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Introduction

Process safety and environment pollution demands are
continuously increasing in the process industry. Apart from
that, requirements regarding final product quality and
production efficiency are higher and higher [1]. This can be
achieved by applying advanced process monitoring and
control techniques. Process control is heavily dependent on
the quality of the data, so it is crucial to measure as many
process variables as it is possible and to develop advanced
process measurement system [2, 3].

Production outage can be caused by different abnormal
situations:

Equipment failure
plant failure (e.g. actuator failure),
measurement equipment failure (sensor failure),
communication system failure (measurement and
control data are not transmitted).

Large disturbances (when disturbance values exceed
compensation limits).

Different plant failures can be very dangerous,
especially in chemical plants, so it is important that methods
for process monitoring should be able to detect such
different abnormal situations. In many cases, equipment
failure negatively affects the plant production and product
quality. The most dangerous failures are those in
measurement equipment because the overall system for
production system control relies on measurements. Process
control action based on data that come from faulty sensor is
at best inefficient and at worst dangerous. Therefore, it is

�

�

�

�

�

33

D. Slišković et al.

ISSN 1330-3651

UDC/UDK [658.58:681.5]:519.25

MULTIVARIATE STATISTICAL PROCESS MONITORING

Dražen Slišković, Ratko Grbić, Željko Hocenski

Demands regarding production efficiency, product quality, safety levels and environment protection are continuously increasing in the process industry. The
way to accomplish these demands is to introduce ever more complex automatic control systems which require more process variables to be measured and more
advanced measurement systems. Quality and reliable measurements of process variables are the basis for the quality process control. Process equipment
failures can significantly deteriorate production process and even cause production outage, resulting in high additional costs. This paper analyzes automatic
fault detection and identification of process measurement equipment, i.e. sensors. Different statistical methods can be used for this purpose in a way that
continuously acquired measurements are analyzed by these methods. In this paper, PCA and ICA methods are used for relationship modelling which exists

between process variables while Hotelling's ( ), and (SPE) statistics are used for fault detection because they provide an indication of unusual variability
within and outside normal process workspace. Contribution plots are used for fault identification. The algorithms for the statistical process monitoring based on
PCAand ICAmethods are derived and applied to the two processes of different complexity.Apart from that, their fault detection ability is mutually compared.

T I Q

: process monitoring, fault detection, fault identification, PCA, ICA, contribution plot

2 2

Keywords

Original scientific paper

U industrijskoj proizvodnji prisutan je stalni rast zahtjeva, u prvom redu, u pogledu ekonomičnosti proizvodnje, kvalitete proizvoda, stupnja sigurnosti i zaštite
okoliša. Put ka ispunjenju ovih zahtjeva vodi kroz uvođenje sve složenijih sustava automatskog upravljanja, što ima za posljedicu mjerenje sve većeg broja
procesnih veličina i sve složenije mjerne sustave. Osnova za kvalitetno vođenje procesa je kvalitetno i pouzdano mjerenje procesnih veličina. Kvar na
procesnoj opremi može značajno narušiti proizvodni proces, pa čak prouzrokovati ispad proizvodnje što rezultira visokim dodatnim troškovima. U ovom radu
se analizira način automatskog otkrivanja kvara i identifikacije mjesta kvara u procesnoj mjernoj opremi, tj. senzorima. U ovom smislu mogu poslužiti različite
statističke metode kojima se analiziraju podaci koji pristižu iz mjernog sustava U radu se PCA i ICA metode koriste za modeliranje odnosa među procesnim

veličinama, dok se za otkrivanje nastanka kvara omogućuju otkrivanje neobičnih varijabilnosti unutar i
izvan normalnog radnog područja procesa. Za identifikaciju mjesta (uzroka) kvara koriste se dijagrami doprinosa. Izvedeni algoritmi statističkog nadzora
procesa temeljeni na PCAmetodi i ICAmetodi primijenjeni su na dva procesa različite složenosti te je uspoređena njihova sposobnost otkrivanja kvara.
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important to check the meaningfulness of the collected
measurement data, before they are forwarded to the
automatic control system for further processing. In this
paper faults of measurement system are considered in more
details.

In modern plants there are many process variables
which are measured by sensors and logged to process
database so the amount of available data is large. Under
normal operating conditions these variables are highly
correlated due to physical and chemical principles. These
relationships can be modelled and the obtained model can
then be used to check on new process data in order to detect
abnormal process situations [2].

Since the model is built from the plant data, it is
important to choose proper modelling technique.
Multivariate analysis techniques can be used for analyzing
highly correlated process data and process monitoring.
Such approach is usually called multivariate statistical
process monitoring (MSPM) and has found wide
applications in different industrial processes, including
chemicals, polymers, microelectronics manufacturing and
pharmaceutical processes. Basically, statistical process
monitoring is composed of the two main parts: fault
detection and fault identification.

MSPM performance depends on how well the model
describes relationships between the variables. The most
common method for modelling these relationships is
Principal ComponentAnalysis (PCA) [2, 4]. However, PCA
assumes linear relationships between variables and
Gaussian latent variables. Hence, it can be inefficient when
dealing with industrial processes which are usually highly
nonlinear and have non-Gaussian underlying variables.
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Recently, new techniques such as Independent
Component Analysis (ICA) [5] and different kernel
methods [6] appeared. These methods can sometimes
exploit plant data in a more efficient way than PCAmethod.

The paper is organized as follows. Section 2 describes
the basics of PCA and ICA method. Tasks that are part of
statistical process monitoring and fault analyzing are
described in Section 3 in more details. Section 4 shows the
application of the statistical process monitoring algorithms
on selected processes. Section 5 provides summary and
conclusion of this paper.

Modern industrial plants are often equipped with a large
number of sensors which measure different process
variables. These measured data, acquired through a couple
of years and accumulated in the process database, can be a
useful source of information for abnormal situations
detection and explanation of their roots. In order to detect
abnormal process events a number of multivariate statistical
process monitoring (MSPM) approaches were developed.
MSPM methods are basically algorithms that can be used
for extracting important information from large
multivariable data sets such as plant data. Therefore, the key
feature of such methods is the possibility to handle highly
correlated, highly dimensional and noisy data. MSPM
methods describe original data by the reduced set of
variables which in turn makes analysis of the data much
easier. Usually MSPM consists of the following steps [7]:
1. building data-based model from normal process data

(i.e. historical data of normal process operation),
2. new data projection (according to the built model),
3. judging whether the new data are statistically normal or

abnormal against the normal process behavior captured
by historical normal data,

4. identifying the variables responsible for the process to
go out of control,

5. determining the root cause of the abnormality.

Principal Component Analysis (PCA) and Partial Least
Squares (PLS) are the two most commonly used methods
for process monitoring [2, 8]. Since PCA is a conceptually
simpler technique and since it does not require target
variable measurements, PCA based monitoring is found
more often in practice than PLS based. In recent time
another method has gained on popularity, namely
independent component analysis (ICA) [5]. However, these
methods assume linear variable interrelationship which is
rarely found in practice. Nonlinear methods such as kernel
PCA (KPCA) and kernel ICA (KICA) [6] have appeared
recently and can overcome classical PCA and ICA
disadvantages in process monitoring. Time-varying process
behaviour is an aspect of great importance in MSPM.
Therefore, different adaptive mechanisms for the
mentioned methods are continuously being proposed.
However, this aspect is beyond the scope of this paper, so
adaptive MSPM methods are only briefly mentioned in
section 2.3.

The starting point in any multivariate analysis is the
data matrix, , whose elements are the measured data

2
Multivariate statistical methods

2.1
PCA based methods

X

obtained by measurements carried out in the process.
columns of matrix are called objects (often correspond to
some chemical or process measurement samples), and
rows of matrix stands for the dimension of input space
(corresponds to the number of measured variables that form
object).

PCA is a method for the projection of the high-
dimensional, correlated input space into the appropriate
lower dimensional subspace, a latent space. In the input data
space PCA searches for directions with the biggest data
variations, provided that these directions are orthogonal,
and uses them as a primary axis of a new coordinate system
in which the input space is then projected [4]. Thereby PCA
transforms correlated variables into the set of new
uncorrelated variables which are called principal
components (PCs). Apart from being uncorrelated, the new
variables are sorted by the size of data variation that they
describe. The largest principal components are used for the
process variable estimation while the smallest ones are used
for the fault detection and fault identification. Illustration of
the PCAmethod is given in Fig 2.

In PCA the × data matrix is decomposed into the
sum of the product of pairs of vectors [2, 4]:
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, (1)

where and are the principal component scores and

loadings, is residual and is the number of principal
components. Since columns of are eigenvectors of
correlation matrix associated with largest eigenvalues, and

are the remaining vectors, calculation of the (PCA
model) is reduced to eigenvector problem.

Eigenvectors can be determined one by one, for
example by NIPALS method - sequential determination
procedure, or all at once, for example by SVD method –
simultaneous determination procedure. Once the
eigenvectors are determined, projections of the data onto the
eigenvectors can be made. These projections are called
''scores'' and are often useful for showing the relationships
between the samples in the data set.

When PCA is applied to data set it is often found that
only the first few eigenvectors are associated with
systematic variation in the data, i.e., important phenomena
in the data, while the remaining eigenvectors are associated
with noise, i.e., false phenomena in the data. PCA model is
formed by retaining only the eigenvectors which describe
systematic variation in the data. Once the PCA model is
formed, new data can be viewed as projections onto
eigenvectors.

For a reduced order model (where only the first of

total eigenvectors were retained) and a new sample ,
its projection is:
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where is the projection of the sample vector on the
principal component subspace (PCS), is a vector of
scores of the model for the sample .

Different extensions of PCA method were proposed to
enhance its monitoring capability (see Fig. 2). In [9] PCA
and PLS method is extended to situations where the
processes can be naturally blocked into subsections. This
multiblock PCA (MBPCA) method is useful in monitoring
complex processes [10]. Another useful extension is
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dynamic PCA (DPCA) method proposed in [11] where
lagged measurements were used to take into account
process dynamics. Multiscale PCA (MSPCA), which was
proposed in [12], combines wavelet analysis and PCA
method. MSPCA simultaneously extracts cross-correlation
across the sensors (by PCA method) and auto-correlation
within a sensor (by wavelet analysis) [13]. Since PCA is a
linear method, it can be inefficient, unreliable and
misleading when it is used for highly nonlinear process
monitoring. To extract nonlinear relationship between
variables, nonlinear PCA based monitoring scheme was
proposed. Kernel PCA (KPCA) [14] gained much attention
recently since it does not involve nonlinear optimization
procedure. In [15] dynamic kernel PCA (DKPCA) was
developed for monitoring purposes. In [16, 17] wavelet
analysis is combined with KPCAwhich results in multiscale
KPCA (MSKPCA). The exstensions and modifications of
the PCAmethod are summarized in Fig. 1.

become independent of each other as much as possible.
Demixing matrix is found by the following equation:W

where is orthogonal matrix obtained by the whitening
transformation and is matrix which is obtained by the
eigendecomposition of covariance data matrix [19]. In [20]
fast and robust fixed point algorithm for calculating matrix

(and demixing matrix respectively), known as
FastICA, can be found.

Dimension reduction in ICA is based upon belief that
measured variables are the mixtures of a smaller number of
independent variables. In contrast to PCAmethod, selection
of independent components is not trivial task. In this paper
L norm of rows in demixing matrix is used for choosing

the most important independent components [5].
Since original ICA algorithm has several drawbacks,

extensions of ICAmethod were made to enhance ICAbased
process monitoring. In original ICA number of ICs is equal
to the number of measured variables which means that some
unimportant ICs are also extracted from the measured data.
Apart from that, ICs are not sorted according to their
importance like in PCA method. In [7] modified ICA is
proposed which extracts only few dominant ICs, determine
the order of ICs and gives a consistent solution. To take
process dynamics into consideration, dynamic ICA (DICA)
was proposed in [21] and its further modification in [22].
Also different nonlinear versions of the ICA method were
reported (e.g. [23]) or hybridizations with SVM or PCA
(e.g. [24, 25]).

Static models which are usually used in MSPM have
some major drawbacks. Sometimes available normal
operating data are not sufficient for developing reliable
process model. Therefore, it is desirable to update the model
with every new sample which is found to be normal. Apart
from that, industrial processes usually exhibit some kind of
time-varying behavior which static models can interpret as a
fault. To decrease the number of false alarms the model
should be updated in order to better represent current state of
the process.

Adaptive models are models which possess the ability
to automatically change their properties during online
operation [26]. Generally there are two ways to adapt the
model. First one updates offline built model in moving
window manner in a way that the model is recalculated on
the data contained in a window which slides across the data
as the new data are collected. More efficient approach is
recursive which combines the old model with the newly
acquired data. Adaptive process monitoring can be found in
[27-29].

When a model is built from normal process data by
using PCA or ICA method, the model can be used for
detecting and identifying unusual process conditions such
as process and sensors faults. Monitoring statistics are used
for fault detection and contribution plots are usually used
for fault identification. In the following sections sensors
faults will be examined in more details.
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2.3
Adaptive multivariate statistical methods

3
Dealing with faults

2.2
ICA based methods

Statistical process monitoring method that uses
Independent Component Analysis (ICA) was proposed in
[18, 19]. While PCA projects correlated variables onto the
set of new variables which are uncorrelated, the goal of ICA
is to decompose data into linear combinations of
statistically independent components (ICs). Since the
measured process variables are usually a combination of
independent variables that are not directly measurable,
process monitoring based on ICA method can be quite
superior to the PCAbased monitoring.

The measured variables are assumed to be linear
mixtures of some unknown latent variables (ICs), where the
mixing matrix of coefficients is also unknown. measured

variables that are collected in matrix can be presented

as a linear combination of ) unknown independent

components (note that ICA uses transposed data matrix in
respect to PCA):

m

l (l m

Xm×n

≤

where is the unknown mixing matrix, is the

independent component matrix and is the residual
matrix. Therefore, ICA seeks to extract these independent
components as well as the mixing matrix of coefficients
only from the available measured data. This objective of
ICA can be defined alternatively, i.e. to find demixing

matrix such that rows of reconstructed component
matrix [19]:
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projection into the model is not unusual. The calculated
limit is based on the data used to form the PCA model. It
defines a distance off the plane, formed by eigenvectors,
that is considered unusual. Therefore, Q statistic represents
variations not explained by the retained PCs.

Q
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3.1
Fault detection

Fault detection is determining whether a fault has
occurred. Multivariate statistical techniques can be used to
detect the following abnormal sensor conditions:

the measurements reach unusual values, often caused
by a major sensor failure,
multiple sensors can deviate from normal correlations,
the monitored process undergoes transient variations
[30].

For fault detection, the PCA model of the process is
developed, based on normal operating process data, and
then used to check new measurement data. The differences
between the new measurement data and their projections to
the built model, the residuals, are then subjected to some
sort of statistical test to determine if they are significant.
Usually the statistic, also called squared prediction error

(SPE), and the Hotelling's ( ) statistic are used to represent
the variability in the residual subspace and principal
component subspace [2].

The statistic shows how well a new sample fits into
the PCA model built on previous measurement data. It is a
measure of the difference (residual) between the sample and
its projection onto the principal components retained in the
model. The residual for sample is given by:
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and represents the ''goodness of fit'' of the new sample to the
model as a scalar. It can be calculated by taking the sum of

squares of the components of .

Approximate confidence limits can be calculated for
the model residual, , provided that all the eigenvalues of
the covariance matrix are known:
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where:

The measurements of three process variables together
with the result of PCA method are shown in Fig. 2. Two
"suspicous" samples can be also observed. The sample with
large value is out of the plane of the model, although its

Q Q

c

α

α
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,
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upper confidence limit for the model residual with

significant level
normal deviate corresponding to the upper (1 – )

percentile.

α
α

Q

Hotelling s ( ) statistic provides an indication of
unusual variability within the normal subspace. The value

of for one sample is equal to the sum of squares of the
adjusted (unit variance) scores on each of the principal
components in the model:
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Figure 2 Data projection on two PCs
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represents the squared length of the projection of the
current sample into the space spanned by the PCA model of
the data. It is an indication of how far the PCA estimate of
the sample (2) is from multivariate mean of the data, i.e., the
intersection of the principal components (Fig. 2). Therefore,

if sample has an abnormal value of but value below the
limit, it is not necessarily a fault – it can also be a change of
the operating region. The statistical confidence limits for the

values of can be calculated according to statistical F-
distribution as follows:

,
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where:
– number of samples in the data set used in the calculation

of the PCAmodel,
– number of retained principal components,

The limit defines an ellipse on the plane within the
data are assumed to be normal (Fig. 2).

Process monitoring based on ICA is similar to the
monitoring based on PCA. When ICA model is derived
from normal process data with FastICA algorithm, matrices

,

n

l

T

α – parameter of the standard normal deviate.

, , and are obtained. By selecting the most
dominant ICs reduced matrix and remaining matrix

are formed. Matrices and are obtained according to the

equation (5). Now, and for the new sample
can be calculated:
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In ICAbased monitoring three statistics are used for process

monitoring. statistics is defined as sum of the independent
scores:

I
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statistics is used to monitor the systematic part of process

variations. statistic is similarly defined but it monitors
the non-systematic part of measurements and therefore
provides detection of some special events that enter the
process. or SPE statistic is defined like in PCA based
monitoring:
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Since the variables in ICA do not follow Gaussian
distribution, kernel density estimators are used for
calculating confidence limit of , and statistics [19]:I Q2
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where is density function, is number of samples, is
smoothing parameter, are observed values and is kernel

function. Control limit of normal operating data is point
occupying 99 % of area under density function. In this paper
kernel density estimator with Gaussian kernel function is
used.

After a fault is detected, it is important to diagnose the
cause of failure. So far, the most popular approach to
diagnosis is the use of contribution plots. A faulty sensor
usually breaks down the normal correlation with the
remaining sensors. This feature can be used to identify the
faulty sensor after an abnormal condition is detected. The
contribution plot uses the residual of each sensor at every
sample to identify the sensors related to a detected fault. The
sensor with the largest error is considered faulty, since it has
a major contribution to the squared prediction error used for
fault detection. To show the contribution of each variable to
the total amount of the residual, equation (7) is written in the
form:

f n h
x Ki

3.2
Fault identification (fault diagnosis)
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where is contribution of the -th variable. Variable

contribution for PCA statistics and ICA statistics can be
found in [5].

Usually it is possible to reconstruct sensor faults based
on multivariate statistical models to maintain process
control and optimization [1].
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4
Implementation of the derived algorithms for fault detection
and identification

Based on the theoretical expressions, PCA and ICA
based algorithms for fault detection and identification are
derived and implemented. To analyze fault detection and
identification ability of those methods, proposed algorithms
are applied to the two different processes whose simulation
models were made in Matlab/Simulink.

The first one is the process of liquid storage in two
coupled tanks (Fig. 3). In this process, common sensor
errors like drift and bias are simulated. The algorithm based
on PCA is used for detection and identification of these
conditions. The second process is the more complex process
of liquid storage (Fig. 4). Data obtained by the simulation
were used for PCA and ICA model building which are then
used for detection of faulty samples.

Figure 3 Process of liquid storage in the two coupled tanks
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Figure 4 Principal schema of complex fluid storage process

4.1
Statistical process monitoring based on PCA

The basic procedure for the SPM based on the PCA
method can be derived according to the section 2.1 that
covers PCA model building and sections 3.1 and 3.2 that
deal with fault detection and fault identification. The
proposed algorithm for a fault detection and identification
consists of the following steps:
1. Data standardization:

Scaling and centering of the input data matrix that is
used for process model building.

2. PCAmodel building:
Covariance matrix calculation based on standardized
input data matrix,
Eigenvalues and eigenvectors calculation,
Number of principal components selection that will be
retained in the model,

(SPE) and Hotellings ( ) confidence limits
calculation.
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3. Test of the new data:
Scaling and centering of the new data,
Projection of new data to the existing PCAmodel,

and values calculation for each sample,

If or sample values exceed the confidence limits,
fault has occurred.

If any abnormality is detected, draw contribution plot
and find the responsible variables (sensors).

Simple process of the liquid flow and level control in
the two coupled tanks is shown in Fig. 3. These tasks are
very common in the process industry. Regulation is
implemented through a controllable valve at the entrance.
Measured data are generated by simulation and algorithms
for fault detection and identification are applied on the
obtained data. Three variables are measured: input flow ,

output flow and flow . In order to obtain more realistic

process data, a noise was added to the simulated
measurement data. Obtained data matrix consists of 3
variables and 1000 samples. Once the data have been
normalized, PCAmethod can be applied. Implementation of
PCA method in Matlab is based on singular value
decomposition. Tabs. 1 and 2 show the obtained
eigenvectors and variances described by the PCAmodel.
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A. MSPM of the fluid storage process in the two
coupled tanks
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Table 1 Eigenvectors

Loadings

coefficients
Eigenvector 1 Eigenvector 2 Eigenvector 3

1. 0,5629 0,6915 0,4528

2. 0,6092 0,0231 –0,7927

3. 0,5585 –0,7221 0,4083

Table 2 Variance described by the PCA model

Eigenvector Eigenvalue %Variance
%Total

variance

1. 2,6755 89,1831 89,1831

2. 0,3137 10,4561 99,6392

3. 0,0108 0,36080 100,0000

It can be seen that the first eigenvector describes 89 %
of the variance in the data and that the first two eigenvectors
together describe even more than 99 % of the total variance
in the data. From this it can be concluded that the observed
process variables are strongly correlated. Also, by looking
at the eigenvalues, it can be seen that the eigenvector with
the biggest eigenvalue describes the biggest variance in the
data. It represents the first principal component, and since it
captures most data variation (89 %), it is enough to remain
only this first component in the PCAmodel. So, the data will
be projected onto the one principal component.

Obtained PCA model could be used to check for new
measurement data and sensor fault detection. In order to
detect sensor fault, confidence limits must be determined
according to equations (8) and (12):

confidence limit = 2,61,

confidence limit = 7,99.
Now, when confidence limits are calculated, the built

model can be used to check on new data. The first example
of sensor fault is sensor drift which was simulated by the
slope of 0,00005 that was added to the sensor value and
which takes effect after 50 seconds. The new data matrix has
11 samples. To detect sensor failure, new data have to be

Q

T
2

standardized firstly, but with the standardization parameters
that were used in model building procedure. Then, based on

the obtained model and new standardized data, and

values for the new measurement samples are calculated
The obtained values are shown in Figs. 5 and 6. Confidence

limits are marked with lines. It can be seen that the values
of all the samples are below the limit. However, values of
some samples have exceeded the confidence limit, from

which it can be concluded that sensor fault has occurred
Contribution plots are used for faulty sensor identification.
Since values actually represent the amount of residual for
each sample, it is necessary to find the variable (sensor) that
most contributes to the large amount of residual. Fig. 7
shows the contributions of individual variables to the

residuals of each sample It can be concluded that the first
sensor is faulty.
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Figure 10 Contribution plot (bias)

Another type of possible sensor failure is bias. In order
to simulate bias in Matlab/Simulink, a constant amount of

0,005 is added to the second sensor. The resulting and
values of the samples are shown in Figs. 8 and 9. In this case,

and values of all the samples are above the confidence
limits. The contribution plot in Fig. 10 shows that the second
sensor is faulty.

Second process is the complex process of liquid storage
(Fig. 4). Simulation model of the process was made and sets
of measurement data with different properties were formed.
The process consists of four liquid tanks with sloping walls,
of which the first three are mutually coupled. Controllable
valves are located at the entrances and exits of the first two

tanks and at the exit of the fourth tank The third tank,

Q T

T Q

2

2

B. SPM of the complex process of liquid storage

.

except the resulting flow from the first two tanks has an
additional liquid flow, which by nature is a random variable.
13 variables are measured: positions of all the controllable
valves (in total there are 5) and all the flow rates (input and
output flows of the first two tanks, the resultant flow in the
third tank, the additional flow of the third tank, the output
flow of the third tank and the output flow of the fourth tank).
1000 samples with a noise were generated which represent
normal process behavior and which are used for PCAmodel
building By applying the PCA method, 13 eigenvectors
were obtained from which 5 remained in the model, i.e.,
measurement data were projected to the 5 principal
components. Confidence limits are obtained according to
(8) and (12):

confidence limit = 11,69,

confidence limit = 15,25.
The built model is used to check the test data. 50 test

samples with the noise were generated. To simulate sensor
errors of random magnitude were added to 21 test sample.

and values of the test measurement samples are shown in
Figs. 11 and 12.
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In this case, statistics did not register all incorrect
measurements probably because the added errors were
small in magnitude. Identification of the faulty sensor can
be done in similar way like in first example using
contribution plots. However, there are more variables used
for modelling and there can be several faulty sensors at the
same time, so contribution plots are not so clear as in Figs. 7
and 10. Hence, it is more difficult to detect which sensor is
faulty.
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Multivariate statistical process monitoring

4.2
Statistical process monitoring based on ICA

The basic procedure for the SPM based on the ICA
method can be derived according to the section 2.2 that
covers ICAmodel building and sections 3.1 and 3.2 that deal
with fault detection and fault identification. The proposed
algorithm for a fault detection and identification consists of
the following steps:
1. Data standardization:

Scaling and centering of the input data matrix that is
used for process model building.

2. ICAmodel building:
Calculation of matrices , and with FastICA
algorithm
Selection of independent components according to the
L norm of rows in the matrix ,

(SPE) and statistics confidence limits calculation.
3. Test of the new data:

Scaling and centering of the new data,
Projection of the new data to the existing ICAmodel,

and values calculation for each sample,

If or sample values exceed the confidence limits,
fault has occurred.

Similarly like in PCA based monitoring, if any
abnormality is detected, contribution plots can be used to
find the responsible variables (sensors).

ICA based process monitoring is applied only to the
complex process of liquid storage to show advances over
PCA method. Like in PCA based monitoring, ICA model
was developed on 1000 samples which represent normal
process behavior. 13 independent components were
obtained and, according to the L norm of rows of matrix

(see Fig. 13), it is sufficient to retain only first four
independent components.

�

�

�

�

B W Q

W

W

,

2

2

Q I

Q I

Q I

2

2

2

�

�

�

�

1 2 3 4 5 6 7 8 9 10 11 12 13
0

10

20

30

40

50

60

Independent components

L
2

n
o
rm

o
f

ro
w

s
o

f
m

a
tr

ix
W

Figure 13 L norm of rows of matrix2 W

Confidence limits are obtained according to (13), (14)
and (16) with kernel density estimators:

confidence limit = 14,37,
confidence limit = 37,40,
confidence limit = 30,45.

From Fig. 14 it can be noticed that ICA based
monitoring is more sensitive, i.e. it has better detection
capabilities than PCA method (ICA based monitoring
revealed 14 while PCA detected only 4 faults of total 21
sensor faults). This means that ICA can extract true factors
that drive the process. However, it is interesting to notice
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that in ICA based monitoring all faults were detected by
statistics while in PCA based monitoring with statistics.

Since statistic is similar to statistic, it measures
systematic variations in IC subspace. So, it can be
concluded that erroneous samples violate normal
correlation between variables in ICA based monitoring.
However, this can also indicate change of the operating
region. statistic for the test samples is not presented
because it did not show any important information about
sensor faults.

Automatic fault detection and identification in the
process measurement system is very important for quality
process control. In modern industrial plants there are many
process variables which are measured by sensors and the
measurements are recorded to the plant database. Under
normal operating conditions these variables are highly
correlated. Multivariate statistical methods can be used to
model relationships between process variables. Built
models can be used to check the new measurements that are
acquired and to judge whether abnormal process situation
occurred or not. When such abnormal situation is detected
and identified on time, additional appropriate actions can be
carried out.

This paper shows fault detection and fault identification
based on PCA and ICA methods. Apart from that, a short
review of available modifications of PCA and ICA methods
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2 2
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is also given. Hotelling's ( ), (SPE) and statistics are
used for sensor fault detection. Faulty sensor identification
is performed by the use of contribution plots which proved
to be simple and useful diagnostic tool. However, it can be
difficult to identify faulty sensors from contribution plot
when error occurs in a couple of sensors at the same time.
Basic PCA and ICA equations are given together with the
equations and guidelines for MSPM based on these
methods. Structure of the PCA and ICA based algorithms
for fault analysis is also derived. The proposed algorithms
are applied to the two simulated processes. Presented results
show that ICAbased monitoring is more sensitive than PCA
method, i.e. ICA revealed more sensor faults. On the other
hand, PCA method is much simpler than ICA method
regarding computational cost and optimization procedure
which must be taken into consideration when such methods
are implemented in the plant supervision and control
system. The value of the faulty sensor process variable can
be estimated from the remaining sensors with different soft-
sensing techniques.

T Q I
2 2
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