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BAGGING AND BOOSTING CLASSIFICATION TREES 

TO PREDICT CHURN 

 

 

 

ABSTRACT 

In this paper, the bagging and boosting classification techniques are 

brought to the attention of marketing researchers. Applied to a customer 

database of an anonymous U.S. wireless telecom company, bagging — as well as 

boosting — is proven to significantly improve accuracy in predicting churn. This 

higher predictive performance could ultimately lead to incremental profit for 

companies that would be willing to use these methods. Furthermore, results 

illustrate that the use of a balanced sampling scheme is recommended when 

predicting a rare event from large datasets, but consequently requires an 

appropriate bias correction. 

KEYWORDS: bagging, boosting, classification, churn, gini coefficient, rare 

events, sampling, top-decile lift. 
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INTRODUCTION 

Classification issues are very common in marketing literature. One of the 

most frequent topics envisioned as a classification task is consumer choice 

modeling (see e.g. Chung and Rao 2004; Corstjens and Gautschi 1983; Currim, 

Meyer and Le 1988; Guadagni and Little 1983; Kalwani, Meyer and Morrison 

1994). The present study considers a binary choice problem, i.e. predicting 

customers’ churn behavior.  

Several classification models exist, but one of the most popular is the 

(binary) logit model which has been used extensively in marketing to solve binary 

— or multiple — choice problems (see e.g. Andrews, Ainslie, and Currim 2002). 

More sophisticated models, which take into account the heterogeneity in 

consumer response, include finite mixture models (see e.g. Andrews and Currim 

2002; Wedel and Kamakura 2000), or hierarchical Bayes techniques (see e.g. 

Arora, Allenby, and Ginter 1998; Yang and Allenby 2003). For binary choice 

problems, these approaches require the availability of panel data, i.e. data from a 

number of observations over time on a number of customers. In many 

applications however (including the present one), a customer is only observed 

once over time, which makes it impossible to disentangle the individual effects 

from the random errors (Donkers et al. 2005). 

In this paper, we bring to the attention of marketers the bagging and 

boosting classification models originating from the statistical machine learning 

literature. Bagging (Breiman 1996) consists in sequentially estimating a binary 

choice model — named base classifier in machine learning — from resampled 

versions of a given calibration sample. The obtained classifiers form a committee 
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from which a final choice model can be derived by simple aggregation. While 

bagging is very simple and easy-to-use, more sophisticated variants also exist. 

Stochastic gradient boosting (Friedman 2002) is one of the latest developments 

thus far, and includes weights in the resampling procedure. 

Even though bagging and boosting have received increasing attention in 

various fields (e.g. Friedman, Hastie and Tibshirani 2000, for the UCI machine 

learning archive; Nardiello, Sebastiani and Sperduti 2003, for text categorization; 

Varmuza, He and Fang 2003, in chemometrics; or Viane, Derrig and Dedene 2002, 

for an application in fraud claim detection), to the best of our knowledge, 

marketing literature does not contain any reference (yet) to these models. 

Therefore, we attempt to fill this gap, and empirically investigate whether 

bagging and stochastic gradient boosting can challenge more traditional choice 

models. In particular, we examine their performance in predicting customers’ 

churn behavior for an anonymous U.S. wireless telecom company.1 To evaluate 

the predictive accuracy of our churn model, we will not only consider the 

misclassification rate — which may be misleading for rare events like churn — but 

also the gini coefficient and the top-decile lift.  

Churn is a marketing-related term characterizing whether a current 

customer decides to take his business elsewhere (here, to defect from one mobile 

service provider to another). Like in many other sectors (e.g. the newspaper 

business), churn is an important issue for the U.S., but also the European wireless 

telecom industry. Monthly churn rates amount to approximately 2.6% (Hawley 

2003), due to an increased competition, the lack of differentiation, and the 

                                                 
1 The database was provided by the Teradata Center for Customer Relationship Management at Duke 
University in the context of the Churn Modeling Tournament. 
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saturation of the market. As the cost of replacement of a lost wireless customer 

amounts to $300 to $700 (depending on the source of information, see e.g. The 

Wall Street Journal Europe 2000, September 18) in terms of sales support, 

marketing, advertising and commissions, it is easy to realize that churn may have 

damageable consequences for the financial wealth of companies. Predicting churn, 

however, enables the elaboration of targeted retention strategies to limit these 

losses (Bolton, Kannan and Bramlett 2000, Ganesh, Arnold and Reynolds 2000, 

Shaffer and Zhang 2002). For example, specific incentives may be offered to the 

most risky customers’ segment (i.e. the most inclined to leave the company), 

hoping them to remain loyal. Other scientific studies also pointed out the 

advantage of customer retention as a low-cost operation, compared to the cost 

involved in attracting new customers (Athanassopoulus 2000; Bhattacharya 1998; 

Colgate and Danaher 2000). 

Despite the financial consequences such a 2% monthly churn rate may lead 

to, customers’ defection is still — statistically speaking — a rare event. 

Consequently, when the churn predictive model is estimated on a random sample 

of the customers’ population, the vast majority of non-churners in this 

proportional calibration sample (i.e. the number of churners in this randomly 

drawn sample is proportional to the real-life churn proportion) will dominate the 

statistical analysis, which may hinder the detection of churn drivers, and 

eventually decrease the predictive accuracy. To encompass this issue, the 

calibration sample size can be increased. However, this solution is usually not 

optimal (see Results section; King and Zeng 2001a). A better solution to this issue 

consists in applying a selective sampling scheme to increase the number of 

churners in the calibration sample. Such a sampling scheme is called balanced 



 5

sampling (or stratified sampling in King and Zeng 2001a,b). Theoretically, a 

potentially better performing classifier could be obtained from such a sample, 

especially for small sample sizes (see e.g. Donkers, Franses and Verhoef 2003, 

King and Zeng 2001a,b). We investigate whether these findings are still valid for 

large sample sizes. 

Estimating a classification model from a balanced sample usually 

overestimates the number of churners in real life. Several methods exist to correct 

this bias (see e.g. Cosslett 1993; Donkers, Franses and Verhoef 2003; Franses and 

Paap 2001, p.73-75; Imbens and Lancaster 1996; King and Zeng 2001a,b; Scott 

and Wild 1997). However, most of these corrections are dedicated to traditional 

classification methods such as binary logit model. We therefore discuss (in the 

Bias Correction section) two easy correction methods for bagging and boosting, 

from which marketers may take profit to predict churn. 

To summarize, the following research question will be investigated (i.a) do 

the recent developments in statistical machine learning outperform the traditional 

binary logit model to predict churn? If so, (i.b) what are the financial gains to be 

expected from this improvement? And (i.c) what are the more relevant churn 

drivers or triggers that marketers could watch for? Moreover, we propose (ii.a) 

two bias correction methods for balanced samples, and investigate (ii.b) how they 

comparatively perform. Finally, we will also investigate (iii) whether a choice 

model estimated on a balanced sample, and appropriately corrected for the bias, 

outperforms a choice model estimated on a proportional sample, in large sample 

configurations. 
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The remainder of the paper is organized as follows. The next section 

contains a description of the data. The three subsequent sections respectively 

outline the bagging and boosting models, the bias correction methods for balanced 

sampling schemes, and the assessment criteria. We then empirically answer the 

aforementioned research questions, while the last section concludes. 

DATA 

The study is performed on a dataset provided by the Teradata Center at 

Duke University. This database contains three datasets of mature subscribers (i.e. 

customers who were with the company for at least six months) of a major U.S. 

wireless telecom carrier. The variable to predict is whether a subscriber will churn 

during the period 31-60 days after the sampling date, knowing that the actual 

average monthly churn rate was reported to be around 1.8%. A delay of one 

month in measuring the churn variable is justified as the implementation of 

proactive customer retention incentives requires some time. In this case, 

marketers would have one month delay to target and retain customers before they 

would have churned. The churn response is coded as a dummy variable with 

1=y  if the customer churns, and 1−=y  otherwise. 

The two first datasets are used as calibration samples of 51,306 

observations each2. The first dataset is a proportional calibration sample (the 

proportion of churners in the sample is about 1.8%), while the second contains an 

oversampled number of churners such that the number of churners is perfectly 

balanced by the number of non-churners. The third dataset contains 100,462 

customers — of whom 1.8% are churners — selected at a future point in time. It is 
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used as a validation (hence not used in the estimation part) hold-out sample to 

evaluate the performance of the prediction rules constructed from one of the 

aforementioned calibration samples. All samples contain a different set of 

customers. 

To predict the churn potential of customers, U.S. wireless operators usually 

take into account between 50 and 300 subscriber variables as explicative factors 

(Hawley 2003). From the high number of explicative variables contained in the 

initial database (171 variables), we retain 46 variables, including 31 continuous 

and 15 categorical variables. Retained predictors include behavioral (e.g. the 

average monthly minutes of use over the previous three months, the total revenue 

of a customer account, or the base cost of a calling plan), company interaction 

(e.g. mean unrounded minutes of customer care calls), and customer 

demographics (e.g. the number of adults in the household, or the education level 

of the customer) variables (see Table 1 for an overview). The variable selection is 

done by first excluding all variables containing more than 30% of missing values. 

Among the remaining variables, we select the potentially most relevant ones, 

following the results of a principal components analysis.3 Note that, for an equal 

comparison, we consider the exact same set of variables for all investigated 

models. 

[Insert Table 1 about here] 

                                                                                                                                                  
2 Originally, the second dataset contained 100,000 observations, but its size was reduced (by taking a random 
subset from it) to ensure a fair comparison between both calibration samples. 
3 As the purpose of this paper is to investigate the comparative performance of different models, we do not go 
into further details about the variables selection which was mainly done to reduce computation time. Some 
experiments indicated that the performance of the classification rules hardly changed regardless a variable 
selection procedure was implemented or not. 
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The handling of missing values is operated differently for the continuous 

and the categorical predictors. For the continuous variables, the missing values 

are imputed by the mean of the non-missing ones. As not answering a question 

may be as informative as a specific response, an extra predictor is also added 

indicating, for each observation, whether at least one imputation has been made. 

For categorical predictors, an extra level is created for each of them, indicating 

whether the value was missing or not. 

THE BAGGING AND BOOSTING MODELS 

Bagging and boosting both originate from the machine learning research 

community, and are based on principle of classifier aggregation. This idea was 

inspired by Breiman (1996) who found gains in accuracy by combining several 

base classifiers, sequentially estimated from perturbed versions of the calibration 

sample. Among the several possible alternatives of base classifiers, classification 

trees (also known as CART, Breiman et al. 1984) are a sensible choice (Breiman 

1996). Their use is not widespread in marketing literature, exceptions being e.g. 

Baines et al. (2003), Currim, Meyer and Le (1988), and Haughton and Oulabi 

(1993), although they are powerful nonparametric methods. Over the recent years, 

statistical theory has been elaborated to provide a theoretical background to these 

techniques (e.g. Bühlmann and Yu 2002, for bagging; Friedman, Hastie and 

Tibshirani 2000, for boosting; Hastie, Tibshirani, and Friedman 2001, for a 

comprehensive review).  

For the sake of conciseness, the following subsection contains a brief 

description of the bagging algorithm. In the next subsection, we provide further 

details about the main differences between bagging and stochastic gradient 
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boosting, one of the most sophisticated versions of boosting so far. In-depth 

description of this method can be found in Friedman (2002). 

Bagging 

Bagging (i.e. Bootstrap AGGregatING) is, by far, the simplest technique to 

upgrade, or to “boost”, the performance of a given choice model. Denote the 

calibration sample by ( ) ( ) ( ){ }NNii yxyxyxZ ,,,,,,, 11 KK= , where N  is the 

number of customers in the calibration sample. In this expression, 

),...,,...,( 1 iKikii xxxx =  represents a vector containing the K  predictors for 

customer i , while iy  (equal to 1 or —1) indicates whether this customer i  will 

churn or not. A base classifier f̂  is estimated from this calibration sample, giving 

a score value ( )xf̂  to each customer, with x  the characteristics of this subscriber. 

This score value indicates the risk to churn associated with each customer. For a 

specified cut-off value τ , customers can be predicted as churners or non-churners 

by computing  

( )( )τ−= xfsignxc ˆ)(̂ ,    (1) 

returning values +1 or —1. If ( )ixf̂  is larger than τ , customer i  will be classified 

as a churner, while, if ( )ixf  is smaller than τ , the customer will be predicted as 

a non-churner. When using a classification tree as base classifier, the score is 

given by ( ) ( ) 1ˆ2ˆ −= xpxf , where ( )xp̂  is the probability to churn as estimated 

by the tree. When working with a proportional calibration sample, we set 0=τ . 

In the presence of a non-proportional calibration sample, the value of τ  varies 

(see next section). 
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From the original calibration set Z , we construct B  bootstrap samples 

BbZ b ,,2 ,1 ,* K= , by randomly drawing, with replacement, N  observations from 

Z . Note that the size of the bootstrap samples equals the original calibration 

sample size. From each bootstrap sample *
bZ , a base classifier is estimated, giving 

B  score functions ( ) ( ) ( )xfxfxf Bb
***

1
ˆ,, ˆ,, ˆ KK . These functions are then aggregated 

into the final score 

( )∑
=

=
B

b
bbag xf

B
xf

1

*ˆ1
)(ˆ .    (2) 

Classification can then be carried out via 

( )Bbagbag xfsignxc τ−= )(ˆ)(ˆ , with { }1 ,1)(ˆ −∈xcbag .  (3) 

Again, the cut-off value Bτ  equals zero in the presence of a proportional 

calibration sample. To determine the optimal value of B  (i.e. the number of 

bootstrap samples), a strategy consists in selecting B  such that the apparent 

error rates4 (i.e. error rates on the calibration data) remain as good as constant 

for values larger than B . In our application, we set 100=B . 

Like for traditional classification models, diagnostics measures can also be 

obtained for the estimated bagging model. These are important to give some face 

validity to the estimated model. For instance, one may investigate the estimated 

relative importance of each predictor in the construction of the classification rule. 

For a single tree, the relative importance of a predictor can be computed as in 

                                                 
4 Other criteria could also be considered (e.g. the gini coefficient or the top-decile lift). 
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Hastie, Tibshirani and Friedman (2001).5 For bagging (and similarly for 

boosting), the relative importance of an explicative variable is simply averaged 

over all B  trees. Also the partial dependence of churn on a specified predictor 

variable can be investigated. This measure provides similar insight than the 

parameters’ estimates value of a logit model, but advantageously allows for non-

linear relationships between the predictors and the dependent variable. A partial 

dependence plot represents the impact of a predictor variable on the churn 

probability of a customer, conditional on all other predictors. In practice, the 

partial dependence of the dependent variable on a specified value of a predictor 

kx  is obtained by assigning this value of kx  to all observations of the calibration 

sample. The model is subsequently estimated, and the N  resulting predicted 

probabilities computed for the calibration data. The partial dependence on a 

specified value of kx  is eventually given by averaging over these N predicted 

probabilities. The partial dependence plot is obtained by letting the value 

assigned to kx  varies over a large range of values (for more details, see Friedman 

2001). 

Boosting and Stochastic Gradient Boosting 

Several versions of boosting exist, e.g. the real adaboost (Freund and 

Schapire 1996; Schapire and Singer 1999), logitboost (Friedman, Hastie and 

Tibshirani 2000), or gradient boosting (Friedman 2001). Boosting is more complex 

than bagging, and less easy to put into practice. In this paper, we focus on 

                                                 
5 More precisely, a tree is composed of several nodes, from the root to the leaves (i.e. terminal nodes). Each 
non-terminal node is split into two child nodes on the basis of the value of the variable providing the 
maximal reduction in the squared error rate. The relative importance of a variable xk is then the sum of these 
improvements (reductions) over all nodes where the predictor xk was selected as splitting variable. 
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stochastic gradient boosting6 (Friedman 2002), one of the most recent boosting 

variants, and the winning model of the Teradata Churn Modeling Tournament 

(Cardell, Golovnya and Steinberg 2003). 

The main difference between boosting and the above described bagging 

procedure basically lies in the sampling scheme. Boosting consists in sequentially 

estimating a classifier to adaptively reweighted versions of the initial calibration 

sample , ..., B,  bZ b 21,* = . The adaptive reweighting scheme enables to give 

previously misclassified customers an increased weight on the next iteration, while 

weights given to previously correctly classified observations are reduced. The idea 

is to force the classification procedure to concentrate on the hard-to-classify 

customers. 

Another main difference with bagging is that the initial choice model 

should preferably be “weak”, i.e. with a slightly lower associated error rate than 

random guessing. For stochastic gradient boosting, Friedman (2002) advised to 

use k-node trees as base classifier where k is about 6 to 9, depending on the issue. 

Also the number of required iterations is usually higher for stochastic gradient 

boosting than for bagging. In our application, we select 1000=B . 

CORRECTION FOR A BALANCED SAMPLING SCHEME 

Predictions made from a model estimated on a balanced calibration sample 

are known to be biased as they overestimate the proportion of churners in real-

life. While appropriate bias correction methods already exist for some common 

classifiers (see e.g. King and Zeng 2001b for the logit model), to the best of our 

knowledge, there does not exist (yet) any correction method for bagging and 

                                                 
6 Stochastic gradient boosting is implemented by Salford Systems, see Treenet software. 
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boosting. Hereafter, we adapt to the bagging and boosting models two simple bias 

correction methods discussed by King and Zeng (2001b). 

The first correction consists in attaching a weight to each observation of 

the balanced sample. These weights are based on marketers’ prior beliefs about 

the churn rate cπ , i.e. the proportion of churners, among their customers. For 

example, cπ  can be taken as the empirical frequency of churners in a proportional 

sample, in our case 1.8%.  Let balanced
cN  be the number of churners in the balanced 

sample, with N  the total size of this sample. One may weight observations of a 

balanced calibration sample by attaching the weights 

balanced
c

cnc
ibalanced

c

cc
i NN

w
N

w
−
−

==
ππ 1

  and       (4) 

to the churners, respectively the non-churners. As such, the sum of the weights 

associated to the churners equals the real-life proportion of churners. Note that 

the sum of the weights defined in (4) is always equal to one. When applying this 

weighting correction to bagging and stochastic gradient boosting, a sequence of 

weighted decision trees is estimated, where the weights remain fixed through 

iterations. Statistically speaking, assigning weights to customers is a valid 

approach to correct for stratified sampling. However, since the weights assigned to 

the churners will be small, one could fear that this correction would actually 

cancel the advantage of oversampling the churners, and would provide similar 

results as a proportional sample of the same size (see Results section). 

Rather than weighting the observations of a balanced sample, a more 

simple approach is to take a non-zero cut-off value Bτ  in the bagging and 
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boosting algorithms. The value of Bτ  is taken such that the proportion of 

predicted churners in the calibration sample equals the actual a priori proportion 

of churners cπ . This correction is achieved for bagging (and similarly for 

boosting) by first sorting the values of )(ˆ xfbag  in the calibration sample from the 

largest to the smallest value, ( )( ) ( )( ) ( )( )Nbagbagbag xfxfxf ˆˆˆ
21 ≥≥≥ K , and taking  

( )( ) ˆ
jbagB xf=τ , with cNj π= .    (5) 

This latter correction method can also be called intercept correction (or prior 

correction as in King and Zeng  2001a,b), by analogy to a similar correction for 

the logit model (see e.g. Franses and Paap 2001, pp. 73-75). Unlike the weighting 

correction, the intercept correction does not affect the estimated scores, nor the 

ranking of the customers. Both corrections are assessed in the Results section. 

ASSESSMENT CRITERIA 

The predictive performance of the investigated models is assessed using a 

hold-out test sample (as described in the Data section). As this sample has not 

been used for estimating the classification rules and is very large, it allows for a 

valid assessment of performance. Denote ( ) ( ) ( ){ } ,,,,,,, 11 MMii yxyxyx KK  the 

validation or hold-out test sample. The computed scores are denoted by ( )ixf̂ , 

for Mi ,,1K=  where M  is the size of the validation sample.  

Error rate 

The traditional performance criterion is the error rate, counting the 

percentage of incorrectly classified observations in the validation set. For rare 
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events, the error rate is often inappropriate, as already noticed by Morrison 

(1969). For instance, a naïve prediction rule stating that no customer of the 

validation set churns has an expected error rate of approximately 1.8%, from 

which the classification rule could be falsely considered as good. Indeed, such a 

rule does not isolate any group of potentially riskiest customers for undertaking a 

targeted retention strategy. As another drawback, error rates do not take the 

numerical values of the scores ( )ixf̂  into account, while the latter may contain 

relevant information for proactive marketing actions. The targeting of such 

incentives can indeed be based on the churn degree of risk (i.e. score) of each 

customer, e.g. targeting the 10% most risky customers. The top-decile lift and the 

gini coefficient, in contrast, are based on these scores. 

Top-decile lift 

The top-decile lift focuses on the most critical group of customers regarding 

their churn risk. The top 10% riskiest customers (i.e. those having score values 

among the 10% highest) is potentially an ideal segment for targeting a retention 

marketing campaign. The top-decile lift equals the proportion of churners in this 

risky segment, %10π̂ , divided by the proportion of churners in the whole validation 

set, π̂ : 

π
π

ˆ

ˆ
 %10=decileTop .     (6) 

The higher the top-decile lift, the better the classifier. This measure 

enables to control whether the targeted segment of risky customers indeed 

contains actual churners. As extensively described by Neslin et al. (2004), top-
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decile lift is related directly to profitability. They define the incremental gain in 

financial profit from an increase in top-decile lift as 

 ( ) ( )( )ψγδγπα −−∆= LVCdecileTopNGain    ˆ   (7) 

where N  is the customer base of the company, α  is the percentage of targeted 

customers (here, 10%), decileTop ∆  is the increase in top-decile lift, γ  is the 

success rate of the incentive among the churners, LVC  is the lifetime value of a 

customer (Gupta, Lehmann and Stuart 2004), δ  is the incentive cost per 

customer, and ψ  is the success rate of the incentive among the non-churners (for 

more details, see Neslin et al. 2004). 

Gini coefficient 

Another interesting measure is the gini coefficient (e.g. Hand 1997, p.134). 

Instead of only focusing on the most risky segment, this measure considers all 

scores, including also the less risky customers. The top-decile lift and the gini 

coefficient give complementary information; a model can be good at identifying 

the riskiest segment, but weaker at recognizing less risky customers. We first 

determine the fraction of all subscribers having a predicted churn probability 

above a certain threshold. A whole sequence of thresholds is considered, each of 

them given by a predicted score ( )lxf̂ , for M ..., 2, ,1=l , resulting in M  

proportions 

( ) ( )[ ]∑
=

>=
M

i
lil xfxfI

M 1

ˆˆ1π .   (8) 
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For each threshold, the fraction of all churners having score value above 

this threshold is also computed  

( ) ( )[ ]∑
=

=>=′
cM

i
ili

c
l yxfxfI

M 1

1 and ˆˆ1π ,   (9) 

with cM  the total number of actual churners in the validation set. The gini 

coefficient is then defined as  

( )∑
=

−′=
M

l
llM

tcoefficienGini
1

2
 ππ .    (10) 

The larger the gini coefficient, the better the classification model would be. 

RESULTS 

This section addresses the research questions exposed in the Introduction 

section. We show that (i) both bagging and boosting techniques significantly 

improve the classification performance of traditional classification models, that (ii) 

the correction methods for a balanced calibration sample reduces the classification 

error rate, and that (iii) the use of a balanced calibration sample improves the 

forecasting accuracy of the estimated choice models. 

Q.1 Do bagging and boosting provide better results than other 

benchmarks?  

We first apply bagging and stochastic gradient boosting7 — with 

classification trees as base classifiers — to the balanced calibration sample. As a 

benchmark, we estimate a binary logit choice model on the same sample. Other 
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benchmark models are also investigated, including the traditional discriminant 

analysis, a single classification tree and a neural network (see e.g. Thieme, Song 

and Calantone 2000; West, Brockett and Golden 1997), but appear to perform 

worse that the binary logit choice model in this empirical application. Neslin et al. 

(2004) have recently compared the predictive performance of different 

methodological approaches for this particular database and have found the logit 

model and the decision tree to be among the most competitive methodologies 

used. To evaluate the relative performance of the different methods, we apply the 

estimated models to the hold-out proportional test sample in order to obtain 

churn predictions for each of the customers belonging to this latter sample. From 

these predictions, we then compute the validated error rate, the gini coefficient 

and the top-decile lift reached by each of the three choice models.  

[Insert Figure 1 about here] 

Figure 1 represents the gini coefficient and the top-decile lift against the 

number of iterations for both bagging and stochastic gradient boosting.8 The 

horizontal line in Figure 1 represents the performance of the binary logit model. 

The performance of bagging and boosting improves as B increases, and stabilizes 

for large values of B. After a first few iterations, both models already outperform 

the logit benchmark,9 confirming hereby many other examples (e.g. Hastie, 

Tibshirani and Friedman 2001, pp.246-249 & 299-345). 

                                                                                                                                                  
7 Bagging was implemented in the statistical software package Splus, while stochastic gradient boosting was 
computed with the MART software package for R developed by J.H. Friedman. 
8 Note that B is actually multiplied by 10 for stochastic gradient boosting in Figure 1. 
9 The gini coefficient and top-decile lift are respectively -0.06 and 0.49 for neural nets, 0.199 and 1.60 for 
discriminant analysis, and 0.091 and 1.37 for a single classification tree, compared to 0.24 and 1.77 for logit 
regression. These figures motivate our preference for the logit model as benchmark. 
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The relative gain in predictive performance is greater than 16% for the gini 

coefficient, and 26% for the top-decile lift. Statistically speaking, this 

improvement is significant.10 Stochastic gradient boosting performs very 

comparatively to bagging, but is conceptually more complicated. Therefore, we 

consider bagging as the most competitive approach, at least in this application. 

We may also evaluate the additional financial gains (7) that we may expect from 

a retention marketing campaign which would be targeted using the scores 

predicted by the bagging instead of the logit model. If we consider N = 5,000,000 

customers, a target group of α  = 10%, γ  = 30% success probability among the 

churners, LVC =$2,500 lifetime value, δ =$50 incentive cost and ψ =50% success 

probability among the non-churners, then using bagging as scoring model — 

instead of a logit model — for targeting a specific retention campaign is worth an 

additional $3,214,800.  

Regarding the error rate, all the three choice models perform quite poorly 

(see Table 2; third column), confirming that a balanced sampling scheme requires 

an appropriate bias correction, regardless of the choice model under consideration. 

In the next research question, we investigate whether a bias correction reduces 

these high error rates. 

Although the bagging and boosting models mainly focus on scoring 

customers for targeting purposes, the models can also interpreted. Figure 2 

reports the fifteen most important variables in explaining churn, using bagging.11 

Reported results offer some face validity. Among the particularly relevant churn 

triggers, we find the number of days of the current cell phone (“equipment 

                                                 
10 Standard errors (computed by a bootstrap procedure) are about 0.012 for the gini coefficient and 0.09 for 
the top-decile lift. 
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days”), the changes in minutes’ consumption over the previous three months 

(“change in monthly min. of use”), as well as the base cost of the calling plan 

chosen by the customer (“base cost of the calling plan”). Partial dependence plots 

provide additional insights on the way these variables affect churn. 

[Insert Figure 2 and Figure 3 about here] 

It appears that (Figure 3; right panel) the probability that a customer 

churns increases as his cell phone becomes older. This rise is particularly 

important around one year, which could be explained as numerous operators 

propose combined one-year-subscription and free cell phone packages. After this 

delay, customers may be likely to defect the company and buy a new package 

from a competitor. Figure 3 (left panel) indicates how the churn risk of a 

customer varies as his consumption habits change. When his consumption 

decreases, a subscriber would be more likely to churn. When his consumption is 

about constant, he would be less likely to defect. Finally, when his consumption 

increases, he would be slightly less (but still) likely to be loyal than when no 

change occurs.12 Another interesting insight can be derived from Figure 4, which 

represents the partial dependence between churn and a combination of two churn 

drivers, i.e. the age of the customer (“age”) and the base cost of his calling plan. 

A customer is found to be more likely to churn when his calling plan would be 

cheaper. However, this relationship tends to be much stronger for younger 

customers than older ones, indicating that some demographics are more likely to 

drop certain calling plans than others. 

[Insert Figure 4 about here] 

                                                                                                                                                  
11 Boosting yields similar results, confirming the face validity of the results. 
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Q.2 What is the best bias correction when using a balanced calibration 

sample? 

Two corrections are envisaged to adapt the predicted probabilities obtained 

by using a balanced calibration sample. Using any of these two corrections 

reduces the error rate significantly, as illustrated in Table 2. 

[Insert Table 2 about here] 

The effectiveness of both corrections differs. Regarding the error rate, the 

weighting correction seems the most appropriate bias correction method for all 

considered models. However, the weighting correction affects the estimated scores, 

as well as their ranking, and eventually the gini coefficient and the top-decile lift. 

This is not the case for the intercept correction method which preserves the 

relative ranking of the attributed scores. Table 3 reports the gini coefficient and 

the top-decile lift for bagging, stochastic gradient boosting, and the logit model 

(all estimated on the balanced sample), for both corrections. The gini coefficient 

and the top-decile lift reached by the intercept correction are substantially better 

than those using the weighting correction, for all the three models under 

consideration. 

[Insert Table 3 about here] 

This confirms the prior assumption that weighting the observations of a 

balanced sample cancels the advantage of balanced sampling, even for large 

sample sizes. As we consider the gini coefficient and the top-decile lift as more 

global measures of performance than the error rate, the intercept correction is 

                                                                                                                                                  
12 Note that such non-monotonic relations cannot be captured by logit models. 
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found to be — at least in this application — the best compromise between no 

correction (i.e. better gini coefficient and top-decile lift, but worse error rate) and 

weighting correction (i.e. worse gini coefficient and top-decile lift, but better error 

rate).  

Note that the intercept correction appears to perform well for stable 

markets (e.g. constant churn rate), but is likely to be inefficient in dynamic 

markets (e.g. increasing churn rate). This constitutes a major limitation to the 

correction methods proposed in this study. Moreover, the lack of theory regarding 

the properties of these correction methods prevents us from generalizing our 

findings to any other setting. 

Q.3 Does a choice model estimated on a balanced sample, and 

appropriately corrected for the bias, outperform a choice model estimated 

on a proportional sample?  

It is often advised to use a balanced calibration sample when the variable 

to be predicted consists of a rare event, like churn. This third research issue puts 

this statement into question. Indeed, given the high amount of observations in the 

proportional calibration sample, the absolute number of churners is still quite 

large, and a proportional sampling could still be efficient.  

[Insert Table 4 about here] 

Table 4 compares the performance of bagging, stochastic gradient boosting 

and the binary logit model, estimated from the proportional or the balanced 

sample (with intercept correction). Results on the gini coefficient and top-decile 

lift both indicate that the balanced sampling scheme is recommended for the three 
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investigated classification models. For the error rate, results are more in favor of 

the proportional sampling. However, for the same reasons as in Q.2, we consider 

the balanced sampling as a better compromise that the proportional sampling 

which poorly perform regarding gini coefficient and top-decile lift.  

CONCLUSIONS AND FURTHER RESEACH 

In this paper, we have brought some new developments originating from 

machine learning and statistical classification literature to the attention of 

marketing researchers. We have presented one of the simplest versions of classifier 

aggregation, i.e. bagging, as well as one of the most sophisticated algorithms in 

this field, i.e. stochastic gradient boosting. Attention has especially been drawn on 

the very competitive performance of bagging, an easy-to-use procedure aimed at 

increasing the classification performance of an initial classification model, by 

repeatedly estimating a classifier to bootstrapped versions of the calibration 

sample. We summarize the main findings of this study in three contributions. 

1. Bagging and boosting provide substantially better classifiers than a 

binary logit model. In predicting churn, the gain in predictive performance has 

reached 16% for the gini coefficient, and 26% for the top-decile lift. Bagging and 

stochastic gradient boosting perform very comparatively. The performance of the 

very simple and easy-to-use bagging is especially noticeable. Besides their higher 

predictive power, bagging and boosting also provide good diagnostic measures, 

variables’ importance and partial dependence plots, which offer some face validity 

to the models and interesting insights about potential churn drivers. 

2. In the presence of a rare event like churn, a balanced sampling scheme is 

recommended and preferred to proportional sampling for all considered 



 24

classification models (i.e. bagging, boosting and logit models), even for large 

datasets.  However, to maintain the classification error rate at a reasonable level, 

it is necessary to correct the predictions obtained from a balanced sample. 

3. Intercept correction constitutes an appropriate bias correction for 

balanced sampling scheme.  

If companies take into account these recommendations, they should be able 

to better identify the riskiest customers’ segment in terms of churn risk, and 

therefore ameliorate their retention strategy. Noteworthy losses could ultimately 

be avoided. 



Table 1: Description of the churn predictors 

 
Behavioral predictors Company interaction predictors Customer demographics

Billing adjusted total revenue over the life of the 
customer (“total revenue over life”) 

Having responded to an offer in the mail (y/n) Age of the first household member (“age”)

Mean number of attempted calls placed (“mean 
attempted calls”)

Mean minutes of use of customer care calls Estimated income 

Percentage change in monthly minutes of use vs 
previous three month average (“change in monthly 
min. of use”) 

... 
Social group  

 

Mean total monthly recurring charge (“base cost of 
the calling plan”)

 Marital status  

Average monthly minutes of use over the previous 
six months (“average monthly min. of use (6 
months)”) 

 Geographic area  

Mean number of complete calls (“mean completed 
calls”) 

 Account spending limit 

Mean number of peak calls (“mean peak calls”)  Children in the household (y/n)  

Total number of months in service (“months in 
service”) 

 Dwelling unit type 

Mean number of inbound calls less than one minute
(“mean inbound calls less 1 min.”) 

 Number of days of current equiment
(“Equipment days”)

Mean of overage revenue (“mean overage revenue”)  Refurbished or new handset  

Mean number of monthly minutes of use (“mean 
monthly min. of use”)

 Current handset price (“handset price”) 

Mean unrounded minutes of use of outbound 
wireless to wireless calls (“mean monthly min. 
wireless to wireless”) 

 ... 

...   
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Figure 1: Validated gini coefficient (left) and top-decile lift (right) for bagging, stochastic gradient boosting and a binary logit 

model as a function of B 
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Figure 2: Variables’ relative importance for bagging 
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Figure 3: Partial dependence plots for “change in monthly min. of use” and “equipment days” for bagging 
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Figure 4: Partial dependence plot for the “base of cost of the calling plan” and “age” for bagging 



Table 2: Validated error for predicting churn from a balanced sample with 

intercept correction, weighting correction or without bias correction. 

Error rate Intercept 
correction 

Weighting 
correction 

No 
correction 

Binary logit model 0.035 0.018 0.400 

Bagging 0.034 0.025 0.374 

Stochastic gradient boosting 0.034 0.018 0.460 

Table 3: Validated gini coefficient and top-decile lift for predicting churn from a 

balanced sample with intercept correction and weighting correction 

 Intercept 
correction (∗) 

Weighting 
correction 

 Gini 
coefficient

Top 
decile 

Gini 
coefficient 

Top 
decile 

Binary logit model 0.241 1.775 0.239 1.764 

Bagging 0.281 2.246 0.161 1.549 

Stochastic gradient boosting 0.280 2.290 0.187 1.632 

(∗) These gini coefficients and top-decile lifts are the same for the “no correction” method. 

Table 4: Validated gini coefficient, top-decile lift and error rate with a balanced 

and a proportional calibration sampling. 

 

 Balanced sample       
(Intercept correction) 

Proportional sample 

 Gini 
coefficient

Top 
decile 

Error 
rate 

Gini 
coefficient 

Top 
decile 

Error 
rate 

Binary logit model 0.241 1.775 0.035 0.181 1.665 0.018 

Bagging 0.281 2.246 0.034 0.237 1.886 0.018 

Stochastic gradient boosting 0.280 2.290 0.034 0.113 1.560 0.018 



REFERENCES 

Andrews, Rick L., Andrew Ainslie, and Imram S. Currim (2002), “An Empirical 
Comparison of Logit Choice Models with Discrete Versus Continuous Representations of 
Heterogeneity,” Journal of Marketing Research, 39, 479-487. 

Andrews, Rick L. and Imran S. Currim (2002), “Identifying Segments with Identical 
Choice Behaviors Across Product Categories: An Intercategory Logit Mixture Model,” 
International Journal of Research in Marketing, 19, 65-79. 

Arora, Neeraj, Greg M. Allenby, and James L. Ginter (1998), “A Hierarchical Bayes 
Model of Primary and Secondary Demand,” Marketing Science, 17, 29-44. 

Athanassopoulos, Antreas D. (2000), “Customer Satisfaction Cues to Support Market 
Segmentation and Explain Switching Behavior,” Journal of Business Research, 47, 191-
207. 

Baines, Paul R., Robert M. Worcester, Jarrett David, and Roger Mortimore (2003), 
“Market Segmentation and Product Differentiation in Political Campaigns: A Technical 
Feature Perspective,” Journal of Marketing Management, 19, 225-249.  

Bhattacharya, C.B. (1998), “When Customers are Members: Customer Retention in Paid 
Membership Contexts,” Journal of the Academy of Marketing Science, 26, 31-44. 

Bolton, Ruth N., P.K. Kannan and Matthew D. Bramlett (2000), “Implications of 
Loyalty Program Membership and Service Experiences for Customer Retention and 
Value,” Journal of the Academy of Marketing Science, 28, 95-108. 

Breiman, Leo (1996), “Bagging Predictors,” Machine Learning, 26, 123-140. 

---, Jerome H. Friedman, Richard A. Olshen, and Charles .J. Stone (1984), Classification 
and Regression Trees, New York: Chapman and Hall. 

Bühlmann, Peter and Bin Yu. (2002), “Analyzing Bagging,” Annals of Statistics, 30, 927-
961.  

Cardell, Scott N., Mikhail Golovnya, and Dan Steinberg (2003), “Churn Modeling for 
Mobile Telecommunications: Winning the NCR Teradata Center for CRM at Duke 
University - Salford Systems,” 2003 INFORMS Marketing Science Conference, Maryland. 

Chung, Jaihak and Vithala R. Rao (2004), “A General Choice Model for Bundles with 
Multiple-Category Products: Application to Market Segmentation and Optimal Pricing 
for Bundles,” Journal of Marketing Research, 41, 115-130.   

Colgate, Mark R. and Peter J. Danaher (2000), “Implementing a Customer Relationship 
Strategy: The Asymmetric Impact of Poor versus Excellent Execution,” Journal of the 
Academy of Marketing Science, 28, 375-387. 

Corstjens, Marcel L. and David A. Gautschi (1983), “Formal Choice Models in 
Marketing,” Marketing Science, 2, 19-56. 

Cosslett, S.R. (1993), “Estimation from Endogenously Stratified Samples,” in Handbook 
of Statistics, Maddala G.S., C.R. Rao and H.D. Vinod, eds. Amsterdam: Elsevier Science 
Publishers. 



 32

Currim, Imran S., Robert J. Meyer, and Nhan T. Le (1988), “Disaggregate Tree-
Structure Modelling of Consumer Choice Data,” Journal of Marketing Research, 25, 253-
265.  

Donkers, Bas, Philip H.B.F. Franses, and Peter Verhoef (2003), “Selective Sampling for 
Binary Choice Models,” Journal of Marketing Research, 40, 492-497. 

Donkers, Bas, Richard Paap, Jedid-Jah Jonker, and Philip H.B.F. Franses (2005), 
“Deriving Target Selection Rules from Endogenously Selected Samples,” Journal of 
Applied Econometrics, forthcoming. 

Franses, Philip H. and Richard Paap (2001), Quantitative Models for Marketing 
Research, Cambridge: Cambridge University Press. 

Freund, Yoav and Robert E. Schapire (1996), “Experiments with a New Boosting 
Algorithm,” In Proceedings of the 13th International Conference on Machine Learning, 
148-156. 

Friedman, Jerome H. (2001), “Greedy Function Approximation: A Gradient Boosting 
Machine”, The Annals of Statistics, 29, 1189-1232. 

---- (2002), “Stochastic Gradient Boosting”, Computational Statistics and Data Analysis, 
38, 367-378 

----, Trevor Hastie, and Robert Tibshirani (2000), “Additive Logistic Regression: a 
Statistical View of Boosting,” The Annals of Statistics, 28, 337-407. 

Ganesh, Jaishankar, Mark J. Arnold, and Kristy E. Reynolds (2000), “Understanding the 
Customer Base of Service Providers: An Examination of the Differences between 
Switchers and Stayers,” Journal of Marketing, 65, 65-87. 

Guadagni, Peter M. and John D.C. Little (1983), “A Logit Model of Brand Choice 
Calibrated on Scanner Data,” Marketing Science, 2, 203-238. 

Gupta, Sunil, Donald R. Lehmann, and Jennifer A. Stuart (2004), “Valuing Customers,” 
Journal of Marketing Research, 16, 7-18. 

Hand, David J. (1997), Construction and Assessment of Classification Rules, Chichester: 
Wiley Series in Probability and Statistics. 

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2001), The Elements of 
Statistical Learning: Data Mining, Inference and Prediction, New York: Springer-Verlag. 

Haughton, Dominique and Samer Oulabi (1993), “Direct marketing modeling with CART 
and CHAID,” Journal of Direct Marketing, 7, 16- 26. 

Hawley, David (2003), “International Wireless Churn Management Research and 
Recommendations,” Yankee Group report, June.  

Imbens, Guido W. and Tony Lancaster (1996), “Efficient Estimation and Stratified 
Sampling,” Journal of Econometrics, 74, 289-318. 

Kalwani, Manohar U., Robert J. Meyer, and Donald G. Morrison (1994), “Benchmarks 
for Discrete Choice Models,” Journal of Marketing Research, 31, 65-75. 



 33

King, Gary and Langsche Zeng (2001a), “Explaining Rare Events in International 
Relations,” International Organization, 55, 693-715. 

King, Gary and Langsche Zeng (2001b), “Logistic Regression in Rare Events Data,” 
Political Analysis, 9, 137-163. 

Morrison, Donald G. (1969), “On the Interpretability of Discriminant Analysis,” Journal 
of Marketing Research, 6, 156-163. 

Nardiello, Pio, Fabrizio Sebastiani, and Alessandro Sperduti (2003), “Discretizing 
Continuous Attributes in AdaBoost for Text Categorization,” Proceedings of ECIR-03, 
25th European Conference on Information Retrieval, Pisa, 320-334. 

Neslin, Scott A., Sunil Gupta, Wagner Kamakura, Junxiang Lu, and Charlotte Mason 
(2004), “Defection Detection: Improving Predictive Accuracy of Customer Churn 
Models,” Working Paper Series, Teradata Center for Customer Relationship Management 
at Duke University. 

Schapire, Robert E. and Yoram Singer (1999), “Improved Boosting Algorithms using 
Confidence-rated Predictions,” Machine Learning, 37, 297-336. 

Scott, Alastair J. and Chris J. Wild (1997), “Fitting Regression Models to Case-Control 
Data by Maximum Likelihood,” Biometrika, 84, 57-71. 

Shaffer, Greg and John Z. Zhang (2002), “Competitive One-to-One Promotions,” 
Management Science, 48, 1143-1160. 

The Wall Street Journal Europe (2000), “Fighting the Fickle,” September 18. 

Thieme, R. Jeffrey, Michael Song, and Roger J. Calantone (2000), “Artificial Neural 
Network Decision Support Systems for New Product Development Project Selection,” 
Journal of Marketing Research, 37, 499-507. 

Varmuza, Kurt, Ping He, and Kai-Tai Fang (2003), “Boosting Applied to Classification 
of Mass Spectral Data,” Journal of Data Science, 1, 391-404. 

Viaene, Stijn, Richard A. Derrig and Guido Dedene (2002). “Boosting Naive Bayes for 
Claim Fraud Diagnosis,” in Lecture Notes in Computer Science 2454, Berlin: Springer. 

Wedel, Michel and Wagner A. Kamakura (2000), Market Segmentation: Conceptual and 
Methodological Foundations, 2d ed. Boston: Kluwer Academic Publishers. 

West, Patricia M., Patrick L. Brockett, and Linda L. Golden (1997), “A Comparative 
Analysis of Neural Networks and Statistical Methods for Predicting Consumer Choice,” 
Marketing Science, 16, 370-391. 

Yang, Sha and Greg M. Allenby (2003), “Modeling Interdependent Consumer 
Preferences,” Journal of Marketing Research, 40, 282-294. 


