4,389 research outputs found

    Systematic mapping literature review of mobile robotics competitions

    Get PDF
    This paper presents a systematic mapping literature review about the mobile robotics competitions that took place over the last few decades in order to obtain an overview of the main objectives, target public, challenges, technologies used and final application area to show how these competitions have been contributing to education. In the review we found 673 papers from 5 different databases and at the end of the process, 75 papers were classified to extract all the relevant information using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method. More than 50 mobile robotics competitions were found and it was possible to analyze most of the competitions in detail in order to answer the research questions, finding the main goals, target public, challenges, technologies and application area, mainly in education.info:eu-repo/semantics/publishedVersio

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Introduction to the Use of Robotic Tools for Search and Rescue

    Get PDF
    Modern search and rescue workers are equipped with a powerful toolkit to address natural and man-made disasters. This introductory chapter explains how a new tool can be added to this toolkit: robots. The use of robotic assets in search and rescue operations is explained and an overview is given of the worldwide efforts to incorporate robotic tools in search and rescue operations. Furthermore, the European Union ICARUS project on this subject is introduced. The ICARUS project proposes to equip first responders with a comprehensive and integrated set of unmanned search and rescue tools, to increase the situational awareness of human crisis managers, such that more work can be done in a shorter amount of time. The ICARUS tools consist of assistive unmanned air, ground, and sea vehicles, equipped with victim-detection sensors. The unmanned vehicles collaborate as a coordinated team, communicating via ad hoc cognitive radio networking. To ensure optimal human-robot collaboration, these tools are seamlessly integrated into the command and control equipment of the human crisis managers and a set of training and support tools is provided to them to learn to use the ICARUS system

    Chapter Introduction to the Use of Robotic Tools for Search and Rescue

    Get PDF
    Modern search and rescue workers are equipped with a powerful toolkit to address natural and man-made disasters. This introductory chapter explains how a new tool can be added to this toolkit: robots. The use of robotic assets in search and rescue operations is explained and an overview is given of the worldwide efforts to incorporate robotic tools in search and rescue operations. Furthermore, the European Union ICARUS project on this subject is introduced. The ICARUS project proposes to equip first responders with a comprehensive and integrated set of unmanned search and rescue tools, to increase the situational awareness of human crisis managers, such that more work can be done in a shorter amount of time. The ICARUS tools consist of assistive unmanned air, ground, and sea vehicles, equipped with victim-detection sensors. The unmanned vehicles collaborate as a coordinated team, communicating via ad hoc cognitive radio networking. To ensure optimal human-robot collaboration, these tools are seamlessly integrated into the command and control equipment of the human crisis managers and a set of training and support tools is provided to them to learn to use the ICARUS system

    “If the Engine Ever Stops, We’d All Die”: \u3cem\u3eSnowpiercer\u3c/em\u3e and Necrofuturism

    Get PDF
    Applying Mark Fisher’s “capitalist realism” and Subhabrata Bobby Banerjee’s “necrocapitalism” to the study of sf, this article reads the post-apocalyptic French comic Le Transperceneige (1982) and its film adaptation Snowpiercer (2014) as critiques of necrofuturist visions of the future. Necrofuturism posits a future that is doomed to continue modern capitalism’s unsustainable and immoral practices even as those practices become more and more destructive and self-defeating; films such as Snowpiercer interrupt this well-rehearsed vision of a world of universal death to open the mind to new possibilities for alternative futures. Key to Snowpiercer’s critique of necrofuturism is its depiction of necrocapitalism as a deliberately constructed thing, rather than a law of nature, reminding us that someone chose to build this world of unhappiness and prompting us to recognize that other sorts of worlds might be built instead

    The challenge of preparing teams for the European robotics league: Emergency

    Get PDF
    © 2017, Society for Imaging Science and Technology. ERL Emergency is an outdoor multi-domain robotic competition inspired by the 2011 Fukushima accident. The ERL Emergency Challenge requires teams of land, underwater and flying robots to work together to survey the scene, collect environmental data, and identify critical hazards. To prepare teams for this multidisciplinary task a series of summer schools and workshops have been arranged. In this paper the challenges and hands-on results of bringing students and researchers collaborating successfully in unknown environments and in new research areas are explained. As a case study results from the euRathlon/SHERPA workshop 2015 in Oulu are given

    Footstep and Motion Planning in Semi-unstructured Environments Using Randomized Possibility Graphs

    Get PDF
    Traversing environments with arbitrary obstacles poses significant challenges for bipedal robots. In some cases, whole body motions may be necessary to maneuver around an obstacle, but most existing footstep planners can only select from a discrete set of predetermined footstep actions; they are unable to utilize the continuum of whole body motion that is truly available to the robot platform. Existing motion planners that can utilize whole body motion tend to struggle with the complexity of large-scale problems. We introduce a planning method, called the "Randomized Possibility Graph", which uses high-level approximations of constraint manifolds to rapidly explore the "possibility" of actions, thereby allowing lower-level motion planners to be utilized more efficiently. We demonstrate simulations of the method working in a variety of semi-unstructured environments. In this context, "semi-unstructured" means the walkable terrain is flat and even, but there are arbitrary 3D obstacles throughout the environment which may need to be stepped over or maneuvered around using whole body motions.Comment: Accepted by IEEE International Conference on Robotics and Automation 201
    corecore