments in the proofs of Theorems 2.2 and 2.3, an alternative approach to

proving global synchronization on direct chain (and tree) graphs is using inductive reasoning based on the

following two facts: first, a parent node can affect its child node but a child node never affects its parent node;

secondly, under the given piecewise continuous delay-advance PRF (with values being nonzero in (0, 2π)),

the phases of all oscillators on a directed chain will be reduced to within a half cycle, which always leads to

synchronization (cf. Theorem 2 in [128]).

Remark 2.8. Different from the “probability-one synchronization” in [75, 76, 86] where oscillators syn-

chronize with probability one under a stochastic phase-responding mechanism and the “almost global syn-

chronization” in [18, 91, 95] where synchronization is guaranteed for all initial conditions except a set of

Lebesgue-measure zero, our studied global synchronization is achieved in a deterministic manner from any

initial condition, which is not only important theoretically but also mandatory in many safety-critical applica-

tions. A typical application justifying the necessity of deterministic global synchronization is synchronization

based motion coordination of AUV (autonomous underwater vehicles) [119] and UAV (unmanned aerial ve-

hicles) [152]. In such an application, even one single failure in synchronization might be too costly in money,

time, energy, or even lives (cf. the multi-UAV based target engagement problem in [38]).

2.4.3 Robustness Analysis for Frequency Perturbations

In this subsection, we analyze the robustness property of PCOs under small frequency perturbations

on the natural frequency ω. It is worth noting that robustness is important since frequency perturbations

are unavoidable and under an inappropriate synchronization mechanism, even a small difference in natural

frequency may accumulate and lead to large phase differences. The hybrid systems model with frequency

24



perturbations is given as follows:

Hp :


ẋ = ω1N + p, x ∈ C

x+ ∈ G(x), x ∈ D
(2.21)

where p = [p1, . . . , pN ]T represents the frequency perturbations. Using the notion of (τ, ε)-closeness given

in Definition 2.7 in Section 2.2.2, we have the following result:

Theorem 2.4. Consider N PCOs with frequency perturbations as described by Hp in (2.21). For every

ε > 0, τ ≥ 0, and ρ : RN → R≥0, there exists a scalar σ > 0 such that under any p ∈ σρ(x)B every

solution φp toHp from C is (τ, ε)-close to a solution φ to the perturbation-free dynamicsH.

Proof. According to Lemma 2.4 in Section 2.3.2, H satisfies the hybrid basic conditions, and is pre-forward

complete from the compact set C since every φ ∈ SH(C) is complete (see Definition 2.3). So from Lemma

2.3, for every ε > 0, τ ≥ 0, and ρ : RN → R≥0, there exists a scalar σ > 0 with the following property: for

every solution φσ to Hσρ from C, there exists a solution φ to H from C such that φσ and φ are (τ, ε)-close,

where Hσρ = (C, fσρ,D, G) is the σρ-perturbation of H and fσρ(x) = f(x) + σρ(x)B = ω1N + σρ(x)B

for every x ∈ C. Note that if p ∈ σρ(x)B, every solution φp to Hp from C is in fact the solution to Hσρ,

which implies that φp and φ are (τ, ε)-close. �

According to Theorem 2.4, the behavior of perturbed PCOs is close to the perturbation-free case, i.e.,

the solutions to the perturbed PCOs converge to the neighborhood of the synchronization set A. Therefore,

the phases of oscillators will remain close to each other under small frequency perturbations.

2.5 Numerical Experiments

2.5.1 Unperturbed Case

We first considered the unperturbed case, i.e., all oscillators had an identical frequency ω = 2π.

First we considered N = 6 PCOs on an undirected chain graph. Oscillators 1, . . . , 6 adopted the

PRFs (a), (b), (c), (d), (a), and (b) in Fig. 2.2, respectively. The respective analytical expressions of these
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PRFs are given below.

(a) : Fj(xj) =


− 0.6xj , if xj ∈ [0, π){
− 0.6π, 0.6π

}
, if xj = π

0.6(2π − xj), if xj ∈ (π, 2π]

(2.22)

(b) : Fj(xj) =



− 0.7xj , if xj ∈ [0,
π

2
)

− 0.35π, if xj ∈ [
π

2
, π){

− 0.35π, 0.35π
}
, if xj = π

0.35π, if xj ∈ (π,
3π

2
]

0.7(2π − xj), if xj ∈ (
3π

2
, 2π]

(2.23)

(c) : Fj(xj) =


− 1.5 sin(0.5xj), if xj ∈ [0, π){
− 1.5, 1.5

}
, if xj = π

1.5 sin(0.5xj), if xj ∈ (π, 2π]

(2.24)

(d) : Fj(xj) =


− x3

j/π
2 + x2

j/π − 0.75xj , if xj ∈ [0, π){
− 0.75π, 0.75π

}
, if xj = π

− x3
j/π

2 + 5x2
j/π − 8.75xj + 5.5π, if xj ∈ (π, 2π]

(2.25)

The coupling strength l1, . . . , l6 were set to 0.4, 0.5, 0.6, 0.6, 0.5, and 0.4, respectively. The initial

phase x(0, 0) was randomly chosen from C ∪ D. Fig. 2.4 shows the evolutions of phases and L. It can be

seen that L converged to 0, which confirmed Theorem 2.1.

From the lower plot of Fig. 2.4, we can also see that the length of the shortest containing arc Vc,

which is widely used as a Lyapunov function in local synchronization analysis [66, 110, 111, 128], is not

appropriate for global PCO synchronization as it may not decrease monotonically. Along the same line,

the firing order which is invariant in [15, 47, 60], and [110], is not constant in the considered dynamics as

exemplified in Fig. 2.5. These unique properties of chain and directed tree PCOs corroborate the novelty and

importance of our results.

Then we considered N = 10 PCOs on a directed tree graph, as illustrated in Fig. 2.1 (c). There

are 4 directed chains in this graph, namely, oscillators 1 → 2 → 5, oscillators 1 → 2 → 4 → 8, oscillators
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Figure 2.4: Evolutions of phases and L for PCOs on an undirected chain graph.
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Figure 2.5: Firing order of PCOs on the undirected chain graph.
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Figure 2.6: Evolutions of phases, L1, L2, L3, and L4 for PCOs on a directed tree graph. PCOs synchronized
as L1, L2, L3, and L4 converged to 0.
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Figure 2.7: Evolutions of phases and L for PCOs on an undirected chain graph under frequency perturbations.

1 → 3 → 6 → 9, and oscillators 1 → 2 → 4 → 7 → 10. The same as (2.10), L1, L2, L3, and L4

were defined to measure the degree of synchronization corresponding to the 4 directed chains, respectively.

Oscillators 1, . . . , 10 adopted the PRFs (a), (b), (c), (d), (a), (b), (c), (d), (a), and (b) in Fig. 2.2, respectively.

The coupling strength l1, . . . , l10 were set to 0.6, 0.5, 0.4, 0.6, 0.5, 0.4, 0.6, 0.5, 0.4, and 0.6, respectively. The

initial phase x(0, 0) was randomly chosen from C ∪ D. The convergence of Li (i = 1, . . . , 4) to zero in Fig.

2.6 implies the synchronization of the ith directed chain, which confirmed Theorem 2.2. The simultaneous

synchronization of all four directed chains also means synchronization of the entire directed tree graph, which

confirmed Theorem 2.3.

2.5.2 Perturbed Case

We consideredN = 6 PCOs on an undirected chain graph with frequency perturbations on oscillator

k set to pk = 0.5 sin(2πt + 2πk/N). The other settings were the same as the undirected chain case. The

evolutions of phases and L were shown in Fig. 2.7. It can be seen that the perturbed behaviors did not

differ too much from the unperturbed case in Fig. 2.4, and the solution converged to a neighborhood of the

synchronization set A as L approached a ball containing zero, which confirmed Theorem 2.4.
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2.6 Summaries

In this chapter, we addressed global synchronization of PCOs interacting on chain and directed

tree graphs. It was proven that PCOs can be synchronized from an arbitrary initial phase distribution under

heterogeneous phase response functions (PRFs) and coupling strengths. The results are also applicable when

oscillators are heterogeneous and subject to time-varying perturbations on their natural frequencies. Note

that different from existing global synchronization results, the coupling strengths in our results can be freely

chosen between zero and one, which is desirable since a very strong coupling strength, although can bring

fast convergence, has been shown to be detrimental to the robustness of synchronization to disturbances.

Given that a very weak coupling may not be desirable either due to low convergence speed which may allow

disturbances to accumulate, the results give flexibility in meeting versatile requirements in practical PCO

applications.
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Chapter 3

Desynchronization of Pulse-Coupled

Oscillators

3.1 Introduction

In this chapter, we consider desynchronization of pulse-coupled oscillators (PCOs), which spreads

the phase variables of all PCOs uniformly apart (with equal difference between neighboring phases).

In the literature, based on the PCO model in [95], the authors in [113, 120, 123, 124] explored the

performance of desynchronization algorithm (INVERSE-MS) using different frameworks. However, these

results are about the achievement of uniform firing time interval (equal time interval between two consecutive

firings), which is referred to as weak desynchronization [113,120]. Weak desynchronization relies on persis-

tent phase jumps to maintain equal firing intervals, and hence cannot guarantee a uniform spread of phases.

Furthermore, it is sensitive to disturbances such as pulse loss and time delay because a lost or delayed pulse

will directly lead to errors in the spread of firing time instants.

Recently, algorithms also emerged for phase desynchronization which is also referred to as strict

desynchronization. Existing phase desynchronization algorithms can be divided into two categories based on

the employed interaction mechanism. In the first mechanism, an oscillator adjusts its phase according to the

firing information of its two immediate firing neighbors (the one fires before it and the one after). Typical

examples include [12, 13, 23, 24, 82, 120, 142]. Since each oscillator only updates once during its cycle, such

desynchronization algorithms tend to have very slow convergence rates, as confirmed by our numerical results
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in Section 3.4.

The second mechanism is using phase response function (PRF) based interaction. In this mechanism,

each oscillator will make phase adjustments every time it receives a pulse, and the adjustment is determined

by the phase response function which describes the phase shift induced by a pulse. As in an all-to-all network

with N PCOs, every oscillator will receive N − 1 pulses when its phase evolves one cycle, and will make

N − 1 adjustments during its phase cycle, which significantly improves the convergence speed. Existing

results [12, 13, 35, 36, 113] fall within this category.

In our work, we rigorously analyze the category of phase response function (PRF) based phase

desynchronization algorithms. More specifically, we rigorously characterize the decentralized phase desyn-

chronization process and propose a general phase-desynchronizing PRF that includes previous results as

special cases. More interestingly, the proposed phase response function provides high robustness to pulse

losses, time delays, and frequency errors which will significantly degrade the performance of all existing

phase desynchronization approaches, as illustrated in the numerical simulation in Section 3.4. Furthermore,

numerical simulations also show that the proposed PRF can significantly improve convergence speed com-

pared with existing results.

The remainder of this chapter is organized as follows. In Section 3.2, we first review the PCO

model, then we propose a general phase response function for phase desynchronization. Rigorous analysis of

the convergence to desynchronization is provided in Section 3.3. In Section 3.4, the effectiveness and robust-

ness properties of the proposed phase desynchronization algorithm are verified through numerical simulation

results. Finally, we conclude this chapter in Section 3.5.

3.2 PCO Based Phase Desynchronization

In this section, we will first review the PCO model, and then we will propose a new phase response

function for phase desynchronization.

3.2.1 PCO Model

We consider a network of N PCOs with an all-to-all communication pattern. Each oscillator has

a phase variable φk ∈ S1 (k = 1, 2, . . . , N ) where S1 denotes the one-dimensional torus. The interaction

mechanism of PCOs can be described as follows:
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1. Each PCO has a phase variable φk ∈ S1 with initial value set to φk(0). φk evolves continuously from

0 to 2π with a constant speed (natural frequency) ω;

2. When the phase variable φk of PCO k reaches 2π, this PCO fires, i.e., emits a pulse, and simultaneously

resets φk to 0. Then the same process repeats;

3. When a PCO receives a pulse from a neighboring PCO, it updates its phase variable according to the

phase response function (PRF) F (φk):

φ+
k = φk + F (φk) (3.1)

where φ+
k and φk denote the phases of the kth oscillator after and before receiving the pulse, respec-

tively.

3.2.2 Phase Response Function

It is already well-known that if the phase response function is chosen appropriately, pulse-coupled

oscillators can achieve synchronization. For example, [157, 158] showed that using a delay-advance phase

response function in which the value of phase shift is negative in the interval (0, π], positive in the interval

(π, 2π), and zero at 0 and 2π, oscillator phases can achieve synchronization.

First, phase desynchronization is defined as follows:

Definition 3.1. For a network ofN oscillators, phase desynchronization denotes the state on which all phases

are distributed evenly on the unit circle with identical differences 2π
N between two neighboring phases.

As discussed earlier, in PCO networks, phase desynchronization is more stringent than weak desyn-

chronization [113, 120] which uniformly spreads firing time instants of constituent oscillators. This is be-

cause weak desynchronization can be realized using persistent phase jumps (caused by pulse interactions),

which are not permitted by phase desynchronization; whereas weak synchronization follows naturally if

phase desynchronization is achieved.

We propose the following phase response function (PRF) F (φk) :

F (φk) =


− l1(φk −

2π

N
) 0 < φk <

2π

N

0
2π

N
≤ φk ≤ 2π − 2π

N

− l2(φk − (2π − 2π

N
)) 2π − 2π

N
< φk < 2π

(3.2)
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Figure 3.1: Proposed phase response function F (φk) in (3.2) for phase desynchronization (N = 5, l1 = 0.6,
and l2 = 0.9).

where 0 ≤ l1 < 1 and 0 ≤ l2 < 1 denote the strengths of coupling (interaction). It is obvious that l1 and l2

can not be zero at the same time. According to this PRF, PCO k updates its phase variable φk (upon receiving

a pulse) only when φk is within the interval (0, 2π
N ) ∪ (2π − 2π

N , 2π) as illustrated in Fig. 3.1. Therefore, the

phase update rule (3.1) for PCO k can be rewritten as:

φ+
k =


(1− l1)φk + l1

2π

N
0 < φk <

2π

N

φk
2π

N
≤ φk ≤ 2π − 2π

N

(1− l2)φk + l2(2π − 2π

N
) 2π − 2π

N
< φk < 2π

(3.3)

According to (3.3), φ+
k ∈ (0, 2π) is a monotonically increasing function of φk when φk resides in (0, 2π),

as shown in Fig. 3.2.

Remark 3.1. Our proposed phase update rule (3.3) is more general than [113], which in fact is a special

case of our phase update rule (3.3) by setting l1 = 0.

Remark 3.2. The phase response function in (3.2) with l1 > 0 allows non-zero interaction when oscillator

phases are within the interval (0, 2π
N ), which is key to improve the robustness to time delays and contributes

to a significant advantage over the results in [35,36,113,120], as illustrated by numerical simulations in Fig.

3.14.
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Figure 3.2: Proposed phase update rule in (3.3) for phase desynchronization (N = 5, l1 = 0.6, and l2 = 0.9).

3.3 Convergence Properties of the Proposed Phase Desynchronization

Algorithm

In this section, we rigorously prove that the phase update rule (3.3) can guarantee phase desynchro-

nization. To this end, we will first introduce Lemma 3.1 on the firing order of PCOs.

Lemma 3.1. For a network of N PCOs with no two PCOs having equal initial phases, the firing order of

PCOs is time-invariant under the phase update rule (3.3), i.e., if at any time instant t, we have 0 < φi1 <

φi2 < · · · < φiN ≤ 2π for some sequence of nonrepeated elements {i1, i2, . . . , iN} of I = {1, 2, . . . , N}

(i.e., a reordering of the elements of I), then after N pulses, 0 < φi1 < φi2 < · · · < φiN ≤ 2π still holds.

Proof. Assume that at any time instant t, the phases satisfy the following relationship 0 < φi1 < φi2 < · · · <

φiN ≤ 2π. Since φiN is the largest, it will reach 2π first and send a pulse that will be received by all the

other PCOs. After receiving this pulse, all the other PCOs update their phases according to the phase update

rule (3.3). Since φ+
k ∈ (0, 2π) is a monotonically increasing function of φk when φk resides in (0, 2π), we

have 0 = φiN < φi1 < · · · < φiN−1
< 2π after this update. Following the same line of reasoning, it follows

that after N pulses, 0 < φi1 < φi2 < · · · < φiN ≤ 2π holds, which means that the firing order of PCOs is

time-invariant. �

In order to rigorously analyze the convergence process, we also need a measure to quantify the

degree of achievement of desynchronization. Without loss of generality, we denote the initial time instant as

t = 0 and assume at this time instant the phases of PCOs are arranged in a way such that φ1(0) > φ2(0) >

. . . > φN (0) holds, as illustrated in Fig. 3.3. (Note that here we assume that no two PCOs’ initial phases are
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N

N

Figure 3.3: Initially (at t = 0), the phases of PCOs are arranged in a way such that φ1(0) > φ2(0) > . . . >
φN (0) holds.

equal.) From Lemma 3.1, we know that the firing order of PCOs will not be affected by the pulse-induced

update. So if φk is the immediate follower (anti-clockwisely) of φk−1 on the unit circle S1 at t = 0, it

will always be the immediate follower (anti-clockwisely) of φk−1 on S1. Therefore, the phase differences

between neighboring PCOs (in terms of phase) can always be expressed as:


∆k = (φk − φk+1) mod 2π, k = 1, 2, . . . , N − 1

∆N = (φN − φ1) mod 2π

(3.4)

According to Definition 3.1, phase desynchronization implies that the phase differences between

neighboring (in terms of phase) oscillators are equal to 2π
N . Therefore, in order to quantify the degree of

achievement of phase desynchronization, we introduce a measure P based on phase differences as follows:

P ,
N∑
k=1

|∆k −
2π

N
| (3.5)

When phase desynchronization is achieved, the phase differences between neighboring PCOs are equal to

2π
N , so P in (3.5) will reach its minimum 0. It can also be easily verified that P equals 0 only when phase

desynchronization is achieved.

Therefore, from the relationship between phase desynchronization and P , to prove the achievement

of phase desynchronization, we need to prove that P will converge to 0. Since P will not change between

two consecutive pulses, we only need to concentrate on firing events.

To analyze the changes of P caused by firing events (or pulses), we define “active pulse” and “silent

pulse” as follows:
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Definition 3.2. A pulse is called an “active pulse” if there exists at least one k ∈ {1, 2, . . . , N} such that

φk ∈ (0, 2π
N ) ∪ (2π − 2π

N , 2π) holds when the pulse is emitted.

Definition 3.3. A pulse is called a “silent pulse” if there does not exist any k ∈ {1, 2, . . . , N} such that

φk ∈ (0, 2π
N ) ∪ (2π − 2π

N , 2π) holds when the pulse is emitted.

According to Definition 3.2 and Definition 3.3, a pulse is either a “silent pulse” or an “active pulse.”

Since no oscillator phases reside in (0, 2π
N ) ∪ (2π − 2π

N , 2π) when a “silent pulse” is emitted, no phase

variables are affected according to (3.2). Therefore, a “silent pulse” will not affect phase differences and the

measure P . Similarly, an “active pulse” may change the measure P since the phase variables residing in

(0, 2π
N ) ∪ (2π − 2π

N , 2π) will be affected by the pulse-induced update.

Next we will introduce Lemma 3.2 on the lack of existence of N consecutive “silent pulses” before

achieving phase desynchronization.

Lemma 3.2. For a network of N PCOs with no two PCOs having equal initial phases, there cannot be N

consecutive “silent pulses” unless phase desynchronization is achieved.

Proof. We use proof of contradiction. Assume that N consecutive pulses are all “silent pulses” but phase

desynchronization has not been achieved. From Lemma 3.1, the firing order of oscillators is time-invariant,

so the N consecutive pulses must be from N different oscillators. For a pulse from oscillator i to be a

“silent pulse,” the phase variable of the oscillator who sends a pulse immediately before oscillator i must

be no less than 2π
N , and the phase variable of the oscillator who sends a pulse immediately after oscillator

i must be no greater than 2π − 2π
N , which means that the phases of all the other oscillators are outside

(0, 2π
N ) ∪ (2π − 2π

N , 2π). Therefore, for the N consecutive “silent pulses,” the phase differences between

any two neighboring phases are no less than 2π
N . Given that the sum of all phase differences has to be 2π,

we have all phase differences being equal to 2π
N , meaning that phase desynchronization is achieved, which

contradicts the initial assumption. Therefore, there cannot be N consecutive “silent pulses” unless phase

desynchronization is achieved. �

Using Lemma 3.2, the existence of “active pulses” before achieving phase desynchronization can be

guaranteed. Further taking into account the fact that only “active pulses” may change P , we can infer that

the evolution of P only depends on the changes caused by “active pulses.”

Now, we introduce our main result.
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Theorem 3.1. For a network of N PCOs with no two PCOs having equal initial phases, the PCOs will

achieve phase desynchronization if the phase response function F (φk) is given by (3.2) for 0 < l1 < 1 and

0 < l2 < 1.

Proof. In order to prove the achievement of phase desynchronization, we need to prove that P will converge

to 0. Further taking into account the fact that the evolution of P only depends on “active pulses,” without

loss of generality, we assume that oscillator k emits an “active pulse” at time instant t = tk. According to

Definition 3.2, there is at least one phase variable within (0, 2π
N ) ∪ (2π − 2π

N , 2π) when the pulse is sent.

Without loss of generality, we assume that there are M phase variables within (0, 2π
N ) and S phase variables

within (2π − 2π
N , 2π), where M and S are positive integers satisfying 2 ≤ M + S ≤ N − 1. The M and S

phase variables are represented as φ
k̂−1

, . . . , φ
k̂−M and φ

k̂+1
, . . . , φ

k̂+S
, respectively, where the superscript

“̂” represents modulo operation on N , i.e., •̂ , (•) mod N , as illustrated in Fig. 3.4. According to the

assumption, we have φ
k̂−M < 2π

N ≤ φ ̂k−M−1
and φ ̂k+S+1

≤ 2π − 2π
N < φ

k̂+S
. Since φ

k̂−1
, . . . , φ

k̂−M

and φ
k̂+1

, . . . , φ
k̂+S

reside in (0, 2π
N )∪ (2π− 2π

N , 2π), they will update their values after receiving the pulse

from oscillator k according to the phase update rule in (3.3) as follows:


φ+

k̂−i
=(1− l1)φ

k̂−i + l1
2π

N
, i = 1, . . . ,M

φ+

k̂+j
=(1− l2)φ

k̂+j
+ l2(2π − 2π

N
), j = 1, . . . , S

(3.6)

Note that we also have φ+
k = 0 and φ+

k̂+q
= φ

k̂+q
for q = S + 1, . . . , N −M − 1 (because φ

k̂+q

for q = S + 1, . . . , N −M − 1 reside in [ 2π
N , 2π − 2π

N ] and thus will not be changed according to the PRF

in (3.2)).

According to (3.4) and (3.6), phase differences after the update caused by the “active pulse” from
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Figure 3.4: The phase variables φ
k̂−1

, . . . , φ
k̂−M and φ

k̂+1
, . . . , φ

k̂+S
reside in (0, 2π

N )∪(2π− 2π
N , 2π) when

oscillator k sends the first “active pulse” at t = tk.

oscillator k are given by:



∆+
̂k−M−1

= φ+
̂k−M−1

− φ+

k̂−M
= φ ̂k−M−1

− (1− l1)φ
k̂−M − l1

2π

N

∆+

k̂−i
= φ+

k̂−i
− φ+

k̂−i+1
= (1− l1)(φ

k̂−i − φk̂−i+1
), i = 2, . . . ,M

∆+

k̂−1
= φ+

k̂−1
− φ+

k = (1− l1)φ
k̂−1

+ l1
2π

N

∆+
k = φ+

k − φ
+

k̂+1
+ 2π = 2π − (1− l2)φ

k̂+1
− l2(2π − 2π

N
)

∆+

k̂+j
= φ+

k̂+j
− φ+

k̂+j+1
= (1− l2)(φ

k̂+j
− φ

k̂+j+1
), j = 1, . . . , S − 1

∆+

k̂+S
= φ+

k̂+S
− φ+

̂k+S+1
= (1− l2)φ

k̂+S
+ l2(2π − 2π

N
)− φ ̂k+S+1

∆+

k̂+q
= φ+

k̂+q
− φ+

k̂+q+1
= φ

k̂+q
− φ

k̂+q+1
, q = S + 1, . . . , N −M − 2

(3.7)

Then the new P (denote it as P+) after the update is given by:

P+ =

N∑
k=1

|∆+
k −

2π

N
| (3.8)

To show the change of measure P caused by the “active pulse” from oscillator k, we calculate the

difference of P before and after the pulse-induced update:

P+ − P =

N∑
k=1

|∆+
k −

2π

N
| −

N∑
k=1

|∆k −
2π

N
| (3.9)
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Therefore, P+ − P can be divided into 7 parts as follows:

P+ − P =

N∑
k=1

|∆+
k −

2π

N
| −

N∑
k=1

|∆k −
2π

N
|

= |∆+
̂k−M−1

− 2π

N
| − |∆ ̂k−M−1

− 2π

N
|︸ ︷︷ ︸

Part 1

+

M∑
i=2

|∆+

k̂−i
− 2π

N
| −

M∑
i=2

|∆
k̂−i −

2π

N
|︸ ︷︷ ︸

Part 2

+ |∆+

k̂−1
− 2π

N
| − |∆

k̂−1
− 2π

N
|︸ ︷︷ ︸

Part 3

+ |∆+
k −

2π

N
| − |∆k −

2π

N
|︸ ︷︷ ︸

Part 4

+

S−1∑
j=1

|∆+

k̂+j
− 2π

N
| −

S−1∑
j=1

|∆
k̂+j
− 2π

N
|︸ ︷︷ ︸

Part 5

+ |∆+

k̂+S
− 2π

N
| − |∆

k̂+S
− 2π

N
|︸ ︷︷ ︸

Part 6

+

N−M−2∑
q=S+1

|∆+

k̂+q
− 2π

N
| −

N−M−2∑
q=S+1

|∆
k̂+q
− 2π

N
|︸ ︷︷ ︸

Part 7

(3.10)

Part 2, Part 3, Part 4, Part 5, and Part 7 in (3.10) can be simplified as follows:

Part 2 =

M∑
i=2

{
|(1− l1)(φ

k̂−i − φk̂−i+1
)− 2π

N
| − |(φ

k̂−i − φk̂−i+1
)− 2π

N
|
}

=

M∑
i=2

{2π

N
− (1− l1)(φ

k̂−i − φk̂−i+1
)− 2π

N
+ (φ

k̂−i − φk̂−i+1
)
}

=l1(φ
k̂−M − φk̂−1

)

(3.11)

where we used the relationships φ
k̂−i − φk̂−i+1

< 2π
N and (1− l1)(φ

k̂−i − φk̂−i+1
) < 2π

N for i = 2, . . . ,M

as 0 < l1 < 1.

Part 3 =|(1− l1)φ
k̂−1

+ l1
2π

N
− 2π

N
| − |φ

k̂−1
− 2π

N
|

=(1− l1)(
2π

N
− φ

k̂−1
)− (

2π

N
− φ

k̂−1
)

=− l1(
2π

N
− φ

k̂−1
)

(3.12)
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In the above derivation we used φ
k̂−1

< 2π
N .

Part 4 =|2π − (1− l2)φ
k̂+1
− l2(2π − 2π

N
)− 2π

N
| − |2π − φ

k̂+1
− 2π

N
|

=
2π

N
− 2π + (1− l2)φ

k̂+1
+ l2(2π − 2π

N
)− 2π

N
+ 2π − φ

k̂+1

=l2(2π − 2π

N
− φ

k̂+1
)

(3.13)

where we used the inequalities 2π−φ
k̂+1

< 2π
N and 2π−(1−l2)φ

k̂+1
−l2(2π− 2π

N ) < 2π
N due to 0 < l2 < 1.

Part 5 =

S−1∑
j=1

{
|(1− l2)(φ

k̂+j
− φ

k̂+j+1
)− 2π

N
| − |(φ

k̂+j
− φ

k̂+j+1
)− 2π

N
|
}

=

S−1∑
j=1

{2π

N
− (1− l2)(φ

k̂+j
− φ

k̂+j+1
)− 2π

N
+ (φ

k̂+j
− φ

k̂+j+1
)
}

=l2(φ
k̂+1
− φ

k̂+S
)

(3.14)

where we used the relationships φ
k̂+j
−φ

k̂+j+1
< 2π

N and (1−l2)(φ
k̂+j
−φ

k̂+j+1
) < 2π

N for j = 1, . . . , S−1

because of 0 < l2 < 1.

Part 7 =

N−M−2∑
q=S+1

{
|φ
k̂+q
− φ

k̂+q+1
− 2π

N
| − |φ

k̂+q
− φ

k̂+q+1
− 2π

N
|
}

= 0 (3.15)

Combining (3.9)-(3.15) leads to:

P+ − P

= |∆+
̂k−M−1

− 2π

N
| − |∆ ̂k−M−1

− 2π

N
|+ l1(φ

k̂−M −
2π

N
)︸ ︷︷ ︸

Part A

+ |∆+

k̂+S
− 2π

N
| − |∆

k̂+S
− 2π

N
|+ l2(2π − 2π

N
− φ

k̂+S
)︸ ︷︷ ︸

Part B

(3.16)

Next, we discuss the value of Part A in (3.16) under three different cases:
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Case 1’: If ∆ ̂k−M−1
> 2π

N and ∆+
̂k−M−1

≥ 2π
N hold, Part A in (3.16) can be rewritten as:

Part A = ∆+
̂k−M−1

−∆ ̂k−M−1
+ l1(φ

k̂−M −
2π

N
)

= φ ̂k−M−1
− (1− l1)φ

k̂−M − l1
2π

N
− φ ̂k−M−1

+ φ
k̂−M + l1(φ

k̂−M −
2π

N
)

= 2l1(φ
k̂−M −

2π

N
)

< 0

(3.17)

Case 2’: If ∆ ̂k−M−1
> 2π

N and ∆+
̂k−M−1

< 2π
N hold, we have φ

k̂−M − φ ̂k−M−1
+ 2π

N < 0. Then

Part A in (3.16) can be rewritten as:

Part A =
2π

N
−∆+

̂k−M−1
−∆ ̂k−M−1

+
2π

N
+ l1(φ

k̂−M −
2π

N
)

=
2π

N
− φ ̂k−M−1

+ (1− l1)φ
k̂−M + l1

2π

N
− φ ̂k−M−1

+ φ
k̂−M +

2π

N
+ l1(φ

k̂−M −
2π

N
)

= 2(φ
k̂−M − φ ̂k−M−1

+
2π

N
)

< 0

(3.18)

Case 3’: If ∆ ̂k−M−1
≤ 2π

N and ∆+
̂k−M−1

< 2π
N hold, Part A in (3.16) can be rewritten as:

Part A = −∆+
̂k−M−1

+ ∆ ̂k−M−1
+ l1(φ

k̂−M −
2π

N
)

= −φ ̂k−M−1
+ (1− l1)φ

k̂−M + l1
2π

N
+ φ ̂k−M−1

− φ
k̂−M + l1(φ

k̂−M −
2π

N
)

= 0

(3.19)

According to (3.2), we cannot have a fourth case where ∆ ̂k−M−1
≤ 2π

N and ∆+
̂k−M−1

≥ 2π
N hold

because of the following constraint:

∆+
̂k−M−1

−∆ ̂k−M−1
=φ ̂k−M−1

− (1− l1)φ
k̂−M − l1

2π

N
− φ ̂k−M−1

+ φ
k̂−M

=l1(φ
k̂−M −

2π

N
)

<0

(3.20)

It is worth noting that in (3.20) we used the initial assumption φ
k̂−M < 2π

N and the inequality 0 < l1 < 1.

Similarly, we also discuss the value of Part B in (3.16) under three different cases:
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Case 1”: If ∆
k̂+S

> 2π
N and ∆+

k̂+S
≥ 2π

N hold, Part B in (3.16) can be rewritten as:

Part B = ∆+

k̂+S
−∆

k̂+S
+ l2(2π − 2π

N
− φ

k̂+S
)

= (1− l2)φ
k̂+S

+ l2(2π − 2π

N
)− φ ̂k+S+1

− φ
k̂+S

+ φ ̂k+S+1
+ l2(2π − 2π

N
− φ

k̂+S
)

= 2l2(2π − 2π

N
− φ

k̂+S
)

< 0

(3.21)

Case 2”: If ∆
k̂+S

> 2π
N and ∆+

k̂+S
< 2π

N hold, we have φ ̂k+S+1
− φ

k̂+S
+ 2π

N < 0. Then Part B

in (3.16) can be rewritten as:

Part B =
2π

N
−∆+

k̂+S
−∆

k̂+S
+

2π

N
+ l2(2π − 2π

N
− φ

k̂+S
)

=
2π

N
− (1− l2)φ

k̂+S
− l2(2π − 2π

N
) + φ ̂k+S+1

− φ
k̂+S

+ φ ̂k+S+1
+

2π

N
+ l2(2π − 2π

N
− φ

k̂+S
)

= 2(φ ̂k+S+1
− φ

k̂+S
+

2π

N
)

< 0

(3.22)

Case 3”: If ∆
k̂+S
≤ 2π

N and ∆+

k̂+S
< 2π

N hold, Part B in (3.16) can be rewritten as:

Part B = −∆+

k̂+S
+ ∆

k̂+S
+ l2(2π − 2π

N
− φ

k̂+S
)

= −(1− l2)φ
k̂+S
− l2(2π − 2π

N
) + φ ̂k+S+1

+ φ
k̂+S
− φ ̂k+S+1

+ l2(2π − 2π

N
− φ

k̂+S
)

= 0

(3.23)

According to (3.2), we cannot have a fourth case where ∆
k̂+S
≤ 2π

N and ∆+

k̂+S
≥ 2π

N hold due to

the following constraint:

∆+

k̂+S
−∆

k̂+S
=(1− l2)φ

k̂+S
+ l2(2π − 2π

N
)− φ ̂k+S+1

− φ
k̂+S

+ φ ̂k+S+1

=l2(2π − 2π

N
− φ

k̂+S
)

<0

(3.24)

where we used the initial assumption φ
k̂+S

> 2π − 2π
N and the inequality 0 < l2 < 1.

To make the proof easy to follow, we use Table 3.1 to show the flow of the proof.

From the above analysis, we have P+ − P ≤ 0, meaning that the value of P will be decreased
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Table 3.1: Flow of the proof of Theorem 3.1

Part A1

Case 1’: ∆ ̂k−M−1
> 2π

N , ∆+
̂k−M−1

≥ 2π
N Part A < 0

Case 2’: ∆ ̂k−M−1
> 2π

N , ∆+
̂k−M−1

< 2π
N Part A < 0

Case 3’: ∆ ̂k−M−1
≤ 2π

N , ∆+
̂k−M−1

< 2π
N Part A = 0

Part B2

Case 1”: ∆
k̂+S

> 2π
N , ∆+

k̂+S
≥ 2π

N Part B < 0

Case 2”: ∆
k̂+S

> 2π
N , ∆+

k̂+S
< 2π

N Part B < 0

Case 3”: ∆
k̂+S
≤ 2π

N , ∆+

k̂+S
< 2π

N Part B = 0

1 There does not exist a fourth case for Part A where ∆ ̂k−M−1
≤ 2π

N and
∆+

̂k−M−1
≥ 2π

N hold due to the constraint in (3.20).
2 There does not exist a fourth case for Part B where ∆

k̂+S
≤ 2π

N and
∆+

k̂+S
≥ 2π

N hold due to the constraint in (3.24).

or unchanged by each “active pulse.” According to Lemma B.1 in Appendix B.1, Case 3’ and Case 3”

above cannot always exist before phase desynchronization is achieved, i.e., ∆ ̂k−M−1
≤ 2π

N and ∆
k̂+S
≤ 2π

N

cannot always be true before the achievement of phase desynchronization. Consequently, P will not be

retained at a non-zero value, and will keep decreasing until it reaches 0, i.e., until phase desynchronization is

achieved. Therefore, the PCOs will achieve phase desynchronization under the PRF (3.2) for 0 < l1 < 1 and

0 < l2 < 1. �

Remark 3.3. In the above proof, in order to obtain the expression of P+ − P in (3.16), we only considered

the situation where there is at least one phase variable within each of the intervals (0, 2π
N ), [ 2π

N , 2π−
2π
N ], and

(2π − 2π
N , 2π) when an oscillator fires. If one or two of the intervals do not contain any phase variables, the

same conclusion can be drawn, as detailed below. Note that when one oscillator fires, if all the other N − 1

phase variables are within [ 2π
N , 2π −

2π
N ], then this pulse is a “silent pulse” which will not cause any change

on P , and we have proved that there cannot beN consecutive “silent pulses” unless phase desynchronization

is achieved. Therefore, there are five more situations that need to be taken into consideration. Using the same

line of reasoning as above and assuming that the update of P is triggered by the pulse of oscillator k, we

have the expression of P+ − P under the five situations as follows:

Situation 1 (there are M , N −M − 1, and 0 phase variables within (0, 2π
N ), [ 2π

N , 2π −
2π
N ], and
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(2π − 2π
N , 2π), respectively): In this case, we have

P+ − P = |∆+
̂k−M−1

− 2π

N
| − |∆ ̂k−M−1

− 2π

N
|+ l1(φ

k̂−M −
2π

N
) (3.25)

which is the same as Part A in (3.16).

Situation 2 (there are 0, N − S − 1, and S phase variables within (0, 2π
N ), [ 2π

N , 2π −
2π
N ], and

(2π − 2π
N , 2π), respectively): In this case, we have

P+ − P = |∆+

k̂+S
− 2π

N
| − |∆

k̂+S
− 2π

N
|+ l2(2π − 2π

N
− φ

k̂+S
) (3.26)

which is the same as Part B in (3.16).

Situation 3 (there are M , 0, and N −M − 1 phase variables within (0, 2π
N ), [ 2π

N , 2π −
2π
N ], and

(2π − 2π
N , 2π), respectively): In this case, we have

P+ − P = 2l1(φ
k̂−M −

2π

N
) + 2l2(2π − 2π

N
− φ ̂k−M−1

) < 0 (3.27)

where we used φ
k̂−M < 2π

N and φ ̂k−M−1
> 2π − 2π

N .

Situation 4 (there are N − 1, 0, and 0 phase variables within (0, 2π
N ), [ 2π

N , 2π −
2π
N ], and (2π −

2π
N , 2π), respectively): In this case, we have

P+ − P = 2l1(φ
k̂+1
− 2π

N
) < 0 (3.28)

where we used φ
k̂+1

< 2π
N .

Situation 5 (there are 0, 0, and N − 1 phase variables within (0, 2π
N ), [ 2π

N , 2π −
2π
N ], and (2π −

2π
N , 2π), respectively): In this case, we have

P+ − P = 2l2(2π − 2π

N
− φ

k̂−1
) < 0 (3.29)

where we used φ
k̂−1

> 2π − 2π
N .

In summary, we have P+ − P < 0 under Situations 3, 4, 5, meaning that the value of P will

decrease under these situations. Note that P+ − P will become the same as Part A and Part B in (3.16)

under Situations 1, 2, respectively. According to the above proof of Theorem 3.1, Part A and Part B will be
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negative unless Case 3’ and Case 3” hold. From Lemma B.1 in Appendix B.1, Case 3’ and Case 3” cannot

always be true, it can be inferred that no matter which situation occurs, the value of P will keep decreasing

until phase desynchronization is achieved.

Next, we show that phase desynchronization can also be achieved under the PRF (3.2) with either l1

or l2 being zero. It is worth noting that when l1 is zero, our PRF reduces to the one in [113].

Corollary 3.1. For a network of N PCOs with no two PCOs having equal initial phases, the PCOs will

achieve phase desynchronization if the phase response function F (φk) is given by (3.2) for l1 = 0 and

0 < l2 < 1.

Proof. The proof is given in Appendix B.2. �

Corollary 3.2. For a network of N PCOs with no two PCOs having equal initial phases, the PCOs will

achieve phase desynchronization if the phase response function F (φk) is given by (3.2) for 0 < l1 < 1 and

l2 = 0.

Proof. Following the same line of reasoning for Corollary 3.1, the proof of Corollary 3.2 can be easily

obtained and hence omitted here. �

Remark 3.4. If there are two oscillators having equal initial phases, these two PCOs will always have equal

phases. This is because they will always make updates simultaneously with identical phase shifts. Therefore,

the existence of oscillators having identical phases makes phase desynchronization impossible. In fact, the

situation with equal initial phases fails all existing algorithms on phase desynchronization to the best of our

knowledge.

3.4 Numerical Experiments

In this section, we use numerical simulation results to verify that the proposed phase desynchroniza-

tion algorithm has better robustness than existing results.

We first verify the effectiveness of the proposed phase desynchronization algorithm under an ideal

condition where all PCOs have identical nature frequency and there is no pulse loss or time delay in Sec-

tion 3.4.1. Then under this ideal condition, we compared our algorithm with existing results in terms of

convergence speed in Section 3.4.2.
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Given that pulse loss is prevalent in wireless communications due to interferences, congestions, and

intermittent faulty hardware, we also compared our results with existing results in the case where pulses are

lost randomly in Section 3.4.3. Note that in this case, the virtual interaction pattern is not all-to-all any more

as the firing of one oscillator will not affect oscillators that fail to receive the pulse corresponding to the firing.

In fact, in this case the connection becomes multi-hop and time-varying.

Since time delay is not negligible when the order of processing/transmission delays is comparable

to the length of the oscillating period, we also compared our results with existing results in the presence of

random communication delays in Section 3.4.4.

Finally, given that there always exists heterogeneity in the natural frequency ω, we simulated and

compared our results with existing results when different oscillators have different frequencies in Section

3.4.5.

In all simulations, we record the convergence time of the achievement of phase desynchronization

when |∆k − 2π
N | < 10−3 holds for k = 1, . . . , N .

3.4.1 Effectiveness of the Proposed Phase Desynchronization Algorithm in the Ideal

Case

Under ideal condition where the natural frequencies are identical and no pulse loss or time delay

exists, we verified that the proposed PRF can indeed achieve phase desynchronization on all-to-all graph.

The initial phases of a network of N = 5 PCOs were randomly chosen from the interval [0, 2π), and the

natural frequency ω was set to 2π. The coupling strengths (l1, l2) in the PRF (3.2) were set to (0.6, 0.9),

(0, 0.9), and (0.6, 0), respectively. The evolutions of PCO phases and P are given in Fig. 3.5, Fig. 3.6, and

Fig. 3.7, respectively. It can be seen that the PCO phases were uniformly spread apart and the measure P

converged to 0 in the three cases.

Besides the all-to-all graph, we also considered ring and circulant symmetric graphs (cf. Fig.

3.8) in the numerical experiments. The initial phases can be randomly chosen but subject to a constraint

that the oscillators are indexed in the order of their initial phase magnitude. This constraint is imposed

because otherwise two nonadjacent oscillators may converge to the same phase value and become non-

separable, making phase desynchronization impossible. In the simulation, the initial phases were set to

{0.05π, 0.26π, 0.72π, 1.03π, 1.24π, 1.69π}, and ω was set to 2π. The coupling strengths (l1, l2) in (3.2)

were set to (0.3, 0.45). The evolutions of phases and P are given in Fig. 3.9 and Fig. 3.10, respectively,
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Figure 3.5: The evolutions of PCO phases φk(k = 1, . . . , N) (upper panel) and measure P (lower panel)
under the PRF (3.2) with (l1, l2) set to (0.6, 0.9).
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Figure 3.6: The evolutions of PCO phases φk(k = 1, . . . , N) (upper panel) and measure P (lower panel)
under the PRF (3.2) with (l1, l2) set to (0, 0.9).
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Figure 3.7: The evolutions of PCO phases φk(k = 1, . . . , N) (upper panel) and measure P (lower panel)
under the PRF (3.2) with (l1, l2) set to (0.6, 0).
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Figure 3.8: Ring and circulant symmetric graphs with six oscillators: (a) ring graph; (b) circulant symmetric
graph.

which confirmed the effectiveness of the proposed desynchronization algorithm.

3.4.2 Comparison with Existing Results in the Ideal Case

In the ideal case, we compared our algorithm with the DESYNC-STALE algorithm in [120], the

desynchronization algorithm in [113], and the FAST-DESYNC algorithm in [24]. For our algorithm, the

coupling strengths (l1, l2) in (3.2) were set to (0.6, 0.9). The jump size α in the DESYNC-STALE algorithm

in [120], the coupling parameter α in the desynchronization algorithm in [113], and the jump-phase parameter

α in the FAST-DESYNC algorithm in [24] were set to 0.95, 0.75, and 0.5, respectively, as used in their own

respective papers. The initial phases were randomly chosen from [0, 2π), and ω was set to 2π. The results on
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Figure 3.9: The evolutions of PCO phases φk(k = 1, . . . , N) (upper panel) and measure P (lower panel)
under the PRF (3.2) with (l1, l2) set to (0.3, 0.45) on the ring graph.
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Figure 3.10: The evolutions of PCO phases φk(k = 1, . . . , N) (upper panel) and measure P (lower panel)
under the PRF (3.2) with (l1, l2) set to (0.3, 0.45) on the circulant symmetric graph.
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Figure 3.11: Comparison of the proposed algorithm with the DESYNC-STALE algorithm [120], the desyn-
chronization algorithm [113], and the FAST-DESYNC algorithm [24] in the ideal case.

convergence time under different network sizes are given in Fig. 3.11 in which the error bars represent the

standard variation of 1000 runs. From the simulation results we can see that our algorithm converges faster

than the algorithms in [24, 113, 120].

3.4.3 Comparison with Existing Results under Pulse Losses

In this case, we compared our approach with the DESYNC-STALE algorithm in [120] and the

desynchronization algorithm in [113] under pulse losses. The communication links are not reliable and every

pulse is transmitted with a failure probability p (0 ≤ p < 1). For any pulse, it has a probability 1 − p to

successfully affect an oscillator, and with probability p it will fail to affect the oscillator. Moreover, we assume

that the probability for one oscillator to successfully receive a pulse is independent of other oscillators.

For our algorithm, the coupling strengths (l1, l2) in (3.2) were set to (0.6, 0.9). The jump size α in

the DESYNC-STALE algorithm in [120] and the coupling parameter α in the desynchronization algorithm

in [113] were set to 0.95 and 0.75, respectively, as given in their respective papers. The initial phases of

a network of N = 10 PCOs were randomly chosen from the interval [0, 2π), and ω was set to 2π. The

probability pwas set to 0.05. The evolutions of P are illustrated in Fig. 3.12. It can be seen that our algorithm

and the one in [113], both of which are PRF based approaches, could still guarantee desynchronization,

whereas the DESYNC-STALE algorithm in [120], which relies on the information of two firing neighbors,
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Figure 3.12: The evolutions of measure P for the proposed algorithm, the DESYNC-STALE algorithm in
[120], and the desynchronization algorithm in [113] under pulse loss probability p = 0.05.

loses its effectiveness.

We also compared our convergence time with [113] under pulse losses. The probabilities of pulse

losses p were set to 0.05 and 0.10, respectively. Other parameters were the same as above. The results on

convergence time under different network sizes are given in Fig. 3.13 where the error bars represent the

standard variation of 1000 runs. We can see that the proposed phase desynchronization algorithm converges

faster than the algorithm in [113]. However, compared with the ideal communication case (cf. Fig. 3.11), it

is obvious that pulse losses indeed increase the time to convergence for both algorithms.

3.4.4 Comparison with Existing Results under Random Time Delays

In this case, we assume that there is a random delay associated with each communication link, which

is uniformly distributed in [0, τ ] with τ denoting the maximal delay. Moreover, we assume that delays on

different links are independent of each other.

We compared the proposed phase desynchronization algorithm with the DESYNC-STALE algo-

rithm in [120] and the desynchronization algorithms in [35, 36, 113] on a network of N = 10 PCOs. The

initial phases were randomly chosen from [0, 2π) and ω was set to 2π. The maximal delay τ was set to 5% of

the free-running firing period. The coupling strengths (l1, l2) in (3.2) were set to (0.9, 0). The jump size α in

the DESYNC-STALE algorithm in [120] and the coupling parameter α in the desynchronization algorithm in
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Figure 3.13: The convergence time of the proposed algorithm and the desynchronization algorithm in [113]
under pulse losses.

[113] were set to 0.95 and 0.75, respectively, as used in their own respective papers. Both linear and nonlinear

realizations of phase response functions in F. Ferrante’s work [35, 36] were considered, which are given by

F (φk) =


0 φk ≤ 2π − 2π

N

− l(φk − 2π +
2π

N
) φk > 2π − 2π

N

(3.30)

and

F (φk) =


0 φk ≤ 2π − 2π

N

l
N

4π

[
(φk − 2π)2 − (

2π

N
)2

]
φk > 2π − 2π

N

(3.31)

The coupling strength l was set to 0.7, as used in [35, 36]. The evolutions of P are given in Fig. 3.14. It can

be seen that our phase desynchronization algorithm can still achieve desynchronization under time delays,

whereas none of the algorithms in [35, 113, 120], or [36] works anymore.

3.4.5 Comparison with Existing Results under Random Frequency Errors

Given that there always exist errors on the natural frequency ω, we compared the proposed phase

desynchronization algorithm with the DESYNC-STALE algorithm in [120] and the desynchronization algo-

rithm in [113] under constant and time-varying frequency errors.
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Figure 3.14: The evolutions of measure P for the proposed algorithm, the DESYNC-STALE algorithm
in [120], and the desynchronization algorithm in [113] (left panel), and linear and nonlinear PRF based
desynchronization algorithm in [35, 36] (right panel) under time delays uniformly distributed in [0, 5ms].
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Figure 3.15: The desynchronization errors of the proposed algorithm, the DESYNC-STALE algorithm in
[120], and the desynchronization algorithm in [113] in the constant frequency error case.

In the constant frequency error case, the natural frequencies of oscillators were assumed to be inde-

pendently and uniformly distributed in [2π−ξ, 2π+ξ] where ξ denotes the maximal error. The initial phases

were randomly chosen from [0, 2π). The coupling strengths (l1, l2) in (3.2) were set to (0.6, 0.9). The jump

size α in the DESYNC-STALE algorithm in [120] and the coupling parameter α in the desynchronization

algorithm in [113] were set to 0.95 and 0.75, respectively, as given in their respective papers. It is worth

noting that frequency errors lead to desynchronization errors in all three algorithms. We recorded the mean

values of P over one round of firings after the transient period and plotted the results in Fig. 3.15 where

ξ was set to 0.01 and 0.02, respectively. The error bars represent the standard variation of 1000 runs. The

results show that our approach has less desynchronization error and thus better robustness than the results in

[113, 120].

In the time-varying frequency error case, the natural frequencies were assumed to be of the form

ωk = 2π+ξ sin(0.1t+ϑk) for k = 1, . . . , N , where ξ and ϑk denote the maximal error and initial frequency
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Figure 3.16: The desynchronization errors of the proposed algorithm, the DESYNC-STALE algorithm in
[120], and the desynchronization algorithm in [113] in the time-varying frequency error case.

offset, respectively. ξ was set to 0.01 and 0.02, respectively, and ϑk was randomly chosen from [0, 2π). Other

parameters were the same as the constant frequency error case. The desynchronization errors of all three

algorithms were illustrated in Fig. 3.16. It can be seen that our proposed algorithm has better robustness than

the results in [113, 120].

3.5 Summaries

In this chapter, we proposed a general phase-desynchronizing phase response function, which in-

cludes existing results as special cases, and rigorously characterized the decentralized phase desynchroniza-

tion process. Simulation results were given to show that the proposed phase response function can achieve

better convergence speed and robustness to pulse losses, time delays, and frequency errors than existing

results.
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Chapter 4

Pulse-Based Collective Motion

Coordination

4.1 Introduction

In this chapter, motivated by the pulse-based synchronization/desynchronization of PCOs and the

close relationship between the phase dynamics of PCOs and the heading dynamics of vehicles, we will intro-

duce a pulse-based approach for collective motion coordination. An increasing number of engineering appli-

cations rely on the collective motion of a group of autonomous systems. However, most existing results on

collective motion do not address the kinematic dynamics of vehicles, which hampers their practical applica-

tions. In fact, incorporating vehicle dynamics significantly increases the difficulty in decentralized collective

motion coordination. Therefore, even without considering the effects of communication (e.g., discretization,

message losses, time delays), early results on collective motion coordination assumed special communication

patterns such as cyclic [90, 116], circulant [117, 118], or all-to-all [140]. Restricting to synchronized collec-

tive motion (aligning headings to the same value), the authors in [25,97] proved that collective motion can be

achieved under general communication patterns. The authors in [29,141] proved that if besides measurement

information, relative estimation of global parameters can also be exchanged, then collective motion can be

achieved for general communication patterns. The authors in [98] further considered the situation in which

only vision clues can be continuously exchanged.

All above results are derived based on continuous exchange of information, which is key to guaran-
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Figure 4.1: Discretization destabilizes controller in [140] designed in the continuous domain for heading
alignment. The heading control in [140] works well in the continuous domain assuming continuous-time
information exchange (cf. Fig. 4.1 (a)). However, it becomes unstable when practical communication can
only occur at discrete-time instants with period 0.2s (cf. Fig. 4.1 (b), zero-order-hold is used between
communication). The original vehicle model in [140] was used in the implementation.

tee overall continuous network dynamics and thus a simplified mathematical treatment. However, in practi-

cal implementation, information exchange between vehicles can only be conducted at discrete-time instants,

making the overall dynamics much harder to address analytically. To reduce complexity, the controller design

is usually performed in the continuous-time domain assuming continuous availability of neighbor’s informa-

tion, after which control discretization is used to conform to the actual discrete-time nature of communication.

However, this approach is not appropriate in many situations, because to guarantee the design performance

it usually requires a very small discretization period which leads to heavy communication burden [49]. To

make things worse, discretization can harm or even destabilize the controller designed in the continuous-time

domain [149] (cf. Fig. 4.1 for an example showing that discretization can destabilize the collective motion

controller in [140] designed in the continuous domain).

Recently Morgansen and coauthors considered the required communication amount for cooperative

control of a network of nonlinear vehicles [72, 126]. They showed that even without considering spacing

control, incorporating communication effects significantly increases the complexity of heading coordination,

as evidenced by the fact that analytical treatment of the splay state under all-to-all communication becomes

seemingly intractable [72].

Motivated by pulse-based synchronization/desynchronization of pulse-coupled oscillators (PCOs)

which can achieve synchronization/desynchronization with remarkable robustness and simplicity through ex-
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changing simple identical pulses at discrete-time instants, we design a pulse-based integrated communication

and control approach for motion coordination by exploiting the close relationship between phase dynamics

of PCOs and the heading dynamics of connected vehicles/robots. The proposed unified approach offers a nat-

ural solution for communication pattern design, which only employs simple and identical pulses and hence

significantly reduces processing latency and communication delay compared with conventional packet based

communications. It also circumvents the problem of discretization and thus guarantees achieving original

design performance in final implementation. Not only can heading control be achieved in the proposed ap-

proach to coordinate the headings (orientations) of motions in a network, but also spacing control for circular

motion is achievable to design the spacing between neighboring nodes (e.g., vehicles or robots).

The remainder of this chapter is organized as follows. Problem formulation for collective motion is

present in Section 4.2. A pulse-based integrated communication and control approach is proposed in Section

4.3. Heading control and spacing control for circular motion are studied in Sections 4.4 and 4.5, respectively.

Finally, we conclude this chapter in Section 4.6.

4.2 Problem Formulation

4.2.1 Vehicle Model

Since the focus is not to control a single vehicle, but rather a vehicle network, we use a simplified

vehicle model, i.e., a car-like vehicle [80,99], to guarantee that the network dynamics is amenable to analytical

treatment. The model has been widely used to model nonholonomic vehicles such as cars, boats, planes,

whose controllable degrees of freedom are less than the total degrees of freedom. As illustrated in Fig. 4.2,

the dynamics of the car-like vehicle model is given by [99]:


ẋ = v cos θ, ẏ = v sin θ

θ̇ =
v

L
tanψ

(4.1)

where (x, y) denotes the position of the midpoint of the rear axle in the two-dimensional Euclidean plane,

θ ∈ S1 denotes the heading of the vehicle relative to the x-axis in the Euclidean plane where S1 is the one-

dimensional torus, v is the speed, L is the wheelbase, and ψ is the angle of the front wheels relative to the

vehicle’s X axle.

In this vehicle model, there are two control inputs v and ψ. It is worth noting that in many collective
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Figure 4.2: The car-like vehicle model.

motions, vehicles/robots are usually configured to have constant velocities. For example, two mostly widely

studied vehicles in collective motion, i.e., unmanned aerial vehicles (UAVs) and autonomous underwater

vehicles (AUVs), have constant velocities because the former must maintain a constant air speed to remain

aloft [65] and the latter have a constant speed (relative to the flow field) due to effective operation requirements

[81]. Therefore, in our work, vehicles are configured to have a constant velocity v = 1 and ψ is used to control

collective motion. Using a complex variable r = x+iy ∈ C ≈ R2 to represent the position of the midpoint of

the rear axle (which will be abbreviated as the position of the vehicle in the rest of this chapter), the dynamics

of a network of N vehicles is given by:


ṙk = eiθk

θ̇k =
1

L
tanψk = uk,

k = 1, . . . , N (4.2)

where the subscript “k” represents vehicle k, eiθk = cos θk+i sin θk represents the velocity of vehicle k, and

uk denotes the curvature control (normal to vehicle heading, a.k.a. steering control) of vehicle k. From (4.1)

and (4.2), the relationship between uk and ψk can be obtained as ψk = arctan(L ·uk) for k = 1, . . . , N . For

ease of analysis, we focus on the design of uk, from which ψk can be obtained.

4.2.2 Synchronized-State and Splay-State Collective Motions

In our work, the steering control uk is designed in a decentralized manner so that desired relation-

ships on both vehicle headings and spacing can be achieved. Thus, we first study two heading relationships,

the synchronized-state and the splay-state collective motions [90,140], based on which we address the spacing

control for circular motions.

Definition 4.1. The synchronized-state collective motion is achieved when all vehicles/robots have the same
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heading, i.e., θ1 = θ2 = . . . = θN .

Definition 4.2. The splay-state collective motion is achieved when the headings are uniformly spread apart

(with equal distance between heading-adjacent vehicles/robots) in the phase space S1. In other words, when

a network of N vehicles/robots achieve the splay-state collective motion, the heading difference between any

two heading-adjacent vehicles/robots is 2π
N .

Remark 4.1. In many results on collective motion or oscillator networks, the splay state is also called

the “balanced state” and is defined as a state on which the headings (phases) satisfy
∑N
k=1 sin θk =∑N

k=1 cos θk = 0 [140]. This definition cannot guarantee equal phase distance between two heading-

adjacent nodes. Therefore, our Definition 4.2 is more stringent.

Next we introduce two indices for the synchronized-state and the splay-state collective motions,

respectively. We first introduce an index to measure the degree of achievement of the synchronized-state

collective motion:

Psyn ,
1

N

N∑
k=1

eiθk (4.3)

Psyn is also called order parameter in oscillator network study [145]. In the synchronized-state collec-

tive motion, when all headings are identical, the magnitude (absolute value) of Psyn reaches its maximum

(|Psyn| = 1).

Using the dynamics of rk in (4.2), we have Psyn = 1
N

∑N
k=1 ṙk. Therefore, Psyn also measures the

average linear momentum of a vehicle/robot network. In the synchronized-state collective motion, because

the magnitude of Psyn reaches the maximal value, the average linear momentum of the vehicle/robot network

also reaches the maximum.

Next, we introduce a new index to measure the degree of achievement of the splay-state collective

motion. Without loss of generality, we suppose that the indices of vehicle/robot headings are arranged in a

way such that θ1 ≥ θ2 ≥ . . . ≥ θN holds. Then the differences between neighboring headings are given by

∆k = θk − θk+1 for k = 1, . . . , N − 1 and ∆N = θN − θ1 + 2π. Based on which we define the index

measuring the degree of achievement of the splay-state collective motion

Pspl ,
N∑
k=1

|∆k −
2π

N
| (4.4)

When the splay-state collective motion is achieved, the phase differences between neighboring headings are

2π
N and Pspl in (4.4) will reach its minimum 0. It can also be easily verified that Pspl equals 0 only in the
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splay-state collective motion.

4.2.3 Communication Graph

We use a graph G = (V, E) to represent the communication structure among the vehicles. The

node set V = {1, 2, . . . , N} denotes all vehicles. E ⊆ V × V is the edge set, whose elements are such

that (k, j) ∈ E holds if and only if there is a communication link between vehicles k and j. The neighbor

set Nk of vehicle k, which represents the set of vehicles that are connected with vehicle k, is denoted by

Nk := {j ∈ V : (k, j) ∈ E}.

The our work, we consider the following two undirected graphs for the vehicle network:

Definition 4.3. An undirected graph G is connected when there is a path between every pair of nodes.

Definition 4.4. An undirected graph G is all-to-all when there is a communication link between every pair of

nodes.

It is obvious that all-to-all graph can be viewed as a special case of connected graph.

4.3 A Pulse-Based Integrated Communication and Control Frame-

work for Collective Motion

Noticing that vehicle headings are similar to oscillator phases as they both evolve in the one-

dimensional torus S1, we propose an integrated communication and control framework based on our study of

pulse-coupled oscillators (PCOs) [109–111,157,158]. Pulse-coupled oscillators can synchronize/desynchronize

oscillating phases via exchanging simple identical pulses. Inspired by the pulse-based interaction mechanism,

we develop a pulse-based collective motion framework which achieves desired heading relationship via ex-

changing simple identical pulses. As the pulses are content-free, they can be implemented at the low layer

of the protocol stack (even exclusively at the physical layer) with very short message lengths, which signifi-

cantly reduces the high-layer processing latencies and channel communication delays. In this framework, the

time instants for pulse exchanging are determined by vehicle dynamics, so communication and control are

integrated. Compared with conventional approaches using continuous control design followed by discretiza-

tion based implementation and communication, the proposed approach designs communication time instants

explicitly and circumvents the problem of discretization, which in turn can guarantee that the original control

design performance is attainable in final implementation.
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Next we first review the interaction mechanism of pulse-coupled oscillators, based on which we

propose a pulse-based integrated communication and control framework.

4.3.1 Pulse-Coupled Oscillators

In a network of N pulse-coupled oscillators interacting on a graph G = (V, E), each oscillator has

a phase variable φk (k = 1, 2, . . . , N ) evolving continuously from 0 to 2π with a constant speed determined

by its natural frequency ωo. The interaction mechanism of PCOs can be described as follows:

1. Each oscillator has a phase variable φk ∈ S1 with initial value set to φk(0). φk evolves continuously

from 0 to 2π with a constant speed determined by ωo;

2. When the phase variable φk of oscillator k reaches 2π, this oscillator fires, i.e., emits a pulse, and

simultaneously resets φk to 0. Then the same process repeats;

3. When oscillator k receives a pulse from others, it updates its phase according to the phase response

function P (φk):

φ+
k = φk + P (φk) (4.5)

where φ+
k and φk denote the phases of oscillator k immediately after and before receiving the pulse.

Therefore, the dynamics of oscillator k can be written as:

φ̇k = ωo +
∑
j∈Nk

P (φk)δ(t− tj) (4.6)

where tj denotes the time instants at which φj reaches 2π. The Dirac function δ(t) is 0 for all time t

except t = 0 and satisfies
∫∞
−∞ δ(t)dt = 1 [157].

It is already known that if the phase response function (PRF) is chosen appropriately, pulse-coupled

oscillators can exhibit desired collective behaviors. For example, results in [157] and [40] show that under

phase response functions P1(φk) and P2(φk) in Fig. 4.3, oscillators interacting on all-to-all graph can achieve

the synchronized state and splay state, respectively.

4.3.2 Pulse-Based Collective Motion Coordination Framework

Inspired by pulse-coupled oscillators, we propose a pulse-based motion coordination framework:

62



Phase at which the pulse is received (φk)
0 0.5π π 1.5π 2π

P
h
a
se

sh
if
t

-2

-1

0

1

2
Phase response function P1(φk)

Phase response function P2(φk)

0.5(2π − φk)

−0.5φk

Figure 4.3: Examples of phase response function that can achieve the synchronized state (red dashed line)
and the splay state (blue solid line).

1. Besides heading variable θk and position variable rk in (4.2), each vehicle also has an auxiliary variable

φk ∈ S1 with initial value φk(0). φk evolves continuously from φk(0) to 2π with a constant speed ωo,

where φk(0) is determined by both the initial value of heading variable θk(0) and the desired heading

relationship (synchronized state or splay state);

2. When the auxiliary variable φk of vehicle k reaches 2π, the vehicle sends a pulse, and simultaneously

resets φk to 0. Then the same process repeats;

3. When a vehicle receives a pulse from its neighbor, it updates its auxiliary variable φk according to

a control function F (φk, r). Note that r = [r1, . . . , rN ]
T contains the relative position information

between vehicle k and its neighbors achieved by measuring the angle-of-arrival and power degradation

of received pulses, and it needs to be taken into account in control design F (•) when spacing needs to

be coordinated. Using Dirac function δ(t), the update can be mathematically formulated as follows:

φ̇k = ωo +
∑
j∈Nk

F (φk, r)δ(t− tj) (4.7)

where tj denotes the time instants at which φj reaches 2π;

4. The control input uk for each vehicle is determined by its auxiliary variable φk by

uk = θ̇k = ωc + φ̇k − ωo = ωc +
∑
j∈Nk

F (φk, r)δ(t− tj) (4.8)
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where ωc should be set to 0 in a rectilinear motion and the desired angular velocity in a circular motion

(angular velocity ωc corresponds to radius 1
ωc

in circular motions).

Remark 4.2. The relationship between the dynamics of θk and the dynamics of φk can be written as

θ̇k = ωc + φ̇k − ωo (4.9)

where the oscillator’s natural frequency ωo is subtracted from the dynamics of φk because the dynamics of θk

depends on the discrete-time update F (φk, r) of φk instead of its continuous evolution, and ωc can be seen

as a part of spacing control since it only affects the motion pattern (i.e., rectilinear or circular motion).

It is worth noting that in the above framework, the communicated messages are simple identical

pulses and the communication time instants are determined by tj , which are determined by the evolution

of φk. As φk is in turn determined by F (φk, r), the control law, the above framework gives an integrated

design of communication and control. The integrated design circumvents the effects of discretization and

can guarantee that the design performance of control can be retained in final implementation. This is a great

advantage over existing approaches using a continuous-domain control design followed by discretization

based implementation which can harm or even destabilize the originally designed controller [149] (cf. Fig.

4.1). Furthermore, the design utilizes the analogy between phases in oscillator networks and headings in

vehicle networks, which enables the treatment of nonlinear nonholonomic vehicle dynamics in (4.2). This

is different from most event-triggered design for the collective motion of multi-agent systems which only

addresses linear dynamics due to difficulties in designing a stabilizing event-triggered control. In addition, the

pulse based communication embeds information in the timing rather than the content of exchanged messages,

which falls within the pulse position modulation framework in communication.

Remark 4.3. In the proposed integrated communication and control framework, ωo is a design parameter

controlling communication frequency. A larger ωo leads to a higher communication frequency.

Next, we give a solution to design F (φk, r). For any vehicle k, its control F (φk, r) is not only a

function of its auxiliary variable φk, but also a function of the positions of all vehicles r. This makes F (φk, r)

very difficult to derive directly, if at all possible. Given this, similar to [139] we use the singularly perturbed

theory [77] to enforce a time-scale separation between the heading dynamics θk and the spacing dynamics
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rk. We first decompose F (φk, r) into two parts:

F (φk, r) = ũorien
k + ũspace

k (4.10)

Similar to [139] we separate the control law uk of vehicle k in (4.2) into two parts:

uk = uorien
k + uspace

k (4.11)

where the first part uorien
k controls the heading of vehicle k. To achieve a collective motion, it should depend

on the heading value of vehicle k and the time instants when vehicle k receives pulses from its neighbors.

The second part uspace
k controls the spacing (distance) among vehicles and depends on the relative position

of vehicle k with respect to its neighbors which can be obtained by measuring the angle-of-arrival and power

degradation of received pulses [65] or by using ranging and bearing sensors. Then according to (4.8), (4.10),

and (4.11), uorien
k and uspace

k are


uorien
k =

∑
j∈Nk

ũorien
k δ(t− tj)

uspace
k = ωc +

∑
j∈Nk

ũspace
k δ(t− tj)

(4.12)

Based on the singularly perturbed theory, the separation between the heading dynamics and the

spacing dynamics is achievable by designing the steering control uk as follows:

uk = Kuorien
k + uspace

k

= ωc +
∑
j∈Nk

(Kũorien
k + ũspace

k )δ(t− tj)
(4.13)

where K can be set to any large value to achieve time-scale separation (make overall dynamics singularly

perturbed [77]).

Combining (4.2) and (4.13) gives


ṙk = eiθk

εθ̇k = εωc +
∑
j∈Nk

(ũorien
k + εũspace

k )δ(t− tj)
(4.14)

for 1 ≤ k ≤ N where ε = 1
K is very small so that a time-scale separation between fast dynamics in time-scale
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τ = t−t0
ε and slow dynamics in time-scale t occurs.

The position variable rk is almost invariant in the fast time-scale τ , consequently the kinematic

model can be reduced to
d

dτ
θk = εωc +

∑
j∈Nk

(ũorien
k + εũspace

k )δ(t− tj) (4.15)

When K approaches infinity, ε approaches 0, leading to

d

dτ
θk =

∑
j∈Nk

ũorien
k δ(t− tj) (4.16)

It is clear that using the singularly-perturbed control strategy, the fast dynamics of heading θk is

decoupled from the slow dynamics of position rk. Therefore, we can first design ũorien
k to achieve the desired

heading relationship, then under the heading relationship we can design ũspace
k to achieve the desired spacing.

Since spacing control is in the slow time-scale, it will not affect the achieved heading relationship.

4.4 Design of the Heading Dynamics

Note that the heading dynamics in (4.16) is similar to the dynamics of phases in pulse-coupled

oscillators [157]. So taking inspiration from results on pulse-coupled synchronization [110, 157, 158], we

propose the following heading control strategies for vehicle networks under connected graphs.

Theorem 4.1. For a network of N vehicles with kinetic model given in (4.2) under a connected graph G =

(V, E), if the initial value of auxiliary variable φk(0) is set to θk(0) for k = 1, 2, . . . , N and all initial

values of auxiliary variables are constrained in a half cycle of S1, then the network of vehicles will achieve

the synchronized-state collective motion under the heading control ũorien
k given by (4.17) in the singularly-

perturbed control framework (4.13). Moreover, if the initial value of auxiliary variable φk(0) is set to (θk(0)−

k 2π
N ) mod 2π for k = 1, 2, . . . , N and all initial values of auxiliary variables are constrained in a half cycle

of S1, then the network of vehicles will achieve the splay-state collective motion under the heading control

ũorien
k given by (4.17) in the singularly-perturbed control framework (4.13).

ũorien
k =


− lφk 0 ≤ φk ≤ π

l(2π − φk) π < φk ≤ 2π

for 0 < l < 1. (4.17)

Proof. According to the fast dynamics of the heading variable θk in (4.16), we can obtain the fast time-scale
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dynamics of the auxiliary variable φk from (4.7) as follows:

φ̇k = ωo + θ̇k = ωo +
∑
j∈Nk

ũorien
k δ(t− tj) (4.18)

Since ωc is a part of uspace
k in (4.12), it will not show up in the fast dynamics of φk. Therefore, we have

θ̇k = φ̇k − ωo.

Noting that ũorien
k in (4.17) is the same as the phase response function P (φk) in Fig. 4.3, the

dynamics of φk in (4.18) becomes the same as the oscillator dynamics in (4.6). According to Theorem 2 in

[110], φ1, φ2, . . . , φN with a connected graph will achieve the synchronized state under (4.17) if their initial

values are constrained in a half cycle of S1.

Since φk(0) = θk(0) and θ̇k = φ̇k − ωo hold, we have θk = (φk − ωot) mod 2π for 1 ≤ k ≤ N .

As we discussed above, φ1, φ2, . . . , φN will achieve the synchronized state under (4.17), thus the headings

θ1, θ2, . . . , θN will also achieve the synchronized state. Therefore, the network of vehicles will achieve the

synchronized-state collective motion under the heading control ũorien
k in (4.17).

Similarly, we can prove that the vehicles will achieve the splay-state collective motion. From

φk(0) = (θk(0) − k 2π
N ) mod 2π and θ̇k = φ̇k − ωo, we have θk = (φk − ωot + k 2π

N ) mod 2π. Taking

into account the fact that φ1, φ2,. . .,φN will achieve the synchronized state under (4.17), it can be inferred

directly that the headings θ1, θ2, . . . , θN will achieve the splay state since the differences between any two

neighboring headings are 2π
N . Therefore, the network of vehicles will achieve the splay-state collective motion

under heading control ũorien
k in (4.17). �

As a special case of connected graph, vehicle network under all-to-all graph can achieve synchronized-

state and splay-state collective motions following the above Theorem 4.1. Inspired by our results of PCO

desynchronization on all-to-all graphs (cf. Corollary 3.2 in Section 3.3), we propose another heading control

strategy for vehicle networks under all-to-all graphs to achieve splay-state collective motion.

Theorem 4.2. For a network of N vehicles with kinetic model given in (4.2) under an all-to-all graph

G = (V, E), if the initial value of auxiliary variable φk(0) is set to θk(0) for k = 1, 2, . . . , N and no

two vehicles have equal initial headings, then the network of vehicles will achieve the splay-state collective

motion under the heading control ũorien
k given by (4.19) in the singularly-perturbed control framework (4.13).
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Figure 4.4: Connected graph of a vehicle network of 4 vehicles.

ũorien
k =


− l(φk −

2π

N
) 0 ≤ φk <

2π

N

0
2π

N
≤ φk ≤ 2π

for 0 < l < 1. (4.19)

Proof. Following the same line of reasoning for Theorem 4.1, we have that the dynamics of φk in (4.18) is

the same as the oscillator dynamics in (4.6). According to Corollary 3.2 in Section 3.3, φ1, φ2, . . . , φN with

an all-to-all graph will achieve the splay state under (4.19) if initial phases are distinct. Since φk(0) = θk(0)

and θ̇k = φ̇k − ωo hold, we have θk = (φk − ωot) mod 2π for 1 ≤ k ≤ N . As we discussed above,

φ1, φ2, . . . , φN will achieve the splay state under (4.19), thus the headings θ1, θ2, . . . , θN will also achieve

the splay state. Therefore, the network of vehicles interacting on all-to-all graph will achieve the splay-state

collective motion under the heading control ũorien
k in (4.19). �

Next we use simulation results to demonstrate Theorem 4.1. We consider the fast time-scale dy-

namics (4.16) of a network of 4 vehicles under a connected graph given in Fig. 4.4. Communication occurs

whenever φk reaches 2π (which happens repeatedly). The control is applied when a pulse is received. We

considered both rectilinear motion (ωc = 0 rad/s) and circular motion (ωc = 1 rad/s) and simulated their

behavior under the different heading controls (4.17) and (4.19), respectively. ωo is set to 10π.

We first simulated the synchronized-state collective motion. The initial headings were randomly

chosen from a half cycle of S1, and φk(0) was set to θk(0). The vehicle trajectories of the rectilinear motion

case (ωc = 0 rad/s) and the circular motion case (ωc = 1 rad/s) are given in Fig. 4.5 (a) and (b), respectively.

Note that the initial headings, starting points, and ending points of these vehicle trajectories are represented

by dashed arrows, squares, and solid arrows, respectively. Also the evolutions of the magnitude of index Psyn

in the two cases above are given in Fig. 4.5 (c). It can be seen that the synchronized-state collective motion

can be achieved under heading control ũorien
k in (4.17).

The splay-state collective motion was also evaluated. The initial headings were randomly chosen

from [0, 2π) such that φk(0) = (θk(0)− k 2π
N ) mod 2π for k = 1, 2, . . . , N were constrained in a half cycle
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(a) (b) (c)

Figure 4.5: Synchronized-state collective motion under connected graph: (a) rectilinear motion trajectories
(ωc = 0); (b) circular motion case trajectories (ωc = 1); (c) magnitude of Psyn of the rectilinear motion case
and circular motion case.

of S1. The vehicle trajectories of the rectilinear motion case (ωc = 0 rad/s) and the circular motion case

(ωc = 1 rad/s) are given in Fig. 4.6 (a) and (b), respectively. The evolutions of Pspl in the two cases above

are given in Fig. 4.6 (c). It can be seen that the splay-state collective motion can be achieved under heading

control ũorien
k in (4.17).

Last we use simulation results to demonstrate Theorem 4.2. We consider a network of 4 vehicles

under all-to-all graph. Effectiveness of the heading control (4.19) in achieving the splay state was evaluated.

The initial headings are randomly chosen from [0, 2π). The vehicle trajectories of the rectilinear motion case

and the circular motion case are given in Fig. 4.7 (a) and (b), respectively. The evolutions of index Pspl in the

two cases are given in Fig. 4.7 (c). It can be seen that the splay-state collective motion with all-to-all graph

can be achieved under the heading control (4.19).

Remark 4.4. The control in (4.17) requires instantaneous jumps in the heading angle, which may not be de-

sirable in certain scenarios. Fortunately, according to results in [7] on pulse-coupled oscillators with guar-

anteed phase continuity, a continuous-heading-implementation mechanism can be used to spread the needed

heading adjustment in a certain time interval without affecting the convergence stability: in implementation,

instead of finishing all required heading adjustment ∆θk at time instant tj , i.e., u(t) = ∆θδ(t − tj), we

can spread the adjustment in a half period T/2 with T given by T = 2π/ωo, i.e., u(t) = 2∆θk/T for

t ∈ (tj , tj + T/2). If vehicle k has not yet achieved its desired amount of heading adjustment before a new

pulse arrives (i.e., rather than having adjusted the whole amount ∆θk, it has adjusted only a portion of ∆θk),

then vehicle k will use the current value of φk at the time when the new pulse is received to redetermine the
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(a) (b) (c)

Figure 4.6: Splay-state collective motion under connected graph: (a) rectilinear motion trajectories (ωc = 0);
(b) circular motion case trajectories (ωc = 1); (c) magnitude of Pspl of the rectilinear motion case and circular
motion case.

(a) (b) (c)

Figure 4.7: Splay-state collective motion under all-to-all graph: (a) rectilinear motion trajectories (ωc = 0);
(b) circular motion case trajectories (ωc = 1); (c) magnitude of Pspl of the rectilinear motion case and circular
motion case.
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value for ∆θk according to (4.17), and evenly spread the new adjustment in the following time interval T/2.

Under the continuous-heading-implementation mechanism, the synchronized-state collective motion can still

be achieved [7].

4.5 Stabilization of Circular Motion

Theorems 4.1 and 4.2 provide approaches to driving vehicle headings to the splay state by designing

ũorien
k in (4.13) under connected graphs and all-to-all graphs, respectively. Splay-state collective motion is

usually employed when vehicles perform circular motions in applications such as mobile sensor deployment

[81]. In such applications, to maximize the information intake, it is usually also required that the vehicles

(e.g., unmanned underwater vehicles) rotate around a same center [81]. Next we discuss how to design the

spacing control ũspace
k to stabilize the circular motion around an arbitrarily assigned center R∗ for vehicle

networks on connected graphs.

Theorem 4.3. For a network of N vehicles with kinetic model given in (4.2) under a connected graph G =

(V, E), heading control ũorien
k in the singularly-perturbed control framework (4.13) is designed as (4.17).

Then spacing control ũspace
k in (4.20) will drive all vehicles to orbit around an arbitrarily assigned center R∗

with a desired angular velocity ωc if φk(0) is set to (θk(0)− k 2π
N ) mod 2π for k = 1, 2, . . . , N and all these

values are constrained in a half cycle of S1.

ũspace
k =< ωc(rk −R∗), eiθk > (4.20)

where R∗ is the arbitrarily assigned center.

Proof. Define the relative position between vehicle k and the arbitrarily assigned centerR∗ by r̃∗k = rk−R∗,

thus the spacing control ũspace
k can be rewritten as:

ũspace
k =< ωcr̃

∗
k, e

iθk > (4.21)

Since the center of vehicle k’s circular motion is ck = rk + iω−1
c eiθk , the relative position between

ck and the arbitrarily assigned center R∗ is given by:

dk = ck −R∗ = rk + iω−1
c eiθk −R∗ = r̃∗k + iω−1

c eiθk (4.22)
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The Lyapunov function is defined by:

U =
1

2
‖ d ‖2 (4.23)

where d = [d1, . . . , dN ]T . Note that U will reach its minimum 0 if every vehicle orbits around R∗ due to

c1 = . . . = cN = R∗ and d1 = . . . = dN = 0.

According to Theorem 4.1, θ1, θ2, . . . , θN will achieve the splay state under the heading control

(4.17) if φk(0) is set to (θk(0) − k 2π
N ) mod 2π for k = 1, 2, . . . , N and all these values are constrained in a

half cycle of S1 under a connected graph. Since the heading control vanishes after achieving the splay state,

the dynamics of dk is given by:

ḋk = ċk = ṙk − ω−1
c eiθk θ̇k

= −ω−1
c eiθk

∑
j∈Nk

ũspace
k δ(t− tj)

(4.24)

Therefore, the dynamics of U can be obtained as follows:

U̇ =< d, ḋ >=

N∑
k=1

< dk, ḋk >

= −
N∑
k=1

∑
j∈Nk

< r̃∗k, e
iθk >2 δ(t− tj)

(4.25)

Thus we have U̇ ≤ 0. According to LaSalle Invariance principle, all solutions will converge to the

largest invariant set Λ where

< r̃∗k, e
iθk >≡ 0 (4.26)

holds for k = 1, . . . , N . So ũspace
k =< ωcr̃

∗
k, e

iθk >≡ 0 holds in the set Λ, meaning that dk is constant in

the set Λ due to ḋk ≡ 0. From (4.22), we have r̃∗k = dk − iω−1
c eiθk . Thus the largest invariant set Λ can be

rewritten as:

< r̃∗k, e
iθk >=< dk, e

iθk >≡ 0 (4.27)

for k = 1, . . . , N . Because the spacing control ũspace
k is zero in the largest invariant set Λ and the heading

control vanishes when the splay state is achieved, the steering control is reduced to uk = θ̇k ≡ ωc in the

set Λ. Since dk is constant and θk is time varying because of θ̇k ≡ ωc, (4.27) holds only if dk ≡ 0 holds,

meaning that each vehicle orbits around the arbitrarily assigned center R∗.
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Therefore, under heading control (4.17), spacing control ũspace
k in (4.20) will drive all vehicles

interacting on a connected graph to orbit around the arbitrarily assigned center R∗ with the desired angular

velocity ωc if φk(0) is set to (θk(0) − k 2π
N ) mod 2π for k = 1, 2, . . . , N and all these initial values are

constrained in a half cycle of S1. �

From Theorem 4.2, we have the following theorem for vehicle networks on all-to-all graphs.

Theorem 4.4. For a network of N vehicles with kinetic model given in (4.2) under an all-to-all graph G =

(V, E), heading control ũorien
k in the singularly-perturbed control framework (4.13) is designed as (4.19).

Then spacing control ũspace
k in (4.28) will drive all vehicles to orbit around the centroid R = 1

N

∑N
j=1 rj

with a desired angular velocity ωc if φk(0) is set to θk(0) for k = 1, 2, . . . , N and no two vehicles have equal

initial headings.

ũspace
k =< ωc(rk −R), eiθk >=

1

N

N∑
j=1

< ωc(rk − rj), eiθk > (4.28)

Proof. Define the relative position between vehicle k and the centroid R by r̃k = rk − R, thus the spacing

control ũspace
k can be rewritten as:

ũspace
k =< ωcr̃k, e

iθk > (4.29)

The center of vehicle k’s circular motion is

ck = rk + iω−1
c eiθk (4.30)

Following [140], define the Lyapunov function as U = 1
2 ‖ Hc ‖2 where H = IN − 1

N 11T , 1 =

[1, 1, . . . , 1]T , c = [c1, c2, . . . , cN ]T , and IN is the N -dimensional identity matrix.

When vehicles orbit around the same center, i.e., c1 = c2 = . . . = cN , we have Hc = 0. Therefore,

U reaches its minimum 0 when all vehicles orbit around the same center.

Since when the splay state is achieved, the heading control ũorien
k vanishes, the dynamics of ck is

given by

ċk = ṙk − ω−1
c eiθk θ̇k = eiθk − ω−1

c eiθk{ωc +
∑
j 6=k

ũspace
k δ(t− tj)}

= −ω−1
c eiθk

∑
j 6=k

ũspace
k δ(t− tj)

(4.31)
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Then the dynamics of U can be obtained as

U̇ =< Hc,Hċ >=

N∑
k=1

< Hkc, ċk >

= −
N∑
k=1

< Hkc, ω
−1
c eiθk > {

∑
j 6=k

ũspace
k δ(t− tj)}

(4.32)

where we used HHH = HH = H, and Hk denotes H’s kth row. Hkc can be rewritten as

Hkc = ck −
1

N
1T c = rk + iω−1

c eiθk −R− iω−1
c

1

N

N∑
j=1

eiθj

= r̃k + iω−1
c eiθk

(4.33)

where we used 1
N

∑N
j=1 e

iθj = Ṙ = 0 (splay state is already achieved). So < Hkc, ω
−1
c eiθk > in (4.32) can

be rewritten as:

< Hkc, ω
−1
c eiθk >=< r̃k + iω−1

c eiθk , ω−1
c eiθk >

= < r̃k, ω
−1
c eiθk >= ω−2

c < r̃k, ωce
iθk >= ω−2

c ũspace
k

(4.34)

Therefore, (4.32) can be simplified as follows:

U̇ = −
N∑
k=1

ω−2
c ũspace

k {
∑
j 6=k

ũspace
k δ(t− tj)}

= −ω−2
c

N∑
k=1

∑
j 6=k

(ũspace
k )2δ(t− tj)

(4.35)

Thus we have U̇ ≤ 0 under the spacing control (4.28). According to LaSalle Invariance principle,

all solutions will converge to the largest invariant set Λ where ũspace
k =< ωcr̃k, e

iθk >≡ 0 holds for k =

1, . . . , N . Accordingly from (4.34), we have < Hkc, ω
−1
c eiθk >= ω−2

c ũspace
k ≡ 0 in the set Λ for k =

1, . . . , N .

Since ũspace
k ≡ 0 holds in set Λ, we have ċk = 0 in (4.31) which implies that ck is constant. Further

taking into account the fact that ũorien
k vanishes after achieving the splay state, we have θ̇k = uk ≡ ωc for

k = 1, . . . , N . In the set Λ, Hkc is constant since ck is constant and θk is time varying because θ̇k ≡ ωc holds,

so < Hkc, ω
−1
c eiθk >≡ 0 holds only if Hkc ≡ 0 for k = 1, . . . , N , which means c1 = c2 = . . . = cN .

Since splay state has been achieved, according to (4.30), we know that all vehicles orbit around the centroid,

i.e., c1 = c2 = . . . = cN = R.
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Figure 4.8: Vehicle trajectories of four vehicles in circular motion around the arbitrarily assigned center
(R∗ = 1 + i represented by the star) under a connected graph.

Therefore, under heading control (4.19), spacing control ũspace
k in (4.28) will drive all vehicles

interacting on an all-to-all graph to orbit around the centroidR = 1
N

∑N
k=1 rk with a desired angular velocity

ωc if φk(0) is set to θk(0) for k = 1, 2, . . . , N and no two vehicles have equal initial headings. �

Now we use simulation results to demonstrate Theorems 4.3 and 4.4.

We first considered a network of N = 4 vehicles interacting on a connected graph given in Fig. 4.4.

The vehicle network under ũorien
k in (4.17) and ũspace

k in (4.20) was simulated. K in (4.13) was set to 5, ωo

was set to 10π, and ωc in (4.20) was set to 1 rad/s. The center R∗ was set to 1 + i. The initial positions of

the vehicles were randomly chosen from the disk with radius 2 centering at the origin. The initial headings

were randomly chosen from [0, 2π) such that φk(0) = (θk(0) − k 2π
N ) mod 2π for k = 1, 2, . . . , N were

constrained in a half cycle of S1. The evolutions of the vehicle trajectories are given in Fig. 4.8, which

confirmed Theorem 4.3. Note that the starting and ending points of vehicle trajectories are represented by

squares and arrows, respectively.

Next we considered a network of N = 4 vehicles interacting on an all-to-all graph. The vehicle

network under ũorien
k in (4.19) and ũspace

k in (4.28) was simulated. K was set to 5, ωo is set to 10π, and the

desired angular velocity ωc is set to 1 rad/s. The initial positions of the vehicles are randomly chosen from

the disk with radius 2 centering at the origin. The initial headings are randomly chosen from [0, 2π). The

evolutions of the vehicle trajectories are given in Fig. 4.9, which confirmed Theorem 4.4.
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Figure 4.9: The trajectories of four vehicles in circular motion around the centroidR under an all-to-all graph.

4.6 Summaries

A pulse-based integrated communication and control approach was proposed for collective motion

coordination. Different from existing results relying on a continuous control design followed by discretization

based implementation, we designed communication and control in a unified framework, which can prevent the

adverse effects of discretization and guarantee the design performance in implementation. The pulse-based

message exchanging also significantly reduces processing latency and communication delay, and enhances

robustness to channel interferences compared with conventional packet-based communication approaches.
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Chapter 5

Privacy Preservation in Multi-Agent

Systems

5.1 Introduction

In this chapter, we focus on the privacy-preserving average consensus in multi-agent systems. For

a multi-agent system of N nodes (agents) interacting on a connected graph, average consensus can enable

all nodes converge to the average of their initial values through iterations based on local interaction between

neighboring nodes. Average consensus is key for multi-agent systems, with applications ranging from load

balancing (with divisible tasks) in parallel computing [11, 21], network synchronization [85], distributed

information fusion [136, 162], to decentralized control [112, 130].

To make all nodes converge to the average of their initial values, conventional average consensus

algorithms require each node to exchange explicit state values with its neighbors. This leads to the disclosure

of sensitive state information, which is undesirable in terms of privacy-preservation. In many collaborative

applications such as smart grid, banking or health-care networks, privacy-preservation is crucial for encour-

aging participation in collaboration because individual nodes tend not to trade privacy for performance [58].

To enable privacy preservation in average consensus, some results have been reported. One com-

monly used approach is differential privacy from the database literature [45,62,63,67,107,108,163] (and its

variants [68, 154]). In order to enable privacy preservation in average consensus, differential-privacy based

approaches inject independent (and hence uncorrelated) noises directly to nodes’ states, which leads to a
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fundamental trade-off between enabled privacy and computational accuracy [108, 156]. To guarantee com-

putational accuracy, [17, 50, 55–57, 89, 96, 125] proposed to inject additive correlated noise to exchanged

messages, instead of uncorrelated noise used by differential-privacy. However, these prior works only con-

sider average consensus under balanced and static network topologies. Different from injecting noises to

nodes’ states in the aforementioned approaches, [5] employed carefully designed mask maps to protect the

actual states. Observability based approaches have also been discussed to protect the privacy of multi-agent

systems [4, 121, 132]. The basic idea is to design the interaction topology so as to minimize the observabil-

ity from a compromised agent, which amounts to minimizing its ability to infer the initial states of other

network agents. However, observability based approaches cannot protect the privacy of the direct neighbors

of the compromised agent. Recently, encryption based approaches have been proposed to enable privacy

preservation by encrypting exchanged messages with the assistance of additive homomorphic encryption

[33, 52, 71, 135], with the price of increasing computation and communication overhead. Another privacy-

preserving approach was proposed in [155] where each node’s privacy is protected by decomposing its state

into two sub-states. However, [155] relies on undirected interactions and is inapplicable to time-varying

directed graphs considered in our work.

In this chapter, we address privacy-preserving average consensus under time-varying directed graphs

that are not necessarily balanced. Building on the conventional push-sum based consensus algorithm, we en-

able privacy preservation by judiciously adding randomness in interaction dynamics and leverage the inherent

robustness of the push-sum algorithm to ensure consensus to the exact average value. More specifically, in

the first several steps, each node sends completely independent random numbers to its out-neighbors and

updates its own state under a sum-invariant (column-stochastic) constraint to completely obfuscate its initial

value without affecting the final convergence result. This is in distinct difference from differential-privacy

based average consensus approaches which enable privacy through sacrificing accuracy in obtained consen-

sus value. The proposed approach is able to preserve privacy even when multiple honest-but-curious nodes

collude with each other. Numerical simulations are provided to verify the effectiveness and efficiency of the

proposed approach.

The remainder of this chapter is organized as follows. In Section 5.2, we introduce some prelimi-

nary concepts and problem formulation. A privacy-preserving average consensus algorithm is proposed and

analyzed in Section 5.3. Numerical simulations are provided in Section 5.4. Finally, we conclude this chapter

in Section 5.5.
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5.2 Preliminaries and Problem Formulation

This section introduces some preliminaries of communication graph, the conventional push-sum

algorithm, and the problem formulation.

5.2.1 Graph Representation

We represent a multi-agent system of N nodes as a sequence of time-varying directed graphs

{G(k) = (V, E(k))} where V = {1, 2, . . . , N} is the set of nodes and k = 0, 1, . . . is the time index.

E(k) ⊂ V × V is the edge set at time k, whose elements are such that (i, j) ∈ E(k) holds if and only if there

exists a directed edge from node j to node i at time k, i.e., node j can send messages to node i at time k.

For notational convenience, we assume that there are no self edges, i.e., (i, i) /∈ E(k) for all k and i ∈ V .

At time k, each edge (i, j) ∈ E(k) has an associated weight, pij(k) > 0. The out-neighbor set of node i

at time k, which represents the set of nodes that can receive messages from node i at time k, is denoted as

N out
i (k) = {j ∈ V | (j, i) ∈ E(k)}. Similarly, at time k, the in-neighbor set of node i, which represents the

set of nodes that can send messages to node i at time k, is denoted as N in
i (k) = {j ∈ V | (i, j) ∈ E(k)}.

From the above definitions, it can be obtained that i ∈ N out
j (k) and j ∈ N in

i (k) are equivalent. Agent

i’s out-degree at time instant k is represented by Dout
i (k) = |N out

i (k)| and its in-degree is represented by

Din
i (k) = |N in

i (k)|, where |S| is the cardinality of the set S.

For a sequence of time-varying directed graphs {G(k) = (V, E(k))}, we define E∞ as the set of

directed edges (i, j) that exist for infinitely many time instants, i.e.,

E∞ =
{

(i, j)
∣∣(i, j) ∈ E(k) for infinitely many indices k

}
(5.1)

We focus on time-varying directed graphs which satisfy the following assumptions:

Assumption 5.1. For a sequence of time-varying directed graphs {G(k) = (V, E(k))}, for any i, j ∈ V with

i 6= j, there exists at least one directed path from i to j in (V, E∞), i.e., (V, E∞) is strongly connected.

Assumption 5.2. For a sequence of time-varying directed graphs {G(k) = (V, E(k))}, there exists an

integer T ≥ 1 such that for every (i, j) ∈ E∞, node j directly communicates with node i at least once every

T consecutive time instants. T is called intercommunication interval bound.

Assumption 5.3. We assume that each node i has access to its out-degree Dout
i (k) at each iteration k.
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Note that Assumption 5.3 is widely used in existing literature on time-varying directed graphs such

as [102, 104, 166]. In fact, in many directed graphs, it is possible for a node to know its out-neighbors. For

example, in many safety-critical systems such as industrial control systems, the exchange of data occurs in

a directed way due to unidirectional gateways (aka data diode) whereas control messages (a special type of

messages used to configure network connections) can be exchanged in a bidirectional manner to establish

connections [137].

5.2.2 The Conventional Push-Sum Algorithm

The conventional push-sum considersN nodes interacting on a constant directed graph G = (V, E),

with each node having an initial state x0
i (i = 1, 2, . . . , N ) [10, 51, 69]. Represent the average value of all

initial states as α =
∑N
j=1 x

0
j/N . The conventional push-sum algorithm conducts two iterative computations

simultaneously, and allows each node to obtain the exact average of the initial values α in an asymptotic way.

This mechanism of the conventional push-sum algorithm is summarized in Algorithm 5.1 below:

Algorithm 5.1 The conventional push-sum algorithm

1. N nodes interact on a constant directed graph G = (V, E). Each node i is initialized with si(0) = x0
i ,

wi(0) = 1, and πi(0) = si(0)/wi(0). The weight pij associated with the edge (i, j) ∈ E satisfies
pij ∈ (0, 1) if j ∈ N in

i ∪{i} is true and pij = 0 otherwise. For any given j = 1, 2, . . . , N , pij satisfies∑N
i=1 pij = 1.

2. At iteration step k:

(a) Agent i calculates pjisi(k) and pjiwi(k), and sends both values to all of its out-neighbors j ∈
N out
i .

(b) After receiving the values of pijsj(k) and pijwj(k) from all its in-neighbors j ∈ N in
i , node i

updates si and wi as follows: 
si(k + 1) =

∑
j∈N in

i ∪{i}

pijsj(k)

wi(k + 1) =
∑

j∈N in
i ∪{i}

pijwj(k)
(5.2)

(c) Agent i uses the ratio πi(k + 1) = si(k + 1)/wi(k + 1) as an estimate of the average value
α =

∑N
j=1 x

0
j/N .
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For the sake of notational simplicity, we rewrite (5.2) in the following more compact form:


s(k + 1) = Ps(k)

w(k + 1) = Pw(k)

(5.3)

where s(k) = [s1(k), s2(k), . . . , sN (k)]T and w(k) = [w1(k), w2(k), . . . , wN (k)]T , and P = [pij ]. From

Algorithm 5.1, we have s(0) = [x0
1, x

0
2, . . . , x

0
N ]T and w(0) = 1. We can also obtain that the matrix P is

column-stochastic, i.e.,
∑N
i=1 pij = 1 holds for j = 1, 2, . . . , N .

At iteration step k, each node computes the ratio πi(k + 1) = si(k + 1)/wi(k + 1) to estimate

the average value α =
∑N
j=1 x

0
j/N . Since G is assumed to be a strongly connected directed graph, Pk will

converge to a rank-1 matrix exponentially fast [37, 138]. Defining P∞ as the limit of Pk as k →∞, we can

obtain the form of P∞ as P∞ = v1T where v = [v1, v2, . . . , vN ]T . Using the facts s(k) = Pks(0) and

w(k) = Pkw(0), we can further have [51]:

πi(∞) =
si(∞)

wi(∞)
=

[P∞s(0)]i
[P∞w(0)]i

=
vi
∑N
j=1 sj(0)

vi
∑N
j=1 wj(0)

= α (5.4)

where [P∞s(0)]i and [P∞w(0)]i represent the i-th element of vector P∞s(0) and vector P∞w(0), re-

spectively. Hence, all estimates π1(k), π2(k), . . . , πN (k) will asymptotically converge to the average α =∑N
j=1 x

0
j/N .

5.2.3 Problem Formulation

In our work, we will address average consensus under time-varying directed graphs while protecting

the privacy of participating nodes against adversaries. To this end, we first present the attack model and our

definition of privacy.

Definition 5.1. We define an honest-but-curious adversary as an node who follows protocol steps correctly

but collects received messages in an attempt to infer the initial value of other participating nodes.

Definition 5.2. We define that privacy of the initial value x0
i of node i is preserved if x0

i cannot be estimated

by honest-but-curious adversaries with any accuracy. By “any accuracy,” we mean that the honest-but-

curious adversaries cannot distinguish whether the initial state of node i is x0
i or x0

i + δ where δ can be any

value in R.
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Our definition of privacy requires that honest-but-curious adversaries cannot even find a range of a

sensitive value and therefore is more stringent than the privacy definition in [16, 27, 53, 83, 89] which defines

privacy as the inability of an adversary to uniquely determine the sensitive value.

We consider two different scenarios: 1) a single adversarial node acting on its own (i.e., without col-

luding with other adversarial nodes) and 2) multiple adversarial nodes colluding with each other, as detailed

below:

Assumption 5.4. All N nodes are honest-but-curious and try to infer other nodes’ initial states without

sharing information with each other.

Assumption 5.5. A set of honest-but-curious nodes A share information with each other to infer the initial

value x0
i of node i /∈ A.

We next show that the conventional push-sum does not preserve privacy. From (5.2) and (5.3),

an honest-but-curious node i can receive pijsj(0) and pijwj(0) from its in-neighbor node j after the first

iteration step k = 0. Then node i is able to uniquely determine x0
j by x0

j = sj(0) =
pijsj(0)
pijwj(0) using

the fact wj(0) = 1. Therefore, an honest-but-curious node can always infer the initial values of all its

in-neighbors, and hence the conventional push-sum algorithm cannot provide protection against honest-but-

curious adversaries. It is worth noting that using a similar argument, we can also obtain that the conventional

push-sum is not privacy-preserving even when the weight is allowed to be time-varying (e.g., [10].)

5.3 The Privacy-Preserving Algorithm and Performance Analysis

In this section, we will propose our privacy-preserving average consensus algorithm for time-varying

directed graphs, and then provide rigorous analysis of convergence rate and enabled strength of privacy,

respectively.

5.3.1 Privacy-Preserving Average Consensus Algorithm

The analysis above reveals that using the same weight pij for both pijsj(0) and pijwj(0) leads to

disclosing the initial state value. Motivated by this observation, we here introduce a novel privacy-preserving

average consensus algorithm which injects randomness in the dynamics of interactions in iterations k =

0, . . . ,Ki for each node i. Note that here Ki is a non-negative integer chosen by node i and is only known to

node i. Its influence will be discussed in detail in Remark 5.7 and Remark 5.8.
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Algorithm 5.2 Privacy-preserving average consensus algorithm

1. N nodes interact on a sequence of time-varying directed graphs {G(k) = (V, E(k))}. Each node i is
initialized with si(0) = x0

i , wi(0) = 1, and πi(0) = si(0)/wi(0). Each node i chooses a non-negative
integer Ki and keeps it private to itself.

2. At iteration step k:

(a) Agent i generates a set of random weights
{
pji(k) ∈ (ε, 1)

∣∣ j ∈ N out
i (k) ∪ {i}

}
with the sum

of this set equal to 1, and sets ∆wji(k) = pji(k)wi(k) for j ∈ N out
i (k) ∪ {i}.

(b) If k ≤ Ki, node i generates independently random numbers ∆sji(k) for j ∈ N out
i (k) following

some distributions only known to node i, and sets ∆sii(k) = si(k) −
∑
j∈Nout

i (k) ∆sji(k);
otherwise, node i sets ∆sji(k) = pji(k)si(k) for j ∈ N out

i (k) ∪ {i}.
(c) Agent i sends ∆sji(k) and ∆wji(k) to node j ∈ N out

i (k).

(d) After receiving ∆sij(k) and ∆wij(k) from its in-neighbors j ∈ N in
i (k), node i updates si and

wi as follows: 
si(k + 1) =

∑
j∈N in

i (k)∪{i}

∆sij(k)

wi(k + 1) =
∑

j∈N in
i (k)∪{i}

∆wij(k)
(5.5)

(e) Agent i uses the ratio πi(k + 1) = si(k + 1)/wi(k + 1) to estimate the average value α =∑N
j=1 x

0
j/N .

Remark 5.1. Compared to the conventional privacy-violating push-sum algorithm which broadcasts mes-

sages, Algorithm 5.2 needs node i to send different random numbers to different out-neighbors in iterations

k ≤ Ki. This is a price of obtaining privacy without losing accuracy in the time-varying directed topology

case.

Remark 5.2. Note that in Algorithm 5.2, node i can choose random numbers ∆sji(k) following any distri-

bution, and its choice is unknown to any other node. Also note that for different out-neighbors j ∈ N out
i (k)

and different iteration steps k ≤ Ki, node i can choose ∆sji(k) independently following different distribu-

tions. Therefore, the generation mechanism of random numbers used in Algorithm 5.2 does not cause loss of

privacy.

Remark 5.3. The way of injecting randomness in ∆sji(k) is different in iterations k ≤ Ki from k > Ki. In

fact, in iterations k ≤ Ki, ∆sji(k) can be nonzero even when si(k) is zero. This is crucial in enabling strong

privacy as receiving ∆sji(k) of a value zero will not allow the recipient to infer information about si(k).

Setting ∆sji(k), ∆wji(k), and pji(k) to 0 for j /∈ N out
i (k) ∪ {i}, we can rewrite the dynamics in
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(5.5) as

si(k + 1) =

N∑
j=1

∆sij(k) (5.6)

and

wi(k + 1) =

N∑
j=1

∆wij(k) =

N∑
j=1

pij(k)wj(k) (5.7)

for k ≥ 0. Denote K̄ as K̄ = maxi{Ki}. For k ≥ K̄ + 1, (5.6) can be rewritten as

si(k + 1) =

N∑
j=1

∆sij(k) =

N∑
j=1

pij(k)sj(k) (5.8)

We can further rewrite (5.7) and (5.8) into a matrix form


s(k + 1) = P(k)s(k) for k ≥ K̄ + 1

w(k + 1) = P(k)w(k) for k ≥ 0

(5.9)

where s(k) = [s1(k), s2(k), . . . , sN (k)]T , w(k) = [w1(k), w2(k), . . . , wN (k)]T , and the ij-th entry of P(k)

is the weight pij(k). For iteration k = 0, we have s(0) = [x0
1, x

0
2, . . . , x

0
N ]T and w(0) = 1. From Algorithm

5.2, we know that P(k) =
[
pij(k)

]
in (5.9) is time-varying and column-stochastic for k ≥ 0.

Defining the transition matrix as follows

Φ(k : t) = P(k) · · ·P(t) (5.10)

for all k and t with k ≥ t, where Φ(k : k) = P(k), we can rewrite (5.9) as


s(k + 1) = Φ(k : K̄ + 1)s(K̄ + 1) for k ≥ K̄ + 1

w(k + 1) = Φ(k : 0)w(0) for k ≥ 0

(5.11)

5.3.2 Convergence Analysis

Next we prove that Algorithm 5.2 can guarantee that the estimates of all nodes converge to the exact

average value of initial values. We will also analyze the rate of convergence of Algorithm 5.2. Using the

the convergence definition in [102] and [101], we define the rate of convergence to be at least γ ∈ (0, 1)

if there exists a positive constant value C such that
∥∥π(k) − α1

∥∥ ≤ Cγk is true for all k, where π(k) =

[π1(k), . . . , πN (k)]T and α =
∑N
j=1 x

0
j/N is the average value. Note that this definition means a smaller γ
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corresponding to a faster convergence. To analyze the convergence rate of Algorithm 5.2, we first introduce

Lemma 5.1 below:

Lemma 5.1. For a network of N nodes represented by a sequence of time-varying directed graphs {G(k) =

(V, E(k))} which satisfies Assumptions 5.1, 5.2, and 5.3, under Algorithm 5.2, each node i has wi(k) ≥

εT (N−1) for k ≥ 1 where T is defined in Assumption 5.2.

Proof: For k ≥ 1, from (5.11) we have

w(k) = Φ(k − 1 : 0)1 (5.12)

Represent δ(k) as

δ(k) , min
1≤i≤N

wi(k) = min
1≤i≤N

[Φ(k − 1 : 0) 1]i (5.13)

for k ≥ 1. To prove wi(k) ≥ εT (N−1) for k ≥ 1, it is sufficient to prove δ(k) ≥ εT (N−1) for k ≥ 1. We

divide our proof into two parts: 1 ≤ k ≤ T (N − 1) and k ≥ T (N − 1) + 1.

Part 1: δ(k) ≥ εT (N−1) for 1 ≤ k ≤ T (N − 1). One can verify that the following relationship

holds

Φ(k − 1 : 0)tii = [P(k − 1) · · ·P(0)]ii

≥ [P(k − 1)]ii [P(k − 2) · · ·P(0)]ii

≥ ε [Φ(k − 2 : 0)]ii

Given [Φ(0 : 0)]ii = [P(0)]ii ≥ ε, one can obtain [Φ(k − 1 : 0)]ii ≥ εk. Therefore, it follows that

[Φ(k − 1 : 0) 1]i ≥ [Φ(k − 1 : 0)]ii ≥ εk ≥ εT (N−1)

is true for i = 1, . . . , N and 1 ≤ k ≤ T (N−1), implying that δ(k) ≥ εT (N−1) holds for 1 ≤ k ≤ T (N−1).

Part 2: δ(k) ≥ εT (N−1) for k ≥ T (N − 1) + 1. Under Assumptions 5.1 and 5.2, and the re-

quirements on weights pij(k) in Algorithm 5.2, and following the arguments in Lemma 2 in [105], we can

obtain

[Φ(k − 1 : k − T (N − 1))]ij ≥ εT (N−1)

for 1 ≤ i, j ≤ N . Since k ≥ T (N − 1) + 1 holds and P(k) is a column-stochastic matrix,

Φ(k − T (N − 1)− 1 : 0) = P(k − T (N − 1)− 1) · · ·P(0)
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should also be a column-stochastic matrix. Further using the fact Φ(k − 1 : 0) = Φ(k − 1 : k − T (N −

1))Φ(k − T (N − 1)− 1 : 0) leads to [Φ(k − 1 : 0)]ij ≥ εT (N−1) for 1 ≤ i, j ≤ N . Therefore, we have

[Φ(k − 1 : 0) 1]i ≥ NεT (N−1) ≥ εT (N−1)

for i = 1, . . . , N , meaning δ(k) ≥ εT (N−1) for k ≥ T (N − 1) + 1.

Based on δ(k) ≥ εT (N−1) for k ≥ 1, we can obtain wi(k) ≥ εT (N−1) for k ≥ 1. In summary, we

always have wi(k) ≥ εT (N−1) when k ≥ 1. �

Theorem 5.1. For a network ofN nodes represented by a sequence of time-varying directed graphs {G(k) =

(V, E(k))}which satisfies Assumptions 5.1, 5.2, and 5.3, under Algorithm 5.2, the estimate πi(k) = si(k)/wi(k)

of each node i will converge to the average α =
∑N
j=1 x

0
j/N . More specifically, the rate of convergence of

Algorithm 5.2 is at least γ = (1 − εT (N−1))
1

T (N−1) ∈ (0, 1), meaning that there exists a positive constant

value C satisfying
∥∥π(k)− α1

∥∥ ≤ Cγk for all k.

Proof: According to the requirements on ∆sji(k) in Algorithm 5.2, we have
∑N
j=1 ∆sji(k) = si(k)

for k ≥ 0. Therefore, from (5.6), we have the following mass conservation property for s(k):

1T s(k + 1) =

N∑
i=1

si(k + 1) =

N∑
i=1

N∑
j=1

∆sij(k) =

N∑
j=1

N∑
i=1

∆sij(k)

=

N∑
j=1

sj(k) =

N∑
i=1

si(k) = 1T s(k)

(5.14)

for k ≥ 0, which further implies

1T s(k + 1) = 1T s(k) = · · · = 1T s(0) =
N∑
j=1

x0
j (5.15)

and

α =

∑N
j=1 x

0
j

N
=

1T s(0)

N
=

1T s(k + 1)

N
(5.16)

for k ≥ 0. Similarly, we have the following mass conservation property for w(k):

1Tw(k + 1) = 1Tw(k) = · · · = 1Tw(0) = N (5.17)
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for k ≥ 0. Then we rewrite (5.11) as


s(K̄ + l + 1) = Φ(K̄ + l : K̄ + 1)s(K̄ + 1)

w(K̄ + l + 1) = Φ(K̄ + l : K̄ + 1)w(K̄ + 1)

(5.18)

for l ≥ 1. Under Assumptions 5.1 and 5.2, and the requirements on weights pij(k) in Algorithm 5.2,

following Proposition 1(b) in [103], we know that the transition matrix Φ(K̄ + l : K̄ + 1) will converge to

a stochastic vector ϕ(K̄ + l) with a geometric rate with respect to i and j, i.e., for all i, j = 1, . . . , N and

l ≥ 1, we have ∣∣[Φ(K̄ + l : K̄ + 1)]ij − ϕi(K̄ + l)
∣∣ ≤ C0γ

l−1 (5.19)

with C0 = 2(1 + ε−T (N−1))/(1− εT (N−1)) and γ = (1 − εT (N−1))
1

T (N−1) . Defining M(K̄ + l : K̄ + 1)

as

M(K̄ + l : K̄ + 1) , Φ(K̄ + l : K̄ + 1)−ϕ(K̄ + l) 1T (5.20)

we can have ∣∣∣[M(K̄ + l : K̄ + 1)
]
ij

∣∣∣ ≤ C0γ
l−1 (5.21)

for all i, j = 1, . . . , N and l ≥ 1. Further combining (5.20) with (5.18) leads to


s(K̄ + l + 1) =M(K̄ + l : K̄ + 1)s(K̄ + 1) +ϕ(K̄ + l) 1T s(K̄ + 1)

w(K̄ + l + 1) =M(K̄ + l : K̄ + 1)w(K̄ + 1) +Nϕ(K̄ + l)

(5.22)

where we used 1Tw(K̄ + 1) = N from (5.17) in the derivation.
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Combining (5.16) and (5.22), we have

πi(K̄ + l + 1)− α

=
si(K̄ + l + 1)

wi(K̄ + l + 1)
− 1T s(K̄ + 1)

N

=
si(K̄ + l + 1)

wi(K̄ + l + 1)
− 1T s(K̄ + 1)wi(K̄ + l + 1)

Nwi(K̄ + l + 1)

=
[M(K̄ + l : K̄ + 1)s(K̄ + 1)]i + ϕi(K̄ + l)1T s(K̄ + 1)

wi(K̄ + l + 1)

− 1T s(K̄ + 1)[M(K̄ + l : K̄ + 1)w(K̄ + 1)]i
Nwi(K̄ + l + 1)

− 1T s(K̄ + 1)Nϕi(K̄ + l)

Nwi(K̄ + l + 1)

=
[M(K̄ + l : K̄ + 1)s(K̄ + 1)]i

wi(K̄ + l + 1)
− 1T s(K̄ + 1)[M(K̄ + l : K̄ + 1)w(K̄ + 1)]i

Nwi(K̄ + l + 1)

(5.23)

Therefore, for i = 1, . . . , N and l ≥ 1, we can obtain

∣∣πi(K̄ + l + 1)− α
∣∣

≤
∣∣[M(K̄ + l : K̄ + 1)s(K̄ + 1)]i

∣∣
wi(K̄ + l + 1)

+

∣∣1T s(K̄ + 1)[M(K̄ + l : K̄ + 1)w(K̄ + 1)]i
∣∣

Nwi(K̄ + l + 1)

≤ 1

εT (N−1)

(
max
j

∣∣[M(K̄ + l : K̄ + 1)]ij
∣∣)∥∥s(K̄ + 1)

∥∥
1

+
1

εT (N−1)

∣∣1T s(K̄ + 1)
∣∣(max

j

∣∣[M(K̄ + l : K̄ + 1)]ij
∣∣)

(5.24)

where we used wi(K̄ + l + 1) ≥ εT (N−1) from Lemma 5.1 and
∥∥w(K̄ + 1)

∥∥
1

=
∑N
i=1 |wi(K̄ + 1)| =

1Tw(K̄+1) = N from (5.17) in the derivation. Further using the relationship
∣∣1T s(K̄+1)

∣∣ ≤ ∥∥s(K̄+1)
∥∥

1

and (5.21), we have ∣∣πi(K̄ + l + 1)− α
∣∣ ≤ 2C0

∥∥s(K̄ + 1)
∥∥

1
ε−T (N−1)γl−1 (5.25)

for l ≥ 1.

From (5.25), we can obtain for l ≥ 1

∥∥π(K̄ + l + 1)− α1
∥∥ ≤ 2

√
NC0

∥∥s(K̄ + 1)
∥∥

1
ε−T (N−1)γl−1

= C1γ
K̄+l+1

(5.26)

with C1 given by

C1 = 2
√
NC0

∥∥s(K̄ + 1)
∥∥

1
ε−T (N−1)γ−K̄−2 (5.27)
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Therefore, we obtain
∥∥π(k)− α1

∥∥ ≤ C1γ
k for k ≥ K̄ + 2.

For k ≤ K̄ + 1, from (5.16) we have

πi(k)− α =
si(k)

wi(k)
− 1T s(k)

N
(5.28)

which further implies

|πi(k)− α| ≤ | si(k)

wi(k)
|+ |1

T s(k)

N
| ≤ |si(k)|

εT (N−1)
+
|1T s(k)|

N

≤
∥∥s(k)

∥∥
1

εT (N−1)
+

∥∥s(k)
∥∥

1

N
=
N + εT (N−1)

NεT (N−1)

∥∥s(k)
∥∥

1

(5.29)

Thus, it follows for k ≤ K̄ + 1

∥∥π(k)− α1
∥∥ =

[ N∑
i=1

|πi(k)− α|2
] 1

2 ≤ N + εT (N−1)

√
NεT (N−1)

∥∥s(k)
∥∥

1
(5.30)

Defining C as

C , max
{
C1, γ

−kN + εT (N−1)

√
NεT (N−1)

‖s(k)‖1
∣∣ 0 ≤ k ≤ K̄ + 1

}
(5.31)

we can have ∥∥π(k)− α1
∥∥ ≤ Cγk (5.32)

for all k. Therefore, each node i will converge to the average value α =
∑N
j=1 x

0
j/N with the rate of

convergence at least γ = (1− εT (N−1))
1

T (N−1) ∈ (0, 1). �

From Theorem 5.1, we can see that a smaller γ means a faster convergence. Under the relationship

γ = (1− εT (N−1))
1

T (N−1) , to expedite the convergence, i.e., a smaller γ, it is sufficient to increase ε, which

amounts to reducing the width of the range (ε, 1) for the random selection of pji(k). Note that although a

reduced range (ε, 1) enables an honest-but-curious adversary to obtain a better estimation of the range of

node i’s intermediate states si(k) and wi(k) for k ≥ Ki + 1 from received pji(k)si(k) and pji(k)wi(k),

it does not affect the privacy of node i’s initial state x0
i , as will be shown in the following subsection. It is

also worth noting that to meet the requirement of randomly selecting weights in our algorithm, ε cannot be

arbitrarily close to 1. In fact, ε must satisfy ε < 1/maxi,k(Dout
i (k) + 1). An easy way to select ε is to set

0 < ε < 1/N since Dout
i (k) ≤ N − 1 is true for all k and i ∈ V .
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Remark 5.4. Theorem 5.1 provides a detailed analysis of the rate of convergence under time-varying directed

graphs, the results on which are sparse in the literature on Push-Sum under time-varying random weights.

5.3.3 Privacy-Preserving Performance Analysis

Next we rigorously prove that Algorithm 5.2 is able to achieve the privacy defined in Definition 5.2

under two different scenarios as follows.

5.3.3.1 Honest-but-curious nodes without colluding

In this scenario (cf. Assumption 5.4), we have the following theorems.

Theorem 5.2. For a network ofN nodes represented by a sequence of time-varying directed graphs {G(k) =

(V, E(k))} which satisfies Assumptions 5.1, 5.2, 5.3, and 5.4, Algorithm 5.2 can preserve the privacy of node

i if there exists a time instant 0 ≤ k∗ ≤ Ki such that
∣∣∣{l ∈ V ∣∣ l ∈ N out

i (k∗) ∪N in
i (k∗), Kl ≥ k∗

}∣∣∣ ≥ 2 is

true.

Proof: To show that the privacy of node i can be protected, we have to show that the initial value

x0
i of node i cannot be inferred by any honest-but-curious node j with any accuracy. Our idea is to prove the

indistinguishability of x0
i ’s arbitrary variation to any node j, i.e., node j cannot distinguish whether the initial

state of node i is x0
i or x0

i + δ where δ can be any value in R. According to Algorithm 5.2 and Assumption

5.4, the parameter and state values known to node j, denoted as Ij , can be summarized as follows:

Ij =
{
Istate
j (k) ∪ Isend

j (k) ∪ I receive
j (k)

∣∣ k ≥ 0
}

∪
{
wm(0) = 1

∣∣m ∈ V} ∪ {pmj(k)
∣∣m ∈ V, k ≥ 0

} (5.33)

where

Istate
j (k) =

{
sj(k), wj(k)

}
Isend
j (k) =

{
∆snj(k),∆wnj(k)

∣∣ n ∈ N out
j (k) ∪ {j}

}
I receive
j (k) =

{
∆sjm(k),∆wjm(k)

∣∣m ∈ N in
j (k)

} (5.34)

represent the states, sent messages, and received messages of node j at iteration k, respectively.

Agent j can only use the parameters and states known to him, i.e., Ij , to infer x0
i . Therefore, if we

can prove that under any initial value x̃0
i = x0

i + δ (δ can be any value in R), the parameter and state values

known to node j, i.e., Ĩj , could be exactly the same as Ij in (5.33) and (5.34), then node j has no way to
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even estimate a range for x0
i . Namely, we only need to prove that for any x̃0

i = x0
i + δ, Ĩj = Ij is true.

If there exists a time instant 0 ≤ k∗ ≤ Ki such that
∣∣∣{l ∈ V ∣∣ l ∈ N out

i (k∗) ∪ N in
i (k∗), Kl ≥

k∗
}∣∣∣ ≥ 2 is true, then there must exist an node l ∈ N out

i (k∗)∪N in
i (k∗) satisfying l 6= j and Kl ≥ k∗. Next

we prove that there are initial values of x0
l , exchanged messages, and weights satisfying the requirements in

Algorithm 5.2 and making Ĩj = Ij hold for any x̃0
i = x0

i+δ. Specifically, under initial condition x̃0
l = x0

l−δ,

we consider two cases, l ∈ N out
i (k∗) and l ∈ N in

i (k∗), respectively (note that if l ∈ N out
i (k∗)∩N in

i (k∗) is

true, either case can be used in the argument to reach a same conclusion):

Case I: If l ∈ N out
i (k∗) holds, we can verify Ĩj = Ij for any x̃0

i = x0
i + δ under the following

exchanged messages and weights



∆s̃mn(k) = ∆smn(k)∀m ∈ V, n ∈ V \ {i, l}, 0 ≤ k ≤ k∗

∆s̃mi(k) = ∆smi(k) ∀m ∈ V \ {i}, 0 ≤ k ≤ k∗ − 1

∆s̃ii(k) = ∆sii(k) + δ ∀ 0 ≤ k ≤ k∗ − 1

∆s̃ml(k) = ∆sml(k) ∀m ∈ V \ {l}, 0 ≤ k ≤ k∗ − 1

∆s̃ll(k) = ∆sll(k)− δ ∀ 0 ≤ k ≤ k∗ − 1

∆s̃mi(k
∗) = ∆smi(k

∗) ∀m ∈ V \ {l}

∆s̃li(k
∗) = ∆sli(k

∗) + δ

∆s̃ml(k
∗) = ∆sml(k

∗) ∀m ∈ V \ {l}

∆s̃ll(k
∗) = ∆sll(k

∗)− δ

∆s̃mn(k) = ∆smn(k) ∀m,n ∈ V, k ≥ k∗ + 1

∆w̃mn(k) = ∆wmn(k) ∀m,n ∈ V, k ≥ 0

p̃mn(k) = pmn(k) ∀m,n ∈ V, k ≥ 0

(5.35)

where “\” represents set subtraction.

Case II: If l ∈ N in
i (k∗) holds, we can verify Ĩj = Ij for any x̃0

i = x0
i + δ under the following
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exchanged messages and weights



∆s̃mn(k) = ∆smn(k)∀m ∈ V, n ∈ V \ {i, l}, 0 ≤ k ≤ k∗

∆s̃mi(k) = ∆smi(k) ∀m ∈ V \ {i}, 0 ≤ k ≤ k∗ − 1

∆s̃ii(k) = ∆sii(k) + δ ∀ 0 ≤ k ≤ k∗ − 1

∆s̃ml(k) = ∆sml(k) ∀m ∈ V \ {l}, 0 ≤ k ≤ k∗ − 1

∆s̃ll(k) = ∆sll(k)− δ ∀ 0 ≤ k ≤ k∗ − 1

∆s̃mi(k
∗) = ∆smi(k

∗) ∀m ∈ V \ {i}

∆s̃ii(k
∗) = ∆sii(k

∗) + δ

∆s̃ml(k
∗) = ∆sml(k

∗) ∀m ∈ V \ {i}

∆s̃il(k
∗) = ∆sil(k

∗)− δ

∆s̃mn(k) = ∆smn(k) ∀m,n ∈ V, k ≥ k∗ + 1

∆w̃mn(k) = ∆wmn(k) ∀m,n ∈ V, k ≥ 0

p̃mn(k) = pmn(k) ∀m,n ∈ V, k ≥ 0

(5.36)

Summarizing Case I and Case II, we have Ĩj = Ij for x̃0
i = x0

i + δ under any δ in R, meaning

that node j cannot distinguish whether the initial state of node i is x0
i or x0

i + δ for any δ ∈ R. Therefore,

under Assumptions 5.1, 5.2, 5.3, and 5.4, Algorithm 5.2 can protect the privacy of node i if there exists a time

instant 0 ≤ k∗ ≤ Ki such that
∣∣∣{l ∈ V ∣∣ l ∈ N out

i (k∗) ∪N in
i (k∗), Kl ≥ k∗

}∣∣∣ ≥ 2 is true. �

Next we proceed to show that if the conditions in Theorem 5.2 are not met, then the privacy of node

i may be breached.

Theorem 5.3. For a network ofN nodes represented by a sequence of time-varying directed graphs {G(k) =

(V, E(k))} which satisfies Assumptions 5.1, 5.2, 5.3, and 5.4, the privacy of node i in Algorithm 5.2 cannot

be preserved against node j if {N out
i (k) ∪ N in

i (k)
∣∣ k ≥ 0} = {j} is true. In fact, under {N out

i (k) ∪

N in
i (k)

∣∣ k ≥ 0} = {j}, x0
i of node i can be uniquely determined by node j.

Proof: Under {N out
i (k) ∪ N in

i (k)
∣∣ k ≥ 0} = {j}, we can obtain that the only neighboring node

that node i can communicate with is node j. But it is worth noting that node i may not communicate with

node j at every iteration k since the graph is time-varying. Setting ∆sij(k) and ∆wij(k) to 0 when node j

does not directly communicate with node i at iteration k, we can get the dynamics of si and wi from (5.5) as
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follows: 
si(k + 1) = ∆sii(k) + ∆sij(k)

wi(k + 1) = ∆wii(k) + ∆wij(k)

(5.37)

Under requirements in Algorithm 5.2, we have


si(k) = ∆sii(k) + ∆sji(k)

wi(k) = ∆wii(k) + ∆wji(k)

(5.38)

for all k where ∆sji(k) and ∆wji(k) are set to 0 if node i does not directly communicate with node j at

iteration k. Combining (5.37) and (5.38) leads to


si(k + 1)− si(k) = ∆sij(k)−∆sji(k)

wi(k + 1)− wi(k) = ∆wij(k)−∆wji(k)

(5.39)

and further 
si(k)− si(0) =

k−1∑
l=0

[∆sij(l)−∆sji(l)]

wi(k)− wi(0) =

k−1∑
l=0

[∆wij(l)−∆wji(l)]

(5.40)

Note that the right-hand side of (5.40) is accessible to the honest-but-curious node j because ∆sij(l)

and ∆wij(l) are computed and sent by node j, and ∆sji(l) and ∆wji(l) are received by node j. Further using

the fact wi(0) = 1, node j can uniquely determine wi(k) for all k.

Under Assumption 5.1 and {N out
i (k) ∪ N in

i (k)
∣∣ k ≥ 0} = {j}, one can obtain (j, i) ∈ E∞.

According to Assumption 5.2, node i directly communicates with node j at least once every T consecutive

time instants. So there must exist k′ ≥ Ki+1 such that node i directly communicates with node j at iteration

k′, i.e., node i sends ∆sji(k
′) and ∆wji(k

′) to node j at iteration k′. Then node j can easily infer si(k′) as

below

si(k
′) =

∆sji(k
′)

∆wji(k′)
wi(k

′) =
pji(k

′)si(k
′)

pji(k′)wi(k′)
wi(k

′) (5.41)

Therefore, node j can uniquely determine x0
i = si(0) based on (5.40). �

5.3.3.2 Honest-but-curious nodes colluding with each other

In this scenario (cf. Assumption 5.5), we have the following theorems.
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Theorem 5.4. For a network ofN nodes represented by a sequence of time-varying directed graphs {G(k) =

(V, E(k))} which satisfies Assumptions 5.1, 5.2, 5.3, and 5.5, Algorithm 5.2 can preserve the privacy of

node i against the set of honest-but-curious nodes A if there exists a time instant 0 ≤ k∗ ≤ Ki such that∣∣∣{l ∈ V ∣∣ l ∈ N out
i (k∗) ∪ N in

i (k∗), l /∈ A, Kl ≥ k∗
}∣∣∣ ≥ 1 is true, i.e., there exits at least one node l

belonging to N out
i (k∗) ∪N in

i (k∗) but not A with Kl ≥ k∗.

Proof: To prove that the privacy of node i can be preserved, we have to prove that no honest-but-

curious node j ∈ A can estimate x0
i with any accuracy. Under Assumption 5.5, each node in A has access to

the parameter and state values known to any node in A. So we represent the accessible parameter and state

values as

IA =
{
Ij
∣∣ j ∈ A} (5.42)

where Ij is given by (5.33). Following the same line of reasoning in Theorem 5.2, to prove that node j ∈ A

cannot estimate x0
i with any accuracy, it is sufficient to prove that for any initial value x̃0

i = x0
i + δ (δ can be

any value in R), the parameter and state values known to node j, i.e., ĨA, could be exactly the same as IA.

If there exists a time instant 0 ≤ k∗ ≤ Ki such that
∣∣∣{l ∈ V ∣∣ l ∈ N out

i (k∗)∪N in
i (k∗), l /∈ A, Kl ≥

k∗
}∣∣∣ ≥ 1 is true, then there must exist an node l ∈ N out

i (k∗)∪N in
i (k∗) such that l /∈ A andKl ≥ k∗ hold. It

can be easily verified that under the initial condition x̃0
l = x0

l − δ, there exist respective exchanged messages

and weights in (5.35) and (5.36) for l ∈ N out
i (k∗) and l ∈ N in

i (k∗) that satisfy requirements in Algorithm

5.2 and make ĨA = IA hold under any x̃0
i = x0

i + δ.

Therefore, we can have ĨA = IA for x̃0
i = x0

i + δ under any δ in R, meaning that node j ∈ A

cannot estimate x0
i with any accuracy even based on the parameter and state values known to the entire set

A. �

Next we prove that if the conditions in Theorem 5.4 are not met, the privacy of node i could be

breached.

Theorem 5.5. For a network ofN nodes represented by a sequence of time-varying directed graphs {G(k) =

(V, E(k))} which satisfies Assumptions 5.1, 5.2, 5.3, and 5.5, the privacy of node i in Algorithm 5.2 cannot

be preserved when all in-neighbors and out-neighbors belong to A, i.e., {N out
i (k) ∪ N in

i (k)
∣∣ k ≥ 0} ⊂ A.

In fact, when {N out
i (k) ∪ N in

i (k)
∣∣ k ≥ 0} ⊂ A is true, the initial value x0

i of node i can be uniquely

determined by honest-but-curious nodes j ∈ A.
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Proof: From (5.5), we can have the dynamics of si and wi as follows:


si(k + 1) =

∑
n∈N in

i (k)

∆sin(k) + ∆sii(k)

wi(k + 1) =
∑

n∈N in
i (k)

∆win(k) + ∆wii(k)

(5.43)

The requirements in Algorithm 5.2 guarantee ∆sii(k) +
∑
m∈Nout

i (k) ∆smi(k) = si(k) and ∆wii(k) +∑
m∈Nout

i (k) ∆wmi(k) = wi(k). Plugging these relationships into (5.43), we can obtain


si(k + 1)− si(k) =

∑
n∈N in

i (k)

∆sin(k)−
∑

m∈Nout
i (k)

∆smi(k)

wi(k + 1)− wi(k) =
∑

n∈N in
i (k)

∆win(k)−
∑

m∈Nout
i (k)

∆wmi(k)

(5.44)

and further 
si(k)− si(0) =

k−1∑
l=0

[ ∑
n∈N in

i (k)

∆sin(l)−
∑

m∈Nout
i (k)

∆smi(l)
]

wi(k)− wi(0) =

k−1∑
l=0

[ ∑
n∈N in

i (k)

∆win(l)−
∑

m∈Nout
i (k)

∆wmi(l)
] (5.45)

Note that under Assumption 5.5, every honest-but-curious node j ∈ A has access to IA in (5.42). If

{N out
i (k) ∪ N in

i (k)
∣∣ k ≥ 0} ⊂ A is true, all terms on the right-hand side of (5.45) belong to IA, and

hence are known to any node j ∈ A. Further taking into account wi(0) = 1, we have that every node j ∈ A

can uniquely determine wi(k) for all k.

Under Assumption 5.1 and {N out
i (k) ∪ N in

i (k)
∣∣ k ≥ 0} ⊂ A, there must exist at least one node

q ∈ A such that (q, i) ∈ E∞ is true. This is because otherwise graph (V, E∞) is not strongly connected,

which does not satisfy Assumption 5.1. According to Assumption 5.2, node i directly communicates with

node q at least once in every T consecutive time instants. So there must exist k′ ≥ Ki + 1 at which node

i directly communicates with node q, i.e., node i sends ∆sqi(k
′) and ∆wqi(k

′) to node q at iteration k′. As

q ∈ A, each honest-but-curious node j ∈ A has access to ∆sqi(k
′) and ∆wqi(k

′). So each node j ∈ A can

easily infer si(k′) by using the following relationship

si(k
′) =

∆sqi(k
′)

∆wqi(k′)
wi(k

′) =
pqi(k

′)si(k
′)

pqi(k′)wi(k′)
wi(k

′) (5.46)
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Further making use of (5.45), each honest-but-curious node j ∈ A can uniquely determine the value of

x0
i = si(0). �

Remark 5.5. It is worth noting that in privacy-preserving average consensus, topology requirements such as

the ones in Theorem 5.2 and Theorem 5.4 are widely used. In fact, to guarantee both accuracy and privacy,

[5, 17, 33, 50, 57, 89, 96, 121, 125, 132, 135, 155] all rely on similar topology requirements.

Remark 5.6. Our algorithm can protect the privacy of an node even when all its neighbors interact (at least

one does not collude) with adversaries, which is not allowed in [96] and [89].

Remark 5.7. From the above analysis, we know that introducing randomness into interaction dynamics by

each node i for k ≤ Ki is key to protect privacy against honest-but-curious nodes. It is worth noting that

compared with the conventional push-sum approach which does not take privacy into consideration, the in-

troduced randomness in our approach has no influence on the convergence rate ρ. However, the randomness

does delay the convergence process and hence leads to a trade-off between privacy preservation and conver-

gence time. This is confirmed in our numerical simulations in Fig. 5.2 which shows that convergence only

initiates after k = K̄ + 1.

Remark 5.8. If an adversary can obtain side information, then a larger Ki protects the privacy of more

intermediate states si(k) for 1 ≤ k ≤ Ki. This is because for k ≥ Ki + 1, πi(k) can be easily obtained

by its out-neighbor j due to the relationship πi(k) = ∆sji(k)/∆wji(k) for k ≥ Ki + 1, which makes

states si(k) for k ≥ Ki + 1 easier to infer through si(k) = πi(k)wi(k) if side information about Ki and

wi(k) is available to the adversary. Therefore, although a larger Ki leads to more delay in the convergence

process, as discussed in Remark 5.7, it can protect more intermediate states (si(k) for 1 ≤ k ≤ Ki) when

an adversary can obtain side information. Of course, if side information is not of concern, a smaller Ki is

preferable to minimize the delay in the convergence process.

Remark 5.9. In Algorithm 5.2,Ki and the distribution of random number ∆sji(k) being only known to node

i is not an assumption but a natural consequence of implementing our algorithm. Although bring additional

protection against side-information attacks, they are not necessary to guarantee the defined privacy in Def-

inition 5.2. In fact, even if Ki and the distribution of ∆sji(k) were shared with every node, following the

arguments in the proofs of Theorem 5.2 and Theorem 5.4, we can still prove that our algorithm provides the

privacy defined in Definition 5.2.
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Remark 5.10. It is worth noting that our approach can provide information-theoretic privacy under a special

selection of private parameters and an additional constraint on the update of si(0). More specifically, if we

normalize the initial states between 0 and 1
N , set Ki = 0, and choose ∆sji(0) independently and uniformly

in [0, 1) for all j ∈ N out
i (0), then following the reasoning in [50], we can prove that our approach can

enable information-theoretic privacy against a set of honest-but-curious adversaries that cannot form a vertex

cut of the graph, even in the time-varying directed graph case. This is because under the above setting,

the distribution of information set gathered by the set of honest-but-curious nodes keeps unchanged under

different initial states of nodes other than the set of honest-but-curious nodes, as long as the sum of initial

states keeps unchanged.

Remark 5.11. Our algorithm can be extended to preserve privacy against external eavesdroppers wire-

tapping all communication links without compromising algorithmic accuracy by patching partially homo-

morphic encryption. More specifically, using public-key cryptosystems (e.g., Paillier [115], RSA [133], and

ElGamal [30]), each node generates and floods its public key before the consensus iteration starts. Then in

decentralized implementation, an node encrypts its messages to be sent, which can be decrypted by a legit-

imate recipient without the help of any third party. Note that since public-key cryptosystems can only deal

with integers, the final consensus result would be subject to a quantization error. However, as indicated in

our previous work [135], the quantization error can be made arbitrarily small in implementation.

5.4 Numerical Experiments

We conducted numerical simulations to verify the correctness and the effectiveness of our proposed

approach.

We first evaluated our proposed Algorithm 5.2 under a network of N = 5 nodes interacting on a

time-varying directed graph. More specifically, we used the interaction graph in Fig. 5.1(a) when k is even

and Fig. 5.1(b) when k is odd. It can be verified that this time-varying directed graph satisfies Assumptions

5.1 and 5.2. Parameter ε was set to 0.05. For iterations k ≤ Ki, node i chose independently random numbers

∆sji(k) for j ∈ N out
i (k) following normal distribution N (µji(k), σ2

ji(k)) where µji(k) and σji(k) were

randomly chosen from (−500, 500). The initial values x0
i for i = 1, . . . , N were randomly chosen from

(0, 50). We used e(k) to measure the estimation error between the estimate πi(k) = si(k)/wi(k) and the
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true average value α =
∑N
j=1 x

0
j/N at iteration k, i.e.,

e(k) =
∥∥π(k)− α1

∥∥ =
( N∑
i=1

(πi(k)− α)2
)1/2 (5.47)

Three experiments were conducted with K̄ = maxiKi being 10, 20, and 30, respectively. The evolution of

e(k) is shown in Fig. 5.2. It can be seen that e(k) approached to 0, meaning that every node converged to the

average value α =
∑N
j=1 x

0
j/N . It is also worth noting that we can see from Fig. 5.2 that Algorithm 5.2 did

not start to converge until iteration step k ≥ K̄ + 1, which confirms our analysis in Remark 5.7.

1
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1

5

43

2

(a) (b)

Figure 5.1: A time-varying directed graph with 5 nodes.
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Figure 5.2: The evolution of error e(k) under different K̄.

We also evaluated the influence of parameter ε on the convergence rate ρ. The interaction graph was
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the same as above. K̄ = maxi{Ki} was set to 10. The simulation results are given in Fig. 5.3 where the

mean and variance of ρ from 1, 000 runs of the algorithm are shown under different values of ε. Fig. 5.3

shows that as ε increases, the convergence rate ρ decreases (i.e., the convergence speed increases), which

confirms our analysis in Section 5.3.

0 0.1 0.2 0.3 0.4 0.5
0.5

0.55

0.6

0.65

0.7

0.75

Figure 5.3: The influence of ε on the convergence rate ρ.

We then evaluated the privacy-preserving performance of Algorithm 5.2. Because letting attackers

receive more information makes privacy more difficult to protect, we consider the extreme case where the

graph is the union of Fig. 5.1(a) and Fig. 5.1(b) at every time instant. We assumed that nodes 2, 3, and 4

colluded to infer the initial value x0
1 of node 1. Note that in this case, we have that N out

1 (k) ∪ N in
1 (k) =

{2, 4, 5} 6⊂ A holds for node 1 at every time instant. Two experiments were conducted with x0
1 set to 40 and

−40, respectively. x0
2, . . . , x

0
5 were randomly chosen from (0, 50). Ki was set to 10 for each node i. The

other parameters were the same as the first simulation, and the maximal iteration step wasM = 100. To infer

the value of x0
1, the nodes in setA could construct the following equations based on the accessible parameter

and state values IA 
s1(k + 1)− s1(k) + ∆s51(k) = ∆s14(k)−∆s21(k)

w1(k + 1)− w1(k) + ∆w51(k) = ∆w14(k)−∆w21(k)

(5.48)
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Figure 5.4: Estimation results of x0
1 by the set of honest-but-curious nodes 2, 3, and 4. In each experiment,

the actual value of x0
1 is represented by star, and the estimated values of x0

1 are represented by x-marks.

for k = 0, 1, . . . ,M . Furthermore, nodes in set A also have

s1(k)− π1(k)w1(k) = 0 (5.49)

for k = K1 + 1,K1 + 2, . . . ,M where π1(k) can be inferred by nodes in set A using

π1(k) =
∆s21(k)

∆w21(k)
=
p21(k)s1(k)

p21(k)w1(k)
(5.50)

since both ∆s21(k) and ∆w21(k) belong to IA.

The number of linear equations (5.48) and (5.49) is 3M −K1 + 2, and within these equations there

exist 4M+5 variables unknown to nodes in setA, i.e., s1(0), . . . , s1(M+1),∆s51(0), . . . ,∆s51(M), w1(1),

. . . , w1(M+1),∆w51(0), . . . ,∆w51(M). Therefore, there are infinitely many solutions because the number

of unknown variables is more than the number of equations. To uniquely determine the value of x0
1, we used

the least-squares solution to estimate x0
1. In each experiment, the nodes in set A estimated x0

1 for 1, 000

times, with recorded estimation results given in Fig. 5.4. It is clear that set A cannot have a good estimate of

x0
1.

We also compared the proposed Algorithm 5.2 with existing data-obfuscation based approaches,
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more specifically, the differential-privacy based approach in [62], the decaying-noise approach in [96], and

the finite-noise-sequence approach in [89]. Under the same setup as in the previous simulation, we chose the

initial values as {10, 15, 20, 25, 30}, which led to an average value 20. We adopted the weight matrix W from

[62], i.e., the ij-th entry was wij = 1/(|N out
j |+ 1) for i ∈ N out

j ∪ {j} and wij = 0 for i /∈ N out
j ∪ {j}. As

the graph is directed and imbalanced, and does not meet the undirected or balanced assumption in [62,89,96],

all three approaches failed to achieve average consensus, as shown in the numerical simulation results in Fig.

5.5, Fig. 5.7, and Fig. 5.6, respectively.
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Figure 5.5: The evolution of xi(k) under the approach in [62].
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Figure 5.6: The evolution of xi(k) under the approach in [96].
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Figure 5.7: The evolution of xi(k) under the approach in [89].

5.5 Summaries

In this chapter, we proposed a privacy-preserving average consensus algorithm for time-varying

directed graphs. In distinct difference from existing differential-privacy based approaches which add in-

dependent (and hence uncorrelated) noises to nodes’ states and thus compromise the accuracy of average

consensus, we leveraged the inherent robustness of average consensus to embed randomness in interaction

dynamics, which guarantees privacy of participating nodes without sacrificing the accuracy of average con-

sensus. Finally, we provided numerical simulation results to confirm the effectiveness and efficiency of our

proposed approach.
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Chapter 6

Conclusions

In this dissertation, we considered coordination (including synchronization and desynchronization)

and privacy preservation in multi-agent systems.

In the first part, we first addressed global synchronization of PCOs interacting on chain and directed

tree graphs. It was proven that PCOs can be synchronized from an arbitrary initial phase distribution under

heterogeneous phase response functions (PRFs) and coupling strengths. The results are also applicable when

oscillators are heterogeneous and subject to time-varying perturbations on their natural frequencies. Differ-

ent from existing global synchronization results, the coupling strengths in our results can be freely chosen

between zero and one, which is desirable since a very strong coupling strength, although can bring fast con-

vergence, has been shown to be detrimental to the robustness of synchronization to disturbances. Given that a

very weak coupling may not be desirable either due to low convergence speed which may allow disturbances

to accumulate, the results give flexibility in meeting versatile requirements in practical PCO applications.

Next we focused on desynchronization of PCOs. We proposed a general phase-desynchronizing

phase response function, which includes existing results as special cases, and rigorously characterized the

decentralized phase desynchronization process. Simulation results show that our proposed phase response

function can achieve better convergence speed and robustness to pulse losses, time delays, and frequency

errors than existing results.

Then we considered the applications of PCOs in collective motion coordination. Inspired by the

close relationship between phase synchronization/desynchronization of PCOs and the heading dynamics of

connected vehicles/robots, we proposed a pulse-based integrated communication and control approach for

decentralized collective motion coordination. Different from existing results relying on a continuous control
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design followed by discretization based implementation, we design communication and control in a unified

framework, which can prevent the adverse effects of discretization and guarantee the design performance

in implementation. The pulse-based message exchanging also significantly reduces processing latency and

communication delay, and enhances robustness to channel interferences compared with conventional packet-

based communication approaches.

In the second part, we focused on privacy-preserving average consensus as it is key for multi-agent

systems. We proposed a privacy-preserving average consensus approach for time-varying directed graphs.

Different from existing differential-privacy based approaches which inject independent noise to exchanged

states and thus compromise accuracy, we enable privacy preservation by judiciously adding randomness in

interaction dynamics and leverage the inherent robustness of the push-sum algorithm to ensure consensus to

the exact average value. Our proposed approach is able to preserve privacy even when multiple honest-but-

curious nodes collude with each other. Numerical simulations are provided to verify the effectiveness and

efficiency of the proposed approach.
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Appendix A Lemmas and Their Proofs in Chapter 2

A.1 Lemma A.1

Lemma A.1. For N PCOs interacting on an undirected chain, if the PRF Fj(xj) satisfies Assumption 2.3

and lj ∈ (0, 1) holds for all j ∈ V , then L in (2.10) cannot be retained at any nonzero value along a complete

solution φ.

Proof. We use proof of contradiction. Since L ∈ [0, Nπ] holds, we suppose that for some r ∈ (0, Nπ], L is

retained at r along a complete solution φ. From Lemma 2.5, to keep L at r, we must have

∆+
i−1 = ∆i−1 − δi−1, ∆+

i−2 = ∆i−2 + δi−1 (A.1)

or

∆+
i = ∆i − δi+1, ∆+

i+1 = ∆i+1 + δi+1 (A.2)

if the left-neighbor oscillator i−1 or right-neighbor oscillator i+1 exists when oscillator i fires, respectively.

Next we show that ∆N will exceed π, which contradicts the constraint 0 ≤ ∆i ≤ π for i ∈ V .

Given 1 /∈ N out
i and N /∈ N out

i for i = 3, 4, . . . , N − 2, both x+
1 = x1 and x+

N = xN hold when

oscillators 3, 4, . . . , N − 2 fire, which leads to ∆+
N = ∆N . Similarly, N /∈ N out

1 (resp. 1 /∈ N out
N ) implies

x+
N = xN (resp. x+

1 = x1) when oscillator 1 (resp. N ) fires, which leads to ∆+
N = ∆N when oscillator 1 or

N fires.

So we focus on the evolution of ∆N when oscillators 2 and N − 1 fire. According to Lemma A.2 in

Appendix A.2, neither oscillator 2 nor oscillatorN−1 will stop firing. Without loss of generality, we assume

that oscillator 2 fires at time (t∗2, k
∗
2). From (A.1) we have ∆+

N = ∆N + δ1. Similarly, from (A.2) we have

∆+
N = ∆N + δN when oscillator N − 1 fires. Since δ1 and δN are nonnegative, we have ∆+

N ≥ ∆N . To

prove that ∆N will surpass π, we need to show that at least one of the following statements is true:

1. δ1 = 0 cannot always hold when oscillator 2 fires;

2. δN = 0 cannot always hold when oscillator N − 1 fires.

Proof of statement 1: Given l1 ∈ (0, 1), according to (2.7) and (2.12), δ1 = 0 holds if and only

if x1 = 0 or x1 = 2π holds, which means that oscillators 1 and 2 are synchronized when oscillator 2 fires.

So we need to show that oscillators 1 and 2 cannot always be synchronized when oscillator 2 fires. More
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Figure A.1: Illustration of a set of q ≥ 2 neighboring oscillators being synchronized.

generally, we assume that there is a set of q ≥ 2 oscillators 1, 2, . . . , q being synchronized and having phases

different from oscillator q+1. According to Lemma A.2 in Appendix A.2, oscillator q+1 will not stop firing

in this situation. We assume that oscillator q + 1 fires at time (t∗q+1, k
∗
q+1), and x1 = . . . = xq ∈ [π, 2π)

holds when oscillator q + 1 fires, as illustrated in Fig. A.1. Note that the case of x1 = . . . = xq ∈ (0, π]

can be proved by following the same line of reasoning. Given 0 < lq < 1, from (2.7) and (2.12) we have

0 < δq < 2π − xq . Since oscillator q is the left-neighbor of oscillator q + 1, according to (A.1), when

oscillator q+ 1 fires we have ∆+
q = ∆q − δq = 2π−xq − δq > 0 and ∆+

q−1 = ∆q−1 + δq = 0 + δq > 0. So

oscillator q escapes from the set of synchronized oscillators due to ∆+
q−1 > 0 and will fire next. Similarly,

when oscillator q fires, the left-neighbor oscillator q − 1 will escape from the set of synchronized oscillators

and fire next. Iterating this argument, when oscillator 3 fires, the left-neighbor oscillator 2 will escape from

the set of synchronized oscillators and fire next. So we have x2 6= x1, i.e., oscillators 1 and 2 are not

synchronized when oscillator 2 fires. Therefore, δ1 = 0 cannot always hold when oscillator 2 fires.

Similarly, we can prove statement 2, i.e., δN cannot always be 0 when oscillator N − 1 fires, and

thus ∆N will keep increasing. Since δ1 and δN will not converge to 0 unless synchronization is achieved,

∆N will surpass π, which contradicts the constraint 0 ≤ ∆i ≤ π for i ∈ V . Therefore, L cannot be retained

at any nonzero value along a complete solution φ. �

A.2 Lemma A.2

Lemma A.2. For N PCOs interacting on an undirected chain, if the PRF Fj(xj) satisfies Assumption 2.3

and lj ∈ (0, 1) holds for all j ∈ V , we have the following results:

1. Neither oscillator 2 nor oscillator N − 1 will stop firing;

2. Oscillator q+1 will not stop firing if oscillators 1, . . . , q (2 ≤ q ≤ N −1) have been synchronized and
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oscillator q + 1 is not synchronized with these q oscillators. Similarly, oscillator N − q will not stop

firing if oscillators N − q+ 1, . . . , N have been synchronized and oscillator N − q is not synchronized

with these q oscillators.

Proof. We first use proof of contradiction to prove statement 1. Suppose that oscillator 2 stops firing after time

instant (t′2, k
′
2), then x2 will stay in [0, π]. This is because if x2 ∈ (π, 2π) holds, it will evolve continuously

to 2π and fire, and receiving pulses from other oscillators can only expedite this process under the PRFs in

Assumption 2.3. Since oscillator 2 only receives pulses from oscillators 1 and 3, without loss of generality,

we suppose at time (t′1, k
′
1) that oscillator 1 fires and resets its phase to 0. Note that oscillator 1 will fire at a

period of T1 = 2π/ω since its only neighbor oscillator 2 stops firing. After receiving the pulse, oscillator 2

updates its phase to x+
2 = x2 + l2F

(1)
2 (x2) ∈ [0, π). If oscillator 2 does not receive any other pulse before its

phase surpasses π, it will fire, which contradicts the assumption. So we suppose that oscillator 3 fires at time

(t′3, k
′
3) before x2 surpasses π, which implies t′3− t′1 ≤ π/ω. Since the time it takes for phase evolving from

0 to π is at least π/ω and after reaching π oscillator 3 will not fire immediately even if it receives a pulse

under given PRFs and coupling strengths, the length of oscillator 3’s firing period T3 satisfies T3 > π/ω.

There are two cases in this situation, t′1 = t′3 and t′1 < t′3, respectively:

Case 1: If t′1 = t′3 holds, then the length of time interval for oscillator 2 receiving the next pulse after

(t′3, k
′
3 + 1) is greater than π/ω. Since x2(t′3, k

′
3 + 1) ≥ 0 holds, x2 will be greater than π when receiving

the next pulse. So oscillator 2 will fire again, which contradicts the assumption.

Case 2: If t′1 < t′3 holds, then we have x2(t′3, k
′
3 + 1) > 0 due to x2(t′3, k

′
3) = x2(t′1, k

′
1 + 1) +

ω(t′3 − t′1) > 0 under given PRFs and coupling strengths. Since t′3 − t′1 ≤ π/ω holds, after time interval

[π−x2(t′3, k
′
3 + 1)]/ω which is less than π/ω, we have x1 < 2π, x3 < π, and x2 = π. So x2 will be greater

than π when receiving the next pulse, and thus oscillator 2 will fire again, which contradicts the assumption.

Therefore, oscillator 2 will not stop firing. Similarly, we can prove that oscillator N − 1 will not

stop firing either.

Next we prove statement 2. Suppose that oscillator q + 1 stops firing after time (t′q+1, k
′
q+1). Since

oscillators 1, . . . , q will not receive any pulses from other oscillators, they will remain synchronized and

oscillator q will fire with a period of Tq = 2π/ω. The same as statement 1, the length of oscillator q + 2’s

firing period Tq+2 satisfies Tq+2 > π/ω and oscillator q+ 1 will not stop firing if oscillator q+ 1 has a phase

different from synchronized oscillators 1, . . . , q. Similarly, we can prove that oscillator N − q will not stop

firing either if oscillator N − q has a phase different from synchronized oscillators N − q + 1, . . . , N . �
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Appendix B Lemmas and Their Proofs in Chapter 3

B.1 Lemma B.1

Lemma B.1. Case 3’ and Case 3” cannot always exist before phase desynchronization is achieved.

Proof. It can be easily inferred that before achieving phase desynchronization there always exists one phase

difference smaller than 2π
N and one phase difference larger than 2π

N , and in between the two phase differences

there may be some phase differences (represent the number asQ, 0 ≤ Q ≤ N−2) that are equal to 2π
N , which

is defined as State A. Denote the phase difference smaller than 2π
N and the phase difference larger than 2π

N as

∆j and ∆ ̂j+Q+1
, respectively. There are Q phase differences between ∆j and ∆ ̂j+Q+1

which are equal to

2π
N and denoted as ∆

ĵ+1
, . . . ,∆

ĵ+Q
(cf. Fig. B.1).

As illustrated in Fig. B.1, if φ ̂j+Q+2
< 2π

N , we have ∆ ̂j+Q+2
< 2π

N . Then we can infer that Case

3’ does not exist when oscillator j fires because φ ̂j+Q+2
resides in (0, 2π

N ) and ∆ ̂j+Q+1
> 2π

N is true.

Thus we only need to consider the situation when φ ̂j+Q+2
≥ 2π

N holds. It can be proven that under

this situation State A must evolve to State B (cf. Fig. B.2) afterQ pulses. In State B, theQ phase differences

which were equal to 2π
N in State A become smaller than 2π

N , meaning that the condition in Case 3” is not

satisfied when oscillator ĵ +Q fires because phase φ ̂j+Q+1
resides in (2π − 2π

N , 2π) and ∆ ̂j+Q+1
> 2π

N is

true.

Now we illustrate how those phase differences equal to 2π
N become smaller than 2π

N after Q pulses.

Suppose that at t = tj , an “active pulse” is emitted by oscillator j. This pulse only affects φ
ĵ+1

since only

φ
ĵ+1

resides in (2π− 2π
N , 2π) and it decreases the value of φ

ĵ+1
since φ+

ĵ+1
−φ

ĵ+1
= l2(2π− 2π

N −φĵ+1
) < 0

holds, which in turn makes ∆
ĵ+1

smaller than 2π
N after this pulse. Because φ

ĵ+2
, . . . , φ ̂j+Q+2

reside in

[ 2π
N , 2π− 2π

N ], they will keep unchanged, meaning that ∆ ̂j+Q+1
is still larger than 2π

N , and ∆
ĵ+2

, . . . ,∆
ĵ+Q

are equal to 2π
N . Therefore, after one firing, the number of phase differences equal to 2π

N is reduced by one to

Q− 1, as illustrated in Fig. B.3. Following the same line of reasoning, we can obtain that after Q firings, the

phase differences equal to 2π
N in State A become smaller than 2π

N , which means that State B is achieved.

So State A must evolve to State B, and thus the condition in Case 3” cannot always exist before

achieving phase desynchronization because under State B ∆ ̂j+Q+1
> 2π

N will be true when PCO ĵ +Q fires.

Therefore, Case 3’ and Case 3” cannot always exist before phase desynchronization is achieved. �
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B.2 Proof of Corollary 3.1

Proof. Since l1 = 0 and 0 < l2 < 1 hold, the PRF F (φk) in (3.2) and the phase update rule in (3.3) can be

rewritten as:

F (φk) =


0 0 < φk ≤ 2π − 2π

N

− l2(φk − (2π − 2π

N
)) 2π − 2π

N
< φk < 2π

(B.1)

and

φ+
k =


φk 0 < φk ≤ 2π − 2π

N

(1− l2)φk + l2(2π − 2π

N
) 2π − 2π

N
< φk < 2π

(B.2)

It is worth noting that the phase update rule in (B.2) is the same as the phase update rule in [113].

So the rule in [113] is a special case of our phase update rule in (3.3) for l1 = 0. As pointed out in [82], there

is still a lack of rigorous mathematical proof for the convergence of the desynchronization algorithm in [113]

since the proof of Corollary 1 in [113] did not provide clear condition where the cardinality must decrease.

Now we give a rigorous proof for the convergence of phase desynchronization under this situation.

Following the same line of reasoning as the proof of Theorem 3.1, the value of P will keep un-

changed between two consecutive pulses, so we only need to concentrate on how P evolves at discrete-time

instants when pulses are emitted. If there are no phase variables within (2π − 2π
N , 2π), then all the phase

differences will not change, neither will P . Thus we only need to consider the situation in which there are

some phase variables within (2π − 2π
N , 2π). If N − 1 phase variables are within (2π − 2π

N , 2π), then this

situation becomes the same as Situation 5 in Remark 3.3. According to (3.29), we have P+−P < 0, which

means P will decrease under this situation. If there are S phase variables within (2π− 2π
N , 2π) (cf. Fig. B.4),

where S satisfies 1 ≤ S ≤ N − 2, then according to (B.2), the phase differences after the update can be

rewritten as: 

∆+
k = 2π − (1− l2)φ

k̂+1
− l2(2π − 2π

N
)

∆+

k̂+j
= (1− l2)(φ

k̂+j
− φ

k̂+j+1
), j = 1, . . . , S − 1

∆+

k̂+S
= (1− l2)φ

k̂+S
+ l2(2π − 2π

N
)− φ ̂k+S+1

∆+

k̂+q
= φ

k̂+q
− φ

k̂+q+1
, q = S + 1, . . . , N − 2

∆+
̂k+N−1

= φ ̂k+N−1

(B.3)
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Figure B.4: The phase variables φ
k̂+1

, . . . , φ
k̂+S

reside in (2π − 2π
N , 2π) when oscillator k sends the first

“active pulse” at t = tk.

Combining (3.4), (3.5), (3.8), and (B.3) leads to:

P+ − P = |∆+

k̂+S
− 2π

N
| − |∆

k̂+S
− 2π

N
|+ l2(2π − 2π

N
− φ

k̂+S
) (B.4)

which is the same as Part B in (3.16). According to the proof of Theorem 3.1, P will decrease under Case

1” and Case 2” and keep unchanged under Case 3”.

Now we show that Case 3” cannot always exist before the achievement of phase desynchronization.

As illustrated in Fig. B.1, State A always exists unless phase desynchronization is achieved. Note that

different from the proof of Lemma B.1, we do not need to consider the relationship between φ ̂j+Q+2
and 2π

N

since l1 = 0 holds. When oscillator j fires, it emits an “active pulse.” This pulse only affects φ
ĵ+1

since only

φ
ĵ+1

resides in (2π − 2π
N , 2π), and it decreases the value of φ

ĵ+1
according to (B.2). Thus ∆

ĵ+1
becomes

smaller than 2π
N , ∆

ĵ+2
, . . . ,∆

ĵ+Q
are still equal to 2π

N , and ∆ ̂j+Q+1
is still larger than 2π

N . Therefore, after

one firing, the number of phase differences equal to 2π
N is reduced by one to Q − 1, as illustrated in Fig.

B.3. Following the same line of reasoning, we can obtain that after Q firings, the phase differences equal

to 2π
N in the State A become smaller than 2π

N , which means that State B in Fig. B.2 is achieved. Thus the

condition in Case 3” cannot always exist before achieving phase desynchronization because under State B

∆ ̂j+Q+1
> 2π

N will be true when PCO ĵ +Q fires.

Consequently, P will keep decreasing until it reaches 0, i.e., until phase desynchronization is

achieved. Therefore, the PCOs will achieve phase desynchronization under the PRF (3.2) for l1 = 0 and

0 < l2 < 1. �
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[102] A. Nedić, A. Olshevsky, and W. Shi. Achieving geometric convergence for distributed optimization
over time-varying graphs. SIAM Journal on Optimization, 27(4):2597–2633, 2017.
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