4,752 research outputs found

    A distributed solution to software reuse

    Get PDF
    Reuse can be applied to all stages of the software lifecycle to enhance quality and to shorten time of completion for a project. During the phases of design and implementation are some examples of where reuse can be applied, but one frequent obstruction to development is the building of and the identifying of desirable components. This can be costly in the short term but an organisation can gain the profits of applying this scheme if they are seeking long-term goals. Web services are a recent development in distributed computing. This thesis combines the two research areas to produce a distributed solution to software reuse that displays the advantages of distributed computing within a reuse system. This resulted in a web application with access to web services that allowed two different formats of component to be inserted into a reuse repository. These components were searchable by keywords and the results are adjustable by the popularity of a component’s extraction from the system and by user ratings of it; this improved the accuracy of the search. This work displays the accuracy, usability, and speed of this system when tested with five undergraduate and five postgraduate students

    Inverse software configuration management

    Get PDF
    Software systems are playing an increasingly important role in almost every aspect of today’s society such that they impact on our businesses, industry, leisure, health and safety. Many of these systems are extremely large and complex and depend upon the correct interaction of many hundreds or even thousands of heterogeneous components. Commensurate with this increased reliance on software is the need for high quality products that meet customer expectations, perform reliably and which can be cost-effectively and safely maintained. Techniques such as software configuration management have proved to be invaluable during the development process to ensure that this is the case. However, there are a very large number of legacy systems which were not developed under controlled conditions, but which still, need to be maintained due to the heavy investment incorporated within them. Such systems are characterised by extremely high program comprehension overheads and the probability that new errors will be introduced during the maintenance process often with serious consequences. To address the issues concerning maintenance of legacy systems this thesis has defined and developed a new process and associated maintenance model, Inverse Software Configuration Management (ISCM). This model centres on a layered approach to the program comprehension process through the definition of a number of software configuration abstractions. This information together with the set of rules for reclaiming the information is stored within an Extensible System Information Base (ESIB) via, die definition of a Programming-in-the- Environment (PITE) language, the Inverse Configuration Description Language (ICDL). In order to assist the application of the ISCM process across a wide range of software applications and system architectures, die PISCES (Proforma Identification Scheme for Configurations of Existing Systems) method has been developed as a series of defined procedures and guidelines. To underpin the method and to offer a user-friendly interface to the process a series of templates, the Proforma Increasing Complexity Series (PICS) has been developed. To enable the useful employment of these techniques on large-scale systems, the subject of automation has been addressed through the development of a flexible meta-CASE environment, the PISCES M4 (MultiMedia Maintenance Manager) system. Of particular interest within this environment is the provision of a multimedia user interface (MUI) to die maintenance process. As a means of evaluating the PISCES method and to provide feedback into die ISCM process a number of practical applications have been modelled. In summary, this research has considered a number of concepts some of which are innovative in themselves, others of which are used in an innovative manner. In combination these concepts may be considered to considerably advance the knowledge and understanding of die comprehension process during the maintenance of legacy software systems. A number of publications have already resulted from the research and several more are in preparation. Additionally a number of areas for further study have been identified some of which are already underway as funded research and development projects

    Feature-based methodology for supporting architecture refactoring and maintenance of long-life software systems

    Get PDF
    Zusammenfassung Langlebige Software-Systeme durchlaufen viele bedeutende Veraenderungen im Laufe ihres Lebenszyklus, um der Weiterentwicklung der Problemdomaenen zu folgen. Normalerweise ist es schwierig eine Software-Systemarchitektur den schnellen Weiterentwicklungen einer Problemdomaene anzupassen und mit der Zeit wird der Unterschied zwischen der Problemdomaene und der Software-Systemarchitektur zu groß, um weitere Softwareentwicklung sinnvoll fortzufuehren. Fristgerechte Refactorings der Systemarchitektur sind notwendig, um dieses Problem zu vermeiden. Aufgrund des verhaeltnismaeßig hohen Gefahrenpotenzials und des zeitlich stark verzoegerten Nutzens von Refactorings, werden diese Maßnahmen normalerweise bis zum letztmoeglichen Zeitpunkt hinausgeschoben. In der Regel ist das Management abgeneigt Architektur-Refactorings zu akzeptieren, außer diese sind absolut notwendig. Die bevorzugte Vorgehensweise ist, neue Systemmerkmale ad hoc hinzuzufuegen und nach dem Motto ”Aendere nie etwas an einem funktionierenden System!” vorzugehen. Letztlich ist das Ergebnis ein Architekturzerfall (Architekturdrift). Die Notwendigkeit kleiner Refactoring-Schritte fuehrt zur Notwendigkeit des Architektur-Reengineerings. Im Gegensatz zum Refactoring, das eine normale Entwicklungstaetigkeit darstellt, ist Reengineering eine Form der Software- ”Revolution”. Reengineeringprojekte sind sehr riskant und kostspielig. Der Nutzen des Reengineerings ist normalerweise nicht so hoch wie erwartet. Wenn nach dem Reengineering schließlich die erforderlichen Architekturaenderungen statt.nden, kann dies zu spaet sein. Trotz der enormen in das Projekt gesteckten Bemuehungen erfuellen die Resultate des Reengineerings normalerweise nicht die Erwartungen. Es kann passieren, dass sehr bald ein neues, kostspieliges Reengineering erforderlich wird. In dieser Arbeit werden das Problem der Softwareevolution und der Zerfall von Softwarearchitekturen behandelt. Eine Methode wird vorgestellt, welche die Softwareentwicklung in ihrer entscheidenden Phase, dem Architekturrefactoring, unterstuetzt. Die Softwareentwicklung wird sowohl in technischer als auch organisatorischer Hinsicht unterstuetzt. Diese Arbeit hat neue Techniken entwickelt, welche die Reverse-Engineering-, Architecture-Recovery- und Architecture-Redesign-Taetigkeiten unterst uetzen. Sie schlaegt auch Aenderungen des Softwareentwicklungsprozesses vor, die fristgerechte Architekturrefactorings erzwingen koennen und damit die Notwendigkeit der Durchfuehrung eines Architektur- Reengineerings vermeiden. In dieser Arbeit wird die Merkmalmodellierung als Hauptinstrument verwendet. Merkmale werden genutzt, um die Abstraktionsluecke zwischen den Anforderungen der Problemdomaene und der Systemarchitektur zu fuellen. Merkmalmodelle werden auch als erster Grundriss fr die Wiederherstellung der verlorenen Systemarchitektur genutzt. Merkmalbasierte Analysen fuehren zu diversen, nuetzlichen Hinweisen fuer den erneuten Entwurf (das Re-Design) einer Architektur. Schließlich wird die Merkmalmodellierung als Kommunikationsmittel zwischen unterschiedlichen Projektbeteiligten (Stakeholdern) im Verlauf des Softwareengineering-Prozesses verwendet und auf dieser Grundlage wird ein neuer Anforderungsde.nitionsprozess vorgeschlagen, der die erforderlichen Architekturrefactorings erzwingt.The long-life software systems withstand many significant changes throughout their life-cycle in order to follow the evolution of the problem domains. Usually, the software system architecture can not follow the rapid evolution of a problem domain and with time, the diversion of the architecture in respect to the domain features becomes prohibiting for software evolution. For avoiding this problem, periodical refactorings of the system architecture are required. Usually, architecture refactorings are postponed until the very last moment, because of the relatively high risk involved and the lack of short-term profit. As a rule, the management is unwilling to accept architecture refactorings unless they become absolutely necessary. The preferred way of working is to add new system features in an ad-hoc manner and to keep the rule ”Never touch a running system!”. The final result is an architecture decay. The need of performing small refactoring activities turns into need for architecture reengineering. In contrast to refactoring, which is a normal evolutionary activity, reengineering is a kind of software ”revolution”. Reengineering projects are risky and expensive. The effectiveness of reengineering is also usually not as high as expected. When finally after reengineering the required architecture changes take place, it can be too late. Despite the enormous invested efforts, the results of the reengineering usually do not satisfy the expectations. It might happen that very soon a new expensive reengineering is required. This thesis deals with the problem of software evolution and the decay of software architectures. It presents a method, which assists software evolution in its crucial part, the architecture refactoring. The assistance is performed for both technical and organizational aspects of the software evolution. The thesis provides new techniques for supporting reverse engineering, architecture recovery and redesigning activities. It also proposes changes to the software engineering process, which can force timely architecture refactorings and thus avoid the need of performing architecture reengineering. For the work in this thesis feature modeling is utilized as a main asset. Features are used to fill the abstraction gap between domain requirements and system architecture. Feature models are also used as an outline for recovering of lost system architectures. Through feature-based analyses a number of useful hints and clues for architecture redesign are produced. Finally, feature modeling is used as a communication between different stakeholders of the software engineering process and on this basis a new requirements engineering process is proposed, which forces the needed architecture refactorings

    Reverse Engineering and Testing of Rich Internet Applications

    Get PDF
    The World Wide Web experiences a continuous and constant evolution, where new initiatives, standards, approaches and technologies are continuously proposed for developing more effective and higher quality Web applications. To satisfy the growing request of the market for Web applications, new technologies, frameworks, tools and environments that allow to develop Web and mobile applications with the least effort and in very short time have been introduced in the last years. These new technologies have made possible the dawn of a new generation of Web applications, named Rich Internet Applications (RIAs), that offer greater usability and interactivity than traditional ones. This evolution has been accompanied by some drawbacks that are mostly due to the lack of applying well-known software engineering practices and approaches. As a consequence, new research questions and challenges have emerged in the field of web and mobile applications maintenance and testing. The research activity described in this thesis has addressed some of these topics with the specific aim of proposing new and effective solutions to the problems of modelling, reverse engineering, comprehending, re-documenting and testing existing RIAs. Due to the growing relevance of mobile applications in the renewed Web scenarios, the problem of testing mobile applications developed for the Android operating system has been addressed too, in an attempt of exploring and proposing new techniques of testing automation for these type of applications

    Automatically Extracting Subroutine Summary Descriptions from Unstructured Comments

    Full text link
    Summary descriptions of subroutines are short (usually one-sentence) natural language explanations of a subroutine's behavior and purpose in a program. These summaries are ubiquitous in documentation, and many tools such as JavaDocs and Doxygen generate documentation built around them. And yet, extracting summaries from unstructured source code repositories remains a difficult research problem -- it is very difficult to generate clean structured documentation unless the summaries are annotated by programmers. This becomes a problem in large repositories of legacy code, since it is cost prohibitive to retroactively annotate summaries in dozens or hundreds of old programs. Likewise, it is a problem for creators of automatic documentation generation algorithms, since these algorithms usually must learn from large annotated datasets, which do not exist for many programming languages. In this paper, we present a semi-automated approach via crowdsourcing and a fully-automated approach for annotating summaries from unstructured code comments. We present experiments validating the approaches, and provide recommendations and cost estimates for automatically annotating large repositories.Comment: 10 pages, plus references. Accepted for publication in the 27th IEEE International Conference on. Software Analysis, Evolution and Reengineering London, Ontario, Canada, February 18-21, 202

    Kollaboratives Reengineering und Modularisieren von Softwaresystemen

    Get PDF
    Software systems evolve over their lifetime. Changing requirements make it inevitable for developers to modify and extend the underlying code base. Specific requirements emerge in the context of open source software where everybody can contribute and requirements can change over time. In particular, research software is often not structured with a maintainable and extensible architecture. Furthermore, often databases are employed for retrieving, storing, and processing application data. Insufficient knowledge of the actual structure and behavior of such software systems and related databases can entail further challenges. Thus, understanding these software systems embodies a crucial task, which needs to be addressed in an appropriate way to face inevitable challenges while performing software changes. Approaches based on alternative display and interaction concepts can support this task by offering a more immersive user experience. In this thesis, we introduce three complementary approaches to support the evolution and particularly understanding of software systems in different aspects. Our main contributions are (i) an approach named CORAL for enabling collaborative reengineering and modularization of software systems, (ii) a gesture-based, collaborative, and multi-user-featuring Virtual Reality approach named ExplorViz VR for the software city metaphor, and (iii) a database behavior live-visualization approach named RACCOON for database comprehension of software systems. An extensive case study shows that our CORAL approach is capable of supporting reengineering and modularization processes. Furthermore, several lab experiments demonstrate the high usability, and efficiency and effectiveness for solving comprehension tasks when using the visualization within our multi-user VR approach ExplorViz VR. All implementations are available as open-source software on www.explorviz.net. Additionally, we provide an extensive experimental package of our latest VR evaluation to facilitate the verifiability and reproducibility of our results

    Working Notes from the 1992 AAAI Workshop on Automating Software Design. Theme: Domain Specific Software Design

    Get PDF
    The goal of this workshop is to identify different architectural approaches to building domain-specific software design systems and to explore issues unique to domain-specific (vs. general-purpose) software design. Some general issues that cut across the particular software design domain include: (1) knowledge representation, acquisition, and maintenance; (2) specialized software design techniques; and (3) user interaction and user interface

    The Design & Implementation of an Abstract Semantic Graph for Statement-Level Dynamic Analysis of C++ Applications

    Get PDF
    In this thesis, we describe our system, Hylian, for statement-level analysis, both static and dynamic, of a C++ application. We begin by extending the GNU gcc parser to generate parse trees in XML format for each of the compilation units in a C++ application. We then provide verification that the generated parse trees are structurally equivalent to the code in the original C++ application. We use the generated parse trees, together with an augmented version of the gcc test suite, to recover a grammar for the C++ dialect that we parse. We use the recovered grammar to generate a schema for further verification of the parse trees and evaluate the coverage provided by our C++ test suite. We then extend the parse tree, for each compilation unit, with semantic information to form an abstract semantic graph, ASG, and then link the ASGs for all of the compilation units into a unified ASG for the entire application under study. In addition, to relieve the cognitive burden of information that may inundate a developer, we describe our development of extensions to Hylian to build abbreviated abstract semantic graphs, which incorporate information about user code, but not about compiler provided library code. Finally, we describe the various approaches that we adopted to provide assurance for the developer that the ASGs that Hylian builds, correctly represent the program under study
    • 

    corecore