28 research outputs found

    Online Detection of Shutdown Periods in Chemical Plants: A Case Study.

    Get PDF
    In process industry, chemical processes are controlled and monitored by using readings from multiple physical sensors across the plants. Such physical sensors are also supplemented by soft sensors, i.e. adaptive predictive models, which are often used for computing hard-to-measure variables of the process. For soft sensors to work well and adapt to changing operating conditions they need to be provided with relevant data. As production plants are regularly stopped, data instances generated during shutdown periods have to be identified to avoid updating these predictive models with wrong data. We present a case study concerned with a large chemical plant operation over a 2 years period. The task is to robustly and accurately identify the shutdown periods even in case of multiple sensor failures. State-of-the-art methods were evaluated using the first half of the dataset for calibration purposes and the other half for measuring the performance. Results show that shutdowns (i.e. sudden changes) can be quickly detected in any case but the detection delay of startups (i.e. gradual changes) is directly related with the choice of a window size

    From Sensor Readings to Predictions: On the Process of Developing Practical Soft Sensors.

    Get PDF
    Automatic data acquisition systems provide large amounts of streaming data generated by physical sensors. This data forms an input to computational models (soft sensors) routinely used for monitoring and control of industrial processes, traffic patterns, environment and natural hazards, and many more. The majority of these models assume that the data comes in a cleaned and pre-processed form, ready to be fed directly into a predictive model. In practice, to ensure appropriate data quality, most of the modelling efforts concentrate on preparing data from raw sensor readings to be used as model inputs. This study analyzes the process of data preparation for predictive models with streaming sensor data. We present the challenges of data preparation as a four-step process, identify the key challenges in each step, and provide recommendations for handling these issues. The discussion is focused on the approaches that are less commonly used, while, based on our experience, may contribute particularly well to solving practical soft sensor tasks. Our arguments are illustrated with a case study in the chemical production industry

    Multi-output soft sensor with a multivariate filter that predicts errors applied to an industrial reactive distillation process

    Get PDF
    The paper deals with the problem of developing a multi-output soft sensor for the industrial reactive distillation process of methyl tert-butyl ether production. Unlike the existing soft sensor approaches, this paper proposes using a soft sensor with filters to predict model errors, which are then taken into account as corrections in the final predictions of outputs. The decomposition of the problem of optimal estimation of time delays is proposed for each input of the soft sensor. Using the proposed approach to predict the concentrations of methyl sec-butyl ether, methanol, and the sum of dimers and trimers of isobutylene in the output product in a reactive distillation column was shown to improve the results by 32%, 67%, and 9.5%, respectively

    Machine learning based adaptive soft sensor for flash point inference in a refinery realtime process

    Get PDF
    In industrial control processes, certain characteristics are sometimes difficult to measure by a physical sensor due to technical and/or economic limitations. This fact is especially true in the petrochemical industry. Some of those quantities are especially crucial for operators and process safety. This is the case for the automotive diesel Flash Point Temperature (FT). Traditional methods for FT estimation are based on the study of the empirical inference between flammability properties and the denoted target magnitude. The necessary measures are taken indirectly by samples from the process and analyzing them in the laboratory, this process implies time (can take hours from collection to flash temperature measurement) and thus make it very difficult for real-time monitorization, which in fact results in security and economical losses. This study defines a procedure based on Machine Learning modules that demonstrate the power of real-time monitorization over real data from an important international refinery. As input, easily measured values provided in real-time, such as temperature, pressure, and hydraulic flow are used and a benchmark of different regressive algorithms for FT estimation is presented. The study highlights the importance of sequencing preprocessing techniques for the correct inference of values. The implementation of adaptive learning strategies achieves considerable economic benefits in the productization of this soft sensor. The validity of the method is tested in the reality of a refinery. In addition, real-world industrial data sets tend to be unstable and volatile, and the data is often affected by noise, outliers, irrelevant or unnecessary features, and missing data. This contribution demonstrates with the inclusion of a new concept, called an adaptive soft sensor, the importance of the dynamic adaptation of the conformed schemes based on Machine Learning through their combination with feature selection, dimensional reduction, and signal processing techniques. The economic benefits of applying this soft sensor in the refinery's production plant and presented as potential semi-annual savings.This work has received funding support from the SPRI-Basque Gov- ernment through the ELKARTEK program (OILTWIN project, ref. KK- 2020/00052)

    Multivariate statistical process monitoring

    Get PDF
    U industrijskoj proizvodnji prisutan je stalni rast zahtjeva, u prvom redu, u pogledu ekonomičnosti proizvodnje, kvalitete proizvoda, stupnja sigurnosti i zaštite okoliša. Put ka ispunjenju ovih zahtjeva vodi kroz uvođenje sve složenijih sustava automatskog upravljanja, što ima za posljedicu mjerenje sve većeg broja procesnih veličina i sve složenije mjerne sustave. Osnova za kvalitetno vođenje procesa je kvalitetno i pouzdano mjerenje procesnih veličina. Kvar na procesnoj opremi može značajno narušiti proizvodni proces, pa čak prouzrokovati ispad proizvodnje što rezultira visokim dodatnim troškovima. U ovom radu se analizira način automatskog otkrivanja kvara i identifikacije mjesta kvara u procesnoj mjernoj opremi, tj. senzorima. U ovom smislu mogu poslužiti različite statističke metode kojima se analiziraju podaci koji pristižu iz mjernog sustava. U radu se PCA i ICA metode koriste za modeliranje odnosa među procesnim veličinama, dok se za otkrivanje nastanka kvara koriste Hotellingova (T**2), I**2 i Q (SPE) statistike jer omogućuju otkrivanje neobičnih varijabilnosti unutar i izvan normalnog radnog područja procesa. Za identifikaciju mjesta (uzroka) kvara koriste se dijagrami doprinosa. Izvedeni algoritmi statističkog nadzora procesa temeljeni na PCA metodi i ICA metodi primijenjeni su na dva procesa različite složenosti te je uspoređena njihova sposobnost otkrivanja kvara.Demands regarding production efficiency, product quality, safety levels and environment protection are continuously increasing in the process industry. The way to accomplish these demands is to introduce ever more complex automatic control systems which require more process variables to be measured and more advanced measurement systems. Quality and reliable measurements of process variables are the basis for the quality process control. Process equipment failures can significantly deteriorate production process and even cause production outage, resulting in high additional costs. This paper analyzes automatic fault detection and identification of process measurement equipment, i.e. sensors. Different statistical methods can be used for this purpose in a way that continuously acquired measurements are analyzed by these methods. In this paper, PCA and ICA methods are used for relationship modelling which exists between process variables while Hotelling\u27s (T**2), I**2 and Q (SPE) statistics are used for fault detection because they provide an indication of unusual variability within and outside normal process workspace. Contribution plots are used for fault identification. The algorithms for the statistical process monitoring based on PCA and ICA methods are derived and applied to the two processes of different complexity. Apart from that, their fault detection ability is mutually compared

    Reliability of adaptive multivariate software sensors for sewer water quality monitoring

    Get PDF
    This study investigates the use of a multivariate approach, based on Principal Component Analysis PCA), as software sensor for fault detection and reconstruction of missing measurements in on-line monitoring of sewer water quality. The analysis was carried out on a 16-months dataset of five commonly available on-line measurements (flow, turbidity, ammonia, conductivity and temperature). The results confirmed the great performance of PCA (up to 10 weeks after parameter estimation) when estimating a measurement from the combination of the remaining four variables, a useful feature in data validation. However, the study also showed a dramatic drop in predictive capability of the software sensor when used for reconstructing missing values, with performance quickly deteriorating after 1 week since parameter estimation. The software sensor provided better results when used to estimate pollutants mainly originated from wastewater sources (such as ammonia) than when used for pollutants affected by several processes (such as TSS). Overall, this study provides a first insight in the application of multivariate methods for software sensors, highlighting drawback and potential development areas. A combination of (i) advanced methods for on-line data validation, (ii) frequent parameter estimation, and (iii) automatic method for classification of dry/wet periods may provide the needed background for a successful application of these software sensors
    corecore