44 research outputs found

    Reward-Aided Sensing Task Execution in Mobile Crowdsensing Enabled by Energy Harvesting

    Get PDF
    Mobile crowdsensing (MCS) is a new sensing framework that empowers normal mobile devices to participate in sensing tasks. The key challenge that degrades the performance of MCS is selfish mobile users who conserve the resources (e.g., CPU, battery, and bandwidth) of their devices. Thus, we introduce energy harvesting (EH) as rewards into MCS, and thus provide more possibilities to improve the quality of service (QoS) of the system. In this paper, we propose a game theoretic approach for achieving sustainable and higher quality sensing task execution in MCS. The proposed solution is implemented as a two-stage game. The first stage of the game is the system reward game, in which the system is the leader, who allocates the task and reward, and the mobile devices are the followers who execute the tasks. The second stage of the game is called the participant decision-making game, in which we consider both the network channel condition and participant's abilities. We analyze the features of the second stage of the game and show that the game admits a Nash equilibrium (NE). Based on the NE of the second stage of the game, the system can admit a Stackelberg equilibrium, at which the utility is maximized. Simulation results demonstrate that the proposed mechanism can achieve a better QoS and prolong the system lifetime while also providing a proper incentive mechanism for MCS

    Task Allocation among Connected Devices: Requirements, Approaches and Challenges

    Get PDF
    Task allocation (TA) is essential when deploying application tasks to systems of connected devices with dissimilar and time-varying characteristics. The challenge of an efficient TA is to assign the tasks to the best devices, according to the context and task requirements. The main purpose of this paper is to study the different connotations of the concept of TA efficiency, and the key factors that most impact on it, so that relevant design guidelines can be defined. The paper first analyzes the domains of connected devices where TA has an important role, which brings to this classification: Internet of Things (IoT), Sensor and Actuator Networks (SAN), Multi-Robot Systems (MRS), Mobile Crowdsensing (MCS), and Unmanned Aerial Vehicles (UAV). The paper then demonstrates that the impact of the key factors on the domains actually affects the design choices of the state-of-the-art TA solutions. It results that resource management has most significantly driven the design of TA algorithms in all domains, especially IoT and SAN. The fulfillment of coverage requirements is important for the definition of TA solutions in MCS and UAV. Quality of Information requirements are mostly included in MCS TA strategies, similar to the design of appropriate incentives. The paper also discusses the issues that need to be addressed by future research activities, i.e.: allowing interoperability of platforms in the implementation of TA functionalities; introducing appropriate trust evaluation algorithms; extending the list of tasks performed by objects; designing TA strategies where network service providers have a role in TA functionalities’ provisioning

    A survey of multi-access edge computing in 5G and beyond : fundamentals, technology integration, and state-of-the-art

    Get PDF
    Driven by the emergence of new compute-intensive applications and the vision of the Internet of Things (IoT), it is foreseen that the emerging 5G network will face an unprecedented increase in traffic volume and computation demands. However, end users mostly have limited storage capacities and finite processing capabilities, thus how to run compute-intensive applications on resource-constrained users has recently become a natural concern. Mobile edge computing (MEC), a key technology in the emerging fifth generation (5G) network, can optimize mobile resources by hosting compute-intensive applications, process large data before sending to the cloud, provide the cloud-computing capabilities within the radio access network (RAN) in close proximity to mobile users, and offer context-aware services with the help of RAN information. Therefore, MEC enables a wide variety of applications, where the real-time response is strictly required, e.g., driverless vehicles, augmented reality, robotics, and immerse media. Indeed, the paradigm shift from 4G to 5G could become a reality with the advent of new technological concepts. The successful realization of MEC in the 5G network is still in its infancy and demands for constant efforts from both academic and industry communities. In this survey, we first provide a holistic overview of MEC technology and its potential use cases and applications. Then, we outline up-to-date researches on the integration of MEC with the new technologies that will be deployed in 5G and beyond. We also summarize testbeds and experimental evaluations, and open source activities, for edge computing. We further summarize lessons learned from state-of-the-art research works as well as discuss challenges and potential future directions for MEC research

    Securing SDN controlled IoT Networks Through Edge-Blockchain

    Get PDF
    The Internet of Things (IoT) connected by Software Defined Networking (SDN) promises to bring great benefits to cyber-physical systems. However, the increased attack surface offered by the growing number of connected vulnerable devices and separation of SDN control and data planes could overturn the huge benefits of such a system. This paper addresses the vulnerability of the trust relationship between the control and data planes. To meet this aim, we propose an edge computing based blockchain-as-a-service (BaaS), enabled by an external BaaS provider. The proposed solution provides verification of inserted flows through an efficient, edge-distributed, blockchain solution. We study two scenarios for the blockchain reward purpose: (a) information symmetry, in which the SDN operator has direct knowledge of the real effort spent by the BaaS provider; and (b) information asymmetry, in which the BaaS provider controls the exposure of information regarding spent effort. The latter yields the so called “moral hazard”, where the BaaS may claim higher than actual effort. We develop a novel mathematical model of the edge BaaS solution; and propose an innovative algorithm of a fair reward scheme based on game theory that takes into account moral hazard. We evaluate the viability of our solution through analytical simulations. The results demonstrate the ability of the proposed algorithm to maximize the joint profits of the BaaS and the SDN operator, i.e. maximizing the social welfare

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Edge Intelligence : Empowering Intelligence to the Edge of Network

    Get PDF
    Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis proximity to where data are captured based on artificial intelligence. Edge intelligence aims at enhancing data processing and protects the privacy and security of the data and users. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this article, we present a thorough and comprehensive survey of the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, i.e., edge caching, edge training, edge inference, and edge offloading based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare, and analyze the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, and so on. This article provides a comprehensive survey of edge intelligence and its application areas. In addition, we summarize the development of the emerging research fields and the current state of the art and discuss the important open issues and possible theoretical and technical directions.Peer reviewe

    Edge Intelligence : Empowering Intelligence to the Edge of Network

    Get PDF
    Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis proximity to where data are captured based on artificial intelligence. Edge intelligence aims at enhancing data processing and protects the privacy and security of the data and users. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this article, we present a thorough and comprehensive survey of the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, i.e., edge caching, edge training, edge inference, and edge offloading based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare, and analyze the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, and so on. This article provides a comprehensive survey of edge intelligence and its application areas. In addition, we summarize the development of the emerging research fields and the current state of the art and discuss the important open issues and possible theoretical and technical directions.Peer reviewe
    corecore