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Abstract Groundwater resources assessment, modeling
and management are hampered considerably by a lack of
data, especially in semi-arid and arid environments with a
weak observation infrastructure. Usually, only a limited
number of point measurements are available, while
groundwater models need spatial and temporal distribu-
tions of input and calibration data. If such data are not
available, models cannot play their proper role in decision
support as they are notoriously underdetermined and
uncertain. Recent developments in remote sensing have
opened new sources for distributed spatial data. As the
relevant entities such as water fluxes, heads or trans-
missivities cannot be observed directly by remote sensing,
ways have to be found to link the observable quantities to
input data required by the model. An overview of the
possibilities for employing remote-sensing observations in
groundwater modeling is given, supported by examples in
Botswana and China. The main possibilities are: (1) use of
remote-sensing data to create some of the spatially
distributed input parameter sets for a model, and (2)
constraining of models during calibration by spatially
distributed data derived from remote sensing. In both,
models can be improved conceptually and quantitatively.

Résumé L’évaluation, la modélisation et la gestion des
ressources d’eau souterraine sont considérablement entra-
vées par un manque de données, particulièrement dans les
régions semi-arides et arides possédant peu d’infrastruc-
tures d’observation. Généralement, seul un nombre limité
de points de mesure sont disponibles, alors que les
modèles hydrogéologiques demandent des distributions

spatiales et temporelles de données d’entrée et de
calibration. Si de telles données ne sont pas disponibles,
les modèles ne peuvent pas jouer leur rôle d’appui à la
décision puisqu’ils sont notoirement de mauvaise résolu-
tion et incertains. De récentes avancées en télédétection
constituent de nouvelles sources pour les données spatiale-
ment distribuées. Comme les entités utiles telles que les
flux et les niveaux d’eau ou les transmissivités ne peuvent
pas être observées directement par télédétection, il con-
vient de trouver des moyens de relier les quantités
observables aux données d’entrée nécessaires aux mod-
èles. A travers des exemples au Botswana et en Chine, un
aperçu des possibilités d’utilisation des observations
issues de la télédétection en modélisation hydrogéolo-
gique est présenté. Les principales possibilités sont: (1)
l’utilisation de données de télédétection pour créer une
partie des données d’entrée spatialement distribuées d’un
modèle, et (2) la contrainte des modèles lors de la
calibration avec des données spatialement distribuées
dérivées de la télédétection. Dans les deux cas, les
modèles peuvent être conceptuellement et quantitative-
ment améliorés.

Resumen La evaluación, modelizado, y gestión de
recursos de agua subterránea, se dificulta considerable-
mente por la falta de datos, especialmente en ambientes
áridos y semi-áridos donde existe una infraestructura débil
de vigilancia. En esto ambientes normalmente solo se
cuenta con un número limitado de mediciones puntuales
mientras que los modelos de agua subterránea necesitan
distribuciones temporales y espaciales de datos de entrada
y calibración. Si estos datos no están disponibles los
modelos no pueden jugar su rol apropiado en el apoyo de
decisiones ya que en estas circunstancias son bastante
inciertos e indeterminados. Los desarrollos recientes en
sensores remotos han abierto nuevas fuentes para datos
con distribución espacial. Debido a que las entidades
relevantes tal como flujos de agua, presiones o trans-
misividades no pueden observarse directamente mediante
sensores remotos, tienen que encontrarse maneras para
vincular las cantidades observables a datos de entrada que
requiere el modelo. Se proporciona una revisión de las
posibilidades de utilizar observaciones de sensores remo-
tos en los modelos de agua subterránea apoyándose en
ejemplos de Bostwana y China. Las dos posibilidades son:
(1) uso de datos de sensores remotos para crear algunos de

Received: 24 March 2006 /Accepted: 19 October 2006
Published online: 25 November 2006

© Springer-Verlag 2006

P. Brunner :H.-J. Hendricks Franssen : L. Kgotlhang :
W. Kinzelbach ())
Institute of Environmental Engineering,
ETH Zurich,
Zurich, Switzerland
e-mail: Kinzelbach@ifu.baug.ethz.ch

P. Bauer-Gottwein
Institute of Environment and Resources,
Technical University of Denmark,
Lyngby, Denmark

Hydrogeology Journal (2007) 15: 5–18 DOI 10.1007/s10040-006-0127-z

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159144506?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


los parámetros de entrada distribuidos espacialmente para un
modelo, y (2) restricción de modelos durante la calibración
mediante datos distribuidos espacialmente obtenidos de
sensores remotos. Para ambas posibilidades los modelos
pueden mejorarse conceptual y cuantitativamente.

Keywords Remote sensing . Numerical modeling .
Geophysics . Spatial data analysis . Model calibration

Introduction

The term remote sensing should not be confined to Earth
observation systems with sensors measuring in the visible,
infrared and radio wave regions of the electromagnetic
radiation spectrum. It also includes geophysical surveys of
gravity, magnetics, and electromagnetics. Only the geo-
physical surveys offer the possibility of exploring the
subsurface. Remotely sensed data can be obtained from
various platforms such as satellites, airplanes, drones,
blimps and masts. The ways in which remote sensing can
contribute to groundwater modeling are so numerous that
this review paper can by no means cover all aspects. The
selection is based on the authors’ experiences. Other
aspects are covered, for example, in Becker (2006).

Regional hydrological models such as groundwater
models require distributed input data. Classical hydrological
measurements provide only point data obtained for example
at a weather station, a gauging station, or a borehole. One of
the main problems in hydrological research today is how to
pass from point information to regional distributed informa-
tion. Remote sensing offers a possibility to do this for certain
parameters required in groundwater modeling. In principle,
the patterns from remote sensing can be translated into a
deterministic distribution of input data on a cell-by-cell basis
or in the form of zones. Even if absolute values of these data
are uncertain, they still reduce the degrees of freedom of the
model and thus lead to a better posed inverse problem and a
robust solution. Remote sensing is, therefore, an extremely
useful tool in the acquisition of spatially distributed data for
modeling. All raw remote-sensing data present spatial
patterns which can be related to features or processes above
the surface (such as clouds), on the surface (such as
evapotranspiration), or in the shallow subsurface (such as
electrical conductivity). However, the parameters directly
accessible by remote sensing are often not the ones required
in groundwater models. This means that the utilization of
remote-sensing data requires another modeling step to
convert them to data usable as input data or verification data
in spatially distributed models (e.g. Kemna et al. 2002). It is
the combination of the pattern information with the point
information at ground observation stations that allows
spatial distributions of the parameter in question to be
obtained. The correlations between ground measurements
and remote-sensing data are subject to noise. Such
stochastic relationships can, however, still be utilized in
the conditioning of stochastic models and data assimilation.

Take precipitation as an example for a distributed data
set. From remote-sensing data such as cloud temperature

distributions (e.g. Herman et al. 1997) or weather radar data
(e.g. Collier 2002) on drop spectra, estimates of precipita-
tion can be derived through a model. The resulting
distribution of precipitation is uncertain as far as absolute
values are concerned, while the relative intensities are
much more reliable. If the resulting distribution is scaled
with precipitation measurements obtained at stations on the
ground, a map of absolute precipitation quantities results
which is superior to maps obtained from the mere
mathematical interpolation of station data.

In regions where spatial observation networks are
extremely dense, remote sensing may be of less interest.
However, the main water problems of today are in
developing regions of the world with weak infrastructure,
low accessibility, and data scarcity. It is in such cases that
remote sensing can develop its largest use for water
resources management. Combined with traditional meth-
ods remote sensing has a great potential in improving the
quality of modeling work.

In the following sections, the types of information
which can be extracted from remote sensing are described.
Then four examples illustrate ways of using this informa-
tion in groundwater modeling. These examples include:

– The direct construction of an input data set (aquifer
thickness)

– The reduction of degrees of freedom in inverse
groundwater modeling

– The calibration of a groundwater model by pattern
information on a quantity that can both be measured by
remote sensing and calculated from the model

– The conditioning of a stochastic groundwater model
with noisy input data from remote sensing

What information contained in remote-sensing
images is of potential use in groundwater modeling?

Airborne geophysical surveys allow for the identification
of faults and dikes, changes in lithology and the depth of
magnetic features (e.g. Danielsen et al. 2003; Doll et al.
2000; Jorgensen et al. 2003a,b; Thompson 1982). This
information is helpful in constructing more realistic
conceptual models of aquifers. An aquifer that is
compartmentalized by dikes and faults will behave
differently from an aquifer without such flow guides.

Geomagnetic surveys have, up to now, mainly been
used in the search of Earth resources of high economic
value such as minerals and hydrocarbons. However, once
acquired, the geophysical data retain potential for many
other applications including groundwater exploration and
management (LaBrecque and Ghidella 1997). Botswana,
for example, has embarked on airborne high-resolution
magnetic surveys to cover the whole country, the primary
aim being the exploration of formations bearing diamonds
and other minerals (MFDP 2003). Hydrogeologists in
Botswana are now beginning to benefit at almost no cost
from the data acquired (e.g. DWA 2004, 2006).
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Lineaments on the surface have been identified early as
conduits for groundwater flow in fractured aquifers and
hence targeted for locating production wells. Their use in
geology is already widespread (e.g. Lattmann 1958;
Meijerink 1996; Tam et al. 2004).

The overlaying of lineaments mapped from conven-
tional remote-sensing techniques (aerial photographs and
satellite images) and those derived from airborne
geophysical methods can be implemented using geo-
graphical information systems (GIS) at both local and
regional scales. Some lineaments detectable by airborne
geophysics may be due to deep-seated sources (up to
several tens of kilometers) and hence have no effect on
groundwater flow in aquifers of interest, which are
mostly within a few hundreds of meters below the
ground surface. Therefore, the depths to magnetic
sources must be estimated in order to retain only linea-
ments that are deemed relevant to groundwater flow. On
the other hand, lineaments identified with conventional
methods give only information on structures with surface
expression and no information on depth and vertical
continuity of the structures.

Space-borne gravitational surveys such as the Gravity
Recovery and Climate Experiment (GRACE) mission can
be used to detect temporal changes in the total water
storage (surface water, soil water and groundwater). A 2-
cm thick, infinitely extended layer of pure water located at
any depth below a gravimeter generates an incremental
gravitational acceleration of 1×10−8 m/s2 or 1 μGal
(microgal). The temporal change in total water storage
(TWS) in the Earth system is therefore directly propor-
tional to the temporal change in the measured gravitational
acceleration. The potential of time-lapse gravity surveys to
monitor the status of water resources systems has been
recognized for a long time. Ground-based time-lapse
gravity surveys were used successfully to determine
alluvial aquifer storage and specific yield, which is a key
parameter for the sustainable management of groundwater
resources (Pool and Eychaner 1995). Moreover, it has
been demonstrated that superconducting ground-based
gravimeters reflect hydrological signals on the order of
several microgals (Amalvict et al. 2004; Bower and
Courtier 1998; Neumeyer et al. 2006). The GRACE twin
satellites have dramatically improved the accuracy and
resolution of regional observations. This satellite mission
delivers an accuracy of 0.4 μGal or 1 cm of groundwater
on spatial scales larger than 1,300 km (Andersen and
Hinderer 2005; Andersen et al. 2005) and delivers reliable
observations of the regional part of the global hydrological
cycle. Although the spatial resolution is still less than the
size of typical groundwater systems, the prospects of this
method for future use in verification of models, especially
for the determination of the storage coefficient, are bright.

For a phreatic aquifer, the surface of the terrain is also
the upper boundary of the aquifer and constrains the
groundwater levels. Surface elevations can be determined
by various remote-sensing techniques, from airborne
platforms (e.g. light detection and ranging LIDAR (Bufton
et al. 1991), interpretation of stereo orthophotos (Kaab

2002), or satellite platforms using, for example, radar
interferometry (Madsen et al. 1993; Rabus et al. 2003;
Slater et al. 2006; Zebker and Goldstein 1986). In the
latter case, the phase differences in pixels seen from
different points in orbit allow a translation into differences
in elevation. To obtain absolute elevation data and to
verify their relative distribution, accurate elevation data at
ground control points are required. These can be obtained,
for example, with differential GPS (global positioning
system). In many applications, the depth to groundwater is
of importance for environmental reasons, including water
supply to vegetation or salinization by phreatic evapora-
tion. This distance is the difference between the surface
elevation given by the digital elevation model (DEM) and
the groundwater level.

Several preprocessed DEMs are available. A recent one
is the shuttle radar topography mission (SRTM) data set, a
DEM covering all land areas between 60°N and 56°S
latitude at a 90-m pixel resolution and a vertical accuracy
of at best 5 m (Rodriguez et al. 2005; Slater et al. 2006).
While the spatial resolution is sufficient for most
groundwater applications, the vertical accuracy is not.
Only LIDAR can presently supply a sufficient vertical
accuracy and spatial resolution to determine reliable
depths to groundwater. However, new missions aiming
to acquire a global DEM with very high accuracies and
fine resolution are currently being developed, e.g. Tan-
DEM-X (Microwave and Radar Institute 2006; launch
planned for 2009). If radar or LIDAR techniques cannot
be applied, be it for cost or for accuracy reasons,
correlations between vegetation type, vegetation density
or other land surface characteristics reflected in multi-
spectral satellite images on one hand, and topographic
elevation on the other, can be exploited. In some cases,
particularly in wetlands, topography can be inferred from
land-cover maps at an accuracy not reached with radar
interferometry (Gumbricht et al. 2005).

High-precision measurements of the surface elevation
changes can reveal regional subsidence caused by piezo-
metric depression around well fields (e.g. Hoffmann et al.
2001) or seasonal variations of the groundwater level
(Chang et al. 2004). Once a relation is given between
subsidence and drawdown, a spatial distribution of
drawdown can be obtained from the amount of surface
subsidence observed. Differential GPS can also serve the
purpose of determining temporal variations in the ground
level related to groundwater pumping or recharge. This
information is, however, again point like.

Finally, river and lake levels can be determined by
using radar satellites (e.g. Berry et al. 2005; Jekeli and
Dumrongchai 2003). Such data are available close to real
time, for example, see European Space Agency work on
rivers and lakes (ESA 2005). Lake and river levels can be
of relevance for subsurface hydrology if they are
indicative of groundwater levels.

The bulk of remote-sensing data relevant for ground-
water modeling are data that allow for quantification of
the distribution of recharge or discharge. Recharge is one
of the most important quantities for sustainable ground-
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water management. In dry regions, its estimation has been,
up to today, a challenge, as it may occur only sporadically
at intervals of several years. It may also be spatially very
heterogeneous due to the distribution of precipitation, soil
properties, water use by plants or runoff processes. One of
the earliest applications of remote-sensing relevant in
hydrology was the characterization of vegetation type,
density and its status (e.g. Fensholt et al. 2006). This
information is also of interest as a proxy for evapotrans-
piration (e.g. Loukas et al. 2005). Vegetation may be an
indicator for the presence of water and the depth to
groundwater level.

For flat terrain, the groundwater recharge potential over
long time intervals is the long-term average residual between
precipitation P and evapotranspiration ET. Both quantities
can be estimated from remote-sensing data. The precipita-
tion can be estimated from cloud temperature data by
certain algorithms (e.g. Herman et al. 1997) in combination
with precipitation data from meteorological stations on the
ground. The Famine Early Warning Systems Network
(FEWS 2006) offers such data at a 10-day temporal
resolution for all of Africa. Evapotranspiration can be
derived from multispectral satellite data via a surface energy
balance. To put it simply, a dry pixel will heat up to higher
temperatures than a pixel which has a large amount of water
available for evaporative cooling. In this sense, radiation
data can be related to evapotranspiration. The fraction of net
radiation energy consumed by evaporating water can be
estimated with different methods. In SEBAL (surface
energy balance algorithm for land; Bastiaanssen et al.
1998a,b), the energy fluxes in the surface energy balance
are calculated explicitly, while in a simplified method
described by Roerink et al. (2000), this fraction is
determined from a pixel-wise plot of surface temperature
versus albedo. Other methods use different dimensions of
the feature space instead, e.g. the Normalized Difference
Vegetation Index (NDVI), which is a measure of the vigor
of vegetation growth (Sandholt and Andersen 1993).

Unfortunately, both ET and P obtained from remote
sensing are inaccurate. Calculating the difference, P–ET,
leads to error propagation, especially when both quantities
are of similar magnitude. This is often the case in semi-
arid and arid areas. Still, the spatial patterns of P-ET may
be of help in regionalization of traditional point measure-
ments of recharge, e.g. obtained with the chloride method
(Brunner et al. 2004).

The spatial distribution of recharge may be very
heterogeneous even if the distribution of precipitation is
homogeneous. If water collects and infiltrates in depres-
sions, those may dominate the total recharge of an area.
This process has been documented in Niger (Leduc et al.
2001). Water surfaces forming in the landscape and their
temporal behavior can be identified by remote sensing,
e.g. via radar or multi-spectral characterization (e.g.
McCarthy et al. 2003; Roshier and Rumbachs 2004).
Their density and distribution are indicative of the spatial
distribution of recharge.

In wetlands, the interaction between surface water and
groundwater is crucial for the understanding of the

wetland behavior. The development of water surfaces
and flooding patterns over time is, in this case, a valuable
data set for model calibration (Bauer et al. 2006a,b).

Groundwater recharge from rivers, streams and wet-
lands, under certain circumstances, can also be inferred
from remote sensing through anomalies in temperature or
electrical conductivity. In arid environments, evaporation
is mostly through plants in the form of transpiration. This
increases salinity in groundwater and hence electrical
conductivity. The freshly infiltrated water beneath a
stream, in contrast, has a low electrical conductivity. The
varying electrical conductivity of the underground can be
detected by airborne electromagnetic methods (e.g. Paine
and Collins 2003). On the fringes of the Okavango Delta,
Botswana (Fig. 1) the variations in groundwater salinity
could be seen clearly from an airborne electromagnetic
survey (Fig. 2). Sattel and Kgotlhang (2004) also used this
approach for salinity mapping in the Boteti area just south
of the Okavango Delta. The data was validated by ground
geoelectrical methods and drillhole information.

In arid and semi-arid areas, the discharge of groundwater
via direct evaporation from the water table and evapotrans-
piration by trees may account for most of the discharge of an
aquifer. Discharge via a draining stream, as in a humid zone,
rarely occurs. The estimation of discharge via trees has been
the subject of remote-sensing studies looking both at ET
derived from energy balance calculations as well as single
tree counts according to species and canopy size and
combining this remote-sensing information with informa-
tion on the single tree, e.g. obtained from sap flow
measurements (e.g. Lubczynski and Gurwin 2005).

Salt crusts indicate high water tables with phreatic
evaporation. They can be mapped by multispectral
satellite data and used as an indicator for phreatic fluxes
and depth to groundwater (e.g. Metternicht and Zinck
2003; Brunner et al. 2006).

Soil-water balance calculations as a function of time
require data in addition to average ET and P to account for
water storage in the soil. A soil-water balance model
requires some information on the field capacity of a soil
which could be estimated on the basis of the soil type.
Here, hyperspectral satellite information can help (e.g.
Chabrillat et al. 2002; Leone and Escadafal 2001;
Shepherd and Walsh 2002; Ben-Dor et al. 2004) as well
as gamma radiation counts from airborne platforms (e.g.
Cook et al. 1996) indicating clay content (e.g. Rainey et
al. 2003). Soil moisture itself and its temporal variation
may in the future be accessible from passive and active
microwave sensors. A mission planned for early 2007 by
ESA has been designed to observe soil moisture over
the Earth’s land mass. It has to be stressed though that the
moisture seen relates only to the top centimeters and the
use of this data type requires substantial modeling. For
more information, see also Becker (2006).

The vegetation vigor derived from multi-spectral
satellite data can be used as an indicator for irrigation
and can, therefore, be employed as a relevant parameter in
monitoring the irrigated areas and for timing of irrigation
(Droogers and Bastiaanssen 2002). The main application
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of remote sensing of hydrological variables already in
operative use today is the scheduling of irrigation.

General process of applying remote-sensing data
in groundwater modeling

Groundwater models are based on the flow equation

S0
@h

@t
¼ r Krhð Þ þ w

where S0 is the storativity, h the hydraulic head, t is time,
K the hydraulic conductivity tensor andw the distribution of
sources and sinks. Together with boundary conditions in
space and time, the flow problem is uniquely defined. The
equation and boundary conditions contain the spatially
distributed functions of hydraulic conductivity, storativity,
and recharge. Via those distributions as well as the
boundary conditions, the geometry of the aquifer is defined.

In general, only limited information on the spatial
distribution of these input parameters is available. Yet, a
model computation needs a complete set of parameters.
There are different ways to determine or estimate those. In
traditional model calibration, the aquifer is divided into a
limited number of zones. Within these zones, aquifer
properties are assumed to be constant. This means a strong
reduction in degrees of freedom. The zonation should be
such that the parameters are expected to show little spatial
variation within the defined zones. Remote sensing can
play a role in the definition of these zones. For subsurface
features, structural elements as seen in areal geophysical
surveys together with point data from drillings and
pumping tests allow zoning. So the first main use of
remote-sensing data is seen in the spatial modulation and

interpolation of input data, where otherwise a homogeneous
value or a purely mathematical interpolation function would
have to be used. During the process of model calibration,
updated estimates of the missing parameters such as
hydraulic conductivity (for the defined zones), are obtained
such that a historical record of head and/or flux observations
can be reproduced. This process is non-unique.

Piezometric head data do not reduce the uncertainty of
the estimated parameters of storativity, hydraulic conduc-
tivity and recharge, in case those parameters are only
known within large error intervals. If, however, the
spatially distributed input data can be constrained, the
calibration problem stabilizes. Let us assume the spatial

Fig. 2 Shallow subsurface electrical conductivity map from an
airborne electromagnetic method. The study area is outlined in
Fig. 1b. The black lines represent the border (consisting of
channels) of the Delta

Fig. 1 a Locations of the
study sites in Botswana,
b Okavango Delta, Kavimba,
and c Kanye. The black box in
b along the fringes of the
Okavango Delta represents the
study area discussed in
Fig. 2b. The background of
the images (b and c) repre-
sents patterns of evapotranspi-
ration (annual average). Red
stands for high, green for
moderate and blue for low
evapotranspiration rates. The
black lines represent interna-
tional borders
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distribution of relative recharge can be estimated from
land use and soil type. And let us further assume that the
yearly regional variation can be estimated from local
lysimeter data. Then the total function of recharge in space
and time R(x,t) could be reconstructed as the product of
the temporal-spatial average of recharge Rav, a weighting
factor f(x) expressing the relative values on areas with
different land use and a weighting factor g(t) expressing
the relative proportion of recharge in a certain time
interval, i.e.

R x; tð Þ ¼ Ravf xð Þg tð Þ
If f(x) can be obtained from remote-sensing data and

g(t) can be determined from point data at a few lysimeters
there is only one unknown parameter left and the large
number of degrees of freedom residing in a temporal-
spatial distribution collapses into one single number, the
temporal-spatial average value Rav.

Alternatively, remote-sensing information on properties
such as recharge could also be introduced in the traditional
model calibration in the form of prior knowledge. As
Carrera and Neuman (1986) show, ill-posedness of the
model calibration can be mitigated by prior knowledge
about the parameters to be estimated. Remote sensing can
even be introduced as a kind of soft (not exact)
information into the traditional zone based model calibra-
tion strategy.

A more modern strategy of obtaining model parameters
is the stochastic modeling approach. It acknowledges that
all parameters are uncertain due to heterogeneity and/or
measurement errors. Instead of a single best parameter set,
a large ensemble of possible parameter sets is determined
using stochastic information. This procedure also allows
quantification of the uncertainty of the model results.

Remote-sensing information intrinsically contains un-
certainty because the correlation between remote-sensing
patterns and ground truth will not be perfect. The
stochastic modeling approach is able to use this type of
information. The remote-sensing-based data and ground
truth can be used to generate a series of equally likely
images of the variable of interest within the uncertainty of
the correlation. The co-located co-simulation algorithm,
developed in the geostatistical community (Almeida and
Frykman 1994), is suited for this purpose as it is
especially designed to handle exhaustive data on a
regular grid. This algorithm simplifies the relation
between the remote-sensing data and the variable of
interest to a linear correlation coefficient (Markov
assumption) (e.g. Goovaerts 1997). The generated images
are conditioned to the two different data sources, and take
into account their estimated errors, a (linear) correlation
between them, and a variogram estimated from the
spatially distributed remote-sensing data. These equally
likely images of the variable of interest sample the high-
dimensional space of possible spatial distributions of the
variable of interest within the uncertainty bounds mainly
given by the mismatch between remote-sensing data and
ground truth. In a case where the resolution of the

hydrological model coincides with that of the remote-
sensing raster, and further, if the remote-sensing data are
perfect (perfect correlation between variable of interest
and the measured signal), this space of possible spatial
distributions would be reduced to one deterministic
“truth”. As this truth will never be known, the stochastic
calibration of a groundwater flow model consists of the
selection of an ensemble of realizations of input data
(combined from stochastic and deterministic information),
which reproduce hydraulic head, flux and possibly tracer
data to a predefined degree.

There are different ways to proceed. An extremely
large amount of equally likely realizations (millions) of
the variable of interest can be generated in the way
described before and processed through the hydrological
model, until enough realizations have been found that are
consistent with the hydraulic head, flux, and possibly
tracer data. The disadvantage is that this is very inefficient,
especially for strongly non-linear models. In case of
conceptual model errors, no valid solutions will be found.

Alternatively, a limited number of realizations
(hundreds) of the variable of interest can be generated
and inversely conditioned to the observed hydraulic head
data and tracer test data by a Monte-Carlo-based stochas-
tic inverse conditioning approach. These methods have
been developed to accommodate more qualitative facies
pattern data obtained from outcrops. Examples are the
sequential self-calibration method (e.g. Gómez-Hernández
et al. 1997; Hendricks Franssen 2001), the pilot point
method (e.g. LaVenue et al. 1995) or the representer
method (e.g. Valstar et al. 2004). The inverse conditioned
realizations are conditional to hydraulic head data, tracer
test data and the direct measurements of the variable of
interest, but not necessarily to the remote-sensing infor-
mation, as the relationship between the remote-sensing
data and the variable of interest cannot be handled by
these algorithms. However, for all these algorithms, the
remote-sensing information would be preserved in some
way in the inverse conditioned realizations.

In the literature, some approaches are presented that
partially circumvent the problem. A possibility is to
constrain the variogram of the variable of interest in the
inverse-modeling procedure (Oliver et al. 1997). However,
this does not preserve the full information potential of the
remote-sensing image, as it only considers area-averaged
two-point statistics. Capilla et al. (1999) developed the
method of conditional probabilities, which includes
exhaustive soft information in the sequential self-calibra-
tion procedure by perturbing the conditional probabilities
(conditioned to the exhaustive soft information as well)
instead of directly perturbing the values for the variable of
interest. Also, this approach has some drawbacks: a large
number of indicator variograms has to be inferred, and the
indicator variograms are area-averaged two-point statis-
tics. In addition, the perturbation of the image is only
constrained by the inferred univariate local-conditional
probability density functions. Hendricks Franssen et al.
(2006) modify the sequential self-calibration approach and
introduce an extra term in the objective function that
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penalizes a too strong deviation between the calibrated
pattern for the variable of interest and the satellite
information related with the variable of interest. This
method does not need to make the stationarity assumption.
Other geostatistical methods require that the spatial
distributions are stationary. The method, however, allows
any kind of remote-sensing information to be included in
groundwater models that are available as exhaustive
gridded information, and that show a correlation with a
variable of interest (e.g. recharge rate, aquifer thickness).
Notice that a critical step in the methodology consists of
establishing the (statistical) relationship between the
remote-sensing signal and the values for the variable.
Together with the statistical relation, the uncertainty of the
established relation should also be quantified.

Example: aquifer thickness of the Okavango Delta,
Botswana

The Okavango Delta is a wetland system of about
20,000 km2 area situated in the northwest of Botswana.
A recently published integrated hydrogeological model of
the Okavango Delta (Bauer et al. 2006a,b) assumes, in a
simplifying approach, that the Kalahari Sands aquifer
underlying the Delta has a uniform thickness over the
whole model domain. A more realistic distribution of
aquifer thickness beneath the Delta can be obtained from
semi-automated interpretations of aeromagnetic data. The
high quality aeromagnetic data available in Botswana
(collected at ~250-m flight line spacing) mostly record the
magnetic effects of metamorphic and igneous basement
rocks and dikes immediately underlying the generally
non-magnetic sedimentary cover, including the Kalahari
Sands aquifer. Since erosion resulted in a relatively
smooth surface prior to deposition of the unconsolidated
sedimentary cover, the depth to the top of magnetic rock
at any location is likely to be a good estimate of
sedimentary cover thickness.

The semi-automated estimates of depth-to-magnetic
sources are based on the 3D Euler deconvolution
technique (e.g. Reid et al. 1990; Mushayandebvu et al.
2001), which requires knowledge of the magnetic field
spatial derivatives and the so-called structural index term
(an indication of the power to which a magnetic anomaly
decays as the inverse of distance from its source). In the
computations, it was assumed that the majority of sources
can be adequately represented by dike-like models. This is
clearly valid for the hypabyssal dikes, but it is also a good
approximation for those regions where the magnetic
anomalies are caused by moderate- to steep-dipping faults
or the limbs of tight peneplained folds.

Figure 3a shows the structural pattern as extracted from
the aeromagnetic data. Blue text on the map shows
thickness of sands from drillholes, whereas the colored
symbols indicate lithological units. Figure 3b shows the
interpolated thickness of the Kalahari Sands below the
Delta. It can be seen from these two figures that the thick-
ness of the aquifer is structurally controlled. Ground truth

(i.e. depth from drillholes) and depths determined from
remote sensing correlate well (correlation coefficient of
0.9).

Example: compartmentalization of the Kanye aquifer,
Botswana

The dolomites in the Kanye region of Botswana (Fig. 1c)
constitute an aquifer ideal for groundwater abstraction.
They are fed by recharge through fractures. Recharge
studies carried out with the chloride method showed that
in parts of the aquifer, 25 mm/a is realistic (Gehrels and
Van der Lee 1990).

A model of the aquifer, constructed by a consultant
(DWA 2000), containing a large number of transmissivity
zones, was able to reproduce measured heads very
accurately. This is not surprising, given the large number
of calibration parameters used. This model, however,
failed in its predictions for the viability of pumping
wells. Well field operation with the sustainable pumping
rates predicted by the model led, in reality, to huge
drawdowns and some wells fell dry. The uncertainty of
recharge is not large enough to account for the failure of
the prediction.

An analysis of lineaments identified by using aero-
magnetic, aerial photographs and satellite images suggests
that the Kanye aquifer is strongly compartmentalized by
intrusion dikes. Another observation hints that the
aquifer is compartmentalized. The general piezometric
head map shows a ridge of piezometric maxima with
heads decreasing from the ridge in all directions. CFC
(chlorofluorocarbons) concentrations, however, show that
water in boreholes with high piezometric heads is older
than water in boreholes with lower heads (Klump et al.
2004). That means the direction of flow lines does not
coincide with the direction of increasing water age.

A conceptual model of the aquifer which is not in
contradiction with the observations can be built on the
basis of surficial lineaments and magnetic anomalies.
Figure 4 shows features from the geomagnetic survey,
aerial photographs and Landsat imagery. Highly magnetic
areas (red, in Fig. 4a–c) are volcanics, granites, syenites
and dolerites. Weakly magnetic areas (blue, in Fig. 4a–c)
are dolomitic and quartzitic areas. Major lineaments are
clearly visible and their high magnetic signal suggests that
these are fractures intruded by dolerite dikes. Indeed both
ground mapping and borehole information confirm that
these lineaments are intruded by dolerite dikes. In the
conceptual model, only these major lineaments are
included as flow barriers. Even if these major lineaments
were not intruded by dolerite, large fractures are often
filled with very fine material or silicified and, therefore,
still act as flow barriers. The dike structure entered into the
model is shown in Fig. 4f.

The dikes were analyzed with respect to their depth and
the relative depth of water strikes in their vicinity. On the
basis of these criteria three categories of dikes with three
different transmissivities were defined.
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The water strikes in the northern part of the Kanye
aquifer are generally much deeper (average 80 m below
ground level) than the top of the dikes while in the
southern part they are in the same depth range. Therefore,
a low hydraulic conductivity value (2×10−9 m/s) was
assigned to the dikes in the northern part, while a larger
value (2×10−7 m/s) was assigned to the dikes in the south
with the remaining dikes having an intermediate value
(1.5×10−8 m/s).

The transmissivities of the model zones between dikes
(compartments) were assigned as homogeneous using the
pumping test values available in that compartment. The
three unknown dike transmissivities were used as sole
degrees of freedom for calibration of 38 heads in the
steady-state pre-pumping case. As only the product of
dike hydraulic conductivity and thickness is relevant,
thickness was kept constant at 1 m. Recharge zonation
was done on the basis of patterns of potential recharge
obtained from remote sensing. The pattern was scaled to
accommodate the few recharge estimates available. Even
with the small number of calibration parameters, a very
good fit resulted. Huge, unsustainable drawdowns were
predicted by the new model when simulating the
influence of the recommended abstraction rates from the
old model. It was thus evident why most pumping wells

started to fall dry 1 year after the pumping operations
commenced. While the regional recharge is still consid-
erably larger than the total pumping rate, well fields
within a compartment cannot utilize the regional recharge
because the dikes limit the amount of water flowing to the
well field.

Example: phreatic evaporation and soil salinization,
Yanqi Basin, China

The agriculturally highly productive Yanqi Basin (located
in the Xinjiang Uygur region of China, Fig. 5) is mainly
irrigated with water drawn from the rivers flowing through
the basin. The intensive agriculture has led to several
environmental problems, especially soil salinization. A
groundwater model simulating the influence of irrigation

Fig. 3 Determination of aquifer thickness from airborne magnetic
survey. a Structural patterns extracted from aeromagnetic data. The
orange outline represents the boundary of the study area. The thin
solid black line represents the boundary of the Okavango Delta.

The thick black lines represent faults (triangles point in the
direction of throw). The dotted lines also represent faults (with
unknown throw direction). b Estimated thickness of Kalahari Sands
aquifer in m

�Fig. 4 Combination of aeromag data and lineament data to arrive
at flow barriers implemented in the groundwater model of the
Kanye aquifer. a Total magnetic intensity, b first vertical derivative,
c analytic signal. Red signifies highly magnetic areas and blue
signifies weakly magnetic areas. d Lineaments from aerial photos,
e lineaments derived from Landsat image, f flow barriers imple-
mented in the model; the red line represents the model boundary
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on the basin’s water and salt balance was constructed and
verified by using spatially distributed input data derived
from remote sensing. The most interesting spatial data set
derived from remote sensing is the distribution of phreatic
evaporation, i.e. the direct evaporation from the water
table. This quantity can be both determined from remote
sensing and calculated directly by the model. The
separation of phreatic evaporation from transpiration is
important- the two quantities are related in different ways
to the salt balance of the Yanqi Basin.

The map of phreatic evaporation was constructed by
combining remote-sensing images and measurements on
the ground. Using the US National Oceanic and Atmo-
spheric Administration’s Advanced Very High Resolution
Radiometer (NOAA-AVHRR) images, the spatial distri-
bution of evapotranspiration (ET) was obtained by the
method of Roerink et al. (2000). However, this distribu-
tion represents the sum of transpiration from vegetation
and of phreatic evaporation. In the Yanqi Basin, transpi-
ration occurs only on irrigated fields. Phreatic evaporation,
however, occurs in irrigated and non-irrigated areas. On
the basis of stable isotope profiles obtained in the
unsaturated zone, phreatic evaporation can be determined
(Barnes and Allison 1988). Phreatic evaporation E was
determined at seven non-irrigated ground stations. The
difference between ET determined from the NOAA-
AVHRR images and phreatic evaporation E is the
transpiration rate T of vegetation: ET–E=T.

In this notation, transpiration also includes the
evaporation of the irrigation water stored above the zero
flux plane and not being consumed by plants. If a
correlation between the transpiration rates T calculated
with this equation and the NDVI can be found, the
NDVI, can be used to map transpiration. Such a
correlation has been established (R2=0.80). The resulting
map of T was calculated according to this correlation
(Brunner 2005).

The calibration strategy for the groundwater model was
that all external fluxes of the aquifer were specified and
only leakances and hydraulic conductivities were adjusted.
Besides the comparison between calculated and observed
river discharge at seven locations and the residual between

observed and calculated depths to groundwater, the
groundwater model was verified with the remotely sensed
map of phreatic evaporation (Fig. 6).

Example: constraining of model calibration by using
a DEM and recharge potential from remote sensing,
Kavimba, Botswana

Kavimba is situated in the Chobe District in the northeast
of Botswana (Fig. 1). One option for a long-term
sustainable water-supply scheme is groundwater abstract-
ed from the established Kavimba well field. Concerns
were raised on the sustainability of this option, given the
semi-arid to arid climatic conditions. A model study was
performed to estimate the average yearly recharge rate and
the risk of overpumping the aquifer.

Fig. 5 Location of the Yanqi
Basin. The background image
is a color composite based
on Landsat data

Fig. 6 Comparison between phreatic evaporation calculated with
the groundwater model (a) and phreatic evaporation obtained from
the remote sensing (b) in mm/a. The thin black lines represent the
drainage net of the Basin
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Hendricks Franssen et al. (2006) applied a stochastic
inverse modeling approach. Two ensembles of 100
equally likely realizations each were generated. In the
first ensemble (A), a digital elevation model, 22
hydraulic head values, 16 chloride measurements and 6
transmissivity measurements were used as conditioning
information. Transmissivity was assumed spatially vari-
able. In the second ensemble (B), in addition, remote-
sensing information was used. It consisted of 100 equally
likely recharge rate (R) realizations, generated on the
basis of the estimated 10-year recharge potential (differ-
ence of precipitation and evapotranspiration, P-ET).
Precipitation was taken from METEOSAT 5 based
FEWS-data while evapotranspiration was reconstructed
with Roerink’s method from 47 utilizable NOAA-
AVHRR images between 1991 and 2000 (Brunner et al.
2004). One should notice that both precipitation and
actual evapotranspiration are remarkably variable in
space and time, and the 10-year period over which these
quantities were estimated is a relatively short period to
estimate average values. Moreover, the estimates of both
average P and ET are subject to considerable uncertainty.
As a consequence, the recharge potential (P-ET) estimat-
ed from those maps has a large uncertainty. The
estimated recharge potential derived from the images is
scaled with in-situ chloride measurements in the poste-
rior geostatistical analysis to provide actual recharge
values. Instead of absolute values from the satellite
images it is, thus, the spatial pattern information that is
used in the conditioning. The recharge potential for
northern Botswana, containing the model area as a
subregion, is shown in Fig. 7. The realizations were
generated with the co-located co-simulation algorithm

(Almeida and Frykman 1994), using the remote-sensing
information and the chloride data. The linear correlation
between these two, the estimated variogram from the P-
ET image and the postulated measurement errors, define
the variation in the generated ensemble. Both ensembles
were input to the two-dimensional steady-state ground-
water flow model, together with information on pumping
from wells and boundary conditions.

Table 1 illustrates the impact of the remote-sensing
information (P-ET map) on the uncertainty reduction and
the model characterization. For both ensembles, the
averages and standard deviations of log-transmissivity,
recharge rate and hydraulic head are calculated. The
standard deviations reflect the uncertainty of the input
and the output parameters. The results show that even
with a digital elevation model, hydraulic head data,
chloride data and transmissivity measurements (ensemble
A), a considerable model uncertainty remains in this study
area. The remote-sensing information reduces the uncer-
tainty with respect to recharge rate by about 60% (in terms
of standard deviation), while the standard deviation of
transmissivity and hydraulic head are also significantly
reduced. The satellite information is very helpful; howev-
er, even after including this piece of information, model
uncertainty is still considerable.

Some words of caution

The above examples show some mechanisms by which
remote-sensing information can be incorporated into
groundwater models. In all cases, the additional informa-
tion improved the quality of the model.

Fig. 7 Recharge potential,
precipitation minus evapo-
transpiration (P-ET) in mm/a
over northern Botswana. The
crosses represent the boreholes
where ground truth of recharge
was obtained with the chloride
method. The boundary of the
Kavimba groundwater model
is shown as a black line
(NE-corner)

Table 1 Impact of satellite information on the ensemble statistics (calculated using over 100 equally likely realizations)

Ensemble of realizations μlogT σlogT μR σR σh

A (without remote-sensing information) −2.36 0.71 6.5 8.0 16.0
B (with remote-sensing information) −2.38 0.61 6.4 3.3 10.3

T transmissivity in m2 /s, h hydraulic head in m, R recharge in mm/a. μlogT the ensemble and spatially averaged log-transmissivity, σlogT the
spatially averaged ensemble standard deviation of log-transmissivity, μR the ensemble and spatially averaged recharge, σR the spatially
averaged ensemble standard deviation of recharge, σh the spatially averaged ensemble standard deviation of h
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Some words of caution are necessary. It is tempting to
use remote-sensing data as they are nowadays easily
available and the treatment of these data comes at low
cost. However, quantities that are derived from remote-
sensing data and which are not checked against ground
truth are of low value. They still contain spatial pattern
information but the weighting with absolute values may
be completely erroneous. The fieldwork for ground truth is
the expensive part in using remote-sensing data for
groundwater modeling. The costs as well as the efforts
required to obtain ground truth are often underestimated.

While images may sometimes show features which
enhance intuition, the real usefulness of remote-sensing
data comes with quantitative modeling. In the early days
of remote sensing, hydrologists’ expectations were too
high, because they hoped that the quantities of relevance
to them could be read off directly from remote-sensing
data. Low expectations are rewarded. The most realistic
uses of remote-sensing data seem to be the reduction of
degrees of freedom and the conditioning of both deter-
ministic and stochastic models. Because of the often
indirect information contained in remote-sensing data the
usefulness is greatest in stochastic modeling.

Some aspects of remote sensing are already in practical
operational use, e.g. for weather forecasting, borehole
siting or irrigation monitoring and advisory services. In
groundwater modeling its use is at present still mostly in
the academic realm. With more dedicated software being
developed, it is hoped that these data can eventually
enhance the work of the practitioner.

Conclusions

The potential of remote sensing for improving models is
considerable and still to a large degree untapped. The
range of applications is substantial as the introductory
examples from literature show. They are even wider if
more qualitative results of purely visual interpretations are
considered, which were not discussed here. With all
justified optimism, expectations for the easy use of
remote-sensing data in groundwater modeling should not
be exaggerated. The defaults of any single method can be
counteracted by combining several methods. As in the
case of environmental tracers, it is the combination of
methods that makes information conclusive. The remotely
sensed data unfold their usefulness usually in combination
with a model in which even noisy or correlated data can
be used for conditioning. Finally, it should be remembered
that the largest and most costly effort in applying remote-
sensing data to groundwater models lies in the field work
necessary to obtain a sufficient data base of ground truth.
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