9,774 research outputs found

    Bagging and boosting classification trees to predict churn.

    Get PDF
    Bagging; Boosting; Classification; Churn;

    Bagging and boosting classification trees to predict churn.

    Get PDF
    In this paper, bagging and boosting techniques are proposed as performing tools for churn prediction. These methods consist of sequentially applying a classification algorithm to resampled or reweigthed versions of the data set. We apply these algorithms on a customer database of an anonymous U.S. wireless telecom company. Bagging is easy to put in practice and, as well as boosting, leads to a significant increase of the classification performance when applied to the customer database. Furthermore, we compare bagged and boosted classifiers computed, respectively, from a balanced versus a proportional sample to predict a rare event (here, churn), and propose a simple correction method for classifiers constructed from balanced training samples.Algorithms; Bagging; Boosting; Churn; Classification; Classifiers; Companies; Data; Gini coefficient; Methods; Performance; Rare events; Sampling; Top decile; Training;

    Applications in security and evasions in machine learning : a survey

    Get PDF
    In recent years, machine learning (ML) has become an important part to yield security and privacy in various applications. ML is used to address serious issues such as real-time attack detection, data leakage vulnerability assessments and many more. ML extensively supports the demanding requirements of the current scenario of security and privacy across a range of areas such as real-time decision-making, big data processing, reduced cycle time for learning, cost-efficiency and error-free processing. Therefore, in this paper, we review the state of the art approaches where ML is applicable more effectively to fulfill current real-world requirements in security. We examine different security applications' perspectives where ML models play an essential role and compare, with different possible dimensions, their accuracy results. By analyzing ML algorithms in security application it provides a blueprint for an interdisciplinary research area. Even with the use of current sophisticated technology and tools, attackers can evade the ML models by committing adversarial attacks. Therefore, requirements rise to assess the vulnerability in the ML models to cope up with the adversarial attacks at the time of development. Accordingly, as a supplement to this point, we also analyze the different types of adversarial attacks on the ML models. To give proper visualization of security properties, we have represented the threat model and defense strategies against adversarial attack methods. Moreover, we illustrate the adversarial attacks based on the attackers' knowledge about the model and addressed the point of the model at which possible attacks may be committed. Finally, we also investigate different types of properties of the adversarial attacks

    Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems

    Get PDF
    Big data analytics is a virtually new term in power system terminology. This concept delves into the way a massive volume of data is acquired, processed, analyzed to extract insight from available data. In particular, big data analytics alludes to applications of artificial intelligence, machine learning techniques, data mining techniques, time-series forecasting methods. Decision-makers in power systems have been long plagued by incapability and weakness of classical methods in dealing with large-scale real practical cases due to the existence of thousands or millions of variables, being time-consuming, the requirement of a high computation burden, divergence of results, unjustifiable errors, and poor accuracy of the model. Big data analytics is an ongoing topic, which pinpoints how to extract insights from these large data sets. The extant article has enumerated the applications of big data analytics in future power systems through several layers from grid-scale to local-scale. Big data analytics has many applications in the areas of smart grid implementation, electricity markets, execution of collaborative operation schemes, enhancement of microgrid operation autonomy, management of electric vehicle operations in smart grids, active distribution network control, district hub system management, multi-agent energy systems, electricity theft detection, stability and security assessment by PMUs, and better exploitation of renewable energy sources. The employment of big data analytics entails some prerequisites, such as the proliferation of IoT-enabled devices, easily-accessible cloud space, blockchain, etc. This paper has comprehensively conducted an extensive review of the applications of big data analytics along with the prevailing challenges and solutions

    Adaboost‑Based Security Level Classifcation of Mobile Intelligent Terminals

    Get PDF
    With the rapid development of Internet of Things, massive mobile intelligent terminals are ready to access edge servers for real-time data calculation and interaction. However, the risk of private data leakage follows simultaneously. As the administrator of all intelligent terminals in a region, the edge server needs to clarify the ability of the managed intelligent terminals to defend against malicious attacks. Therefore, the security level classification for mobile intelligent terminals before accessing the network is indispensable. In this paper, we firstly propose a safety assessment method to detect the weakness of mobile intelligent terminals. Secondly, we match the evaluation results to the security level. Finally, a scheme of security level classification for mobile intelligent terminals based on Adaboost algorithm is proposed. The experimental results demonstrate that compared to a baseline that statistically calculates the security level, the proposed method can complete the security level classification with lower latency and high accuracy when massive mobile intelligent terminals access the network at the same time
    • …
    corecore