14 research outputs found

    A QR Code Based Zero-Watermarking Scheme for Authentication of Medical Images in Teleradiology Cloud

    Get PDF
    Healthcare institutions adapt cloud based archiving of medical images and patient records to share them efficiently. Controlled access to these records and authentication of images must be enforced to mitigate fraudulent activities and medical errors. This paper presents a zero-watermarking scheme implemented in the composite Contourlet Transform (CT)鈥擲ingular Value Decomposition (SVD) domain for unambiguous authentication of medical images. Further, a framework is proposed for accessing patient records based on the watermarking scheme. The patient identification details and a link to patient data encoded into a Quick Response (QR) code serves as the watermark. In the proposed scheme, the medical image is not subjected to degradations due to watermarking. Patient authentication and authorized access to patient data are realized on combining a Secret Share with the Master Share constructed from invariant features of the medical image. The Hu鈥檚 invariant image moments are exploited in creating the Master Share. The proposed system is evaluated with Checkmark software and is found to be robust to both geometric and non geometric attacks

    Digital watermarking : applicability for developing trust in medical imaging workflows state of the art review

    Get PDF
    Medical images can be intentionally or unintentionally manipulated both within the secure medical system environment and outside, as images are viewed, extracted and transmitted. Many organisations have invested heavily in Picture Archiving and Communication Systems (PACS), which are intended to facilitate data security. However, it is common for images, and records, to be extracted from these for a wide range of accepted practices, such as external second opinion, transmission to another care provider, patient data request, etc. Therefore, confirming trust within medical imaging workflows has become essential. Digital watermarking has been recognised as a promising approach for ensuring the authenticity and integrity of medical images. Authenticity refers to the ability to identify the information origin and prove that the data relates to the right patient. Integrity means the capacity to ensure that the information has not been altered without authorisation. This paper presents a survey of medical images watermarking and offers an evident scene for concerned researchers by analysing the robustness and limitations of various existing approaches. This includes studying the security levels of medical images within PACS system, clarifying the requirements of medical images watermarking and defining the purposes of watermarking approaches when applied to medical images

    Efficient and Robust Video Steganography Algorithms for Secure Data Communication

    Get PDF
    Over the last two decades, the science of secretly embedding and communicating data has gained tremendous significance due to the technological advancement in communication and digital content. Steganography is the art of concealing secret data in a particular interactive media transporter such as text, audio, image, and video data in order to build a covert communication between authorized parties. Nowadays, video steganography techniques are important in many video-sharing and social networking applications such as Livestreaming, YouTube, Twitter, and Facebook because of noteworthy developments in advanced video over the Internet. The performance of any steganography method, ultimately, relies on the imperceptibility, hiding capacity, and robustness against attacks. Although many video steganography methods exist, several of them lack the preprocessing stages. In addition, less security, low embedding capacity, less imperceptibility, and less robustness against attacks are other issues that affect these algorithms. This dissertation investigates and analyzes cutting edge video steganography techniques in both compressed and raw domains. Moreover, it provides solutions for the aforementioned problems by proposing new and effective methods for digital video steganography. The key objectives of this research are to develop: 1) a highly secure video steganography algorithm based on error correcting codes (ECC); 2) an increased payload video steganography algorithm in the discrete wavelet domain based on ECC; 3) a novel video steganography algorithm based on Kanade-Lucas-Tomasi (KLT) tracking and ECC; 4) a robust video steganography algorithm in the wavelet domain based on KLT tracking and ECC; 5) a new video steganography algorithm based on the multiple object tracking (MOT) and ECC; and 6) a robust and secure video steganography algorithm in the discrete wavelet and discrete cosine transformations based on MOT and ECC. The experimental results from our research demonstrate that our proposed algorithms achieve higher embedding capacity as well as better imperceptibility of stego videos. Furthermore, the preprocessing stages increase the security and robustness of the proposed algorithms against attacks when compared to state-of-the-art steganographic methods

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Image-based Authentication

    Get PDF
    Mobile and wearable devices are popular platforms for accessing online services. However, the small form factor of such devices, makes a secure and practical experience for user authentication, challenging. Further, online fraud that includes phishing attacks, has revealed the importance of conversely providing solutions for usable authentication of remote services to online users. In this thesis, we introduce image-based solutions for mutual authentication between a user and a remote service provider. First, we propose and develop Pixie, a two-factor, object-based authentication solution for camera-equipped mobile and wearable devices. We further design ai.lock, a system that reliably extracts from images, authentication credentials similar to biometrics. Second, we introduce CEAL, a system to generate visual key fingerprint representations of arbitrary binary strings, to be used to visually authenticate online entities and their cryptographic keys. CEAL leverages deep learning to capture the target style and domain of training images, into a generator model from a large collection of sample images rather than hand curated as a collection of rules, hence provides a unique capacity for easy customizability. CEAL integrates a model of the visual discriminative ability of human perception, hence the resulting fingerprint image generator avoids mapping distinct keys to images which are not distinguishable by humans. Further, CEAL deterministically generates visually pleasing fingerprint images from an input vector where the vector components are designated to represent visual properties which are either readily perceptible to human eye, or imperceptible yet are necessary for accurately modeling the target image domain. We show that image-based authentication using Pixie is usable and fast, while ai.lock extracts authentication credentials that exceed the entropy of biometrics. Further, we show that CEAL outperforms state-of-the-art solution in terms of efficiency, usability, and resilience to powerful adversarial attacks

    Robust digital image watermarking algorithms for copyright protection

    Get PDF
    Digital watermarking has been proposed as a solution to the problem of resolving copyright ownership of multimedia data (image, audio, video). The work presented in this thesis is concerned with the design of robust digital image watermarking algorithms for copyright protection. Firstly, an overview of the watermarking system, applications of watermarks as well as the survey of current watermarking algorithms and attacks, are given. Further, the implementation of feature point detectors in the field of watermarking is introduced. A new class of scale invariant feature point detectors is investigated and it is showed that they have excellent performances required for watermarking. The robustness of the watermark on geometrical distortions is very important issue in watermarking. In order to detect the parameters of undergone affine transformation, we propose an image registration technique which is based on use of the scale invariant feature point detector. Another proposed technique for watermark synchronization is also based on use of scale invariant feature point detector. This technique does not use the original image to determine the parameters of affine transformation which include rotation and scaling. It is experimentally confirmed that this technique gives excellent results under tested geometrical distortions. In the thesis, two different watermarking algorithms are proposed in the wavelet domain. The first algorithm belongs to the class of additive watermarking algorithms which requires the presence of original image for watermark detection. Using this algorithm the influence of different error correction codes on the watermark robustness is investigated. The second algorithm does not require the original image for watermark detection. The robustness of this algorithm is tested on various filtering and compression attacks. This algorithm is successfully combined with the aforementioned synchronization technique in order to achieve the robustness on geometrical attacks. The last watermarking algorithm presented in the thesis is developed in complex wavelet domain. The complex wavelet transform is described and its advantages over the conventional discrete wavelet transform are highlighted. The robustness of the proposed algorithm was tested on different class of attacks. Finally, in the thesis the conclusion is given and the main future research directions are suggested

    UNDERWATER COMMUNICATIONS WITH ACOUSTIC STEGANOGRAPHY: RECOVERY ANALYSIS AND MODELING

    Get PDF
    In the modern warfare environment, communication is a cornerstone of combat competence. However, the increasing threat of communications-denied environments highlights the need for communications systems with low probability of intercept and detection. This is doubly true in the subsurface environment, where communications and sonar systems can reveal the tactical location of platforms and capabilities, subverting their covert mission set. A steganographic communication scheme that leverages existing technologies and unexpected data carriers is a feasible means of increasing assurance of communications, even in denied environments. This research works toward a covert communication system by determining and comparing novel symbol recovery schemes to extract data from a signal transmitted under a steganographic technique and interfered with by a simulated underwater acoustic channel. We apply techniques for reliably extracting imperceptible information from unremarkable acoustic events robust to the variability of the hostile operating environment. The system is evaluated based on performance metrics, such as transmission rate and bit error rate, and we show that our scheme is sufficient to conduct covert communications through acoustic transmissions, though we do not solve the problems of synchronization or equalization.Lieutenant, United States NavyApproved for public release. Distribution is unlimited

    Reversible and imperceptible watermarking approach for ensuring the integrity and authenticity of brain MR images

    Get PDF
    The digital medical workflow has many circumstances in which the image data can be manipulated both within the secured Hospital Information Systems (HIS) and outside, as images are viewed, extracted and exchanged. This potentially grows ethical and legal concerns regarding modifying images details that are crucial in medical examinations. Digital watermarking is recognised as a robust technique for enhancing trust within medical imaging by detecting alterations applied to medical images. Despite its efficiency, digital watermarking has not been widely used in medical imaging. Existing watermarking approaches often suffer from validation of their appropriateness to medical domains. Particularly, several research gaps have been identified: (i) essential requirements for the watermarking of medical images are not well defined; (ii) no standard approach can be found in the literature to evaluate the imperceptibility of watermarked images; and (iii) no study has been conducted before to test digital watermarking in a medical imaging workflow. This research aims to investigate digital watermarking to designing, analysing and applying it to medical images to confirm manipulations can be detected and tracked. In addressing these gaps, a number of original contributions have been presented. A new reversible and imperceptible watermarking approach is presented to detect manipulations of brain Magnetic Resonance (MR) images based on Difference Expansion (DE) technique. Experimental results show that the proposed method, whilst fully reversible, can also realise a watermarked image with low degradation for reasonable and controllable embedding capacity. This is fulfilled by encoding the data into smooth regions (blocks that have least differences between their pixels values) inside the Region of Interest (ROI) part of medical images and also through the elimination of the large location map (location of pixels used for encoding the data) required at extraction to retrieve the encoded data. This compares favourably to outcomes reported under current state-of-art techniques in terms of visual image quality of watermarked images. This was also evaluated through conducting a novel visual assessment based on relative Visual Grading Analysis (relative VGA) to define a perceptual threshold in which modifications become noticeable to radiographers. The proposed approach is then integrated into medical systems to verify its validity and applicability in a real application scenario of medical imaging where medical images are generated, exchanged and archived. This enhanced security measure, therefore, enables the detection of image manipulations, by an imperceptible and reversible watermarking approach, that may establish increased trust in the digital medical imaging workflow

    Contribution to the construction of fingerprinting and watermarking schemes to protect mobile agents and multimedia content

    Get PDF
    The main characteristic of fingerprinting codes is the need of high error-correction capacity due to the fact that they are designed to avoid collusion attacks which will damage many symbols from the codewords. Moreover, the use of fingerprinting schemes depends on the watermarking system that is used to embed the codeword into the content and how it honors the marking assumption. In this sense, even though fingerprinting codes were mainly used to protect multimedia content, using them on software protection systems seems an option to be considered. This thesis, studies how to use codes which have iterative-decoding algorithms, mainly turbo-codes, to solve the fingerprinting problem. Initially, it studies the effectiveness of current approaches based on concatenating tradicioanal fingerprinting schemes with convolutional codes and turbo-codes. It is shown that these kind of constructions ends up generating a high number of false positives. Even though this thesis contains some proposals to improve these schemes, the direct use of turbo-codes without using any concatenation with a fingerprinting code as inner code has also been considered. It is shown that the performance of turbo-codes using the appropiate constituent codes is a valid alternative for environments with hundreds of users and 2 or 3 traitors. As constituent codes, we have chosen low-rate convolutional codes with maximum free distance. As for how to use fingerprinting codes with watermarking schemes, we have studied the option of using watermarking systems based on informed coding and informed embedding. It has been discovered that, due to different encodings available for the same symbol, its applicability to embed fingerprints is very limited. On this sense, some modifications to these systems have been proposed in order to properly adapt them to fingerprinting applications. Moreover the behavior and impact over a video produced as a collusion of 2 users by the YouTube鈥檚 s ervice has been s tudied. We have also studied the optimal parameters for viable tracking of users who have used YouTube and conspired to redistribute copies generated by a collusion attack. Finally, we have studied how to implement fingerprinting schemes and software watermarking to fix the problem of malicious hosts on mobile agents platforms. In this regard, four different alternatives have been proposed to protect the agent depending on whether you want only detect the attack or avoid it in real time. Two of these proposals are focused on the protection of intrusion detection systems based on mobile agents. Moreover, each of these solutions has several implications in terms of infrastructure and complexity.Els codis fingerprinting es caracteritzen per proveir una alta capacitat correctora ja que han de fer front a atacs de confabulaci贸 que malmetran una part important dels s铆mbols de la paraula codi. D'atra banda, la utilitzaci贸 de codis de fingerprinting en entorns reals est脿 subjecta a que l'esquema de watermarking que gestiona la incrustaci贸 sigui respectuosa amb la marking assumption. De la mateixa manera, tot i que el fingerprinting neix de la protecci贸 de contingut multim猫dia, utilitzar-lo en la protecci贸 de software comen莽a a ser una aplicaci贸 a avaluar. En aquesta tesi s'ha estudiat com aplicar codis amb des codificaci贸 iterativa, concretament turbo-codis, al problema del rastreig de tra茂dors en el context del fingerprinting digital. Inicialment s'ha q眉estionat l'efic脿cia dels enfocaments actuals en la utilitzaci贸 de codis convolucionals i turbo-codis que plantegen concatenacions amb esquemes habituals de fingerprinting. S'ha demostrat que aquest tipus de concatenacions portaven, de forma impl铆cita, a una elevada probabilitat d'inculpar un usuari innocent. Tot i que s'han proposat algunes millores sobre aquests esquemes , finalment s'ha plantejat l'煤s de turbocodis directament, evitant aix铆 la concatenaci贸 amb altres esquemes de fingerprinting. S'ha demostrat que, si s'utilitzen els codis constituents apropiats, el rendiment del turbo-descodificador 茅s suficient per a ser una alternativa aplicable en entorns amb varis centenars d'usuaris i 2 o 3 confabuladors . Com a codis constituents s'ha optat pels codis convolucionals de baix r脿tio amb dist脿ncia lliure m脿xima. Pel que fa a com utilitzar els codis de fingerprinting amb esquemes de watermarking, s'ha estudiat l'opci贸 d'utilitzar sistemes de watermarking basats en la codificaci贸 i la incrustaci贸 informada. S'ha comprovat que, degut a la m煤ltiple codificaci贸 del mateix s铆mbol, la seva aplicabilitat per incrustar fingerprints 茅s molt limitada. En aquest sentit s'ha plantejat algunes modificacions d'aquests sistemes per tal d'adaptar-los correctament a aplicacions de fingerprinting. D'altra banda s'ha avaluat el comportament i l'impacte que el servei de YouTube produeix sobre un v铆deo amb un fingerprint incrustat. A m茅s , s'ha estudiat els par脿metres 貌ptims per a fer viable el rastreig d'usuaris que han confabulat i han utilitzat YouTube per a redistribuir la copia fru茂t de la seva confabulaci贸. Finalment, s'ha estudiat com aplicar els esquemes de fingerprinting i watermarking de software per solucionar el problema de l'amfitri贸 malici贸s en agents m貌bils . En aquest sentit s'han proposat quatre alternatives diferents per a protegir l'agent en funci贸 de si 茅s vol nom茅s detectar l'atac o evitar-lo en temps real. Dues d'aquestes propostes es centren en la protecci贸 de sistemes de detecci贸 d'intrusions basats en agents m貌bils. Cadascuna de les solucions t茅 diverses implicacions a nivell d'infrastructura i de complexitat.Postprint (published version
    corecore