398 research outputs found

    A prototype low-carbon segmented concrete shell building floor system

    Get PDF
    Concrete shell structures offer a mechanically efficient solution as a building floor system to reduce the environmental impact of our buildings. Although the curved geometry of shells can be an obstacle to their fabrication and implementation, digital fabrication and affordable robotics provide a means for the automation of their construction in a sustainable manner at an industrial scale. The applicability of such structures is demonstrated in this paper with the realisation of a large-scale concrete shell floor system, completed by columns, tie rods, and a levelled floor. The shell was prefabricated off-site in segments that can be transported and assembled on-site, and which can be disassembled to enable a circular economy of construction. This paper presents the conceptual and structural design; the automation of fabrication, thanks to an actuated, reconfigurable, reusable mould and a robotic concrete spraying process; the strategy and sequence of assembly and disassembly on-site using standard scaffold elements; and the sustainability assessment using life-cycle analysis. This prototype offers a reduction of about 50% of cradle-to-gate embodied carbon benchmarked against regular flat slabs before further improvement and optimisation

    Digital Fabrication Technology in Concrete Architecture

    Get PDF
    Technological innovation has been an important driving force in architecture, enabling and inspiring architects and engineers by giving them new tools for solving existing problems. In the last two decades, the exploration of digital design and fabrication technologies has stimulated the development of a variety of interests and strategies to materialize increasingly complex and customized solutions in architecture, with traditional building materials. Reinforced concrete is the most widely used material in the building industry today and throughout its history has been the subject of vast research into its performance as a construction material and its tectonic potential in architecture. As such, the introduction of digital fabrication processes in concrete construction represents the biggest prospect for renovation of our built environment and at the same time, presents particular difficulties and opportunities, which are now being addressed. In an effort to investigate the alternative design and material possibilities in concrete emerging from the use of digital fabrication technologies in architecture, this paper proposes a focused view of digital fabrication applied to concrete construction with two areas of research. By framing the research in the context of reference works in concrete architecture of the 20th century, this paper describes and illustrates taxonomy of existing and possible types of integration of digital fabrication technologies in concrete architecture in the realms of Practice and Research. This characterization allows the authors to frame the relation between material, technology and architecture in different environments regarding the same material, extracting a clear image of existing processes, their potential and shortcomings, as well as expectations for future developments

    Fabricate 2020

    Get PDF
    Fabricate 2020 is the fourth title in the FABRICATE series on the theme of digital fabrication and published in conjunction with a triennial conference (London, April 2020). The book features cutting-edge built projects and work-in-progress from both academia and practice. It brings together pioneers in design and making from across the fields of architecture, construction, engineering, manufacturing, materials technology and computation. Fabricate 2020 includes 32 illustrated articles punctuated by four conversations between world-leading experts from design to engineering, discussing themes such as drawing-to-production, behavioural composites, robotic assembly, and digital craft

    Development of a Robot-Based Multi-Directional Dynamic Fiber Winding Process for Additive Manufacturing Using Shotcrete 3D Printing

    Get PDF
    The research described in this paper is dedicated to the use of continuous fibers as reinforcement for additive manufacturing, particularly using Shotcrete. Composites and in particular fiber reinforced polymers (FRP) are increasingly present in concrete reinforcement. Their corrosion resistance, high tensile strength, low weight, and high flexibility offer an interesting alternative to conventional steel reinforcement, especially with respect to their use in Concrete 3D Printing. This paper presents an initial development of a dynamic robot-based manufacturing process for FRP concrete reinforcement as an innovative way to increase shape freedom and efficiency in concrete construction. The focus here is on prefabricated fiber reinforcement, which is concreted in a subsequent additive process to produce load-bearing components. After the presentation of the fabrication concept for the integration of FRP reinforcement and the state of the art, a requirements analysis regarding the mechanical bonding behavior in concrete is carried out. This is followed by a description of the development of a dynamic fiber winding process and its integration into an automated production system for individualized fiber reinforcement. Next, initial tests for the automated application of concrete by means of Shotcrete 3D Printing are carried out. In addition, an outlook describes further technical development steps and provides an outline of advanced manufacturing concepts for additive concrete manufacturing with integrated fiber reinforcement

    Script-based design toolkit for digitally fabricated concrete applied to terrain-responsive retaining wall design

    Get PDF
    The potential of digitally fabricated concrete (DFC) to produce terrain responsive designs has not been thoroughly investigated. Existing research indicates diverse benefits of DFC, such as the rapid fabrication of customized geometries. This research clarifies the advantages and design processes involved in creating site-specific DFC structures. Existing literature is analyzed to provide an overview of fabrication methods and their impacts and constraints on design. Parametric scripting is used to develop an interactive toolkit that integrates aesthetic, structural, and fabrication considerations into the design process. This toolkit specifically focuses on unreinforced retaining walls with interchangeable modules for terrain analysis, wall form generation, structural analysis, and fabrication analysis. The toolkit provides valuable feedback, such as identifying optimum wall proportions, and enables rapid design explorations. The findings affirm the value of exploratory design tools in managing fabrication complexities. Additionally, by recreating an existing amphitheater, the research indicates that DFC can create site-specific geometries that draw from the surrounding terrain

    Reshaping concrete: Inclusive design for low-carbon structures

    Get PDF
    Less Economically Developed Countries (LEDCs) struggle to meet the demand for affordable housing in their growing cities. There are several reasons for this, but a major constraint is the high cost of construction materials. In LEDCs, material costs can constitute 60 to 80 percent of the total cost of residential construction. Nonetheless, their construction mimics the materially inefficient practices of the More Economically Developed Countries (MEDCs), which were developed to reduce labor over material costs. As a result, prismatic beams and flat slabs are often used despite their structural inefficiency. The mounting use of steel-reinforced concrete structures in LEDC cities also raises concern for the environmental costs of construction; construction accounts for 20-30 percent of LEDC carbon emissions. This research addresses these challenges with a flexible and accessible methodology for the design and analysis of materially efficient concrete elements that may reduce the economic and environmental costs of urban construction. Designed for the constraints of LEDCs, structural elements are optimized to reduce the embodied carbon associated with the concrete and reinforcing steel while resisting the required loads of a standard building structure. The optimization method includes a novel approach to 3D-shape parameterization, as well as a decoupled analytical engineering analysis method that accounts for the key failure modes and constraints of reinforced concrete design. This method is then built into an open-source toolkit, combined with machine learning for real-time analysis and visualization, and tested using lab- and full-scale prototypes. The goal of this research is to present several generalizable methods that are applicable and accessible to LEDC building designers. These methods can enable the design of concrete elements for multiple performance criteria such as structural behavior, acoustic transmission, and thermal mass. They can also enable an accessible design practice through machine learning, real-time iterative workflows, and visualization tools that include the end-user in the architectural design process. This paper provides a high-level overview of ongoing research that explores how materially efficient design methods might enable sustainable development through low-cost, low-carbon concrete structural systems for affordable housing in LEDCs

    KINE[SIS]TEM'17 From Nature to Architectural Matter

    Get PDF
    Kine[SiS]tem – From Kinesis + System. Kinesis is a non-linear movement or activity of an organism in response to a stimulus. A system is a set of interacting and interdependent agents forming a complex whole, delineated by its spatial and temporal boundaries, influenced by its environment. How can architectural systems moderate the external environment to enhance comfort conditions in a simple, sustainable and smart way? This is the starting question for the Kine[SiS]tem’17 – From Nature to Architectural Matter International Conference. For decades, architectural design was developed despite (and not with) the climate, based on mechanical heating and cooling. Today, the argument for net zero energy buildings needs very effective strategies to reduce energy requirements. The challenge ahead requires design processes that are built upon consolidated knowledge, make use of advanced technologies and are inspired by nature. These design processes should lead to responsive smart systems that deliver the best performance in each specific design scenario. To control solar radiation is one key factor in low-energy thermal comfort. Computational-controlled sensor-based kinetic surfaces are one of the possible answers to control solar energy in an effective way, within the scope of contradictory objectives throughout the year.FC

    Design Transactions

    Get PDF
    Design Transactions presents the outcome of new research to emerge from ‘Innochain’, a consortium of six leading European architectural and engineering-focused institutions and their industry partners. The book presents new advances in digital design tooling that challenge established building cultures and systems. It offers new sustainable and materially smart design solutions with a strong focus on changing the way the industry thinks, designs, and builds our physical environment. Divided into sections exploring communication, simulation and materialisation, Design Transactions explores digital and physical prototyping and testing that challenges the traditional linear construction methods of incremental refinement. This novel research investigates ‘the digital chain’ between phases as an opportunity for extended interdisciplinary design collaboration. The highly illustrated book features work from 15 early-stage researchers alongside chapters from world-leading industry collaborators and academics
    • …
    corecore