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Abstract— Traversing environments with arbitrary obstacles
poses significant challenges for bipedal robots. In some cases,
whole body motions may be necessary to maneuver around an
obstacle, but most existing footstep planners can only select
from a discrete set of predetermined footstep actions; they
are unable to utilize the continuum of whole body motion
that is truly available to the robot platform. Existing motion
planners that can utilize whole body motion tend to struggle
with the complexity of large-scale problems. We introduce a
planning method, called the “Randomized Possibility Graph”,
which uses high-level approximations of constraint manifolds
to rapidly explore the “possibility” of actions, thereby allowing
lower-level motion planners to be utilized more efficiently. We
demonstrate simulations of the method working in a variety
of semi-unstructured environments. In this context, “semi-
unstructured” means the walkable terrain is flat and even, but
there are arbitrary 3D obstacles throughout the environment
which may need to be stepped over or maneuvered around
using whole body motions.

I. INTRODUCTION

As humanoid robotics technology continues to advance,
there is growing interest in using legged platforms for
disaster relief in hazardous environments where wheeled
platforms may be unable to traverse. These hazardous en-
vironments may include structures like nuclear reactors or
collapsing buildings. We refer to these environments as
“semi-unstructured”, because they were originally designed
to be easily navigable but may have succumbed to conditions
where intended routes are no longer clear of obstructions.
Perhaps the passages have been structurally damaged or are
being littered by various obstacles that have been left behind.
For a legged robot to be useful under these conditions, it may
need to use strategic foot placement and utilize the entire
range of motion of its body, such as maneuvering between
the bars in Fig. 1a.

Footstep planning is a cornerstone of humanoid robotics
research due to its importance in navigating challenging
terrain. Many algorithms have been designed for planning
footsteps, but most tend to fall into one of four categories:

1) Planners that use bounding boxes for navigation
2) Planners that choose from a discrete set of actions
3) Planners that use optimization methods
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(a) North Doorway: Fit between
the high and low bars

(b) South Doorway: Step over
the arbitrarily angled bars

(c) West Doorway: Step across
the gaps without falling in

(d) East Doorway: Step over the
arbitrarily laid out bricks

Fig. 1: Doorways from the “Four Routes Scenario”. Each passage
has unique challenges that the robot must overcome.

4) Planners that find paths through and between dis-
cretized sets of contacts

Each of these categories has a limited scope of appli-
cability. An example of the first category is [1] where the
lower body is given a bounding box that encapsulates all the
potential leg motion that the humanoid agent might exhibit.
The upper body is left unbounded with the assumption that
any upper body collisions will be resolved in a second stage.
As a result, the humanoid is unable to realize when it could
step over a small obstacle. By contrast, in [2], each foot is
given an independent bounding box, and then the remainder
of the robot’s geometry is given one large bounding box
which is elevated off the ground. All of the robot’s motion
takes place within these three bounding boxes, but having the
bulk of the bounding geometry elevated allows the robot to
navigate over small obstacles. However, the robot is unable
to maneuver its upper body around overhanging obstacles.

Examples of work belonging to the second category in-
clude [3]–[7]. In all of these methods, there is a discrete set
of predetermined actions that are available to the planner.
They often use A* search where the predetermined actions
are used for branching. These methods tend to be effective
at stepping over and around short obstacles or gaps, but they
generally are not able to alter their upper body configurations
to negotiate overhanging obstacles or tight passages.

A variety of optimization methods have been applied to
the problem of footstep planning and motion generation. In
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[8] the footstep planning component was done with a human-
in-the-loop, and then a motion trajectory was optimized over
those footstep locations. The human operator is taken out of
the loop in [9] and proofs for optimality and completeness
are available, but this comes at the cost of requiring convex
collision-free regions for the robot to pass through. Optimiza-
tion can also be used to generate dynamically stable periodic
walking gaits and controllers, such as methods proposed
in [10], [11], although these do not address global search
problems.

The fourth category is the only one where probabilistically
complete whole body motion planning is available. For this
category, a mode is defined by a set of contacts between
the robot and the environment. These contacts determine
the feasibility constraints for any configurations associated
with that mode. Methods in this category are usually used
to navigate extremely rough terrain or plan whole body ma-
nipulation. As an example, Multi-modal PRM [12], Random-
MMP [13], and related methods [14], [15] first sample modes
in the environment and then generate whole body motions to
transition through and between those modes. A configuration
that transitions between two modes must satisfy the feasibil-
ity constraints of both modes simultaneously. Random-MMP
is theoretically capable of navigating the semi-unstructured
environments of this paper, but it struggles to find narrow
passages, which may be important for navigating through
challenging environments.

In this paper, we present the “Randomized Possibility
Graph” (RPG) for efficient whole body motion planning in
semi-unstructured environments. By exploring the possibility
of actions within a continuous search space, we can rapidly
expand the search without being bottlenecked by expensive
motion planning queries. We find that the RPG is effective at
identifying passages which would be considered narrow by
Random-MMP. We show that information from the RPG can
be used to guide Random-MMP through narrow passages by
focusing its sampling behavior. Together, these algorithms
are able to traverse semi-unstructured environments on the
order of seconds to minutes, depending on the complexity
of the environment.

II. RANDOMIZED POSSIBILITY GRAPH

Motion planning methods ordinarily operate by construct-
ing graphs or trees which consist of configurations that
fully exist within the feasibility constraint manifold of the
action they are performing. Remaining within this manifold
is a reasonable requirement to place on the graph, because
any vertices or edges which lie outside of the manifold
are, by definition, invalid—which may mean it is physically
impossible, or simply harmful to the robot or its surround-
ings. Unfortunately, for a humanoid robot to remain on the
constraint manifold, expensive calls to a whole body inverse
kinematics (IK) solver must be performed [16]–[18]. This
results in a critical bottleneck if a broad area needs to be
explored before finding a solution.

The key idea of this work is to explore the possibility
of an action first, instead of immediately committing to

Fig. 2: Visual depiction of an abstract constraint manifold, C and
its projection. The manifold is projected, CP , from 3D space onto
a plane. “Sufficient” CS and “Necessary” CN boundaries are fitted
within and around the projection of the manifold. Elements inside
the green box are definitely “Possible”. Elements outside of the
yellow box are definitely “Impossible”. Elements inside the yellow
box but outside of the green box are “Indeterminate” because they
might or might not lie on the projection. Identifying whether a point
lies inside or outside of CS or CN may be considerably faster than
identifying whether it lies inside or outside of CP .

costly whole body inverse kinematics queries. Therefore, the
problem is broken down into two stages: The exploration of
possibilities P , and the generation of motions M. The high-
level graph generated during P will guide the efforts of the
low-level planners used by M.

The governing logical principles behind the RPG have
a theoretical grounding in Possibility Theory [19], but the
concepts are intuitive enough that a knowledge of Possibility
Theory is not necessary to proceed. It is enough to under-
stand that the possibility of any given action e can be labelled
with “impossible”, “possible”, or “indeterminate” depending
on whether it satisfies the necessary conditions (CN ) or the
sufficient conditions (CS) that are assigned to it:

e.label “

$

’

&

’

%

“impossible” if CN peq is false
“possible” if CSpeq is true
“indeterminate” otherwise

(1)

If we design necessary and sufficient conditions that can
be checked much more quickly than querying the original
constraint manifold, we can then construct a Randomized
Possibility Graph, whose vertices are connected by either
“possible” or “indeterminate” edges, and expand it very
efficiently for whole body motion planning.

A. Simplifying the Manifold: Sufficient vs. Necessary

To construct the RPG, we must first design sufficient and
necessary conditions for the feasibility constraint manifold of
the action whose possibilities we are exploring. We should
design the conditions to be tested quickly in order to reduce
the computational cost of exploration. The conditions should
also use as few parameters as possible, because randomized
sampling methods are more effective in low-dimensional
search spaces.



Suppose we have a 2D constraint manifold, C, which
exists in a 3D state space (Fig. 2). Let the xy-plane be a
low-dimensional feature space which contains the essential
information for navigating C. We denote the projection of
C by CP . Even with a flattened-out projection, identifying
which points are inside or outside of the manifold may still
be costly or difficult, because the boundary of CP may
consist of functions that are expensive to compute or hard to
fully define. However, suppose a box, circle, or some other
simple shape can be fit within CP such that it is guaranteed
that every point within the simple shape also lies within
the manifold projection. Such a shape would be a suitable
representation of the sufficient condition manifold, CS . Any
point lying inside of CS also lies inside of CP and should
be labelled with “possible”. Similarly, if CP can be bounded
by a simple shape, CN , such that CP Ď CN , then CN would
qualify as the necessary condition manifold. Any point lying
outside of CN should be labelled with “impossible”. Finally,
any point inside of CN but outside of CS should be labelled
with “indeterminate”.

B. RPG Construction

In the previous section, we introduced the concepts of CN

and CS , the necessary and sufficient (respectively) condition
manifolds which occupy a lower dimensional space than the
state space. We define E “ P pXq to be the “possibility
exploration space” where X is the state space of the robot,
and in this paper P : X Ñ SE(3) maps from the robot’s
state to the SE(3) transformation of the robot’s root link. In
general, P is chosen to be a projection operator such that
CS Ď CN Ď P pXq. We will use E as the search domain for
the possibility exploration stage P .

Definition 1: A Randomized Possibility Graph is a tuple

RPG “ pΓP ,ΦM,ΩM,ΓMq

where,
‚ ΓP “ pVP , EPq is a graph where VP is a set of vertices

which are elements of E , and EP is a set of directed
edges, each with a “possible” or “indeterminate” label,

‚ ΦM : EP ˆ EP Ñ Xk is an operator which takes two
edges and produces a set of k ą 0 states,

‚ ΩM : X ˆ EP ˆX Ñ Xf is an operator which maps
two states with a possibility edge in between them into
a discretized trajectory of f ě 0 states, where f “ 0
implies failure to find a trajectory,

‚ ΓM “ pVM, EMq is a graph where VM is a set of
vertices which are elements of X , and EM is a set of
directed edges which indicate feasible paths between the
vertices of VM.

The graph ΓP is used to solve the first stage, P , which
explores possibilities. ΓP can be constructed using a sample-
based motion planner, such as PRM [20] or RRT [21]. If CN

or CS have a small volume within E , then a projection-based
sampler may be needed, such as CBiRRT [22] where CN and
CS are treated as task constraints. Alternatively, CN and CS

can be treated as “hard” and “soft” task constraints respec-
tively (meaning that CN is required but CS is preferred)

(a) The RPG is initialized with just a start vertex and goal vertex.
The pale green regions are areas where CS is satisfied, pale yellow
is where CN is satisfied, and gray is where CN is violated. These
colored regions represent information which is not directly known
to the algorithm, so it must be searched via randomized sampling.

(b) A randomized sampling motion planner has constructed ΓP to
find a path from the start to the goal through E . This provides a
guide route, which is highlighted in cyan.

(c) The dotted regions represent the ranges of πS or πN for each
edge along the guide route. The πS regions are thin because we are
guaranteed to find a solution directly along the routes where CS is
satisfied. Conversely, πN may need to search a broader area to find
a solution. ΦM is applied to the edges of the guide route, generating
sets of states (black dots) where the ranges of the planners overlap.

(d) States and whole body paths (black dots and edges) are
generated by ΩM using the guide route and the states generated
by ΦM. These elements are put into ΓM until a complete whole
body path is found from the start to the goal.

Fig. 3: Illustration of the RPG procedure



which would make the method in [23] more applicable. For
this paper, we use the “hard” and “soft” constraint approach,
and we refer to this high-level planner as ΠP .

We initiate ΓM with one or more “start” states, V start
M ,

and one or more “goal” states, V goal
M . ΓP is initiated with

the projections of these states, P pV start
M q and P pV goal

M q. The
high-level motion planner of choice, ΠP , is used to find a
route pe1, ..., en P EPq which connects a start projection to a
goal projection while remaining within CN . The solved path
generated by ΠP represents a guide route, similar to the
“guide trajectories” of [24]. An illustration of this process
can be seen in Figs. 3a-3b. The guide route is used to focus
the efforts of the next stage, M.

Provided the guide route found by P , we want to use ΩM
to examine each segment of the route to see if it can be
realized in X . We define ΩM as:

ΩMpx
0
i , ei, x

f
i q “

#

πSpx
0
i , ei, x

f
i q if CSpeiq

πN px
0
i , ei, x

f
i q if CN peiq ^  CSpeiq

where πS and πN are sub-planners which produce full state
space trajectories given a sub-start state (x0i ), a sub-goal state
(xfi ), and an edge (ei) of EP which is used as a “guide”. The
“guide” edge may be used to compute a heuristic, determine
footstep locations, or focus randomized samples, depending
on the nature of the planner. We choose πS such that it is
guaranteed to quickly find a solution along routes where the
sufficient conditions CS are satisfied. πN is a whole body
motion planner, ideally with a probabilistic completeness
guarantee. πN can be applied to edges which satisfy the
necessary conditions CN even if the sufficient conditions are
not satisfied, but it is not guaranteed to return a solution.

To find a feasible continuous motion through state space,
we need to choose xfi and x0i`1 to be equal. Define X0peiq
to be the set of states that can be used as sub-start states, x0i ,
for ΩMpx

0
i , ei, x

f
i q, and Xf peiq to be the set that can be used

as sub-goal states, xfi . We can then define ΦMpei, ei`1q “

Xf peiq XX0pei`1q. Using ΦM to determine the endpoints
(sub-starts and sub-goals) used by ΩM ensures that the
RPG is able to create continuous state trajectories. Note
that ΦMpe0, e1q “ V start

M X X0pe1q, and ΦMpen, en`1q “

Xf penq X V goal
M . ΦM is illustrated by the black dots in the

overlapping dotted regions of Fig. 3c. Determining X0peq
and Xf peq will depend on the implementation of πS and πN ,
but most planners have either a discrete set of permissible
endpoints or a continuous set that can be sampled from. In
practice, many planners allow multiple start and goal states
to be specified per query.

The overall procedure for planning with the RPG is to gen-
erate a guide route pe1, ..., en P EPq by constructing ΓP with
ΠP and feeding that route through ΦM and then through
ΩM. Whenever ΩM identifies feasible state trajectories, the
states and edges of those trajectories are added to ΓM. A
solution is found when ΓM contains a path from a start to
a goal state. The procedure is illustrated in Fig. 3.

Depending on the implementation of πN , it may take
an indeterminable amount of time to produce a solution.

Moreover, it might not be able to produce a solution for some
ei if the edge is not a truly feasible guide route. Rather than
waiting for ΩM to return a result of success or failure, the
stage P can search for alternative guide routes by deleting
any of the indeterminate edges of the guide route from ΓP
and then continuing to grow ΓP in parallel to M. This
parallelism allows the RPG to avoid being bottlenecked by
challenging routes when alternatives exist. When elements
are added to ΓM, their projections can be added to ΓP as
“possible“ elements to assist the ongoing high-level search.

III. WALKING IN SEMI-UNSTRUCTURED ENVIRONMENTS

(a) Bounding geometry used for
sufficient conditions (Green)

(b) Minimal geometry used for
necessary conditions (Yellow)

Fig. 4: Collision geometries used for the (a) sufficient and (b)
necessary conditions. Since (a) occupies more space, the constraint
manifold for the sufficient conditions is smaller—and therefore
more restrictive—than the manifold for the necessary conditions.

We seek to find feasible motion plans for a bipedal robot
to traverse a “semi-unstructured” environment. In the context
of this paper, we define “semi-unstructured” to mean that
the terrain is structured—flat and even—but there are arbi-
trary unstructured obstacles throughout the environment. The
robot may need to step over, duck under, or maneuver around
these obstacles using whole body motions. The planner is
provided with a kinematic model of the robot, a geometric
model of all obstacles—including walls—and a layout of
the floor. No other contextual information is provided to the
planner (such as explicitly labelling doorways or passages).

Planning a path through a semi-unstructured environment
entails finding a physically feasible sequence of footsteps
combined with whole body motions that are constrained to
those footsteps which move the robot from the start state to
the goal state. To apply the RPG to the problem of walking
in semi-unstructured environments, we must first define the
possibility exploration space for route exploration, as well
as the sufficient and the necessary conditions that pertain to
the robot’s ability to take steps and move its whole body.

A. Possibility Exploration Space

The vertices of the RPG exist in the possibility exploration
space, E . For the problem of walking in semi-unstructured
environments, we define E as SE(3), which offers enough



parameters to design effective sufficient and necessary con-
ditions. Each point in E represents a transformation of the
robot’s root (pelvis) link. As we generate edges in E , we are
creating routes to guide the root link towards its destination.
Figure 5 illustrates what a section of an RPG may look like.

B. Sufficient Conditions

We define the sufficient conditions by first constructing
a bounding box which encapsulates all the motions that the
robot might exhibit while walking or turning in any direction
using some basic gait generator. The bounding geometry can
be seen in Fig. 4a. If nothing in the environment is colliding
with this geometry, then the robot is guaranteed to not collide
with anything while performing its normal gait. For this
condition, validating an edge epva, vbq in SE(3) involves
applying a dense sampling of SE(3) transformations from va
to vb to the bounding geometry and checking for collisions
with the environment. In addition, we require the corners of
the support polygon of each foot to be supported by solid
ground while the robot stands in the nominal configuration
shown in Fig. 4. We can then employ a simple gait generator
that is guaranteed to find a solution when these sufficient
conditions are satisfied, providing us with πS .

C. Necessary Conditions

The necessary conditions are much less restrictive than
the sufficient conditions. The collision geometry used for the
necessary conditions can be seen in Fig. 4b. This minimal
collision geometry is a subset of the actual robot’s collision
geometry. This subset is chosen such that it is completely
unaffected by any joint motion (assuming the root link
remains fixed in place). Therefore, if this geometry is in
collision with any obstacles, then the robot is guaranteed
to be in collision, no matter what its joint positions are. If
this minimal geometry cannot sweep along an edge, then
that edge is considered “impossible” and is left out of the
RPG. Secondly, there must be at least one foothold within
reach of the root link. These conditions are similar to the
necessary conditions used in [24], although we leave the
minimal collision geometry as it is instead of inflating it.

D. Guided Multi-modal Planning

Once the sufficient and necessary conditions are defined,
the only remaining decision in our algorithm is the choice
of whole body motion planner for πN . In this work, we
use Random-MMP by Hauser et. al. [13] because it solves
motion planning problems with frequent changes in contacts.

Random-MMP by itself can solve the semi-unstructured
problems posed in this paper with the theoretical property
of probabilistic completeness. However, Random-MMP per-
forms best when it is able to utilize informed sampling. For
example, when used for manipulation, Random-MMP should
be provided with information on how to sample a state that
is within the reachable region of the manipulatable target. In
this paper, we aim to solve problems wihtout providing extra
contextual information, meaning Random-MMP on its own
could take prohibitively long to find a solution.

Fig. 5: Snapshot of an RPG. Green edges are “possible”; yellow
edges are “indeterminate”. Portions of the graph that are in wide
open hallways are Possible, whereas elements that squeeze between
obstacles are Indeterminate.

The key advantage of the RPG is that indeterminate edges
can be used to guide low-level planners. Therefore, even
though the original problem does not provide us with in-
formation about passages in the environment, indeterminate
edges can be seen as potential passages that are worthy of
further inspection. This allows us to turn an uninformed
search into an informed search. We will refer to this as
Guided-MMP to distinguish it from uninformed Random-
MMP. Figure 6 illustrates the difference in behavior between
these methods. The uninformed search takes tens of minutes
whereas the guided search takes tens of seconds. The only
difference between the uninformed vs. guided approaches
is that the guided approach focuses its randomized mode
and configuration samples to be near the indeterminate
edges, according to a Normal Distribution. Meanwhile, the
uninformed search broadly samples the entire domain.

IV. EXPERIMENTS

We present two virtual experimental scenarios. The first
scenario, shown in Fig. 6, is referred to as the “Limbo
Scenario”. The robot must traverse from one side of the
platform to the other while ducking underneath a limbo bar.
It demonstrates the performance difference between an un-
informed Random-MMP search versus Guided-MMP which
is supplemented by the Randomized Possibility Graph. Even
in such a simple scenario, the RPG improves performance
by two orders of magnitude.

The second scenario is referred to as the “Four Routes
Scenario”. It demonstrates some of the larger scale capabili-
ties of the RPG. The robot must navigate from the southwest
corner to the northeast corner of the floor. Each room has
two entrances, making a total of four possible routes the
robot may choose from. Each doorway has its own challenges
associated with passing through it, seen in Fig. 1.

The route which is easiest for the planner to find passes
through the west doorway, down the hallway, and then
through the east doorway as shown in Fig 8a. Those door-
ways are the easiest to plan for because they have the most



TABLE I: Time performance results tested on an Intel R© Xeon R© Processor E3-1290 v2 (8M Cache, 3.70 GHz) with 16GB of RAM. This
table shows the time spent (in seconds) and the rate of success for 30 trials of each scenario and each variation. The standard deviation
is given in parentheses. Numerous trials are run because randomized planners have non-deterministic run times and non-deterministic
success rates. All trials were given a one-hour timeout, at which point we consider the trial to have failed.

Uninformed Random-MMP Randomzied Possibility Graph
Scenario Time Success Time Success
Limbo Scenario (Fig. 6) 2355.5 (1000.3) 86.67% 20.56 (26.51) 100%
Four Routes Scenario (Fig. 7) 3600 (0) 0% 68.44 (33.98) 96.67%
West Door Blocked (Fig. 8b) 3600 (0) 0% 295.54 (205.847) 96.67%
East Door Blocked (Fig. 8c) 3600 (0) 0% 349.60 (195.38) 100%
Bars Removed (Fig. 8d) 3600 (0) 0% 7.31 (5.73) 100%

(a) Uninformed Random-MMP: Exhaustive search

(b) Guided-MMP: Focuses the search around the indeterminate
(yellow) edge of the RPG.

Fig. 6: Limbo scenario. The difference in search behaviors for
uninformed (a) versus guided (b) versions of Random-MMP. Blue
and magenta rectangles are the foot placements of the left and right
(respectively) feet for each sampled mode.

“expansiveness” as defined in [25]. Since the planner chooses
the first successful plan that it finds, this will be the most
commonly chosen route (although the randomized nature
of the planner does not guarantee that this will always be
the chosen route). We can tweak the environment to force
the robot to find a path through the south doorway by
blocking off the west doorway (as in Fig. 8b). Similarly,
the robot can be forced to find a path through the north
doorway by blocking off the east (as in Fig. 8c). Each of
these modifications result in considerably longer run times
as shown in Table I. This shows that when the planner is not
required to find routes through challenging regions, it will
naturally tend to favor regions where it can find paths easily.

In some cases, there may be a clear path from the start to
the goal. To simulate this, in Fig. 8d we remove the bars that
are obstructing the north and south doorways. The result is
a lean graph and a short plan time as seen in Table I.

V. CONCLUSIONS

This work presented a new high-level algorithm for identi-
fying routes in semi-unstructured environments, and a way to

Fig. 7: Basic “Four Routes” scenario.

leverage this information in lower-level motion planners. The
method presented improves performance of existing algo-
rithms by orders of magnitude, making large-scale problems
tractable when they would not have been previously.

The use of necessary conditions and guide routes shares
some similarities to the reachability-based planner of Ton-
neau, et. al. [24]. The key novelty of this work is that
we also leverage sufficient conditions, which are not used
by Tonneau. Furthermore, we use probabilistically complete
whole body planners when evaluating the indeterminate
portions of the guide routes, which we believe allows the
robot to more fully utilize its maneuverability, at the cost of
longer run times. In future work, we will apply the RPG to
uneven terrain, at which point a direct comparison between
the RPG and the reachability-based planner will be possible.

Future work will also investigate other ways that the RPG
can be leveraged to generate plans. For example, the graph
could consider the possibilities of dynamic actions rather
than just quasi-static actions. To improve the evaluation of
indeterminate edges, it would be natural to use a variety of
low-level planners in parallel that could compete to confirm
indeterminate edges rather than using a single catch-all
probabilistically complete low-level planner which might not
perform particularly well in all scenarios. We may also be
able to define some distinct variations of sufficient conditions
where each variation corresponds to a different flavor of gait
generator, allowing a broader range of edges to be covered
by sufficient conditions.

The completeness of the RPG is currently being investi-
gated. Future work will examine under what conditions the
RPG may be considered probabilistically complete. This will
likely depend on the completeness of the low-level planners
that it can utilize.



(a) Solution for the standard variation of the scenario

(b) Solution when the west doorway is blocked off

(c) Solution when the east doorway is blocked off

(d) Solution with bars removed from the north and south

Fig. 8: Variations of the “Four Routes Scenario”.
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