92 research outputs found

    Desenvolvimento de equipamento de manipulação de objectos deformáveis e a sua interacção com uma máquina de injecção de plásticos

    Get PDF
    In this project, our objective was to thoroughly investigate the feasibility of automating a process at Ficocables by integrating a robotic arm. Specifically, we focused on automating the joining of two separate processes while eliminating the need for manual intervention in the second operation. The equipment involved in the process includes a Roboco Zamak injection machine and a Babyplast polymer injection machine. With well-defined project requirements, we explored various solutions and sought guidance from Fluidotronica, a renowned expert in this domain. With their support, we identified the collaborative robot JAKA Zu 3s, equipped with a long-finger gripper, as the optimal solution for our needs. To assess the financial viability, we conducted a meticulous financial analysis using methods like NPV and payback period, both of which demonstrated promising results. Although the implementation of the robotic arm is still pending, the outcomes of our study highlight its remarkable versatility for future applications within Ficocables. This project exemplifies the potential advantages of automation and offers valuable insights for forthcoming initiatives in this field.Neste projeto, o objetivo era investigar exaustivamente a viabilidade de automatizar um processo na Ficocables através da integração de um braço robótico. Especificamente, concentrámo-nos em automatizar a junção de dois processos separados, eliminando a necessidade de intervenção manual na segunda operação. O equipamento envolvido no processo inclui uma máquina de injeção de Zamak, denominada Robocop e uma máquina de injeção de polímero denominada Babyplast. Com os requisitos de projeto bem definidos, explorámos várias soluções e procurámos orientação junto da Fluidotronica, um especialista de renome neste domínio. Com o seu apoio, identificámos o robô colaborativo JAKA Zu 3s, equipado com uma pinça de dedos longos como a solução ideal para as necessidades deste projeto. Para avaliar a viabilidade financeira, efetuou-se uma análise financeira meticulosa utilizando métodos como o NPV e o período de retorno do investimento, tendo ambos demonstrado resultados promissores. Embora a implementação do braço robótico ainda esteja pendente, os resultados do nosso estudo destacam a sua notável versatilidade para futuras aplicações na Ficocables. Este projeto exemplifica as vantagens potenciais da automatização e oferece uma visão valiosa para iniciativas futuras neste domínio

    Sequential Manipulation of Deformable Linear Object Networks with Endpoint Pose Measurements using Adaptive Model Predictive Control

    Full text link
    Robotic manipulation of deformable linear objects (DLOs) is an active area of research, though emerging applications, like automotive wire harness installation, introduce constraints that have not been considered in prior work. Confined workspaces and limited visibility complicate prior assumptions of multi-robot manipulation and direct measurement of DLO configuration (state). This work focuses on single-arm manipulation of stiff DLOs (StDLOs) connected to form a DLO network (DLON), for which the measurements (output) are the endpoint poses of the DLON, which are subject to unknown dynamics during manipulation. To demonstrate feasibility of output-based control without state estimation, direct input-output dynamics are shown to exist by training neural network models on simulated trajectories. Output dynamics are then approximated with polynomials and found to contain well-known rigid body dynamics terms. A composite model consisting of a rigid body model and an online data-driven residual is developed, which predicts output dynamics more accurately than either model alone, and without prior experience with the system. An adaptive model predictive controller is developed with the composite model for DLON manipulation, which completes DLON installation tasks, both in simulation and with a physical automotive wire harness.Comment: Accepted to IEEE International Conference on Robotics and Automation - ICRA 2024. 7 pages. 4 figure

    Utilizing cable winding and industrial robots to facilitate the manufacturing of electric machines

    Get PDF
    AbstractCable wound electric machines are used mainly for high voltage and direct-drive applications. They can be found in areas such as wind power, hydropower, wave power and high-voltage motors. Compared to conventional winding techniques, cable winding includes fewer manufacturing steps and is therefore likely to be better suited for automated production. Automation of the cable winding production step is a crucial task in order to lower the manufacturing costs of these machines. This article presents a production method using industrial robots for automation of cable winding of electric machine stators. The concept presented is validated through computer simulations and full-scale winding experiments, including a constructed robot-held cable feeder tool prototype. A cable wound linear stator section of an Uppsala University Wave Energy Converter and its winding process is used as a reference in this article. From this example, it is shown that considerable production cycle time and manufacturing cost savings can be anticipated compared to manual winding. The suggested automation method is very flexible. It can be used for the production of cable wound stators with different shapes and sizes, for different cable dimensions and with different winding patterns

    Robotized stator cable winding

    Get PDF
    Automated stator winding assembly has been available for small and medium sized conventional electric machines for a long time. Cable winding is an alternative technology developed for medium and large sized machines in particular. In this paper we present, evaluate and validate the first fully automated stator cable winding assembly equipment in detail. A full-scale prototype stator cable winding robot cell has been constructed, based on extensive previous work and experience, and used in the experiments. While the prototype robot cell is adapted for the third design generation of the Uppsala University Wave Energy Converter generator stator, the winding method can be adapted for other stator designs. The presented robot cell is highly flexible and well prepared for future integration in a smart production line. Potential cost savings are indicated compared to manual winding, which is a backbreaking task. However, further work is needed to improve the reliability of the robot cell, especially when it comes to preventing the kinking of the winding cable during the assembly

    Model-based Manipulation of Deformable Linear Objects by Multivariate Dynamic Splines

    Get PDF
    In this paper, the modelling and the simulation of a Deformable Linear Object (DLO) manipulation are reported. The main motivation of this study is to define a strategy to enable a robotic manipulator to predict in real time the shape a DLO will achieve during the execution of a manipulation action. To accomplish this target in a reasonable time, according to the possibility of adopting this solution in an industrial manufacturing system, an approximate but physically consistent model of the DLO is adopted considering the predominant plasticity of the object to be manipulated, as in the case of electric cable manipulation. The DLO manipulation model is based on multivariate dynamic splines solved iteratively in real-time to interpolate the DLO shape during the manipulation sequence. The systems assumes to be able to detect the initial configuration of the DLO at each iteration of the algorithm by means of a proper vision system. Preliminary simulation results are presented to show the effectiveness of the method

    Robotic Perception-motion Synergy for Novel Rope Wrapping Tasks

    Full text link
    This paper introduces a novel and general method to address the problem of using a general-purpose robot manipulator with a parallel gripper to wrap a deformable linear object (DLO), called a rope, around a rigid object, called a rod, autonomously. Such a robotic wrapping task has broad potential applications in automotive, electromechanical industries construction manufacturing, etc., but has hardly been studied. Our method does not require prior knowledge of the physical and geometrical properties of the objects but enables the robot to use real-time RGB-D perception to determine the wrapping state and feedback control to achieve high-quality results. As such, it provides the robot manipulator with the general capabilities to handle wrapping tasks of different rods or ropes. We tested our method on 6 combinations of 3 different ropes and 2 rods. The result shows that the wrapping quality improved and converged within 5 wraps for all test cases

    Multiple manipulators path planning using double A∗

    Get PDF
    Streamlining automated processes is currently undertaken by developing optimization methods and algorithms for robotic manipulators. This paper aims to present a new approach to improve streamlining of automatic processes. This new approach allows for multiple robotic manipulators commonly found in the industrial environment to handle different scenarios, thus providing a high-flexibility solution to automated processes. Design/methodology/approach - The developed system is based on a spatial discretization methodology capable of describing the surrounding environment of the robot, followed by a novel path-planning algorithm. Gazebo was the simulation engine chosen, and the robotic manipulator used was the Universal Robot 5 (UR5). The proposed system was tested using the premises of two robotic challenges: EuRoC and Amazon Picking Challenge. Findings - The developed system was able to identify and describe the influence of each joint in the Cartesian space, and it was possible to control multiple robotic manipulators safely regardless of any obstacles in a given scene. Practical implications - This new system was tested in both real and simulated environments, and data collected showed that this new system performed well in real-life scenarios, such as EuRoC and Amazon Picking Challenge. Originality/value - The new proposed approach can be valuable in the robotics field with applications in various industrial scenarios, as it provides a flexible solution for multiple robotic manipulator path and motion planning.The research leading to these results has received funding from the project "NORTE-01-0145-FEDER-000020" which is nanced by the North Portugal Re- gional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF).info:eu-repo/semantics/publishedVersio

    Impact of Ear Occlusion on In-Ear Sounds Generated by Intra-oral Behaviors

    Get PDF
    We conducted a case study with one volunteer and a recording setup to detect sounds induced by the actions: jaw clenching, tooth grinding, reading, eating, and drinking. The setup consisted of two in-ear microphones, where the left ear was semi-occluded with a commercially available earpiece and the right ear was occluded with a mouldable silicon ear piece. Investigations in the time and frequency domains demonstrated that for behaviors such as eating, tooth grinding, and reading, sounds could be recorded with both sensors. For jaw clenching, however, occluding the ear with a mouldable piece was necessary to enable its detection. This can be attributed to the fact that the mouldable ear piece sealed the ear canal and isolated it from the environment, resulting in a detectable change in pressure. In conclusion, our work suggests that detecting behaviors such as eating, grinding, reading with a semi-occluded ear is possible, whereas, behaviors such as clenching require the complete occlusion of the ear if the activity should be easily detectable. Nevertheless, the latter approach may limit real-world applicability because it hinders the hearing capabilities.</p

    マニピュレータによるワイヤーハーネス配策作業の教示/再生に関する研究

    Get PDF
    現在,生産システムにおけるワイヤーハーネスを扱う作業の自動化が大きな課題となっている.ここで,作業の自動化を実現するにあたって,教示者の負担を軽減し,かつ柔軟物であるハーネスを使った作業を安定して再現することのできる教示・再生の枠組みが必要だと考える.そこで,本研究では,マニピュレータに実行させたい操作をGUIから直接教示し,その動作結果をを確認しながら配策作業の教示を行うシステムの構築を目指す.そのために,まず,ワイヤーハーネスの配策作業に必要な操作の分析を行い,作業の複雑さと操作の汎用性を考慮したうえで15種類の単位操作を提案した.そして,各単位操作において,操作結果の安定しないハーネスの扱いを再現するために必要な操作パラメータを設計した.さらに,カメラの画像情報をもとに教示者が直感的に操作パラメータを教示するための手法を提案し,GUIとして実装した.最後に,実装したシステムを用いて,ハーネスの把持と穴通しに関する教示・再生実験を行なった.本研究の結論として,実装したシステムを用いてワイヤーハーネスの配策作業の一つである穴通しの教示・再生が可能であることを確認した.電気通信大学202
    corecore