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Received: 20 June 2021

Accepted: 13 August 2021

Published: 15 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Process Control Laboratory, Institute of Automation and Control Process FEB RAS, 5 Radio Str.,
Vladivostok 690041, Russia; volk@iacp.dvo.ru

2 Department of Automation Engineering, Technical University of Ilmenau, 99084 Ilmenau, Germany;
yuri.shardt@tu-ilmenau.de

3 Beijing National Research Center for Information Science and Technology, Department of Automation,
Tsinghua University, Beijing 100084, China; yangfan@tsinghua.edu.cn

* Correspondence: torgashov@iacp.dvo.ru; Tel.: +7-423-231-02-02

Abstract: The paper deals with the problem of developing a multi-output soft sensor for the industrial
reactive distillation process of methyl tert-butyl ether production. Unlike the existing soft sensor
approaches, this paper proposes using a soft sensor with filters to predict model errors, which are
then taken into account as corrections in the final predictions of outputs. The decomposition of the
problem of optimal estimation of time delays is proposed for each input of the soft sensor. Using the
proposed approach to predict the concentrations of methyl sec-butyl ether, methanol, and the sum of
dimers and trimers of isobutylene in the output product in a reactive distillation column was shown
to improve the results by 32%, 67%, and 9.5%, respectively.

Keywords: soft sensing; multivariate filter; reactive distillation

1. Introduction

As the size and complexity of industrial systems increases, there is a need to accurately
measure most process variables. Unfortunately, not all variables can be accurately measured
using online hard sensors. For certain variables, such as concentration or density, the only
accurate measurements can be obtained by manually taking samples and analyzing them in
a laboratory. One solution to this problem is the development of soft sensors, which take the
easy-to-measure variables and create models to predict the hard-to-measure variables [1].

All soft sensor systems consist of a process model that takes the easy-to-measure
variables and provides an estimate of the hard-to-measure variables. These models can be
constructed using methods ranging from linear regression to principal component analysis
and support vector machines. Although the main focus has been on the development of the
soft sensor models [2–5], advanced soft sensor systems have also a bias update term that
can take any slowly sampled information to update the soft sensor prediction [1]. This bias
update term is normally designed as some function of the difference between the predicted
and measured values [6]. Of note, it should be mentioned that the measured values are
often sampled very slowly and with considerable time delay. This means that during the
points at which there are no updates, the previously available bias value is used. When
such a system is properly designed, it can provide good tracking of the process, i.e., the
predicted and measured values are close to each other.

Recently, it has been suggested that instead of only using the available slowly sampled
data for updating the bias term, it should be possible to also model the historical errors
and use them to predict the future errors [7]. It has been shown that such an approach
can improve the overall performance of the soft sensor system. However, there still
remain issues with how best to model and implement this predictive bias update term.
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Furthermore, there are issues with incorporating time delays into this approach since they
will greatly increase the size of the required search space.

Therefore, this paper will examine the development of a predictive bias update term
for a nonlinear system using dimension reduction. The proposed approach will be tested
using data from an industrial reactive distillation column that produces methyl tert-butyl
ether (MTBE).

2. Background

Consider the soft sensor system shown in Figure 1, where ut is the input, yt is the
measured (true) output, ŷm,t the predicted soft sensor value, ŷα,t and ŷβ,t are intermediate
soft sensor values, Gp is the true process, Ĝp is the soft sensor process model, and GB is
the bias update term. It can be noted that purpose of the bias update term is to take the
information from the measured values and correct the output of the soft sensor system. This
comes primarily from the unknown disturbances and the inherent plant-model mismatch.

Gp yt

Ĝp

GB

–
+

ut

ŷα, t

ŷβ, t

ŷm, t
+ +

Figure 1. Soft sensor system of interest [1].

Another approach to this problem is to re-arrange the bias update term so that it
contains a predictive model that can predict the errors between the measured and predicted
values. This re-arrangement is shown in Figure 2, where the predicted value from the soft
sensor is corrected based on the modeled errors of the system. The question becomes how
to design this model so that the best predictions can be obtained.
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Figure 2. Bias update term as a predictive model with feedback: —plant, —predictive model.

For prediction of time series, the Box-Jenkins methodology is traditionally used,
according to which the time series model is found in the class of autoregressive-moving
average (ARMA) models, i.e., is considered a rational algebraic function of the backward
shift operator. The flexibility of the ARMA class makes it possible to find parsimonious
models, i.e., the adequacy of the evaluated model is achieved with a small number of
estimated parameters. Since this property is especially important for empirical models,
the Box-Jenkins methodology is widely used to solve various practical problems. This
approach is adopted in this paper.



Mathematics 2021, 9, 1947 3 of 14

In industrial processes, where it is desired to implement the model on programmable
logic control (PLC) units, the complexity of the model Ĝp can be an issue. Therefore, this
paper will consider a simple model for Ĝp of the form

yt = b0 + bxt + et (1)

where b are the parameters to be estimated and xt is the input(s). Model (1) can be improved
by taking into account possible delays of the output variables relative to inputs. Consider
the following model for a multi-output soft sensor

yt, m = bm um (t, τm) + et, m (2)

where t = 1, 2, . . . , n; m = 1, 2, 3 (the number of outputs m is given by the industrial
production team and reflecting the key quality indices of MTBE product). Vector bm = (bm,

1, bm, 2, . . . , bm, 10) is a row vector of unknown coefficients; τm = (τm, 1, τm, 2, . . . , τm, 10) is
a row vector of unknown time delays; um (t, τm) = (ut, m, 1, ut, m, 2, . . . , ut, m, 10)T; ut, m, k is
the measurement of the xk value at time t − τm, k with k = 1, 2, . . . , 10. Please note that it
has been assumed here that the maximal time delay is 10 samples and justified from the
industrial process dynamics point of view. However, it can easily be extended to arbitrary
values.

Solving model (2) by minimizing the mean squared error (MSE) gives an estimate for
the unknown parameters b̂m and τ̂m. The MSE depends not only on the coefficients bm, but
also on the delays τm, i.e.,

Dem(bm τm) =
1
n

n

∑
t=1

{ytm − bmum(t, τm)}2, m = 1, 2, 3 (3)

Thus, (
b̂m , τ̂m) = arg min

bm , τm
Dem(bm, τm). (4)

Please note that if Dem(b∗m, τ∗
m) = min

bm , τm
Dem(bm, τm), than Dem(b∗m, τ∗

m) =

min
bm

Dem(bm, τ∗
m).

Consequently,

min
bm , τm

Dem(bm, τm) = min
τm

{
min

bm
Dem(bm, τm)

}
= min

τm
Dem(b̂m, τm) (5)

Furthermore, the estimates b̂m are found using standard regression analysis which gives

b̂m=

{(
UT

mUm

)−1
UT

mYm

}T
, m = 1, 2, 3 (6)

where Ym is the m-th column of the matrix Y; Um is a matrix with dimension n × 10, whose
t-th row is the row um (t, τm)T.

Since all variables are measured at discrete moments in time, the gradient descent
methods cannot be directly applied to minimize the objective function Dem(b̂m, τm) for
the argument τm. However, this difficulty can be avoided by calculating Dem for any
values of the elements of the vector τm by interpolating between the nearby nodes of the
discrete grid. Interpolation with a large search space dimension is a difficult problem.
Among the various characteristics of the algorithms used, such properties as visibility and
relative simplicity come to the fore. Therefore, in this situation, the most preferable is the
polynomial interpolation.
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2.1. Error Modeling

If the et, m error were known at time t − 1, then using Equation (2), it would be possible
to predict the yt, m variable with absolute accuracy. Unfortunately, the et, m error is not
known in advance, but it can be predicted using any statistical patterns found in the
sequence e1, m, e2, m, . . . . This error prediction can be used as a correction to model (2) as
shown in Figure 2, therefore improving the prediction accuracy of the yt,m output variable.
To evaluate a predictive model for the sequence e1, m, e2, m . . . , let us consider the class of
ARMA models. Let us introduce the predicted process as the output of an invertible linear
filter, called a shaping filter, driven by white noise, i.e., a process with a constant spectral
density. In this case, the transfer function of the shaping filter is considered a rational
algebraic function of the backward shift operator, i.e.,

et =

Nn
∏
l=1

(1 − Hlq−1)

Nd
∏

k=1
(1 − Gkq−1)

εt (7)

where εt and et are values of the input and output processes of the shaping filter at time t;
Nn is the order of the moving average; Nd is the order of the autoregressive component; Hl,
Gk are constants (generally speaking, complex-valued); and q−1 is the backshift operator.
The stationarity and invertibility conditions, which are necessary to predict the et process,
are [8]

|Gk| < 1, k = 1, . . . , Nd; |Hl | < 1, l = 1, . . . , Nn (8)

The flexibility of the ARMA class provides the possibility of finding parsimonious
models, i.e., the adequacy of the constructed model is achieved with a relatively small
number of estimated parameters. Since this property is especially important for empirical
models, the models with the structure given in Equation (7) and their variants are widely
used for solving practical problems.

The filter for predicting the et process can be found using the prediction error method
(PEM) [9]. Expanding the brackets in Equation (7) gives

et =
(1 − θ1q−1 − . . . − θNn q−Nn)

(1 − η1q−1 − . . . − ηNd q−Nd)
εt (9)

where θl and ηk are the model parameters. It is assumed that the polynomials in the
numerator and denominator have no common roots, since otherwise it would be possible
to reduce the common multipliers in the numerator and denominator of Equation (7).

The PEM function finds the parameter values that minimize the predictive MSE of the
et process for given polynomial orders (Nn, Nd) and the initial estimates of the parameters
θl and ηk. It is possible to choose suitable orders of the polynomials based on sample
estimations of the spectral density of the considered process. Recall that the frequency
response of the shaping filter is the value of Equation (7) on a circle of unit radius centered
on the origin and the spectral density S(ω) of the output process et is equal to the product
of the variance of the input process and the square of the frequency response modulus,
i.e., [10]

S(ω) = σ2
ε

Nn
∏
l=1

(1 − Hle−jω)

Nd
∏

k=1
(1 − Gke−jω)

Nn
∏
l=1

(1 − Hlejω)

Nd
∏

k=1
(1 − Gkejω)

, (10)
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where σ2
ε is the variance of random process εt and Hl and Gk are the complex conjugates of

the constants Hl and Gk. Furthermore, since we desire that our filter be invertible, it follows
that for the model

εt =

Nd
∏

k=1
(1 − Gkq−1)

Nn
∏
l=1

(1 − Hlq−1)

et (11)

the et process is invertible if the absolute values of all the Hl constants are less than one.
Similarly, if the absolute values of all the Gk constants is less than one, then the et process is
stationary [8]. Thus, although multiple processes can have the same spectral density, there
is only one that is both stationary and invertible.

Once the general model has been obtained, we can rewrite it as an infinite impulse
response model, i.e.,

et = εt +
∞

∑
k=1

ψkεt−k (12)

where ψ is an impulse response coefficient. Since we know that the general model con-
verges [8], it follows that we only need a finite number of terms in Equation (12). Further-
more, we note that

et−i = εt−i +
∞

∑
k=1

ψkεt−i−k (13)

which implies that for any positive i the random variables εt and et−i are uncorrelated (since
the process εt is white noise). Therefore, successively multiplying both sides of Equation (12)
by the values of the corresponding process at delays i and taking expectations, we obtain
equations for finding the initial estimates of the parameters that involve the covariances of
the errors for different lags [10]. Obviously, since the true covariances are not known, they
will need to be replaced by the sample estimates. This method of estimating the coefficients
does not lead to too large error as long as the absolute values of the parameters of model (7)
are not too close to the boundary of unit circle centered on the origin. Thus, it is possible to
design the required filter.

2.2. Filter Design

Let et = (et, 1, et, 2, . . . , et, N)T be an N-dimensional stationary process of the soft
sensor’s errors whose shaping filter transfer matrix is F0(q−1), i.e.,

et = F0(q−1)εt (14)

where q−1 is the backshift operator; εt = (εt, 1, εt, 2, . . . , εt, N)T is an N-dimensional vector of
white noise; and F0(q−1) = [fkm(q−1)] is an N × N matrix function, whose entries denoted
as fkm(q−1) are the rational transfer function from εt,m to et, k. Thus, it is desired to construct
the filter that will predict et+1 given the past values.

Let P(q−1) be the desired one-step ahead predictor transfer matrix, êt+1 = P(q−1)et
the prediction of the vector et+1 at time t, and ε̃t+1 = et+1 − êt+1 the error of the prediction
obtained with the aid of the filter P(q−1). Then

ε̃t= et − êt= et − q−1 êt+1 = et − q−1P
(

q−1
)

et =
[

IN − q−1P
(

q−1
)]

et (15)

where IN is identity matrix of order N. Consequently, the filter in the square brackets
transforms the initial series into the prediction error series. If the random vector ε̃t includes
components correlated with those of the vector ε̃t−j at some j > 0, we can predict the
errors ε̃t using the known previous errors. Using those predictions as corrections to the
ẽt that were obtained, we could improve the accuracy of the predictions. Hence, in order
to maximize the predictor accuracy, we must find a P(q−1) such that the errors ε̃t are
uncorrelated with the errors ε̃t−j at any j > 0 with some nonzero correlation between the
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components of ε̃t (i.e., at j = 0) being admissible. In other words, the time series ε̃t must
be N-dimensional white noise. Consequently, IN − q−1P(q−1) = F0

−1(q−1), from which it
follows that P(q−1) = q[IN − F0

−1(q−1)].
Thus, the predictor transfer matrix P(q−1) can be expressed through the transfer matrix

of the shaping filter F0(q−1). The matrix F0(q−1) can be found from

G(q−1) = F0(q−1)F0
T(q), (16)

where G(q−1) = [gkm(q−1)], gkm(q−1) is the q-transform of the statistical estimate of the
cross-covariance function of the time series et, k and et, m (in particular, when m = k, gmm is a
q-transform of the sample covariance function, i.e., the autocovariance generating function
(AGF) of the time series etm).

The algorithm for finding F0(q−1) is simplified by decomposing it into N stages. At the
kth stage, a shaping filter Fk(q−1) of the k-dimensional process (et, 1, et, 2, . . . , et, k)T is found.
At this stage, the filter Fk−1(q−1), found at the (k−1)th stage, is used in order to transform
the matrix Gk(q−1) = Fk(q−1)Fk

T(q) so that its transform contains nonzero elements in only
one line, one column, and on the main diagonal. This technique substantially simplifies the
procedure of spectral factorization (finding the matrix function Fk(q−1)) [11].

The proposed approach allows us to identify the vector time series transfer matrix
without resorting to a complicated phase state representation. This advantage is used to
obtain an adequate model with relatively few estimated parameters for the initial time
series shaping filter F0(q−1). Simultaneously, the model for the transfer matrix of the inverse
filter F0

−1(q−1), which transforms the initial time series into the white noise, is also found.
The algorithm for constructing both the shaping filter F0(q−1) and its inverse F0

−1(q−1)
is described in [11]. Based on this algorithm, the sequence of prediction errors ε̃t should
be N-dimensional white noise. However, since in practice, the true characteristics of the
original process are not known, but only their estimates, containing inevitable statistical
errors, in reality, the properties of the sequence ε̃t can be significantly different from the
properties of white noise. Thus, to verify the optimality of the resulting model P(q−1)
of the predictive filter, a criterion is needed to test the hypothesis that the process ε̃t is
N-dimensional white noise. To construct such a criterion, we can transform the process ε̃t
in such a way that its spectral density matrix is diagonal. Such a transformation is achieved
by means of a rotation of axes in the N-dimensional variable space ε̃1, ε̃2, · · · , ε̃N [12].
Since the variances of these variables can be made equal to each other by normalization,
without loss of generality, we suppose that spectral density matrix of the noise ε̃t is an N ×
N identity matrix IN.

Consider a univariate sequence ξk = ε̃t−j,m, where k = jN + m. Please note that each pair
couple (j, m) determines one k and each k determines one pair couple (j, m). Consequently,
ε̃t is multivariate white noise if and only if ξk is univariate white noise. It is known that the
spectral density of univariate white noise is constant [8,13]. Thus, testing the hypothesis
that ε̃t is multivariate white noise is reduced to testing the hypothesis on the constancy
of the spectral density of a univariate sequence. This hypothesis can be tested using
Kolmogorov’s criterion [14].

Please note that only a time series containing prediction errors is used as the initial
information for constructing a predictor with the proposed approach. Information about
the model with which the predictions were obtained is not used. Therefore, this approach is
applicable to any predictive model that involves errors, regardless of the specific properties
of the model used.

2.3. Summary of the Proposed Approach

Thus, the proposed procedure for developing the model can be summarized as follows:
Step 1: Create an initial sample ut, yt, t = 1, 2, . . . , K. If the plant is already functioning

then the initial sample consists of the historical values of ut, yt. Otherwise, the initial
sample is forming during the trial period of the plant. The initial sample is divided into
training and testing datasets.
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Step 2: Based on the data included in the training sample, the coefficients and delays
of the model given by Equation (2) are estimated via solving optimization problem (4).

Step 3: Based on the data included in the training sample, the errors for the model
and the corresponding sample spectrum of errors are calculated.

Step 4: Based on the sample spectrum, the order of the ARMA model is selected in
order to predict the unknown future error given the known current and past errors.

Step 5: The least squares method is used to find the values of the ARMA model pa-
rameters.

Step 6: The ARMA model obtained is used as the predictive filter F(q−1) in the feedback
loop of the compensator (bias update term) as shown in Figure 2.

Step 7: If the resulting soft sensor improves the accuracy of the prediction for the test
sample then it can be recommended for practical use.

Please note that the obtained predictive filter model can be recommended for further
use for the same plant on the data of which it was built. As for the approach, it will certainly
be successful if the sequence of errors of the plant is a stationary (or close to it) process.
In addition, the class of successful applicability of this approach can be extended to those
plants, for whose errors it is possible to find an invertible transformation that brings the
sequence of errors to a stationary process. The quality of the developed model should be
checked on a test sample that was not used at the stage of the model training.

3. Industrial Application of the Proposed Method

Industrial methyl tert-butyl ether (MTBE) production occurs in a reactive distillation
unit, as shown in Figure 3. The feed containing isobutylene and methanol (MeOH) enters
the column. The distillate (D) is a lean butane-butylene fraction with a certain amount of
MeOH. The raffinate is the heavy product MTBE that is withdrawn from the bottom part
of the column. Table 1 shows the main process variables for the industrial unit. The goal is
to develop a soft sensor for the prediction of the concentrations of methyl sec-butyl ether
(MSBE), MeOH, and the sum of dimers and trimers of isobutylene (DIME) in the bottom
product MTBE.

The measured values of output ym and input xk variables at the time moment t are
denoted as ytm, xtk; m = 1, 2, 3; k = 1, 2, . . . , 10; and t = 1, 2, . . . , n. The existing measurements
may be used for development of a predictive model of the form

yt = b0 + bxt + et, t = 1, 2, . . . , n (17)

where yt = (yt, 1, yt, 2, yt, 3)T; xt = (xt, 1, xt, 2, . . . , xt, 10)T; b is a matrix of the model parameters
[bmk] of dimension 3 × 10; b0 = (b1, b2, b3)T is a vector of the constant biases; et = (et, 1, et,

2, et, 3)T is a vector of the residuals, and the superscript T denotes the transpose. Since
Equation (17) can be rewritten as

(yt − y) = b(xt − x) + et (18)

where y = 1
n

n
∑

t=1
yt, x = 1

n

n
∑

t=1
xt, then expectations of all the elements of vectors yt, xt, and et,

as well as biases vector b0, may be considered to be equal to zero without loss of generality.
Although the elements of matrix b are unknown, they are easily estimated using the

ordinary least squares (OLS) method, which gives [10]

b̂=
{(

XTX
)−1

XTY
}T

(19)

where X = [xtk]; Y = [ytm]; m = 1, 2, 3; k = 1, 2, . . . , 10; and t = 1, 2, . . . , n.
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Figure 3. Reactive distillation unit of MTBE production.

Table 1. Soft sensor input and output variables.

Description of Process Variable Notation SS Variable

Feed flowrate, m3/s FIR−1 x1
MeOH flowrate to Rx, m3/s FIR-2 x2

Reflux flowrate, m3/s FIR-3 x3
MeOH flowrate to P-Rx, m3/s FIR-4 x4

Bottoms flowrate from Rx, m3/s FIR-5 x5
Bottom pressure, MPa PIR−1 x6

Temperature in P-Rx, K TIR−1 x7
Temperature in Rx, K TIR-2 x8

Bottom temperature, K TIR-3 x9
Vapor flow temp. from C − 1, K TIR-4 x10

Concentration of MSBE in MTBE, wt.% - y1
Concentration of MeOH in MTBE, wt.% - y2
Concentration of DIME in MTBE, wt.% - y3
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For the training sample containing n = 400 measurements, the following estimates
were obtained:

x = (51.8154 1.8747 52.1154 3.0859 51.9866 0.7580 60.7100
66.4516 136.3077 64.5725)T

y = (0.5440 0.1461 0.0595 )T

b̂=

⎛
⎝ −0.0151 0.2383 −0.0342 0.1401 0.0476...

−0.0173 0.0794 0.0281 0.1191 −0.0171...
−0.0080 0.1118 −0.0061 0.0537 0.0134 . . .

−1.7361 0.0430 −0.0012 −0.1019 0.0388
2.9800 −0.0093 −0.0072 −0.1333 0.0353
0.3490 0.0215 −0.0011 −0.0467 0.0098

⎞
⎠.

The estimated MSE vector for the model (17) is (0.0094 0.0095 0.0021)T, while the
vector of sample estimates of variances of the output variables is (0.0321 0.0184 0.0047)T.

Let R2
m be a sample estimate of the coefficient of determination, i.e., the estimate of a

fraction of variance of the dependent variable ym explained by model (18), i.e.,

R2
m = 1 − De,m

Dm
(20)

where Dm is a sample estimate of the variance of the output variable ym, De, m is the mean
squared value of the et, m errors, and m = 1, 2, 3. This gives R2

1 = 0.7061, R2
2 = 0.4822, and

R2
3 = 0.5467.

Assuming a sampling time of one hour, the estimates of the delay vector τ̂1 for
predicting the output variable y1 is

τ̂1 = (4.83 0 2.00 5.00 1.83 0 2.00 0.83 1.00 2.00)

and the estimate of the coefficient vector is equal to

b̂1 = (0.0002 0.1341 − 0.0360 0.0064 0.0451 − 2.3289 0.0519 − 0.0029 − 0.0819 0.0442)

with De, 1(b̂1, τ̂1) = 0.0091.
Similarly, for variables y2 and y3, we obtain

τ̂2 = (0.33 0.33 1.67 4.50 0.50 0.67 0.33 0.50 0.50 1.67)

b̂2= (−0.0263 0.1481 0.0315 0.1947 − 0.0168 3.4223 − 0.0064 − 0.0092 − 0.1513 0.0385); D2

(
b̂2 , τ̂2) = 0.0088

τ̂3 = (4.17 0 0.83 4.33 0.83 0.50 2.00 0.67 0.83 1.00)

b̂3= (−0.0021 0.0811 − 0.0070 − 0.0016 0.0130 0.3795 0.0259 − 0.0015 − 0.0455 0.0098); D3

(
b̂3 , τ̂3) = 0.0020

The sample estimate of the coefficient of determination to predict the output variable
ym denoted by R2

Lm is R2
L1 = 0.7160; R2

L2 = 0.5200; R2
L3 = 0.5726.

The effect of delay accounting was evaluated on a test sample containing 167 measure-
ments. As a result, the MSE of the predictions of output variables y1, y2 and y3 decreased
by 23%, 10%, and 3%, respectively.

Now, let us consider modeling the error term. From the spectral density of the
errors for et, 1 and et, 3 shown in Figures 4 and 5, it can be seen that the maximum within
the interval [0, 0.5] Hz indicates the presence in the denominator of the spectral density
function S(ω) a factor (1 − Ge−jω) with a complex-valued constant G. Since the sampling
time is equal to 12 h, the frequency unit 1/(12 h) is used instead of Hz. However, for
the practical application of the filter given by Equation (9), it is necessary that all the
coefficients be real [8]. Therefore, the denominator of density S(ω) must contain a factor
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(1 − Ge−jω) along with a factor (1 − Ge−jω). If the frequency response models for et, 1
and et, 3 processes are limited to these two factors (assuming the numerator is equal to
one), then the corresponding spectral density of the second-order autoregressive process
approximates well the sample estimates of the spectrum of et, 1 and et, 3 processes at
different values of G. However, the insufficiently rapid decrease of the spectral density in
the high-frequency region justifies the inclusion in the denominator of the model another
multiplier with a real value of the constant G.

 
Figure 4. Sample spectrum of the process et, 1.

 
Figure 5. Sample spectrum of the process et, 3.

In Figure 6, which shows the spectral density for the et, 2 errors, the sample spectrum
of this time series resembles the spectrum of a first-order autoregressive process [15–17].
However, we note that the stochastic process is not uniquely determined by its spectral
density [8]. Therefore, as previously mentioned, we need to include two additional con-
straints that the resulting model be invertible and realizable. This will ensure that we have
a unique model.



Mathematics 2021, 9, 1947 11 of 14

 
Figure 6. Sample spectrum of the process et, 2.

Based on the theoretical properties of the process, the error models are

et, 1 − η11e(t−1), 1 − η21e(t−2), 1 − η31e(t−3), 1 = εt, 1
et, 2 − η12e(t−1), 2 = εt, 2

(21)

et, 3 − η13e(t−1), 3 − η23e(t−2), 3 − η33e(t−3), 3 = εt, 3

where η are the parameters to be determined. These parameters can be found using the
approach presented in Section 2.2 by multiplying the finite impulse response model by the
delayed errors and taking the expectations. For example, for e1, this gives

γi = η11γi−1 + η21γi−2 + η31γi−3, i = 1, 2, 3 (22)

where γi = cov(et1, e(t−i)1) = γ−i.
For the process et, 1, the estimates of the coefficients η11, η21 and η31 are, respectively,

equal to 0.4131, −0.0093, and −0.0528. These values were used as the initial guesses passed
to the PEM function. As a result of calculations, the model parameters were found to be:
η11 = 0.4175, η21 = 0.03234, η31 = −0.07026. The initial value of coefficient η12 is 0.3748 and
its final value is η12 = 0.3758.

Similarly, using Equation (22), the initial guesses were η13 = 0.5142, η23 = −0.0507, and
η33 = −0.0207 to give final values of η13 = 0.5151, η23 = −0.02676, and η33 = −0.03246.

The performance of predictive filter models obtained from the analysis of the training
dataset is validated using the testing sample. Figures 7–9 compare the predictions against
the true values, where the solid line shows the true et, m errors and the dashed line their
predicted values for m = 1, 2, and 3. At the time point t on the x-axis, the corresponding
error et, m and the predicted error êt,m computed at t − 1.
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Figure 7. Prediction of the process et, 1.

 

Figure 8. Prediction of the process et, 2.

 

Figure 9. Prediction of the process et, 3.

Figures 10–12 compare the performance of the soft sensors with the proposed filter
for error prediction and a traditional method, in which adaptive bias term is calculated
based on the moving window (MW) approach [18]. It can be seen that the filter provides
better tracking of the process values, therefore improving the accuracy of the overall soft
sensor system reducing the MSE of the output variables y1, y2, and y3 by 32%, 67%, and
9.5%, respectively.
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Figure 10. Estimation of ym1.

 

Figure 11. Estimation of ym2.

 

Figure 12. Estimation of ym3.
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4. Conclusions

This paper proposed a new approach to handling the bias update term in a soft sensor
system. Rather than purely using available samples, the new bias update term seeks to
predict what the errors will be in the future. Tests of this approach on a reactive distillation
column show that the approach can handle the errors well. However, the predictive filters
used only work for areas without serious disturbances or outliers.

Therefore, it makes sense to consider more complex models for the predictive filters
including models with an additional component in the form of some flow, for example,
Poissonian flow, of events (outliers). If the flow of outliers is added to the process model
then the intensity of this flow needs to be estimated. In this case, the number of outliers
in the training dataset should be sufficient to estimate the intensity of the flow of outliers
with acceptable accuracy.
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