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A B S T R A C T   

Land subsidence associated with groundwater overexploitation in the Alto Guadalentín Basin (Spain) aquifer 
system has been detected during the last decades. In this work, for the first time, we propose a new point cloud 
differencing methodology to detect land subsidence at basin scale, based on the multiscale model-to-model cloud 
comparison (M3C2) algorithm. This method is applied to two open-access airborne LiDAR datasets acquired in 
2009 and 2016, respectively. First the internal edge connection errors in the different flight lines were addressed 
by means of a smoothing point cloud method. LiDAR datasets capture information from ground and non-ground 
points. Therefore, a method combining gradient filtering and cloth simulation filtering (CSF) algorithms was 
applied to remove non-ground points. The iterative closest point (ICP) algorithm was used for point cloud 
registration of both point clouds exhibiting a very stable and robust performance. The results show that vertical 
deformation rates are up to − 14 cm/year in the basin from 2009 to 2016, in agreement with the displacement 
reported by previous studies. LiDAR results have been compared to the velocity measured by continuous GNSS 
stations and an InSAR dataset. For the GNSS-LiDAR and InSAR-LiDAR comparison, we computed a common 100 
× 100 m grid in order to assess any similarities and discrepancies. The results show a good agreement between 
the vertical displacements obtained from the three different surveying techniques. Furthermore, LiDAR results 
were compared with the distribution of compressible soil thickness showing a clear relationship. The study 
underlines the potential of open-access and non-customized LiDAR to monitor the distribution and magnitude of 
vertical deformations in areas prone to be affected by groundwater-withdrawal-induced land subsidence.   

1. Introduction 

The Alto Guadalentín valley is an intra-montane basin located in 
southeast Spain, filled by Neogene-Quaternary sediments, in which the 
build-up of alluvial deposits mostly comes from the transportation dy-
namics of the Guadalentín river (Béjar-Pizarro et al., 2016; Bonì et al., 
2015). The basin contains a multi-layer aquifer system covering an area 
of approximately 277 km2, subjected to water abstractions during the 
past 50 years. The development of the agriculture industry and the 
accelerated population growth triggered the reduction of the piezo-
metric levels, which have reached >200 m of drop (Béjar-Pizarro et al., 

2016; Bonì et al., 2015; Rigo et al., 2013). Groundwater withdrawal 
reduces pore water pressure in voids between soil particles (Balasu-
bramaniam and Brenner, 1981). As a consequence, the effective stress 
on soil increases, resulting in a gradual compaction of the sediments that 
causes the lowering of the ground surface (González and Fernández, 
2011). 

During the last decades, interferometric synthetic aperture radar 
(InSAR) has become a widespread technique for monitoring land sub-
sidence induced by groundwater extraction in the Alto Guadalentín 
basin (Béjar-Pizarro et al., 2016; Bonì et al., 2015; Ezquerro et al., 2017; 
Ezquerro et al., 2020; Fernandez et al., 2018; González and Fernandez, 
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2011; González and Fernández, 2011; Rigo et al., 2013). Previous 
studies based on multi-satellites SAR (Synthetic Aperture Radar) ob-
servations revealed that the maximum deformation area of the basin 
reached vertical rates of − 10 cm/year between 1992 and 2007 (Bonì 
et al., 2015), of − 11 cm/year between 2011 and 2016, and of − 9.7 cm/ 
year between 2014 and 2016, showing a displacement velocity decrease 
in the later period (Ezquerro et al., 2020). Remote sensing techniques 
provide a high density of land surface displacement measurements 
across large areas at a relative low-cost in comparison with conventional 
ground-based technique (Tomás et al., 2013), also enabling the analysis 
of the spatial distribution and the evolution of the displacements 
(Amighpey and Arabi, 2016; Béjar-Pizarro et al., 2016; Castellazzi et al., 
2016; Galloway and Hoffmann, 2007; Ge et al., 2014; Hu et al., 2019; 
Tomás et al., 2005; Yousefi and Talebbeydokhti, 2021). 

However, previous studies have monitored groundwater- 
withdrawal-induced land subsidence only using InSAR, leveling and 
GNSS remote sensing techniques. As a consequence, several challenges 
have arisen for detailed land subsidence investigations by means of 
InSAR for the following reasons: (1) temporal decorrelation, which 
causes the loss of coherence due to changes in surface cover and the 
absence of ability for directly calculate the deformation using two long 
time interval datasets (Sansosti et al., 2014); (2) geometrical decorre-
lation, which causes the loss of coherence in areas with steep terrain and 
dense vegetation due to the variation of the observed angle for each 
resolution cell between the two acquisitions (Vajedian et al., 2015); (3) 
atmospheric artifacts, which are one of the major error sources in InSAR 
due to spatial and temporal variations of tropospheric delays (Bekaert 
et al., 2015b; Xiao et al., 2021). It is worth noting that in previously 
published works, aerial LiDAR datasets are used as auxiliary information 
for InSAR processing (He et al., 2021; Khan et al., 2014) or for change 
detection of small areas (Bernard et al., 2021; Imakiire and Koarai, 2012; 
Koning et al., 2020; Scott et al., 2021). However, the main novelty of this 
paper is the solution developed for the evaluation of vertical de-
formations caused by groundwater-withdrawal-induced land subsidence 
at wide-spread scale, based on open-access, non-specifically acquired 
and non-customized LiDAR point clouds. 

Therefore, the main objective of this study was to propose a new 
flowchart to measure groundwater-withdrawal-induced land subsidence 
using wide-spread and multi-temporal open-access point cloud datasets. 
We illustrated the uncertainty of working directly on open-access and 
non-specifically acquired point clouds to generate a land subsidence 
cumulative map. Also, we discussed the methodological advantages of 
direct operating on point clouds, in terms of comparing with InSAR. In 
previous studies, topographic differences detected by LiDAR technique 
allowed to measure ground surface changes caused by earthquakes 
(Borsa and Minster, 2012; Scott et al., 2019), coastal process (Brock 
et al., 2001; Bull et al., 2010) and landslides (Bernard et al., 2021), 
among other events (Scott et al., 2021). With this aim, Lague et al. 
(2013) implemented the multiscale model-to-model cloud comparison 
(M3C2) algorithm. It considers a direct point cloud comparison by 
measuring the accurate orthogonal distance between two point clouds 
datasets acquired at different times in three-dimensions (3D). This al-
gorithm has been broadly used for geomorphological change detection 
of landslides (Bernard et al., 2021; Scott et al., 2021). 

The paper is organized as follows: in Section 2, the LiDAR dataset and 
other data collected are presented, followed by a detailed description of 
the LiDAR processing in Section 3. Then, in Sections 4 and 5, the use of 
LiDAR, together with InSAR and GNSS, have enabled the detection of 
surface movements and the assessment of correlations to verify the 
precision of the proposed approach. Subsequently, the deformation re-
sults from LiDAR, InSAR and GNSS stations, have been compared with 
the spatial distribution of compressible soil thickness. Finally, in Section 
6, in light of the results, the advantages and limitations of LiDAR tech-
nique for measuring land subsidence were discussed in comparison with 
InSAR. 

2. Study area and datasets 

2.1. Study area 

The Alto Guadalentín valley is an elongated ENE-WSW oriented 
intramontane basin of the Betic range located in the Murcia Province, SE 
Spain (Silva, 2014) (Fig. 1a). The valley develops in a tectonic depres-
sion up to 1000 m depth that exhibits a horst and graben structure 
(Cerón and Pulido, 1996). This is a seismically active area bordered to 
the north by the Alhama de Murcia fault (Fig. 1a), one of the more 
prominent active faults of SE Spain (Martinez-Diaz et al., 2012). Some 
alluvial fans develop on NW reliefs intersecting the deposits of the valley 
(Fig. 1a). The valley is delimited by mountain ranges mainly made of 
metamorphic rocks, carbonates, sandstones and conglomerates (IGME, 
1981) (Fig. 1a) that reach elevations up to 927 and 597 m a.s.l. at NW 
and SE, respectively. The depression is filled by Neogene-Quaternary 
unconsolidated sediments deposited by the Guadalentín river (Cerón 
and Pulido, 1996), that drains the basin. Bonì et al. (2015) calculated the 
distribution of compressible soil thickness of the finer fraction of the 
Neogene-Quaternary filling (i.e. the silt and clay of the more 
compressible layers) from 23 boreholes, then updated by Béjar-Pizarro 
et al. (2016) using InSAR and GNSS data to obtain the map shown in 
Fig. 1b. 

The substrata of the tectonic depression is made of metamorphic 
rocks that outcrop on the edges of the basin. On the top of this unit, there 
are Tertiary marls that constitute the impervious bottom of the aquifer 
system, reaching thicknesses varying from 300 to 900 m due to the 
strong control exercised by the horst and graben structure (Cerón Gar-
cía, 1995; IGME, 1981). The main aquifer is composed by the topmost 
unconsolidated Plio-Quaternary sediments mainly made of sand and 
gravel layers interbedded with silt and clayey layers. 

The area presents a semi-arid climate with annual accumulated 
rainfall of 250 mm characterized by the presence of yearly pronounced 
dry periods. The valley floodplain is intensively cultivated using 
groundwater resources from the underlying aquifer system. The 
increasing groundwater extraction from the 60s to the 80s led to the 
overexploitation of the aquifer that was declared officially overexploited 
in 1987 (CHS, 2006). Later, the Tajus-Segura diversion slightly allevi-
ated the situation, reducing groundwater extraction in some areas in 
which the piezometric levels stabilized. However, the pumping of 
groundwater continued in the NW and N sectors of the valley (nearby 
the city of Lorca that has a population of over 90,000 inhabitants) 
inducing groundwater level declines over 200 m between 1960 and 
2012 (Ezquerro et al., 2017). Although the piezometric level remained 
mostly stable during the last few years, the phenomenon of land subsi-
dence continues due the existing time delay because of the gradual 
transfer of stress from the pore pressure to the effective stress. As a 
consequence, land subsidence occurred in this area at a rate over 11 cm/ 
year (Béjar-Pizarro et al., 2016; Bonì et al., 2015; Ezquerro et al., 2017; 
Ezquerro et al., 2020; Fernandez et al., 2018; González and Fernández, 
2011) being the greatest in Europe caused by groundwater withdrawal. 

2.2. Datasets 

2.2.1. LiDAR 
The LiDAR (Light Detection and Ranging) point cloud datasets used 

in this work were downloaded from the Geoportal web of the National 
Plan for Aerial Orthophotography (PNOA) of Spain, a nation-wide 
project of LiDAR flights for massive production of point clouds. These 
datasets are freely available, covering the whole national territory 
(CNIG, 2022). The geodetic reference system of the point cloud is 
ETRS89 compatible with WGS84, the projection is Universal Transverse 
Mercator (UTM) in the spindle zone corresponding to each file and the 
altitudes are in orthometric heights. 

The point clouds were captured with a density of 0.5 points/m2 ac-
cording to the technical specifications of the flight. Afterward, these 
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Fig. 1. (a) Geological setting of the Alto Guadalentín Basin modified from IGME (1981). Permanent GNSS stations LRCA, LORC and ORCA are also shown. (b) 
Compressible soil thickness distribution. The thickness of the compressible deposits has been calculated by means of geotechnical borehole data from Bonì et al. 
(2015) and Béjar-Pizarro et al. (2016). 
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point clouds were automatically classified and colored by RGB (red, 
green and blue) obtained from orthophotos of the PNOA with a pixel size 
of 25 or 50 cm (Monterroso Checa, 2017). The main characteristics of 
the point clouds used in this work are summarized in Table 1. 

Although the required height accuracy of LiDAR was 0.4 and 0.2 m in 
2009 and 2016 respectively, the real height accuracy is higher. From the 
altimetric precision control information of each independent point cloud 
provided by the IGN, the average relative flight heights were 2727 and 
3317 m, the minimum and maximum pulse rates vary from 70.2 and 
89.2 kHz, and 74.8 and 89.2 kHz, respectively. Additionally, the real 
height accuracies evaluated by means of the RMSE comparing reference 
benchmarks located on the ground by determining the corresponding 
Euclidean distance between the checkpoints and the point clouds were 
0.113 and 0.083 m for the datasets of 2009 and 2016, respectively (IGN, 
2009; IGN, 2016). Consequently, the estimated error for the differences 
calculated between both point clouds can be evaluated as the propaga-
tion of the errors providing a RMSE value of 0.140 m and 0.020 m/year 
for the absolute subsidence and the deformation rate, respectively. The 
estimated error is a lower estimation from the RMSE. Obviously, the 
actual error will be higher since the processing error should be included. 
However, the flight line, the filtering and the registration errors are 
difficult to be evaluated (Lague et al., 2013). 

2.2.2. InSAR 
To test the agreement between the temporal evolution of ground 

surface displacement obtained by LiDAR and previous InSAR studies, 
the results from 114 X-band SAR images acquired by Cosmo-SkyMed 
(hereinafter referred to as CSK) satellites were used (Ezquerro et al., 
2020). The CSK dataset covers the time period from June 2011 to 
December 2016 in an ascending orbit direction and an area of 676 km2, 
with maximum temporal and spatial baseline of 269 days and 488 m, 
respectively, in order to reduce temporal decorrelation. 

Due to the agricultural predominance of the processed area, a Small 
Baselines (SBAS) approach was selected to ensure a good point density. 
The advanced differential SAR interferometry algorithm Coherent Pixels 
Technique (CPT) (Blanco-Sánchez et al., 2008), a Persistent Scatterer 
Interferometry technique, was used to generate line of sight (LOS) 
displacement time series. This algorithm is characterized by the capa-
bility to isolate the atmospheric artifacts component and to minimize the 
noise contribution enabling an accurate estimation of the displacements. 
The obtained displacements maps contained 422,458 coherent pixels 
with a resolution near 25 × 25 m selected according to their coherence 
(higher than 0.40). For further details on the processing of SAR data we 
refer the reader to the work published by Ezquerro et al. (2020). 

2.2.3. GNSS 
Three permanent Global Navigation Satellite System (GNSS) stations 

named LRCA, LORC and ORCA (Fig. 1) are located in the north-western 
sector of the study area (Bonì et al., 2015; Ezquerro et al., 2020). 

ORCA GNSS station (Fig. 1) is placed in the area of maximum sub-
sidence providing information from February 2016 to September 2017 
(Fernández-Merodo et al., 2021). The LRCA dataset covers the period 
December 2012 – September 2017, while LORC dataset spans from April 
2011 to September 2017. Daily GNSS stations measurements are weekly 
processed by the IGN using the software Bernese 5.2 (Dach et al., 2015). 

3. Methodology 

A new approach to monitor land subsidence using LiDAR point 

clouds is presented in this section. Fig. 2 shows the workflow and the 
main modules of the approach, which can be organized into four steps as 

Table 1 
Basic parameters of the LiDAR datasets from Lorca used in this study (IGN, 2022).  

Processing year Flight start date (yyyy/mm) Flight end date (yyyy/mm) Density (p/m2) Flight relative height (m) Pulse rate (kHz) RMSE z (m) Main sensor 

2009 2009/10 2009/11 0.5 2727 70.2/89.2 0.113 LEICA ALS50 
2016 2016/08 2016/09 0.5 3317 74.8/89.2 0.083 LEICA ALS60  

Fig. 2. Flowchart of the LiDAR data processing used in this work.  
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follows. 
Step 1: First, the point clouds were downloaded from the IGN server. 

Each point cloud dataset was independently processed performing its 
integration and merging. 

Step 2: Because of internal elevation edge connection errors and 
adjacent edge strips misplaced, the point cloud elevation errors are 
significant in the different flight strips. To detect and smooth the error 
range, the first step consisted in separating the filtered point clouds into 
different cell heights (i.e. maximum, minimum and mean cell heights). 
To this aim, a raster grid was generated and the maximum, minimum 
and mean heights values were calculated for each cell. Regarding the 
calculation of the mean cell height of every cell, the median point was 
chosen if the cell contained an odd number of points, otherwise the point 
with the closest value to the average was selected for an even number of 
points. As the density of point clouds is 0.5 p/m2, a 2 m raster grid range 
was selected. At this point, rasterization effectively improved the dis-
tribution of point clouds on the datasets which was originally irregular 
and unstructured, taking up huge storage space. Then, the mean cell 
height was adopted as default value for each pixel of the rasterized point 
clouds. However, since a clear strip pattern was still observed along the 
distinct flight lines, the mean height values in the flight lines were 
replaced by smoother values derived from the maximum and minimum 
cell heights. To this aim, the M3C2 calculation which was comprehen-
sively discussed in Step 5 was used to identify the cell height values from 
the maximum and minimum rasterized point clouds that minimize the 
differences between 2009 and 2016 rasterized point clouds as follows. 
Firstly, the M3C2 distances between the maximum height values of each 
rasterized point cloud (i.e. 2009 and 2016) were calculated. Secondly, 
the same distances were calculated for the minimum height values of 
each rasterized point clouds. Finally, comparing the M3C2 differences 
on both sides of the flight lines from both rasterized point clouds, the 
height values that exhibited minimal M3C2 differences were adopted to 
replace the mean height values in the flight lines in order to be used in 
the next steps. 

Step 3: The rasterized point clouds were filtered in order to separate 
them into ground and non-ground points. This is an essential and pre-
liminary step to detect ground deformations. Otherwise, the real de-
formations would be hidden by non-ground (i.e. man-made) change 
noise. Therefore, firstly, the rasterized point clouds were separated into 
ground and non-ground points by means of the “Classify LAS ground” 
tool in ArcGIS (ArcGIS, 2022) selecting a conservative ground detection 
method to identify ground points. Then the classified ground points with 
great gradient were judged by the gradient algorithm, which removed 
non-ground points preserving ground points to a great degree (Li, 2013). 
Subsequently, we filtered dense and continuous non-ground points using 
the cloth simulation filter (CSF) algorithm (Zhang et al., 2016) which 
considers terrain as a piece of cloth sticking to the surface in which the 
shape of the cloth is the Digital Surface Model (DSM). Second, the point 
cloud is turned upside down, and then the surface of the cloth is the 
Digital Elevation Model (DEM). Finally, based on the cloth simulation 
technique, we utilized CSF algorithm to extract wide-spread non-ground 
points from LiDAR point cloud. In this way, the original DSM is trans-
formed into a DEM. It should be noted that the successive application of 
the CSF algorithm jointly with the unsupervised classification and 
gradient algorithms ensures a conservative estimation of ground points 
in order to reduce the noise (Cai et al., 2019; Zhang et al., 2016). 

Step 4: The iterative closest point (ICP) algorithm is used for the 
registration of the rasterized point cloud to perform a robust alignment. 
The selection of the ICP is based on the stability and robustness of this 
algorithm to perform the rigid transformation that enables translating 
and rotating the point cloud while maintaining their shape and scale (Li 
et al., 2020; Wang et al., 2020). It should be noted that this trans-
formation has six degrees of freedom (3 for translation and 3 for rota-
tion). Therefore, the registration precision is affected by the subsidence 
area. In this case, the point clouds were firstly aligned in the stable area 
by ICP to gain the transformation matrix. The oldest Permian-Triassic 

mountain areas that run parallel to the valley direction were consid-
ered as stable areas based on geological criteria, and in agreement with 
the stable areas shown by InSAR results. Then the whole point clouds 
were aligned by using the transformation matrix obtained in the previ-
ous step. 

Step 5: The deformation between two epochs was vertically esti-
mated on point clouds without the need for surface interpolation or 
gridding, by means of the multiscale model-to-model cloud comparison 
(M3C2) algorithm (Bernard et al., 2021). M3C2 enables the estimation 
of orthogonal distances in a multi-temporal airborne LiDAR dataset. In 
the M3C2 algorithm, assuming two successive point clouds, the first one 
will be called the reference point cloud, and the second one the com-
parison point cloud. While M3C2 can be applied on all points, the 
reference point cloud is taken as the core point in this work. The use of a 
regular grid of core points is not only to allow the computation of robust 
statistics of changes unbiased by spatial variations in point density, but 
also to speed up calculation. Finally, the aligned dataset was calculated 
by M3C2, and the cumulative difference was obtained. 

Finally, InSAR and LiDAR results were homogenized, with the aim of 
comparing them to evaluate their correlation and differences. Firstly, 
the velocity and the cumulative InSAR displacements measured along 
the line of sight (LOS) of the satellite were projected along the vertical 
direction considering the acquisition angle of InSAR to make them 
comparable. Then, we tessellated the common subsidence area between 
InSAR and LiDAR datasets using squares of 100 m of side. Finally, we 
calculated the mean values for each grid to compare and correlate both 
datasets. 

Additionally, the vertical displacement rates including InSAR and 
LiDAR along two cross-sections passing through the GNSS stations have 
been also compared to assess the accuracy of the results. In order to do 
so, all points contained within a 10 m buffer area around the profiles 
were selected for plotting the cross sections. The GNSS vertical velocities 
and the compressible soil thickness derived from Fig. 1b were also 
represented on the profiles. Finally, the maximum discrepancy (MaxD), 
the minimum discrepancy (MinD), the mean absolute discrepancy (MD), 
the standard deviation of the discrepancy, the root mean square error 
(RMSE) and the mean absolute percentage error (MAPE) between GNSS, 
LiDAR and InSAR were calculated for LORC and ORCA GNSS stations. 

4. Results and analyses 

4.1. LiDAR results 

Fig. 3a shows the velocity results calculated by the proposed LiDAR- 
based method over the study area, covering an extension of about 140 
km2. As can be seen, although the distinct adjacent flight lines have been 
processed, the results show a clear strip pattern. These height “steps” are 
related to the discrepancies between overlapping LiDAR strips (Latypov, 
2002; Zhang et al., 2015) of the different flight lines (Fig. S1). 

The results show that maximum cumulative displacements derived 
from LiDAR reached up to − 98 cm, corresponding to an annual velocity 
of − 14 cm/year. The areas with the highest subsidence rates (i.e. faster 
than − 7 cm/year) exhibit a SW-NE elliptical shape parallel to the valley 
direction located in the central sector of the Alto Guadalentín Basin 
(Fig. 3a). Note that areas affected by severe subsidence cover 20.55 km2, 
while stable areas exhibiting displacement rates between − 1 and 1 cm/ 
year occupy only 29.89 km2 as shown in Table 2. It is worth noting that 
there are some uplifting zones within the study area covering an 
extension of 20.98 km2 probably related to the accuracy of LiDAR and 
the processing errors. 

4.2. Comparison with InSAR time series 

In this section, the calculated LiDAR results and measurements 
derived from InSAR data are compared (Fig. 3a-b). We have used the 
same colour scale for both figures for direct comparison purposes, 

L. Hu et al.                                                                                                                                                                                                                                       



RemoteSensingofEnvironment280(2022)113218

6

Fig. 3. (a) Vertical velocity map for the 2009–2016 period derived from LiDAR data. (b) Vertical velocity maps for the 2011–2016 period obtained from COSMO-SkyMed satellites. (c) and (d) Cross-sections showing the 
vertical ground deformation rates derived from LiDAR (green dotted lines), InSAR (blue lines), GNSS (black dots), and compressible soil thickness (red lines). The location of the cross-sections A-B, C–D is shown in (a). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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adopting velocities in the range of ±1 cm/year as stable, as adopted for 
InSAR datasets in this area by other authors. The highest land subsi-
dence areas derived from InSAR (Fig. 3b) show a similar shape and 
distribution than LiDAR results (Fig. 3a). Comparing these two patterns 
(Fig. 3a and b), InSAR shows a larger subsidence bowl and a more 
obvious trend parallel to the valley direction. However, the spatial 
extent of the highest subsidence areas is different, reducing from 20.55 
km2 in LiDAR results to 11.05 km2 in InSAR (Table 2), with a difference 
of 9.50 km2. Areas between − 7 to − 5 cm/year and − 3 to − 1 cm/year 
thresholds in LiDAR are similar to that defined by InSAR results, but the 
uplift area (> 1 cm/year) and the stable area (− 1 to 1 cm/year) increase 
the difference to 20.98 km2 and 24.40 km2 between them as shown in 
Table 2. The potential reason is the different sensitivity between LiDAR 
and InSAR technologies in stable areas, especially in the region of 
change, as well as the potential errors inherent to the processing of the 
LiDAR data (e.g. the removal of the non-ground points from the original 
point clouds). 

Fig. 4a shows the correlation between the displacements obtained 
from LiDAR and InSAR data. The Pearson (R) and Spearman (Rs) cor-
relation coefficients reach values of 0.7002 and 0.6842. The difference 
between both coefficients are because Rs evaluates their degree of 
monotonicity and R measures the degree of linearity between two vec-
tors of data (De Winter et al., 2016). It should be noted that R is more 
sensitive to outliers than Rs. The histogram and spatial distribution of 
differences between LiDAR and InSAR measurements is depicted in 
Fig. 4b, c and d. As it can be seen, the differences between LiDAR and 
InSAR vertical displacement rates are normally distributed, with an 
average difference of − 0.49 cm/year, standard deviation of 1.80 cm/ 
year and maximum and minimum differences of 8.05 cm/year and −
13.15 cm/year, respectively. The analysis performed in these sections 
confirms the reliability of aerial LiDAR datasets to obtain land subsi-
dence rate maps in wide areas by means of the proposed methodology. 

4.3. Comparison between LiDAR and GNSS time series 

Continuous GNSS permanent stations (see the aerial surroundings in 
Fig. 5) grant checkpoints to validate the LiDAR and InSAR results. Fig. 6 
and Table 3 show the inter-comparison of the time series obtained by the 
three techniques used in this paper (i.e. LiDAR, InSAR and GNSS) and 
the corresponding statistics for ORCA and LORC stations. The analysis of 
aerial orthophotos over time allows an assessment of changes on urban 
morphology or land cover (Fig. 5) and shows that the surroundings of 
LRCA station changed dramatically between 2009 and 2013. Conse-
quently, only LORC and ORCA were used for the validation and the 
analysis of the subsequent results. The statistics of the comparison be-
tween LiDAR and GNSS is minimum (Table 3). The discrepancy between 
LiDAR and GNSS can be observed that MaxD is 0.584 cm/year, and 
MinD is 0.385 cm/year, and MD is 0.484 cm/year, and the standard 
deviation of discrepancy is 0.141 cm/year, and RMSE is 0.494 cm/year, 
and MAPE is 6.618%. 

The surrounding area of LRCA station was fully rebuilt between 2009 
and 2011, creating new man-made features, during the period only 
covered by LiDAR (Fig. 5a-b). In contrast, there were relatively few 
changes at LRCA station from 2011 to 2016, which was the period 
covered by LiDAR, InSAR and GNSS (Fig. 5b-d). Therefore, due to the 

relative stability of the region in which LRCA station is located, the in-
fluence of the variation of man-made features is much higher than the 
subsidence caused by groundwater withdrawal (Fig. 5m-p). To illustrate 
this interpretation, we have added the DSMs derived from LiDAR in 
2009 and in 2016. Additionally, we have overlapped the LiDAR and 
InSAR vertical velocity results in LRCA station (Fig. 5m-p). Conse-
quently, it is reasonable to believe that LiDAR-derived displacements 
show an opposite trend (i.e. uplift of up to 8.66 cm/year) compared with 
InSAR and GNSS (Fig. 6a). In contrast, the displacements measured by 
InSAR and GNSS exhibit very similar trends with displacement rates of 
− 3.40 and − 2.75 cm/year, respectively. 

LORC GNSS station time series available for this study are the longest 
of all available GNSS datasets. In this location GNSS, InSAR and LiDAR 
velocities are − 7.46, − 8.10 and − 6.58 cm/year, respectively, showing a 
consistent trend between the three techniques with a higher coincidence 
between InSAR and GNSS (Fig. 6b). 

ORCA station shows the highest detected velocities, − 8.42 cm/year, 
while InSAR and LiDAR velocities at that point are − 9.96 and − 7.50 
cm/year, respectively. It should be mentioned that, even if ORCA station 
time series is the shortest, only covering the two year period, LiDAR 
velocity matches well GNSS time series (Fig. 6c). InSAR time series are 
steeper than LiDAR and GNSS results, although they also exhibit a 
similar trend in the stations (Fig. 6c). 

4.4. Comparison between LiDAR results and compressible soil thickness 

As previously mentioned, the spatial distribution of land subsidence 
matches with the distribution of Plio-Quaternary unconsolidated 
compressible materials (i.e. silts and clays). Compressible soil thick-
nesses >100 m are located in the central part of the basin, whereas the 
bordering areas of the basin present thinner compressible soils layers 
(Fig. 1b). The relationship between compressible soil thickness and 
subsidence rates estimated from LiDAR in the studied area is straight-
forward as shown in Fig. 7a. This figure shows, as it was expected, that 
the maximum subsidence rates are measured on the thickest 
compressible soils area, and the trend of the boxplot statistic distribution 
decreases as the thickness increases. Subsidence rate varies in the range 
− 37 to 14 cm/year and − 9 to 37 cm/year for compressible soil 
thickness varying from 0 to 10 m and > 100 m, respectively. The 
observed outlier values are mainly related to the change caused by the 
features built between both LiDAR flights performed in 2009 and 2016 
not filtered during step 3 of the processing algorithm that introduce 
apparent displacements of ground surface. InSAR displacement rates 
also show a clear relationship with the spatial distribution of 
compressible soil thickness in Fig. 7b. The comparison between soil 
thickness and vertical InSAR deformation rates shows a similar trend. 
Subsidence rate varies in the range − 4.23 to 0.48 cm/year and − 11.17 
to − 3.02 cm/year for compressible soil thickness varying from 0 to 10 m 
and > 100 m, respectively. 

As can be seen, the distribution of the compressible deposit controls 
the magnitude of the deformation. Therefore, the thicker the accumu-
lated compressible soil thickness the larger the subsidence magnitude. 
The above described relationship can be observed along cross sections A- 
B and C–D, plotted in Fig. 3c-d as well as in Fig. 7. A good agreement is 
also observed among land subsidence measured by means of the three 
techniques. 

5. Discussion 

5.1. Sources of uncertainty in LiDAR process 

Identifying the sources of uncertainty in point cloud process is 
essential to improve the accuracy and efficiency of the proposed meth-
odology. Three main uncertain sources can be identified. 

The first one is related to the cell height uncertainty of the point 
clouds. In order to filter the flight line errors, the raw point clouds of 

Table 2 
Distribution of areas affected by subsidence rate for LiDAR and InSAR results.  

Subsidence interval 
(cm/year) 

Subsiding area from 
LiDAR (km2) 

Subsiding area from 
InSAR (km2) 

Difference 
(km2) 

<− 7 20.55 11.05 9.50 
− 7 to − 5 16.49 16.97 0.48 
− 5 to − 3 20.77 26.99 6.22 
− 3 to − 1 28.98 28.36 0.62 
− 1 to 1 29.89 54.29 24.40 
>1 20.98 0.00 20.98  
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Fig. 4. (a) Correlation and (b) differences between LiDAR and InSAR data projected in the vertical direction. Rs and R are the Spearman and Pearson correlation coefficient, respectively. (c) Spatial difference map 
between LiDAR and InSAR. (d) Spatial relative difference map between LiDAR and InSAR. Note that positive and negative values in b and c indicate an overestimation and an underestimation, respectively, of the 
displacements measured by LiDAR. The stable areas in d have been masked out in order to avoid the overvaluation of the relative differences. 
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smooth parts among the three different cell height (i.e. the mean, 
maximum and minimum cell heights) is irregular and unstructured. 
Moreover, open-access and non-customized (i.e. non-specifically ac-
quired) pre-processed point clouds have been used, instead of raw data 
acquired ad-hoc. It makes it hard to separate the datasets from different 
flight lines. Hence, there is a high probability that the distances between 
the compared point clouds contain points of different flights that leads to 
the comparison of different cell heights. Furthermore, GNSS and LiDAR 
in the study area are in different elevation coordinate systems, and it is 
difficult to gain the high-accuracy correction data between geodetic 
height and normal height. Consequently, there are no GCPs (ground 
control points) to be used to evaluate the accuracy of different cell 
heights. 

The second source of uncertainty is due to the residual non-ground 
points. The residual number and the rejection rate of points after the 

application of different filtering processes is shown in Table 4. Due to the 
properties of the distinct filters, the advantage of the successive appli-
cation of filters is obvious (Cai et al., 2019; Zhang et al., 2016). Since 
there is no benchmark datasets, the rejection error (i.e. the misclassified 
ground points as non-ground points), the acceptance error (i.e. the 
misclassification of non-ground points as ground points), and the total 
error (i.e. the proportion of all the misclassified points out of all points), 
are impossible to be calculated (Chen et al., 2021; Chen et al., 2013; 
Deng et al., 2021; Li et al., 2017). Therefore, some residual non-ground 
points may still remain in the point clouds after the filtering process 
influencing the M3C2 results and distorting the determination of the 
land subsidence magnitude. 

Another source of error is the uncertainty in point cloud comparison 
(Lague et al., 2013). On the one hand, the position of point clouds not 
only depends on distance from the sensor to the surface and the 

Fig. 5. Aerial view of GNSS stations over time (GeaMap, 2022). The GNSS stations have been labelled using red points. (m-p) DSM derived from LiDAR of 2009 and 
2016 in LRCA station overlapping with LiDAR and InSAR vertical velocity results. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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incidence angle, but also depends on the shape of the surface of the 
observed object. So the position of a point within a point cloud is un-
certain and complex (Soudarissanane et al., 2011). On the other hand, 
the registration error may be anisotropic if the distribution of 

registration constraints is not homogeneous, which is closely related to 
raw data accuracy and precision (Bae and Lichti, 2008). The registration 
error in the whole area could not be accurately calculated due to wide- 
spread subsidence area (Li et al., 2020). Finally, the contribution of 
roughness affects the calculation of the surface normal orientation, 
which is the least well constrained error (Lague et al., 2013). 

5.2. Characteristic of different technologies 

Due to the different techniques of acquisition and processing, LiDAR 
and InSAR have their own characteristics leading to different applica-
tion advantages (Table 5). The application advantages of LiDAR results 
are not only to monitor large-gradient deformation with less time series 
but also to detect rapid and small collapse movements (e.g. sinkholes). 
However, because of the InSAR theory, small deformations could be only 
extracted from points that feature stable scattering. Furthermore, InSAR 
displacement results are mainly feasible for Persistent Scatterers (PS) 
and Distributed Scatterers (DS), and unavailable over areas of low 
coherence, which results in uneven and sparse distribution (Even and 
Schulz, 2018; Perissin and Ferretti, 2007), whereas LiDAR technique 
provides an unstructured dense coverage. As a consequence, there are 
more possibilities that some sites of interest may not have coherent 
points nearby after InSAR processing. 

With regards to the acquisition, there are both open-access and 
commercial datasets about LiDAR and InSAR. Commercial LiDAR 
datasets are usually customized and preprocessed, while there are plenty 
of regular commercial InSAR satellites such as CSK operated by the 
Italian Space Agency (ASI) or TerraSAR-X from the German Aerospace 
Center (DLR). Also important, the LiDAR data acquisition from aerial 
aircraft can be planned by the users being more flexible in the flight 
parameters. In contrast, open-access SAR images used for InSAR pro-
cessing over wide areas are systematically acquired at regular time in-
tervals (e.g. Sentinel-1 from the European Space Agency). Otherwise, 
customized InSAR and LiDAR datasets are more expensive than com-
mercial non-customized InSAR datasets. In this case, LiDAR datasets are 
freely available from PNOA while InSAR datasets are acquired from 
commercial CSK satellites. As a consequence, it is possible to obtain 
displacements time series from open-access InSAR, but only cumulative 
deformation results from LiDAR unless regular and expensive custom-
ized flights were performed. 

It should be also mentioned that, according to InSAR theory (Bekaert 
et al., 2015a; Hooper, 2006; Hooper et al., 2012; Hooper et al., 2007), 
although the accuracy of InSAR data is lower than LiDAR data, the 
precision of the displacement rate derived from InSAR by calculating the 
phase differences is higher than that obtained from LiDAR differencing. 
Moreover, for the time series InSAR techniques a large number of radar 
images are available to determine the displacement, while it is usually 
hard to collect enough open-access time series LiDAR datasets of the 
same scene. 

InSAR capability to detect slow deformation over terrain areas is 
limited by temporal decorrelation, geometric decorrelation and atmo-
spheric artifacts, which is also a relative advantages of LiDAR. Even 
decorrelation and atmospheric problems can be solved by multi- 
temporal InSAR, while these techniques require more machine and 

Fig. 6. InSAR, GNSS and LiDAR time series at LRCA (a), LORC (b), ORCA (c). 
See the location of the GNSS stations in Fig. 1. 

Table 3 
Statistics of the comparison between LiDAR-InSAR, LiDAR-GNSS and InSAR- 
GNSS results for points LORC and ORCA. See comparison in Fig. 6.  

Statistics 
index 

MD (cm/ 
year) 

MaxD (cm/ 
year) 

MinD (cm/ 
year) 

RMSE (cm/ 
year) 

MAPE 
(%) 

LiDAR- 
InSAR 

1.446 ±
0.598 

1.869 1.024 1.507 19.746 

LiDAR- 
GNSS 

0.484 ±
0.141 

0.584 0.385 0.494 6.618 

InSAR- 
GNSS 

0.615 ±
0.164 

0.730 0.499 0.625 7.522  
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skill-demanding resources than LiDAR processing. 

6. Conclusions 

In this work, a new advanced solution for the regional measurement 
of large vertical deformation caused by groundwater-withdrawal- 
induced land subsidence using open-access, non-specifically acquired 
and non-customized LiDAR datasets is presented. Its performance was 
tested and validated by InSAR and GNSS techniques. Moreover, the re-
lationships between land subsidence deformation and the distribution of 
compressible soil thickness and aquifer system were analyzed and dis-
cussed. Finally, the sources of errors in LiDAR processing were system-
atically summarized, and the characteristics of the two technologies 
were compared. The main conclusions can be drawn as follows: 

First, we took the lead to use aerial LiDAR datasets available at 
nation-scale in some countries to successfully monitor land subsidence. 
The methodology applied to the Alto Guadalentín basin, an area 
exhibiting the highest subsidence rate in Europe caused by groundwater 
withdrawal, provides a cumulative LiDAR deformation map between 
2009 and 2016. The results are in agreement with previous research in 
this region. The deformation map indicates that vertical deformation 
during the period 2009–2016 was concentrated in the center of the 
basin, exhibiting an annual velocity up to − 14 cm/year. Continuous 
data from GNSS stations and time series data from InSAR have 
confirmed the existence of that trend. These data were also used to 
validate the vertical deformation results obtaining a good agreement. 

Second, land subsidence results were compared to the compressible 
soil thickness variations. A clear relationship between compressible soil 
thickness and land subsidence indicating that the thicker the accumu-
lated compressible soil the larger the vertical deformations can be 
verified in this area in agreement with previous works (Bonì et al., 2015; 
Ezquerro et al., 2020). 

Third, in the wake of these results, an upcoming challenge is to 
analyze in detail main characteristic and uncertainties of open-access 
LiDAR processing. The use of LiDAR has led to a complementary 
deformation monitoring of the Guadalentín aquifer system character-
ized by the even spatial coverage, flexible acquisition, and high sensi-
tivity for changes, which is unattainable by traditional methods. 

The proposed methodology opens the door to the exploitation of 
massive archives of LiDAR datasets to study large deformations at 
regional scale in different areas of interest of Spain and other countries 
in which similar LiDAR open-access and non-customized datasets are 
available. More widely, the findings of this work confirmed the 

Fig. 7. Relationship between compressible soil thickness and vertical deformation rates derived from the LiDAR (a) and InSAR (b).  

Table 4 
Residual number and rejection rate of points after the application different of 
filters.   

2009 point cloud 2016 point cloud  

N◦ of 
points 

Rejection 
rate (%) 

N◦ of 
points 

Rejection 
rate (%) 

N◦ of points of the 
original dataset 

34,052,366  34,122,595  

N◦ of points of the 
classified dataset 

24,860,169 26.99 22,567,743 33.86 

N◦ of points of the 
classified dataset 
and processed by 
gradient 

24,710,387 0.60 22,416,079 0.67 

N◦ of points of the 
classified dataset 
and processed by 
gradient and CSF 

22,104,544 10.55 20,036,065 10.67  

Table 5 
Comparison of the main features of LiDAR and InSAR for monitoring land 
subsidence.  

Concept LiDAR InSAR 

Application 
advantages 

Large-gradient deformation, 
rapid and small collapse 
movements 

Slow displacement 

Distribution of 
points 

Unstructured dense 
distribution according to 
sample interval 

Uneven and sparse 
distribution according to 
coherent points 

Acquisition Open-access / non- 
customized datasets and 
customized datasets 

Open-access datasets, 
commercial non-customized 
datasets and customized 
datasets 

Flight parameters Flexible for customized 
datasets and rigid for open- 
acces/non-customized 
datasets 

Regular acquisitions 

Time series 
sampling 
frequency 

Low Medium 

Precision of DEM High Medium 
Precision of 

velocity 
Medium High 

Decorrelation No Temporal and geometric 
decorrelation 

Atmospheric 
retardation 

Low High  
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capability of LiDAR technology to monitor a variety of activities at 
regional scale in the framework of land subsidence mitigation and 
management, which has significant implications for its application in 
similar geological contexts. 
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López Molina, A., Tessitore, S., Staller, A., Ortega-Becerril, J.A., García-García, R.P., 
2016. Interpolation of GPS and geological data using InSAR deformation maps: 
method and application to land subsidence in the alto Guadalentín aquifer (SE 
Spain). Remote Sens. 8 (11). 

Bekaert, D., Hooper, A., Wright, T., 2015a. A spatially-variable power-law tropospheric 
correction technique for InSAR data. Journal of geophysical research: solid. Earth 
120. 

Bekaert, D., Walters, R., Wright, T., Hooper, A., Parker, D., 2015b. Statistical comparison 
of InSAR tropospheric correction techniques. Remote Sens. Environ. 170, 40–47. 

Bernard, T., Lague, D., Steer, P., 2021. Beyond 2D landslide inventories and their 
rollover: synoptic 3D inventories and volume from repeat lidar data. Earth Surface 
Dynamics 9, 1013–1044. 

Blanco-Sánchez, P., Mallorquí, J.J., Duque, S., Monells, D., 2008. The coherent pixels 
technique (CPT): an advanced DInSAR technique for nonlinear deformation 
monitoring. Pure Appl. Geophys. 165 (6), 1167–1193. 

Bonì, R., Herrera, G., Meisina, C., Notti, D., Béjar-Pizarro, M., Zucca, F., González, P.J., 
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Guardiola-Albert, C., García-Davalillo, J.C., López-Vinielles, J., Sarro, R., Bru, G., 
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