275 research outputs found

    4D monitoring of active sinkholes with a Terrestrial Laser Scanner (TLS): A Case study in the evaporite karst of the Ebro Valley, NE Spain

    Get PDF
    This work explores, for the first time, the application of a Terrestrial Laser Scanner (TLS) and a comparison of point clouds in the 4D monitoring of active sinkholes. The approach is tested in three highly-active sinkholes related to the dissolution of salt-bearing evaporites overlain by unconsolidated alluvium. The sinkholes are located in urbanized areas and have caused severe damage to critical infrastructure (flood-control dike, a major highway). The 3D displacement models derived from the comparison of point clouds with exceptionally high spatial resolution allow complex spatial and temporal subsidence patterns within one of the sinkholes to be resolved. Detected changes in the subsidence activity (e.g., sinkhole expansion, translation of the maximum subsidence zone, development of incipient secondary collapses) are related to potential controlling factors such as floods, water table changes or remedial measures. In contrast, with detailed mapping and high-precision leveling, the displacement models, covering a relatively short time span of around 6 months, do not capture the subtle subsidence (< 0.6-1 cm) that affects the marginal zones of the sinkholes, precluding precise mapping of the edges of the subsidence areas. However, the performance of TLS can be adversely affected by some methodological limitations and local conditions: (1) limited accuracy in large investigation areas that require the acquisition of a high number of scans, increasing the registration error; (2) surface changes unrelated to sinkhole activity (e.g., vegetation, loose material); (3) traffic-related vibrations and wind blast that affect the stability of the scanner

    NASA geology program bibliography

    Get PDF
    A bibliography of scientific papers, articles, and books based on research supported by the NASA Geology Program is given. The citations cover the period 1980 to 1990. An author index is included

    Monitoring Earth Surface Changes from Space

    Get PDF
    This report gives an overview of the activities which have been undertaken as part of the technical follow-on to the large study “Monitoring Earth Surface Changes from Space”. In addition to the support provided by the Keck Institute for Space Studies, these activities have been supported by matching funds from the Gordon and Betty Moore Foundation, from UAE and Kuwait, and from the MDAP NASA program. Activities were organized under five different themes, each lead by a different PI: 1- Optical Image Time-Series (PI: Sebastien Leprince). These activities aim at developing techniques to analyze optical images acquired by different imaging systems and at different times to look at general landscape evolution (evolutions due to tectonic activity, glacier flow, landslides, sand dunes migration, etc.). They also aim at building a framework for large scale processing to look at global changes. 2- SAR Time-Series Analysis (PI: Mark Simons). These activities aim at developing techniques to analyze radar image time series, in particular via interferrometric techniques. These activities involve close interactions with JPL via the ARIA project (PI: Susan Owen). 3- Seismic Waves Imaging (PI: Pablo Ampuero). These activities aim at developing techniques for seismic inversion with dense measurement in time and space, such as measurement that would be provided by a space seismometer. These activities involve close interactions with JPL, which received a matching R&TD funding to investigate the development of a space optical seismometer (PI: David Redding). 4- Sub-surface Imaging (PI: Essam Heggy). These activities involve close interactions at testing the possibility of an Earth orbiting Ground Penetrating Radar (GPR). Within the scope of this project, only airborne applications will be sought after, with study for space applications. 5- Science Applications (PI: Mike Lamb). These activities involve taking advantage of the techniques developed by the other groups. It also drives the technical developments and foresees the external visitor program. We detail below these activities. Each sub-section has software products, publications, and/or conference posters/talks as outcome. All publications and presentations in international meetings are listed again at the end of the report together with a few other publications produced by collaborators who have participated in the KISS study but did not receive funding from us. Regarding the ‘seismic waves imaging’ project, we have explored different designs and mission concepts for a 4 m-class Seismic Imager Geostationnary satellite system. We are currently working on estimating the cost and preparing a draft GSI Mission Whitepaper

    Gazing at the Solar System: Capturing the Evolution of Dunes, Faults, Volcanoes, and Ice from Space

    Get PDF
    Gazing imaging holds promise for improved understanding of surface characteristics and processes of Earth and solar system bodies. Evolution of earthquake fault zones, migration of sand dunes, and retreat of ice masses can be understood by observing changing features over time. To gaze or stare means to look steadily, intently, and with fixed attention, offering the ability to probe the characteristics of a target deeply, allowing retrieval of 3D structure and changes on fine and coarse scales. Observing surface reflectance and 3D structure from multiple perspectives allows for a more complete view of a surface than conventional remote imaging. A gaze from low Earth orbit (LEO) could last several minutes allowing for video capture of dynamic processes. Repeat passes enable monitoring time scales of days to years. Numerous vantage points are available during a gaze (Figure 1). Features in the scene are projected into each image frame enabling the recovery of dense 3D structure. The recovery is robust to errors in the spacecraft position and attitude knowledge, because features are from different perspectives. The combination of a varying look angle and the solar illumination allows recovering texture and reflectance properties and permits the separation of atmospheric effects. Applications are numerous and diverse, including, for example, glacier and ice sheet flux, sand dune migration, geohazards from earthquakes, volcanoes, landslides, rivers and floods, animal migrations, ecosystem changes, geysers on Enceladus, or ice structure on Europa. The Keck Institute for Space Studies (KISS) hosted a workshop in June of 2014 to explore opportunities and challenges of gazing imaging. The goals of the workshop were to develop and discuss the broad scientific questions that can be addressed using spaceborne gazing, specific types of targets and applications, the resolution and spectral bands needed to achieve the science objectives, and possible instrument configurations for future missions. The workshop participants found that gazing imaging offers the ability to measure morphology, composition, and reflectance simultaneously and to measure their variability over time. Gazing imaging can be applied to better understand the consequences of climate change and natural hazards processes, through the study of continuous and episodic processes in both domains

    Analysis of regional large-gradient land subsidence in the Alto Guadalentín Basin (Spain) using open-access aerial LiDAR datasets

    Get PDF
    Land subsidence associated with groundwater overexploitation in the Alto Guadalentín Basin (Spain) aquifer system has been detected during the last decades. In this work, for the first time, we propose a new point cloud differencing methodology to detect land subsidence at basin scale, based on the multiscale model-to-model cloud comparison (M3C2) algorithm. This method is applied to two open-access airborne LiDAR datasets acquired in 2009 and 2016, respectively. First the internal edge connection errors in the different flight lines were addressed by means of a smoothing point cloud method. LiDAR datasets capture information from ground and non-ground points. Therefore, a method combining gradient filtering and cloth simulation filtering (CSF) algorithms was applied to remove non-ground points. The iterative closest point (ICP) algorithm was used for point cloud registration of both point clouds exhibiting a very stable and robust performance. The results show that vertical deformation rates are up to −14 cm/year in the basin from 2009 to 2016, in agreement with the displacement reported by previous studies. LiDAR results have been compared to the velocity measured by continuous GNSS stations and an InSAR dataset. For the GNSS-LiDAR and InSAR-LiDAR comparison, we computed a common 100 × 100 m grid in order to assess any similarities and discrepancies. The results show a good agreement between the vertical displacements obtained from the three different surveying techniques. Furthermore, LiDAR results were compared with the distribution of compressible soil thickness showing a clear relationship. The study underlines the potential of open-access and non-customized LiDAR to monitor the distribution and magnitude of vertical deformations in areas prone to be affected by groundwater-withdrawal-induced land subsidence.This research was funded by the ESA-MOST China DRAGON-5 project (ref. 59339) and by a Chinese Scholarship Council studentship awarded to Liuru Hu (Ref. 202004180062). María I. Navarro-Hernández and Guadalupe Bru are funded by the PRIMA programme supported by the European Union under grant agreement No 1924, project RESERVOIR

    Earth resources: A continuing bibliography with indexes (issue 51)

    Get PDF
    This bibliography lists 382 reports, articles and other documents introduced into the NASA scientific and technical information system between July 1 and September 30, 1986. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    How can remote sensing contribute in groundwater modeling?

    Get PDF
    Groundwater resources assessment, modeling and management are hampered considerably by a lack of data, especially in semi-arid and arid environments with a weak observation infrastructure. Usually, only a limited number of point measurements are available, while groundwater models need spatial and temporal distributions of input and calibration data. If such data are not available, models cannot play their proper role in decision support as they are notoriously underdetermined and uncertain. Recent developments in remote sensing have opened new sources for distributed spatial data. As the relevant entities such as water fluxes, heads or transmissivities cannot be observed directly by remote sensing, ways have to be found to link the observable quantities to input data required by the model. An overview of the possibilities for employing remote-sensing observations in groundwater modeling is given, supported by examples in Botswana and China. The main possibilities are: (1) use of remote-sensing data to create some of the spatially distributed input parameter sets for a model, and (2) constraining of models during calibration by spatially distributed data derived from remote sensing. In both, models can be improved conceptually and quantitativel

    Gazing at the Solar System: Capturing the Evolution of Dunes, Faults, Volcanoes, and Ice from Space

    Get PDF
    Gazing imaging holds promise for improved understanding of surface characteristics and processes of Earth and solar system bodies. Evolution of earthquake fault zones, migration of sand dunes, and retreat of ice masses can be understood by observing changing features over time. To gaze or stare means to look steadily, intently, and with fixed attention, offering the ability to probe the characteristics of a target deeply, allowing retrieval of 3D structure and changes on fine and coarse scales. Observing surface reflectance and 3D structure from multiple perspectives allows for a more complete view of a surface than conventional remote imaging. A gaze from low Earth orbit (LEO) could last several minutes allowing for video capture of dynamic processes. Repeat passes enable monitoring time scales of days to years. Numerous vantage points are available during a gaze (Figure 1). Features in the scene are projected into each image frame enabling the recovery of dense 3D structure. The recovery is robust to errors in the spacecraft position and attitude knowledge, because features are from different perspectives. The combination of a varying look angle and the solar illumination allows recovering texture and reflectance properties and permits the separation of atmospheric effects. Applications are numerous and diverse, including, for example, glacier and ice sheet flux, sand dune migration, geohazards from earthquakes, volcanoes, landslides, rivers and floods, animal migrations, ecosystem changes, geysers on Enceladus, or ice structure on Europa. The Keck Institute for Space Studies (KISS) hosted a workshop in June of 2014 to explore opportunities and challenges of gazing imaging. The goals of the workshop were to develop and discuss the broad scientific questions that can be addressed using spaceborne gazing, specific types of targets and applications, the resolution and spectral bands needed to achieve the science objectives, and possible instrument configurations for future missions. The workshop participants found that gazing imaging offers the ability to measure morphology, composition, and reflectance simultaneously and to measure their variability over time. Gazing imaging can be applied to better understand the consequences of climate change and natural hazards processes, through the study of continuous and episodic processes in both domains
    corecore