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Izaskun Mendia a,*, Sergio Gil-López a, Itziar Landa-Torres b, Lucía Orbe b, Erik Maqueda a 

a TECNALIA, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain 
b Petronor Innovación S.L., 48550, Muskiz, Bizkaia, Spain   

A R T I C L E  I N F O   

Keywords: 
Flash-point temperature 
Control industry process 
Adaptive soft sensor 
Virtual sensing 
Inferential sensing 
Data-driven techniques 

A B S T R A C T   

In industrial control processes, certain characteristics are sometimes difficult to measure by a physical sensor due 
to technical and/or economic limitations. This fact is especially true in the petrochemical industry. Some of those 
quantities are especially crucial for operators and process safety. This is the case for the automotive diesel Flash 
Point Temperature (FT). Traditional methods for FT estimation are based on the study of the empirical inference 
between flammability properties and the denoted target magnitude. The necessary measures are taken indirectly 
by samples from the process and analyzing them in the laboratory, this process implies time (can take hours from 
collection to flash temperature measurement) and thus make it very difficult for real-time monitorization, which 
in fact results in security and economical losses. This study defines a procedure based on Machine Learning 
modules that demonstrate the power of real-time monitorization over real data from an important international 
refinery. As input, easily measured values provided in real-time, such as temperature, pressure, and hydraulic 
flow are used and a benchmark of different regressive algorithms for FT estimation is presented. The study 
highlights the importance of sequencing preprocessing techniques for the correct inference of values. The 
implementation of adaptive learning strategies achieves considerable economic benefits in the productization of 
this soft sensor. The validity of the method is tested in the reality of a refinery. In addition, real-world industrial 
data sets tend to be unstable and volatile, and the data is often affected by noise, outliers, irrelevant or un-
necessary features, and missing data. This contribution demonstrates with the inclusion of a new concept, called 
an adaptive soft sensor, the importance of the dynamic adaptation of the conformed schemes based on Machine 
Learning through their combination with feature selection, dimensional reduction, and signal processing tech-
niques. The economic benefits of applying this soft sensor in the refinery’s production plant and presented as 
potential semi-annual savings.   

1. Introduction 

Refineries produce multiple petroleum subproducts that are used for 
various applications. For safety considerations and to be commercial-
ized, these products have to meet a set of quality specifications [1]. One 
of the critical quality specifications for automotive diesel is Flash Point 
Temperature (FT) [2]. The FT is a property of the diesel that indicates 
the lowest temperature at which there will be enough flammable vapor 
to ignite when an ignition source is applied. It is determined by the 
number of light hydrocarbons present in the diesel and dictates the 
flammability of the fuel. It is commonly monitored after the diesel has 
been processed at the desulphuration industrial unit. In the 

desulfurization unit, the process of conditioning the load streams 
(coming from the atmospheric and vacuum distillation units and ther-
mal and catalytic units) to commercial diesel specifications takes place. 
This process consists mainly of catalytic hydrogenation that removes 
sulfur, nitrogen, oxygen compounds, and other metallic impurities 
present in the feedstock streams, resulting in a more refined product that 
meets the customer’s handling, transportation, and combustibility re-
quirements. The process carried out in the refinery plant is complex, and 
it’s formed of a large number of physicochemical reactions to meet the 
quality and safety specifications (European standard UNE-EN 590). 

The common methods for FT prediction are based on the study of the 
empirical correlation between physical properties based on the 
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assumption that structurally similar compounds have similar flammable 
activities [3]. These physical properties are relative to the normal 
boiling point (NBP) and the enthalpy of vaporization (Hv), given their 
relationship to the volatility and hence flammability of the fuel [4]. 
Measurements are performed indirectly by taking samples from the 
process and analyzing them in the laboratory using experimental mea-
surement methods. However, nowadays, new developments are focused 
on the group contribution models (GCM) and quantitative 
structure-property relationship (QSPR) models [5,6]. (i) The GCM 
approach is used to predict the thermodynamic properties of organic 
compounds from their molecular structure. (ii) The QSRP approach uses 
information from molecular descriptors to represent the characteristics 
of numerous organic compounds. These descriptors numerically repre-
sent various chemical structural properties such as constitutional, to-
pological, geometrical, thermodynamic, quantum chemical, and 
charge-related characteristics [7]. Both GCM and QSRP approaches 
use the molecular information of organic compounds as input predictor 
variables to the models [8]. 

In parallel, GCM and QSPR models have been developed using 
various Machine Learning algorithms, increasing the predictability of 
these models [7] through non-linear techniques mainly for the selection 
of the most relevant predictors. Algorithms such as, e.g., artificial neural 
network (ANN), support vector machine (SVM), k-nearest neighbors 
(KNN), random forest (RF), and non-linear regressions are the most 
popular [7]. A good literature review on FT calculation can be found in 
the following literature reviews [9–11]. 

However, in the process industry, these methods have several oper-
ational limitations. Experimental methods, although always preferable 
to any other inference technique in terms of reliability, require sample 
analysis tasks in the laboratory that can take hours from collection to 
flash temperature measurement [12], and sometimes they are extremely 
difficult processes [6]. As an alternative to obtaining the FT experi-
mentally, MCQ and QSPR-based methods often use estimation methods 
based on available data in public databases, the most popular are DIPPR, 
Merck, NIOSH, and the chemical database of Akron University. In these 
cases, the methods refer only to pure compounds, where molecular in-
formation is indispensable [13,14]. In some other cases, studies recog-
nize the limitations of the physical models used (Liaw’s model) 
especially when this molecular information does not correctly define 
some properties such as isomers [15]. The lack of real-time FT infor-
mation, either due to the delay of experimental methods or to the lack of 
knowledge of the chemical structural properties [13] of the compounds, 
can lead to economic losses. 

The author is not aware of any previous work in the literature for the 
inference of the FT value in real-time. Moreover, at least in this use case, 
there is no physical sensor capable of measuring the flash temperature 
continuously in this refinery environment. In the reality of this use case, 
the measurement is done indirectly by taking a process sample and 
analyzing it in the laboratory using an experimental measurement 
method known as Pensky’s “closed cup” method [4,16]. It is also 
controlled with an inference based on classical rigorous models. 

In this work, we propose for the real-time inference of the FT value a 
procedure based on soft sensors. Based on machine learning techniques, 
soft sensors can infer the value of a certain magnitude from the indirect 
measurement of other magnitudes. In other words, a data-driven soft 
sensor is defined as an inference scheme capable of learning certain 
multi-parametric and highly non-linear causality relationships from a 
set of historical data [17]. Its main requirement is the existence of [18] 
data. In this use case, the variables that determine the natural variability 
of the process are variables related to temperature, pressure and hy-
draulic flow. Its use is particularly suitable for the operation of certain 
industrial processes, e.g. the measurement of the chemical composition 
of certain compounds in petrochemical distillation processes, chemical 
companies, cement plants, paper industry, nuclear power plants, among 
others. A complete list of applications based on soft sensors or virtual 
sensing can be found in Ref. [19]. The main competitive advantages of 

these soft sensing methods are [20]:  

● They do not require specific knowledge of the parametric equations 
governing the physical relationships of the problem to be addressed. 
Therefore, they do not require prior knowledge of the characteristics 
of diesel and related chemical reactions.  

● They are schemes with high inference capacity in highly non-linear 
multi-parametric relationships. In this case, although the molecular 
compositions of diesel are unknown, this information is indirectly 
implicit in the operating variables. The scheme is able to infer TP 
through these process variables.  

● They are systems that offer, a relatively low design cost, high 
generalisability. 

When the industrial process to be modeled responds to stable, non- 
volatile behavior over time, a non-adaptive strategy is sufficient for 
soft sensor modeling. But real-world industrial behaviors tend to be 
unstable and volatile and the data is often dirty, noisy, and contains 
outliers, irrelevant or unnecessary features, and null or non- 
standardized values [21]. To solve these problems, the authors [22] 
introduce the term adaptive soft sensor as a concept to assimilate the 
behavioral changes related to the dynamic transformation of the pro-
cess. Soft sensors can adopt adaptive strategies based on small training 
fragments of reduced dimensions capable of delimiting a sufficiently 
stable caustic (a term known as window) to train with such a group of 
instances and to predict with them the closest immediate instants. The 
windows make up for the lack of knowledge of the chemical composition 
of the diesel because this information is indirectly implicit in the process 
variables. The size of the window determines the generalisability of the 
model and the level of redundancy of the data, as well as the fast or slow 
adaptation to sudden changes in the model: the smaller the window, the 
less the data is affected before the change and the better the adaptation 
[23]. On the other hand, though, it can produce model estimates with 
high variance (especially in the presence of a large number of collinear 
process variables). The big advantage is that by composing a set of local 
linear models, one can approximately describe a non-linear process [17, 
22]. 

In other industrial disciplines, come works propose novel empirical 
expressions for process modeling. Such as the one suggested by the 
authors in Ref. [24] concerning metallurgical processes and their 
properties. In this case, such expressions allow correlating 
thermo-physical properties based on temperature and tin molar 
composition. Or as suggested by the authors in Ref. [25] to estimate the 
fan width in the paint spray application process. In this case, the fan 
width is often determined in a trial and error method but now the au-
thors propose a linear regression model based on process parameters 
such as velocity and flow rate ejection and shapping air. And even to 
infer non-linear knowledge learned through physical laws in the field of 
civil engineering, as proposed by the authors in Ref. [26]. Finally [27], 
proposed to model the conditions governing the complex 
hydro-hydraulic flow process in a cathodic cell through a novel device 
through a numerical scheme. 

According to the author, this work is the first known approach 
capable of inferring FT using experimental measurements and opera-
tional data. This work evaluates the relationship between the 
complexity of the machine learning methods used and the quality of the 
prediction through a statistical study of how they affect relevant feature 
selection techniques, dimensional reduction techniques, and signal 
processing techniques, in combination with different regressive algo-
rithms. From regressive algorithms such as Ridge -regularised linear 
regressive algorithm-to tree assembly algorithms such as RandomForest 
and XGBoost in bagging or boosting and without the need to implement 
complex deep techniques. This paper presents a methodology based on 
Artificial Intelligence applied to real plant operation data. 
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2. Case study: Flash point temperature inference in a realtime 
process 

2.1. Dataset 

A study period of 3 years (2017, 2018, and 2019) was considered for 
the conceptualization of the model. The average sampling frequency of 
the process sensors was 1 min. 

For the time-lag analysis that studies the dynamics of the process, it 
was agreed to consider process lags of no more than 4 h before sampling. 
This was because it is considered that the hydraulic process lag was 
below 4 h so any earlier value should not influence the flash temperature 
measured in the laboratory. 

Data from all the units defined by refinery technicians was collected. 
This data contained all the physical parameters (temperature, pressure, 
and hydraulic flow) able to characterize the lighter components of each 
of the streams that affect the flash temperature. Access to the data was 
done through web services (client/server REST request mechanism 
[28]) that provide information from each of the streams. All data was 
stored in a single serializable object for the subsequent study described 
in the following sections. 

2.2. Cross-validation 

This use case deals with a dynamically changing process with a 
significant time effect. In order to provide a more robust model perfor-
mance, the validity of the solution was tested with split time series cross- 
validation [29], a method based on the expanding training window 
concept. The size of the training window w+1 was continuously 
expanding with new instances while the testing size h remained con-
stant. The training and testing data were daily instances (every 24 h). 

The RMSE metric was used as the measure of success and calculated 
for each window. If the RMSE value was below a certain threshold 
(based on the reproducibility stated by the standard ASTM D97 method), 
that instance was included in the training set of the next training win-
dow. Otherwise, it was discarded. 

The 10 min instances output value (flash temperature) was inferred 
with the respective daily model. However, the output value of these 10- 
min instances was unknown and it was not possible to quantify the error. 
Fig. 1 illustrates this procedure. 

The training, testing, and inference time was in the range of 1–4s on 
an Intel i7 processor running at 2.6 GHz with 32 GB of RAM. 

2.3. Methodology 

2.3.1. Data collection and Pre-processing techniques 
The data collected directly from the production units had to be 

conditioned for use in the design of the soft sensor, and the following 
steps were taken:  

● If the unit was operating in a different mode of operation than 
desired, data were discarded. For example, instances, where the unit 
was in startup or recirculation mode, were eliminated and only those 
instances where the main feed was kerosene, were considered.  

● Inputs with a single constant value were discarded. Those inputs 
whose value did not vary over time and remained constant, did not 
provide information on the process dynamics, were completely su-
perfluous, and should be eliminated.  

● Inputs with a high percentage (>90%) of null values were discarded. 

2.3.2. Input selection techniques 
To identify the relevant inputs, the Permutation-based Importance 

(PIMP) technique [30,31] and algorithms for feature selection were 
applied among all the characteristics. The PIMP technique is based on a 
gradient boosting model capable of determining the importance of each 
input and it allowed to discard inputs with no effect on the flash point 
temperature. The Random Forest and Gradient Boosting algorithms, 
through their “feature importance” function, make it possible to quan-
tify the effect of each input. From the combination of both (technique 
and algorithms), it was calculated the relevant inputs. Likewise, a 
weighting process was established between the chosen inputs and those 
inputs that were frequently chosen as relevant by the different algo-
rithms. On the other hand, with the help of refinery technicians and their 
knowledge of the process, the inputs that should be most important from 
a physical point of view were identified. 

After performing several tests with the different inputs identified by 
means of the feature selection techniques and the list provided by re-
finery technicians, the list of the most relevant inputs that provided the 
best results was established. Those variables represent different stream 
flows, pressuresand temperatures that can be measures of the process or 
set points and controller outputs. 

In order to avoid redundancies and co-linearities, principal compo-
nent analysis technique (PCA) [32,33] as the dimensional reduction was 
used and it was estimated that just a few were the main inputs needed to 
explain at least 95% of the value of the native variables. 

In addition, it was performed an analysis of the relevant inputs for 
different time ranges to check if they remained constant or not. The 
different studies performed (adversarial validation and feature consis-
tency over time) concluded that the relevant inputs varied over time. 
This fact suggested that it was not enough to train a non-adaptive model 
with a prefixed data set, but that it was necessary to opt for an adaptive 
scheme (moving or extensive window strategy) that would be retrained 
as new data arrived. 

2.3.3. Time-lag analysis 
Time lagged cross-correlation (TLCC) [34] allowed to study the 

synchrony between each input and the target output by calculating the 
instant when the correlation was maximum. Fig. 2 shows the correlation 
values between a temperature input and the flash temperature and in-
dicates 3 1

2 hour temporary decalage (209 min lag) as the maximum 
correlation. 

2.3.4. Strategy selection and model training 
Soft sensor systems must adapt to gradual changes in behavior and 

must provide optimal performance even in the presence of process 
variations. This is achieved by updating and adapting the model of the 
soft sensor with each new instance iteration [17]. Two adaptive learning 
strategies arise to mitigate the effects of concept drift, giving rise to what 

Fig. 1. Minutal inference and timeseries cross-validation.  
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is known as adaptive soft sensor learning [35]:  

● Moving Window (MW) strategy. This method uses a moving learning 
dataset formed of a fixed number of points, also known as the win-
dow size. This moving dataset is used to continuously retrain the 
model by incorporating new knowledge and removing old ones. 
After each iteration, once the model is retrained the next time step is 
forecasted. The performance scheme has a stronger dependency and 
correlation relationship with the new instances than with the older 
ones [36–38] even when the process starts to change gradually [39]. 
The scheme is depicted in Fig. 3a.  

● Extending Window (EW) strategy. It is a walk forward scheme an 
incremental training window that expands after each iteration with a 
new instance. Adaptation to new behaviors is slow precisely because 
of the weight of past behaviors that are not forgotten, see Fig. 3b. 

Each of these strategies requires an algorithm on each of the win-
dows. The overall study has been implemented based on four reliable 
approaches, including:  

● Ridge Regression, a linear algorithm based on the classical linear 
regression model but regularising the impact on non-relevant 
features;  

● Support Vector Regression (SVR) [40], the non-linear algorithm that 
transforms the data into a higher dimensional feature space to make 
it possible to perform linear separation;  

● Random Forest Regression, a non-linear algorithm that has the 
ability to act as an ensemble algorithm by bagging individual trees; 
and  

● XGBoost [41] as efficient implementation of Gradient Boosting 
regression. A linear or non-linear algorithm depends on the kernel 

used. The present work compares a non-linear kernel gbtree as the 
ensemble algorithm for boosting individual trees. 

2.3.5. Validation 
Model performance evaluation remains a subjective matter for a data 

scientist, since the performance evaluation is closely related to the 
chosen learning strategy, to the algorithm, and to the aspects that re-
finery technicians need to prioritize. In order to use a common jargon 
with refinery technicians, on the present work the evaluation metric was 
based on “reliability”, “repeatability” and “reproducibility” [42]. But, 
for technical metric, the Root Mean Square Error (RMSE) loss function is 
adopted. The RMSE formula is: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(yi − ŷi)
2

n

√

(1)  

where y and ŷ are the actual and predicted values of the validation data 
respectively and n is the number of elements of the validation data. 

2.4. Methods comparison and discussion 

The study compares the soft sensor validation through different pre- 
processing techniques, application of regressors, and learning strategies. 
The pre-processing techniques are probabilistic data cleaning, normal-
ization between the maximum and minimum values of each feature 
(minmax-scaler), noise removal by smoothing the input with the 
Savitzky-Golay filter (savgol-filter), and dimensionality reduction with 
PCA (pca-decomposition). The regressors used are Ridge, RF, XGB, and 
SVR. The adaptive learning strategies are MW and EW. Only the results 
computed on the daily test dataset are reported. 

The result of testing the different combinations of pre-processing 
techniques over the relevant inputs and the reaction of each of the 
above algorithms is shown in Table 1. The values of the RMSE error 
metric are worse/greater in the linear Ridge algorithm (RMSEr-

elevantfeatures, Ridge,minmax,pca = 3.905) compared to non-linear algo-
rithms (RMSErelevantfeatures,RF,probabilistic,pca = 3.565, RMSErelevantfeatures,XGB, 

probabilistic, minmax = 3.653 and RMSErelevantfeatures,SVR,minmax,pca = 3.646) 
where they are better/lesser. The table shows that the best approaches 
are obtained in the application of non-linear assembly algorithms. 
Specifically, the best performance is obtained with the RF algorithm 
when the non-representative values of each of the input processes are 
removed and when PCA is used as the dimensional reduction method for 
the relevant features (RMSErelevantfeatures,RF,probabilistic,pca = 3.565). This 
approach (contrary to the best RMSE-XGB and RMSE-SVR solutions 
shown in blue) gets worse when scaling the inputs (minmax-scaler). This 
is because, with the exception of the tree-based models, in the rest of the 
cases, the objective function of the algorithms assumes (wrongly) that 
each of the inputs follows a normal distribution and therefore, as shown 
in Table 1, the best approaches are obtained when each of the inputs is 
monotonically transformed using normalization/scaling techniques 
such as minmax-scaler. The case of XGBoost is a bit peculiar because 
being a tree-based boosting algorithm it should not require any scaling. 
However, when optimizing the objective function using the gradient 
method, normalization tends to improve the results. 

Fig. 2. Time lagged cross-correlation analysis for a temperature input.  

Fig. 3. Adaptive learning strategies.  

I. Mendia et al.                                                                                                                                                                                                                                  



Results in Engineering 13 (2022) 100362

5

Furthermore, in order to quantify the suitability of the selection of 
the relevant features technique versus the treatment of all process fea-
tures, we have compared the approaches in both cases. Table 2 shows 
the approaches of the best combination of pre-processing techniques 
when performed only on the relevant inputs versus all inputs. The study 
demonstrates that correct input selection minimizes the value of the 
RMSE error metric and therefore improves the prediction result in 
validation (RMSErelevantfeatures,RF,probabilistic,pca = 3.565 vs RMSEallfeatures, 

SVR,probabilistic,pca = 4.836); it also prevents over-fitting and reduces model 
complexity. 

The analysis also includes, in addition to the previous one on the 
application of EW-strategy, the comparison with MW-strategy. Table 3 
shows the combination of the pre-processing and dimensional reduction 
techniques for RF, with MW-strategy, when choosing to select the rele-
vant inputs and when choosing to work on all inputs. In this case, better 
results are obtained when RF is applied on all the features (RMSEallfeatures, 

RF,minmax,pca = 4.599) than when it is only applied on the relevant ones 
(RMSErelevantfeatures,RF,minmax,pca = 4.653). However, these approaches do 
not improve the values of the error metric obtained with the EW-strategy 
(RMSErelevantfeatures,RF,probabilistic,pca = 3.565). 

This study shows that the best results are obtained when relevant 
feature selection techniques, pre-processing techniques (as probabilistic 
data cleaning and PCA), and RF as the algorithm for the EW as adaptive 
learning strategy are applied. The best result obtained is RMSE = 3.565. 

Fig. 4 illustrates the values of the real output and the predicted 
output, the residual error and the residual histogram. The Figure shows 
in the first graph, and in blue color, the output value of the flash point 
temperature (Real) and in orange color, the forecast value (Prediction); 
the second graph represents the difference between both, the residual 
being Residual = Real − Prediction; and finally, the third graph shows the 
histogram of the residual of the error. For a model to be considered 
adequate, it is necessary that the residuals follow a Gaussian distribution 
with mean value 0 and minimum variance. The histogram does not 
exactly reproduce the Gaussian curve, but these deviations are usually 
attributed to the not too large number of residuals. If the number of 
residuals was larger, one tends to think that the Gaussian representation 
would be more evident. The graph shows that the estimated regression 
model maintains equality of variance (no heteroscedasticity) and that it 

complies with the assumption of normality of the residuals. 
As the daily typing of the laboratory variable is manual and prone to 

human errors when the model is daily trained with the arrival of each 
new laboratory measurement, the error between the output prediction 
and the real laboratory measurement is checked. If the difference be-
tween output and real exceeds a certain threshold, the model does not 
consider that laboratory measurement. This is the case of three points in 
Fig. 5 that are identified in the scatter diagram, one yellow point and 
two green points that stand out from the rest. In this case, the 3 real 
laboratory measurements are considered as outliers (13 ◦C, 76 ◦C y 
78 ◦C). 

Fig. 5 shows the scatter plot between the real value of the flash point 
temperature and the predicted value when the algorithm with the lowest 
RMSE is used (RMSErelevantfeatures,RF,probabilistic,pca = 3.565). The points are 
distributed around the regression line, normally distributed, with a 
mean value 0. 

Table 1 
RMSE comparison: pre-processing techniques, relevant inputs and EW-strategy.  

Pre-processing techniques Algorithms 

probabilistic-data-cleaning minmax-scaler savgol-filter pca-decomposition Ridge RF XGB SVR 

✓ ✓ ✓ ✓ 4.529 4.345 4.985 4.448 
✓ ✓ ✓  4.462 4.319 4.982 4.451 
✓ ✓  ✓ 4.001 3.705 3.808 3.726 
✓ ✓   5.627 3.638 3.653 3.721 
✓  ✓ ✓ 4.512 4.399 4.851 4.741 
✓  ✓  4.462 4.319 4.978 4.744 
✓   ✓ 4.038 3.565 3.728 4.748 
✓    16.01 3.639 3.655 4.748  

✓ ✓ ✓ 4.43 4.372 4.649 4.35  
✓ ✓  4.352 4.352 4.967 4.357  
✓  ✓ 3.905 3.743 3.897 3.646  
✓   12.37 3.583 3.676 3.648   

✓ ✓ 4.443 4.309 4.554 4.631   
✓  4.352 4.353 4.961 4.634    

✓ 3.944 3.653 3.822 4.653     
15.978 3.979 4.077 4.652  

Table 2 
RMSE comparison: pre-processing techniques, all/relevant inputs and EW-strategy.  

Features Pre-processing techniques Algorithms 

probabilistic-data-cleaning minmax-scaler savgol-filter pca-decomposition Ridge RF XGB SVR 

Relevant features ✓   ✓ 4.038 3.565 3.728 4.748 
All features ✓   ✓ 4.888 4.928 5.162 4.836  

Table 3 
RMSE comparison: pre-processing techniques, relevant inputs andMW-strategy.  

Pre-processing techniques Algorithms 

probabilistic- 
data-cleaning 

minmax- 
scaler 

savgol- 
filter 

pca- 
decomposition 

RF 
relevant 
features 

RF all 
features 

✓ ✓ ✓ ✓ 5.216 5.026 
✓ ✓ ✓  4.996 4.948 
✓ ✓  ✓ 4.743 4.619 
✓ ✓   4.742 4.804 
✓  ✓ ✓ 5.140 5.004 
✓  ✓  4.996 4.948 
✓   ✓ 4.944 5.070 
✓    4.742 4.804  

✓ ✓ ✓ 5.288 4.933  
✓ ✓  4.898 4.852  
✓  ✓ 4.653 4.599  
✓   4.682 4.812   

✓ ✓ 5.028 4.938   
✓  4.898 4.851    

✓ 4.864 4.996     
5.079 5.012  
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The following conclusions were drawn from the above studies:  

● It is observed that a non-adaptive strategy model is not adequate due 
to the emergence of new behaviors and its inability to adapt to these 
new behaviors. Therefore, it is concluded that it is necessary to work 
with an MW-strategy that allows learning new behaviors.  

● The relationship between the relevant characteristics and the flash 
point temperature is multivariable and also evolves over time. In this 
study, an MW-strategy approach is the best way to generate the 
process inference model: the difference between EW-strategy and the 
different ensemble algorithms is minimal (RMSErelevantfeatures, Ridge, 

minmax,pca = 3.905, RMSErelevantfeatures,XGB,probabilistic, minmax = 3.653 and 

RMSErelevantfeatures,SVR,minmax,pca = 3.646), obtaining the best result 
with RF (RMSErelevantfeatures,RF,probabilistic,pca = 3.565).  

● The study shows better results when a selection of the relevant 
characteristics is made with the help of the refinery technicians than 
when working on the totality of the variables.  

● The results obtained are better in the EW-strategy than in the MW- 
strategy (RMSErelevantfeatures,RF,probabilistic,pca = 3.565 vs RMSEallfeatures, 

RF,minmax,pca = 4.599). 

2.5. Economic quantification of cost savings 

The quality variable flash temperature indicates the quality of the 
product at the exit of the desulfurization process. Currently, it is ob-
tained on a daily basis in a laboratory process. Once the flash temper-
ature value is known, the operator modifies the rest of the process 
variables in order to obtain a temperature value that meets the specifi-
cations. If the temperature value is higher than the specifications, it 
impacts an unnecessary overrun for the refinery: a higher quality 
product is produced that does not result in higher profits, since the 
selling price is maintained. This higher quality product implies indirect 
cost overruns in the process, e.g. operating at higher temperatures 
shortens the lifecycle of the catalysts used in the desulphuration reac-
tion. In this desulfurization process and in general, in the high-volume 
processes of refineries, the limitation of not having real-time informa-
tion causes great economic impacts. The tighter the process variables are 
tuned, the less they deviate from specification quality. The soft sensor 
provides refinery operators real-time information in order to adjust 
operating conditions, maximizing the stability of the desulfurization 
unit and producing diesel to specification. 

According to the refinery’s estimates and with the current procedure, 
50% of the time, despite the delay between taking the samples and 
obtaining the experimental measurements in the laboratory, realistic 
information is provided on the temperature of the process in progress. 
But in 12% of the cases, there is a slight uncertainty in the temperature 
value information, and in the 38% of the cases, is it not known if the 
temperature information is sufficiently realistic. When the information 

Fig. 4. Flash point temperature Process estimates and its residual signals. a) Real flash point temperature and prediction values. b) Residual signal. c) Resid-
ual histogram. 

Fig. 5. Scatter plot (Real flash point temperature vs prediction values).  
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is not sufficiently realistic (38%), it stops generating profits worth 497, 
306$/semester, and when the information is slightly uncertain (38% +
12%), it stops generating profits worth 654, 350$/semester. The soft 
sensor proposed in this study provides reliable flash temperature mea-
surements 94% of the operating time. Thus, a considerable reduction of 
the generated losses is estimated, from 497, 306$/semester to 29, 838 
$/semester, in the first scenario where the represented reality is not 
sufficiently realistic, whereas in the second scenario the reduction goes 
from 654, 350$/semester to 39, 261$/semester. 

3. Conclusions 

Historically, the calculation of flash temperature has been done basis 
on laboratory measurements or based on molecular information values 
of pure components. But these approaches have their limitations. This is 
especially true for real-time monitoring and applications. The present 
study proposes a complete data-driven procedure definition for real- 
time flash temperature inference through a novel adaptive soft sensor. 
Three years of real 10-min sampled data from an important international 
refinery is used for training and testing the defined procedure. The 
procedure is analyzed based on two key aspects:  

● Soft sensor scheme (based on Machine Learning) capable of learning 
the non-linear relationship between the easily measured process 
variables (i. e. temperature, pressure, and hydraulic Flow) and the 
value of the flash point temperature. The proposed methodology 
demonstrates its validity to provide flash point temperature in real- 
time, when there is no laboratory information related to the target 
variable, through machine learning inference. Different schemes are 
benchmarking showing that RandomForest outperforms Ridge 
regression, XGBoost, or SVR.  

● Mechanisms to automatically adapt its behavior dynamically, 
adapting it to the behavioral changes that the process tends to un-
dergo in real situations. It is demonstrated that a non-adaptive 
strategy model is not adequate due to the emergence of new be-
haviors and its necessity to adapt to these new behaviors. 

The best way to generate this dynamical adaptation capability is 
obtained using RF scheme by applying probabilistic-data-cleaning and 
pca-decomposition techniques over the most relevant features when EW 
approach is implemented (RMSE = 3.565). 

The accuracy of the proposed adaptive soft sensor allows us to infer 
the flash temperature in real-time, and even also can be adapted to work 
as an anomaly detection tool tracking the difference between the pre-
dicted value and the real value, alarming when this difference exceeds a 
certain threshold. The soft sensor proposed in this study provides reli-
able flash temperature measurements 94% of the operating time. Thus, a 
considerable reduction of the generated losses is estimated, from 497, 
306$/semester to 29, 838$/semester, in the first scenario where the 
represented reality is not sufficiently realistic, whereas in the second 
scenario the reduction goes from 654, 350$/semester to 39, 261 
$/semester. 
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