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In this thesis, we describe our system, Hylian, for statement-level analysis, both

static and dynamic, of a C++ application. We begin by extending the GNU gcc parser to

generate parse trees in XML format for each of the compilation units in a C++ application.

We then provide verification that the generated parse trees are structurally equivalent to

the code in the original C++ application. We use the generated parse trees, together with

an augmented version of the gcc test suite, to recover a grammar for the C++ dialect that

we parse. We use the recovered grammar to generate a schema for further verification of

the parse trees and evaluate the coverage provided by our C++ test suite. We then extend

the parse tree, for each compilation unit, with semantic information to form an abstract

semantic graph, ASG, and then link the ASGs for all of the compilation units into a unified

ASG for the entire application under study. In addition, to relieve the cognitive burden

of information that may inundate a developer, we describe our development of extensions

to Hylian to build abbreviated abstract semantic graphs, which incorporate information

about user code, but not about compiler provided library code. Finally, we describe the

various approaches that we adopted to provide assurance for the developer that the ASGs

that Hylian builds, correctly represent the program under study.
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Chapter 1

Introduction

The process of software maintenance, including comprehension, modification, and

refactoring of complex object oriented systems, requires extensive and detailed information

about the system under study. However, software artifacts that provide this information are

frequently unavailable and for large, open-source applications, they are virtually nonexis-

tent. Thus, much of the research in software maintenance has focused on the development

of inquiry and analysis tools to automate the process of generating information to improve

comprehension, and to facilitate analysis, modification and testing of the application under

study.

However, the C++ language has proven to be particularly problematic for mainte-

nance engineers interested in developing tools to facilitate analysis and modification of

C++ applications. The difficulty in developing tools for C++ is mostly due to the scope

and complexity of the language; for example, the grammatical representation of C++ has

been shown to be larger and more complex than other, commonly used languages [73]. A

particularly perplexing problem for C++ maintenance engineers entails the correct recogni-

tion of the language constructs as specified in the ISO standard, for example class template

partial specializations and argument-dependent lookup [39, §A.8]. Moreover, statement-
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level analysis, which is required for pointer analysis and program slicing [7, 27, 35, 87],

relies on the correct recognition of expressions such as expression, postfix-expression, and

unary-expression [39, §A.4].

Nevertheless, the C++ language is frequently used and recently has been shown to

outperform other, commonly used, languages by a large margin [16]. Therefore, to support

software maintenance and other software engineering efforts for the C++ language, it’s

important to develop analysis tools for the language.

In this thesis, we extend the GNU gcc parser to generate parse trees in XML format

for each of the compilation units in a C++ application. We then provide verification that the

generated parse trees are structurally equivalent to the code in the original C++ application.

We use the generated parse trees together with a suite of test cases to recover a grammar

for the C++ dialect that we parse. We use the recovered grammar to generate a schema for

further verification of the parse trees and evaluate the coverage provided by our C++ test

suite. We then extend the parse trees with semantic information and then link, or merge,

the ASGs for each of the compilation units into a single ASG. Also, to relieve the cognitive

burden of information that may inundate the developer, we also describe our development

of extensions to Hylian to build abbreviated parse and abstract syntax trees, which incor-

porate information about user code, but does not include information about system code.

Finally, we describe the various approaches that we adopted to provide assurance for the

developer that the ASGs that Hylian builds, correctly represent the program under study.

In the next section, we provide background about languages, parsing, abstract se-

mantic graphs (ASGs) and schemas. In Chapter 3 we describe the research that relates to

parsing and construction of ASGs. In Chapter 4 we provide an overview of Hylian, our sys-

tem for comprehension and analysis of C++ applications, and in Chapter 5 we describe our

approach to parse tree construction and reverse engineering a grammar from a parse tree. In

Chapter 6 we describe our approach to construction of ASGs and abbreviated ASGs to cap-

2



ture syntactic and semantic information about the program under investigation. In Chapter

7 we describe transformations on the ASG to enable dynamic analysis of the application.

3



Chapter 2

Background

In this section we provide background about our work by defining terminology

associated with grammars, languages, scanning and parsing. A general description of lan-

guages, context-free grammars and parsing can be found in reference [2]. Since the main

focus of our work is Abstract Semantic Graphs (ASGs), We review background about ab-

stract syntax trees (ASTs) and their promotion to abstract semantic graphs (ASGs). We

also review the terminology for grammar recovery and the use of schemas for validation of

files in the extended markup language format (XML) and some of the schema languages

that are used for validation of schema-based XML.

2.1 Terminology

Given a set of words (known as a lexicon), a language is a set of valid sequences

formed from these words. A grammar is, basically, a set of rules, or production rules, that

are used to define a language and any language can be defined by a set of different gram-

mars. When describing formal languages such as programming languages, we typically

use a grammar to describe the syntax of that language; other aspects, such as the semantics

4



of the language, usually cannot be described by context-free grammars.

A grammar defines a language by specifying valid sequences of derivation steps that

produce sequences of terminals, known as the sentences of the language. One procedure for

using a grammar to derive a sentence in its language is as follows. We begin with the start

symbol S and apply the production rules, interpreted as left-right rewriting rules, in some

sequence until only non-terminals remain. This process defines a tree whose root is the

start symbol, whose nodes are non-terminals and whose leaves are terminals. The children

of any node in the tree correspond precisely to those symbols on the right-hand-side of a

production rule. This tree is known as a parse tree; the process by which it is produced is

known as parsing.

2.2 Abstract Syntax Trees and Abstract Semantic Graphs

An abstract syntax tree (AST) is a pruned, refined parse tree, with some non-

terminals, keywords, and punctuation removed. Using the semantic rules for the input

language, a semantic analyzer transforms an AST to an abstract syntax graph (ASG). An

ASG is often the output of a compiler front end, and includes semantic information such as

edges from uses of variables to their corresonding declarations, edges from type informa-

tion to their corresponding definitions, and for C++, template instantiations, specializations

and partial specializations.

1 class Node

2 {
3 int value;

4 Node ∗next;

5 };

Figure 2.1: Source code for class Node. Definition of the C++ class Node. Node consists
of an int, value, and a pointer to another Node, next.
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Figure 2.2: Sample AST for class Node. An AST for class Node, which is defined in Source
Listing 2.1. Uses of the types int and Node have not yet been resolved to their definitions.

Figure 2.3: Sample ASG for class Node. An ASG for class Node, which is defined in Source
Listing 2.1. Uses of the types int and Node have been resolved to their definitions.

6



In Source Listing 2.1, we list C++ code for the definition of class Node. Node

consists of an int, value, on line 3, and a pointer to another Node, next, on line 4. In

Figure 2.2, we illustrate a possible AST for class Node, and in Figure 2.3, we illustrate

a possible ASG for class Node. Note that in Figure 2.2 the uses of the types int and

Node have not yet been resolved to their definitions, but that in Figure 2.3 they have been

resolved.

2.3 Grammar Recovery

Grammar recovery is a reverse engineering endeavor that attempts to recover a

grammar representation of a language from an available source, such as, in the best case, a

compiler, or in the worst case from a language reference or documentation [50]. A recov-

ered grammar G for a language L is likely to be an approximation of G, since G is likely to

be incomplete or incorrect with respect to L, depending on the source used to recover the

grammar and on the available information about the language. Grammar recovery is more

involved than other forms of grammar reengineering [41, 77].

2.4 Schemas

The term schema can assume several different meanings but in computer science

a schema is a model. An XML schema is a specific, well-documented definition of the

structure, content and, to some extent, the semantics of an XML document. An XML

schema provides a view of the document type at a relatively high level of abstraction. Relax

NG is an expressive XML schema language written specifically for grammar specification

[40].

7



Chapter 3

Related Work

In this chapter, we review the work that relates to the construction of an abstract se-

mantic graph (ASG) to enable dynamic analysis of C++ programs. We begin by describing

some work about parsers and parser front-ends that enable or support ASG construction;

Since verification of the generated parse tree and ASG is an important part of our research,

in Chapter 3.2 we review the work that relates to testing grammars and parse trees. Finally,

since part of our verification process includes the recovery of a grammar for the dialect of

C++ that we study, in Chapter 3.3 we describe work that relates to grammar recovery.

3.1 Parse Tree and ASG Construction

A reverse engineering tool that accepts C++ source code must utilize a parser, and

likely, a corresponding front end. The difficulties that arise during the construction of a

parser for C++ are well documented, and are largely due to the complexity of the template

sublanguage [9, 42, 56, 71, 75, 76, 86]. Consequently, the selection of robust reverse

engineering tools that accept C++ programs is inadequate.

The available reverse engineering tools for C++ can be divided into two categories:

8



(1) those that provide their own parser (and possibly front end), and (2) those that utilize

the C++ parser and front end from either the GNU Compiler Collection (gcc) [24], or the

Edison Design Group (EDG) [19]. We provide an overview of the first category in Subsec-

tion 3.1.1, and an overview of the second category in Subsection 3.1.2. Since we are only

interested in open-source software, our focus in Subsection 3.1.2 is on the related work that

uses gcc.

3.1.1 Tools that Build a C++ Parser

Elkhound is a parser generator, similar to Bison, whose generated parsers use the

Generalized LR (GLR) parsing algorithm [66, 67, 82, 83, 84]. Elkhound is used to write

a parser, Elsa, which attempts to accommodate several dialects of C++ including gcc and

Visual C++ [66]. Elsa can accommodate most of the C++ grammar. However, Elsa does not

fully accommodate either dialect. For example, 89% of the test cases in the gcc test suite,

described in Chapter 5, were parsed by Elsa. However, for the Fluxbox test case only 32

of the 74 translation units were parsed by Elsa and for FiSim only 2 of the 23 translation

units were parsed by Elsa. Also, the Elsa project has not been updated for over two years

[66]. Thus, we have chosen the GNU gcc front-end to generate parse trees for a dialect of

the C++ language, a more commonly used C++ dialect than Elsa.

SourceNavigator™from Red Hat is an analysis and graphical browsing frame-

work for C, C++, Java, Tcl, FORTRAN, and COBOL [78]. The provided fuzzy parser

extracts enough high level information to provide class hierarchies, imprecise call graphs,

and include graphs. SourceNavigator does not provide statement level information, and

the plain text output does not conform to a schema.

Ferenc et al. [22] present Columbus, a fully integrated reverse engineering frame-

work supporting fact extraction, linking, and analysis for C and C++ programs. Columbus

9



provides output in a variety of formats, including CPPML (OCaml-like pattern-matching

extensions for C++), GXL (a schema for storing graphs in XML), RSF (a reverse-engineering

tool that supports source code transformatios for C++ applications), and XMI (an Object

Manager Group metadata standard for XML). Nevertheless, Columbus is unable to fully

accept templates, as noted by [34]

The Keystone parser and front-end attempts to address the problems associated with

the early phases of compiler development for object-oriented languages: lexical analysis,

parsing and construction of a parser front-end for the C++ language [71, 72, 57, 58]. Key-

stone uses token decorated parsing, a technique for parsing ambiguous language constructs

that exploits semantic information previously gathered in the parse. The technique permits

parsing of ambiguous C++ constructs in the grammar provided in the ISO C++ standard

[39], without modifying, refactoring or extending the grammar. The Keystone parser in-

cludes a front-end consisting of an abstract semantic graph that permits users of the system

to gather detailed information at the statement level. The front-end also includes an ap-

plication programmers interface, API, that permits users to extract information about the

names in a program without any knowledge of the underlying system. The Keystone parser

is shown to be conformant to the ISO C++ standard and is, in fact, more conformant than

many of the popular C++ compilers in common use today [39, 59]; however, the Keystone

parser is unable to parse open-source programs without the use of declaration-only (stub)

header files for modules in the C++ standard library.

Lapierre et al. [54] present Datrix, an analyzer that extracts information from C,

C++, or Java programs. Datrix extracts information for each translation unit in accordance

with the Datrix ASG Model [6], and output is expressed in either TA (Tuple-Attribute

Language) or VCG format. The Datrix project at Bell Canada ended in the year 2000, and

the Datrix analyzer is no longer available.
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3.1.2 Tools that Utilize the gcc C++ Parser or ASG

Industrial strength C++ parser front ends are provided by the GNU Compiler Collec-

tion [24] and the Edison Design Group [19]. They both accept virtually all of the constructs

defined by the ISO C++ standard, including templates [39, 59]. However, gcc is in the pub-

lic domain, which allows the reverse engineering tools that use it to be freely distributable;

we summarize only tools that use gcc in this subsection.

There are two common approaches to using gcc. The first approach is to use the tu

files generated in versions gcc 3.4.x. The second approach is to modify the source code of

the parser, which creates a custom version of gcc.

The g4re system is designed as a tool chain, consisting of applications and libraries

that can be used either individually or as a single unit [45, 70, 47, 48, 44]. The implemen-

tation of g4re uses a GXL-based pipe-filter architecture where each constituent application

or library in the chain takes, as input, the output of the preceding application or library in

the chain. An important benefit of this architecture is that g4re consists of a set of loosely

coupled, reusable modules: the ASG module, the schema and serialization modules, the

transformation module, the linking module.

The g4re system uses the GENERIC output of gcc to build an ASG module. The

ASG module is used to build an Application Programmers Interface (API) to facilitate easy

access to information about declarations, including classes, functions, and variables, as

well as information about scopes, types, and control statements. The advantage of the g4re

tool chain, as with all of the parsers that are based on the gcc compiler collection, is that it

can analyze any program that can be compiled by the gcc C++ compiler.

However, there are drawbacks to the g4re system. First, the GENERIC output of

gcc, and therefore the generated ASG module, is not code-complete so that the original

source code cannot be regenerated from the ASG module. Thus, the g4re system is lim-
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ited to static analysis of type information for an application under study. Second, since

a version of the original program cannot be generated, structural verification of the ASG

module cannot be guaranteed. Nevertheless, the API schema for the g4re system provides

a language neutral specification for statement level representation of constructs in an ASG.

However, the g4re system cannot perform statement level analysis of an application since

the GENERIC output does not include this information. Therefore, use of the g4re system

precludes operations such as data flow analysis, call graph construction and slicing.

LLVM (Low Level Virtual Machine) is a compiler framework designed to sup-

port program analysis and transformation by providing high-level information for compiler

transformations at compile-time, link-time and run-time [55]. The LLVM framework al-

lows code written in an gcc supported language to be represented in a uniform represen-

tation to permit optimizations throughout the execution lifetime of the code. The LLVM

system is enable by patching gcc version 3.4.0 and version 4.0. The LLVM approach is

complementary to our work. In our proposed system graphical representations, a parse tree

and an ASG, are constructed for the source code of an application. These graphical rep-

resentations can then be analyzed or transformed and then code regenerated. LLVM does

not permit source code analysis or transformation, and does not permit code regeneration,

but rather permits transformations and analysis of a low-level, typed, SSA-based instruc-

tion set. The LLVM approach could be applied to applications that have been analyzed or

transformed by our proposed system.

Dean et al. [14] present CPPX, a tool that uses gcc for parsing and semantic anal-

ysis. CPPX predates the incorporation of tu files into gcc, and is built directly into the

source code. CPPX constructs an ASG that is compliant to the Datrix ASG Schema [6],

and can be serialized to GXL, TA, or VCG format. The Datrix ASG Schema is meant to

accommodate several languages; this generality makes it difficult to accurately represent

many C++ language constructs, such as template specializations. The last release of CPPX,
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based on version 3.0 of gcc, does not properly handle the C++ Standard Library.

Hennessy et al. [36] present gccXfront, a tool that harnesses the gcc parser to tag C

and C++ source code. The tool annotates source code with syntactic tags in XML by modi-

fying the bison parser generator tool, as described by Malloy et al. [63]. This approach is no

longer viable, because the C++ parser in gcc has migrated to recursive descent technology.

GCC.XML uses tu files to generate an XML representation for class, function, and

namespace declarations, but does not propagate information such as function and method

bodies [1]. As a result, many common program representations, such as the call graph or

the ORD, cannot be constructed using the output of GCC.XML.

Antoniol et al. [4] present XOGASTAN, a collection of tools that convert a tu file

to a GXL instance graph, and construct an in-memory representation of the GXL instance

graph. XOGASTAN fails to create GXL output for certain GENERIC node types, includ-

ing try catch expr and using directive. Additionally, XOGASTAN has limited

analysis capabilities for C++.

Gschwind et al. [34] present TUAnalyzer, a system that uses tu files to perform

analysis of template instantiations of classes and functions. TUAnalyzer performs virtual

method resolution by using the ‘base’ and ‘binf’ attributes, along with the output pro-

vided by the compiler switch -fdump-class-hierarchy, which reconstructs the vir-

tual method table. The scope of TUAnalyzer is limited to analysis of templates; Also,

TUAnalyzer does not produce an output representation of the tu file for exchange with

other reverse engineering tools.

3.1.3 A Tool that Utilizes Compiler Debugging Information

The tool, libthorin, permits a developer to reverse engineer a program to capture

design and implementation artifacts, including design metrics or a UML class or sequence
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diagram [17]. However, unlike the other tools described in the chapter, libthorin can be

applied to a variety of procedural programming languages including C, C++, Java, Fortran

90 and C#. The language independent feature of libthorin derives from the fact that it

reads an executable program embeded with DWARF debugging information and constructs

an XMI Document Object Model (DOM) representation of the code. The XMI1 DOM

includes type information about the variables and declarations in the source code. However,

the DOM tree representation of the program is not source complete so that a version of the

original program cannot be constructed; thus, libthorin cannot provide dynamic analysis of

the source code.

3.2 Testing and Verification of Compiler Artifacts

There has been little research in verification, validation or testing of compiler arti-

facts. The only important research on this topic is a seminal paper addressing the issue of

automatic generation of test cases to test grammars and grammar-based tools is the work of

Purdom for generating sentences from a context-free grammar [74]. The goal of Purdom’s

algorithm is to use each production in the grammar at least once and to rapidly generate

a minimal set of sentences that are short. However, the expression of the Purdom algo-

rithm makes comprehension difficult and explication of the algorithm cannot be based on

consideration of the algorithm alone. For example, there are places in the algorithm where

it is difficult to determine what is to be done after completion of a given step. Thus, an

interpretation of the algorithm is described in reference [62].

Several researchers have either based their test case generation on Purdom’s work,

or an extension of the work including references [5, 12, 38] and [69]. However, the problem

1XMI is a specification drafted by the Object Modeling Group (OMG) for the transportation of metadata
among modeling tools [81]
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with Purdom’s algorithm is that the automatically generated test cases, while they test each

production of the grammar, are not valid programs since grammars are virtually always a

superset of the actual language that they specify. Thus, the test cases generated by Purdom’s

algorithm cannot be compiled and are therefore not very useful [62].

3.3 Research on Grammar Recovery

Lämmel and Verhoef present a semi-automatic approach to grammar recovery [51].

Their approach requires a language manual and a test suite. They use the manual to con-

struct syntax diagrams for the language, they correct the diagrams, write transformations

to correct connectivity errors, and then use the test cases to further correct the generated

grammar. One advantage of their approach is that their grammar recovery is not connected

to a specific parser implementation. The disadvantage of their approach is that many phases

of the grammar recovery are manual. The approach that we propose uses a parse tree and a

test suite and our grammar is recovered automatically.

Bouwers et al. present a methodology for recovering precedence rules from gram-

mars [11]. They describe an algorithm for YACC and implement the method using tools

for YACC and SDF. The methodology for precedence recovery could be incorporated into

our grammar recovery system and used to transform our recovered grammar for GNU gcc

into a grammar that more closely resembles the grammar specified in the ISO C++ standard

[39].
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Chapter 4

Overview of the System for Dynamic

Program Analysis

In this Chapter, we describe Hylian, the system that we developed to empower a

researcher or developer to perform statement-level analysis of a program written in the gcc

dialect of the C++ language. Figure 4.1 is an overview of Hylian, which consists of three

phases: (1) Parse tree extraction and grammar recovery, (2) development and generation of

an abstract semantic graph (ASG), and (3) transformation of the ASG.

In Chapter 4.1, we describe the first four modules in the development of the first

phase of the Hylian system: the parse tree generation and post processing modules that

utilize the GNU compiler suite to parse the input program, generate parse trees and recover

the gcc C++ grammar. This first phase is summarized in Figure 4.1 by the rectangles la-

beled I, II, III and IV. In Chapter 4.2, we describe the second phase: construction of ASGs

from the parse trees, their storage and representation using the Graph Exchange Language

(GXL), linkage of the ASGs for each compilation unit into a single ASG, code generation

from the ASG to facilitate verification of the ASG, and an interactive GXL viewer to as-

sist in comprehension of the ASG and the corresponding program. This second phase is
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summarized in Figure 4.1 by the rectangles labeled V and VI. Finally, in Chapter 4.3, we

describe the last phase: the ASG transformation system that permits modification of the

source program, including insertion of probes into the original program and generation of

the source application for dynamic statement-level analysis of the system under study. This

final phase is summarized by rectangle VII.

Grammar
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LaTeX
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C++ 
Application 

Source
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Tentatively Parsed 
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Figure 4.1: Overview

4.1 Generation of Parse Trees and Grammar Recovery

The first phase in construction of an Abstract Semantic Graph for a C++ application

is to generate parse trees for each compilation unit in the application. To do this, we
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exploit the gcc C++ compiler by augmenting the gcc parser with probes to generate an XML

representation for each of the parse trees. To validate the generated parse trees, we recover

a grammar for the gcc C++ grammar, and then use the grammar to generate a schema, in

Relax NG format. The final step in this first phase is to validate the parse trees against the

generated schema.

4.2 Generation of an Abstract Semantic Graph

To generate an abstract semantic graph, ASG, we first prune the generated parse

trees by eliminated unnecessary non-terminals and empty productions. We then annotate

the pruned parse tree with semantic information, such as the type or scope of a variable.

In the case of templates, we must build an ASG representation of the instantiated template.

After we have extended each of the parse trees with semantic information to produce an

ASG for each compilation unit, we then link, or merge, the ASGs into a single ASG for the

entire program.

4.3 Transformation of an Abstract Semantic Graph

To illustrate transformations, and subsequent code generation, for a Hylian ASG,

we examine a previous work where a tool was developed that generated regular expressions

that captured the interactions between users of the class. We show that the use of parse trees

did not provide sufficient information to fully automate the process of generating interface

protocols for the classes in a library and that using the Hylian ASG, the process can be fully

automated and, in fact, there are even more benefits of using a Hylian ASG.
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Chapter 5

Parse Tree Generation, Verification and

Validation

5.1 Parse Tree Generation

For the parse tree generation phase, we use an augmented version of the GNU gcc

parser version 4.0.0, labeled parse2xml, summarized in rectangle I of Figure 4.1 of Chap-

ter 4. The parse2xml component generates an annotated parse tree, Annotated Parse

Trees, for the input C++ test case or application by inserting probes into the file parser.c

to generate a trace of grammar terminals and non-terminals. The parser.c file contains the

core of the backtracking recursive-descent parser included in the source of the GNU gcc

C++ compiler; we use version 4.0.0 in our study but our technique can be applied to any

gcc C++ parser or to any language whose corresponding parser generates a parse tree.

The postprocessor component, shown in rectangle II of Figure 4.1, processes the

Annotated Parse Trees by completing three tasks: (1) Backpatch Tentatively Parsed

Language Constructs, (2) Remove Tentative Parse Subtrees, and (3) Recover Left

Recursive Productions, generated iteratively. The gcc parser emits productions for mem-

ber function bodies and default parameter lists after the associated class is parsed. Thus, the
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first task entails backpatching member function bodies and default parameter lists. Also,

the gcc parser performs tentative parsing and then backtracks to recover from incorrectly

chosen alternatives. Thus, the second task entails deleting parse subtrees that were emitted

as part of an incorrect alternative and writing committed subtrees to a file in XML format.

Finally, the gcc parser is a recursive-descent parser and productions that are expressed left

recursively in the ISO C++ standard must be parsed iteratively by gcc. Thus, the third task

that the postprocessor component performs is to recover left recursive productions from

productions that were generated iteratively by the recursive-descent gcc parser.

The output of the postprocessor component is a set of parse trees, one tree for each

compilation unit of the C++ application; this is illustrated in Figure 4.1 by the document

stack icon labeled Parse Trees. These parse trees are then used in the parse tree validation,

grammar recovery, and ASG generation subsystems, illustrated as rectangles labeled III, IV

and V.

5.2 Parse Tree Verification

Our grammar recovery technique requires a parse tree that correctly represents the

particular language or language dialect under recovery. Thus, an important aspect of our

work entails verification that the structure of the generated parse tree correctly reflects the

structure of the particular language or language dialect under consideration. The first phase

of our verification is a Partial Structural Verification of the Parse Tree, a process that

entails a traversal of the generated parse tree to regenerate the code for the input test case

or application. Comparison of the regenerated code with the original code for the test case

or application will verify that the tokens appear in the parse tree in the correct order and

that there are no extra tokens, nor have any tokens been omitted.

The partial structural verification phase of our system is illustrated in Figure 5.1,
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Figure 5.1: Partial Structural Verification of Parse Tree. This figure summarizes the initial
steps for verifying that our generated parse tree represents the language dialect under
recovery. In this initial step we traverse the generated parse tree to regenerate the source
code for the test case or application to verify that the tokens in the tree are complete and
that their order of appearance in the tree matches the order of appearance in the test case
or application.

where the input C++ test case or application is processed by the gcc preprocessor, shown

as gcc preprocessor in the upper left corner of the figure. The preprocessor performs

macro substitution, inserts include files, and replaces trigraphs. However, the source code

for the C++ test case or application cannot be compared directly to the source code that is

regenerated from the parse tree since white space, comments and compiler directives are

not included in their parse tree representation. Thus, the preprocessed application, must

first be processed by the Token Normalizer, shown in the upper right corner of Figure 5.1.

One function of the Token Normalizer is to “normalize” white space, so that the statement

int f(); is converted into a normalized form, with one token emitted on each line of the

output.

The last row in Figure 5.1 illustrates the components involved in code regeneration

using the Parse Tree in XML, which is processed by the Code Regenerator, shown in the

bottom left side of the figure. The Code Regenerator is a SAX parser, which traverses the

Parse Tree in XML and regenerates the C++ source code by emitting the tokens in the tree;

the regenerated source is then normalized using the Token Normalizer described above.

Finally, we use the diff utility to compare the preprocessed normalized C++ application,

with the source code produced by normalizing the emitted tokens during a traversal of the
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1 Improper nesting: Proper nesting:

2 <unary operator> <unary operator>

3 </unary operator> <token />

4 <token /> </unary operator>

Figure 5.2: A Structurally Incorrect Parse Tree. The XML sequence on the left side of the
figure illustrates an improper nesting and the sequence on the right illustrates a proper
nesting.

Parse Tree in XML.

5.2.1 Further Parse Tree Verification is Required

The partial structural verification of the parse tree provided by source code regener-

ation is necessary because the structure of the parse tree may be incorrect, causing tokens

to be omitted, regenerated in the wrong order, or regenerated incorrectly. However, source

code regeneration does not guarantee that the parse tree is correct. In particular, after

completion of our source code regeneration validation, our subsequent Relax NG schema-

based verification uncovered errors in the parse tree. For example, Figure 5.2 illustrates

improper nesting of tokens within their corresponding production symbols: the XML se-

quence on the left side of the figure illustrates an improper nesting and the sequence on

the right illustrates a proper nesting. An improper nesting of terminal and non-terminal

grammar symbols is not exposed by code regeneration since, in regenerating the code, only

the terminal symbols are considered.

An important result of our work is that generation of a parse tree in XML format,

the correct regeneration of the source code, and the determination that the XML tags are

properly nested will not expose a faulty parse tree such as the one represented by the XML

sequence illustrated on the left side of Figure 5.2. For example, the xmllint tool, with-

out a corresponding schema, will validate the XML sequence on the left side of Figure
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5.2. Our grammar recovery and Relax NG schema generation techniques, provide further

structural verification of the parse tree, but does not provide semantic verification that the

structures represented in the test case or application are correctly represented in the parse

tree; semantic verification of the parse trees is described in Chapter 6.

5.3 Grammar Recovery from Parse Trees

In this section we present a technique for automated recovery of a grammar from

parse tree instances, we describe a metrics-guided approach to semi-automated identifica-

tion of candidate nonterminals to be refactored by replacing iteration with left recursion,

and we present an algorithm to perform this refactoring.

By definition, a parse tree instance captures the derivation of a sentence from the

language; thus, a parse tree instance encodes an instance of the grammar for the language.

Indeed, we can recover a grammar instance (a partial grammar for a language) from a

parse tree instance. By taking the union of two grammar instances, that is, the union of

the productions in the two grammar instances, we can recover a grammar that captures the

productions encoded in each of the parse tree instances. It follows that by taking the union

of all grammar instances recovered for a test suite we can forge a grammar that generates

the sentences in the test suite. However, depending on the parsing technology used by the

parser that generates the parse tree instances, we might recover an iterative grammar rather

than a recursive grammar. More specifically, we might recover a grammar that generates a

subset of the language rather than one that generates a superset of the language.

Grammatical difficulties, such as the “Names Too Specific” problem exhibited by

grammars for Java, C++, and C# when used in LALR(1) parsers [32], can require that a

grammar be altered from its standard form. As another example, a grammar that uses left

recursion must be rewritten to use right recursion and/or iteration to be used with a recur-
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base specifier list
→ base specifier
→ base specifier list , base specifier

Figure 5.3: Rewriting Left Recursion as Right Recursion. A left recursive nonterminal that
can be easily rewritten to use right recursion.

postfix expression

→ primary expression (1)

→ postfix expression [ expression ] (2)

→ postfix expression ( expression listopt ) (3)

→ simple type specifier ( expression listopt ) (4)

→ typename ::opt nested name specifier identifier

( expression listopt ) (5)

→ typename ::opt nested name specifier

templateopt template id ( expression listopt ) (6)

→ postfix expression . templateopt id expression (7)

→ postfix expression -> templateopt id expression (8)

→ postfix expression . pseudo destructor name (9)

→ postfix expression -> pseudo destructor name (10)

→ postfix expression ++ (11)

→ postfix expression -- (12)

→ dynamic cast < type id > ( expression ) (13)

→ static cast < type id > ( expression ) (14)

→ reinterpret cast < type id > ( expression ) (15)

→ const cast < type id > ( expression ) (16)

→ typeid ( expression ) (17)

→ typeid ( type id ) (18)

Figure 5.4: Difficult to Rewrite with Right Recursion. A left recursive nonterminal that
cannot be easily rewritten to use right recursion.

sive descent parser, such as gcc 4.0. For example, the productions shown in Figure 5.3

use left recursion to generate a simple list and may be easily rewritten with right recursion.

Other productions are not as easy to rewrite; for example, consider the productions shown

in Figure 5.4. These productions are taken from the grammar in the ISO C++98 standard,

where they are expressed using left recursion but are not easily rewritten with right recur-

sion. In this case iteration can be used to obviate the need for rewriting the grammar with

right recursion.

An iterative grammar specifies a finite grammar; that is, an iterative grammar ex-
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plicitly expresses all possible production right hand sides. However, such a grammar is un-

necessarily restrictive; iteration must be bounded and the bound is often an implementation-

defined value. Because bounds may differ, an iterative grammar may lead to the introduc-

tion of several language dialects. In addition, unless an exhaustive test suite is used to

recover a grammar as described above, the recovered grammar will generate only a sub-

set of the intended language. This is in stark contrast to the model typically used when

developing language-based software, where the grammar generates a superset of intended

language and semantic rules are used to eliminate invalid sentences. Furthermore, an iter-

ative grammar specification is likely an artifact of a parser, and a parser can force artificial

restrictions on the form of a grammar. The introduction of left recursion in place of itera-

tion is an example of a transformation that would make an iterative grammar more useful

to another application [52], as well as more useful to a human. To actually replace iter-

ation with left recursion is a string rewriting task; however, a key remaining issue is the

identification of candidate nonterminals (sets of productions) to which the rewriting is to

be applied.

Power and Malloy [73] describe six size metrics for grammars; three of these met-

rics are Number of Productions (PROD), Average RHS Size (AVS) and Halstead Effort

(HAL), all three of which can be computed at the grammar or nonterminal granularity. A

large value of PROD for a nonterminal might indicate the use of iteration; however, it might

indicate a more general need for refactoring. When computed over the set of productions

for a nonterminal, AVS is the average number of symbols on the right-hand side of a pro-

duction for that nonterminal. A large value for AVS can result from the use of iteration in

a grammar. For example, if a grammar includes a nonterminal with a set of productions

that generates a parenthesized list of parameters, and if that set of productions is expressed

using iteration rather than left recursion, a production that expresses a list of each possible

length must be included, which results in a large value for AVS. HAL is a relativization of
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McCabe cyclomatic complexity that weights the counts of unique symbols by the numbers

of occurrences of each symbol. The divisor in the equation expressing HAL is the number

of unique operands times a constant; thus, minimizing this value will maximize the value

of HAL. Similarly to AVS, a large value for HAL can result from the use of iteration in a

grammar. Continuing the previous example, the repetition of symbols in the lists of each

possible length keeps the number of unique operands low, which increases the value of

HAL.

In Chapter 5.3.1 we present a technique for automated recovery of a grammar from

parse tree instances. In Chapter 5.3.2 we describe a metrics-guided approach to semi-

automated identification of candidate nonterminals to be refactored by replacing iteration

with left recursion, and we present an algorithm to perform this refactoring in Chapter 5.3.3.

5.3.1 Automated Recovery of a Grammar

Our methodology for automated grammar recovery minimally requires as input a

single parse tree instance but can accept multiple parse tree instances with no modification.

For simplicity, in this section we describe the recovery of a grammar instance from a single

parse tree instance. Figures 5.5 and 5.6 illustrate our approach to recovering a grammar

instance from a parse tree instance. In Figure 5.5 we illustrate three example artifacts for

the expression a+ 1, and in Figure 5.6 we illustrate our grammar recovery algorithm.

Figure 5.5a shows a graphical representation of an example parse tree instance for

a C++-like language generated for a + 1. By definition, the parse tree is hierarchical; its

interior nodes are labeled by nonterminals from the grammar and its leaf nodes are labeled

by terminals from the grammar. Given hierarchical data and an accompanying schema

one can express that data as an XML document. Thus, with the grammar serving as the

schema, we can encode the example parse tree instance from Figure 5.5a as the XML
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illustrated in Figure 5.5b. The XML-encoded parse tree instance in Figure 5.5b contains

two categories of tags. The first category contains only one tag, token, which is used to

represent terminals. The token tag uses the type attribute to differentiate terminal types,

and where appropriate, the value or expr value attribute to hold an instance value.

The second category of tags contains all tags other than token and is used to represent

nonterminals. The names of the tags in this category differentiate the nonterminals and

none of these tags have attributes.

Figure 5.6 illustrates our algorithm for recovering a grammar instance from a parse

tree instance; because we encode parse tree instances as XML documents, we express the

recovery algorithm as a content handler for a SAX parser (using Python syntax). Line 1

of the figure lists the declaration for the global set that holds the recovered productions.

Lines 2–20 list the definition of the Handler class, the SAX content handler. The Han-

dler class contains two instance variables. The first instance variable is production stack,

which holds partially and/or totally complete productions, and the second is token, which

holds the type of the current token (e.g., NUMBER or ID). The declaration for the startEle-

ment method is on line 7 of the figure. This method is a callback and is called by the SAX

parser whenever a new XML tag is opened. When startElement is called, we push the cur-

rent tag onto production stack and, only if the current tag is ’token’, we set the instance

variable token. On line 12 of the figure the method endElement is declared. This method

is again a callback and is called by the SAX parser whenever the current XML tag is closed.

When endElement is called, we pop the top of production stack into the local variable

production. Next, if production stack is not empty, we check for a value in token. If a

value is present in token then we append it to the top item in production stack and reset

the value of token; if a value is not present then we append the current tag to the top item

in production stack and add production to the global set productions. Upon termination

of the algorithm, productions will contain all productions encoded in the XML parse tree
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instance. The productions are in the form of lists of strings such that the first string in

the list is the left-hand side of the production and the remaining strings in the list are the

right-hand side of the production. Lambda productions are represented by a list containing

a single string.

Figure 5.5c illustrates the grammar that is recovered from the XML parse tree in

Figure 5.5b by the algorithm shown in Figure 5.6. For example, the second production

listed in Figure 5.5c
binary expression

→ postfix expression PLUS binary expression

is recovered from the outermost binary expression tag from Figure 5.5b

and its three immediate children. Additionally, a lambda production is recovered from

nested name specifieropt, which is an empty tag.

5.3.2 Semi-Automated Identification of Candidate Nonterminals

Our technique for automated grammar recovery might recover an iterative gram-

mar, which (most likely) represents a subset of the intended language. Therefore, a key

issue is the identification of nonterminals that are expressed using iteration; the identified

nonterminals are candidates to be rewritten with left recursion. Size metrics are useful to

guide the process of identifying candidates; given the earlier descriptions of PROD, AVS,

and HAL we expect nonterminals expressed using iteration to exhibit unusually large val-

ues for these three size metrics. However, the definition of unusually large is dependent on

context and in some cases is subjective. Thus, while we can automatically compute these

metrics for a grammar, human intervention is required to use these metrics for identification

of candidate nonterminals.
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5.3.3 Recovery of a Left Recursive Grammar

Figure 5.7 illustrates five productions and corresponding example sentences. The

productions are expressed using iteration and generate a subset of the language that is

generated by productions 1, 3, and 7 from Figure 5.4. For example, the productions in Fig-

ure 5.7 do not generate the sentence o.foo(p).bar(q).foobar(r) but the specified

productions from Figure 5.4 do. We could add a sixth production to Figure 5.7 to generate

that sentence; however, it would be easy to then identify another sentence generated by the

specified productions from Figure 5.4 but not by the resulting six productions. Thus, the

approach of repeatedly adding iterative productions to a grammar is neither scalable nor

elegant. Furthermore, the grammar that results is unwieldy, making it difficult for a human

to comprehend, and specific to a particular parsing algorithm, rendering it not useful to

other applications.

Figure 5.8 illustrates our algorithm, which takes as input a nonterminal and its set

of right-hand sides expressed using iteration and gives as output the set of right-hand sides

expressed using left recursion. The input nonterminal is identified as a candidate for refac-

toring using the metrics-guided approach described in the previous section. The algorithm

considers a right-hand side to be a string of symbols and assumes the following definitions:

prefix string a is a prefix of string b if the symbols in a match the first len(a) symbols of b

suffix string a is a suffix of string b if the symbols in a match the last len(a) symbols of b

Furthermore, the algorithm contains two stages: (1) Replace Prefixes and (2) Remove Suf-

fixes. In the first stage, we introduce left recursion wherever possible, and in the second

stage we eliminate portions of productions if they can be generated by the new left recur-

sion productions.

Figure 5.9 illustrates the left recursive productions given as output by our algorithm

when applied to the iterative productions in Figure 5.7. Clearly, the language generated by
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the productions in Figure 5.9 is a superset of the language generated by the productions in

Figure 5.7. This underscores the importance of the identification of candidate nonterminals,

and, in particular, of the role of the human in the identification process. Refactoring a

grammar to generate a superset of the intended language can be desirable, but performing

this refactoring arbitrarily can significantly change the meaning of the grammar in addition

to degrading its understandability. For example, consider Figure 5.10, which illustrates the

havoc that our algorithm can wreak upon a grammar if misapplied.

5.4 Parse Tree Validation

Lämmel and Verhoef assert that a recovered grammar must be transformed so that

it is useful for another application [51, page 5]. In this section we describe transformations

of our recovered grammar for GNU gcc version 4.0.0. into three different schemas: Relax

NG, LATEX and YACC.

The Relax NG Schema: We use the Relax NG schema to verify that the recovered

grammar conforms to the parse tree representation of the grammar. We do this by using

xmllint, together with the Relax NG schema language, to validate the generated schema for

the recovered grammar.

The LATEX Schema: We automatically generate a LATEXversion of our grammar and

we found our LATEXversion of the grammar for GNU gcc dialect invaluable for comparison

to the ISO C++ grammar. Our removal of iteration from and incorporation of left recursion

into the recovered grammar further enhanced readability. We also found the gcc compiler

source version of the grammar difficult or impossible to comprehend and we agree with

Lämmel and Verhoef that compiler grammars are not optimal reading for humans [51,

page 10].
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The YACC Schema: Grammar deployment is the process of turning a given gram-

mar specification into a working parser [43]. We used our recovered grammar to automati-

cally generate a YACC schema and we deployed the schema to the Bison parser generator

to generate an LALR(1) parser. The LALR(1) parser contained 9,603 shift/reduce conflicts

and 30,637 reduce/reduce conflicts. We also deployed the grammar to a Bison GLR parser

generator and the GLR parser contained no conflicts. Although the Bison GLR parser for

the GNU gcc dialect requires disambiguation rules, the deployment comparison supports

the use of GLR parsing for ambiguous grammars [84].

5.5 Study on Grammar Recovery

In this section we present a case study in which we recover and refactor a grammar

from a hard-coded parser to demonstrate the feasibility and utility of the methodology

we describe in Chapter 5. In particular, we recover a grammar for GNU C++ using the

technique we describe in Chapter 5.3 and then refactor the recovered iterative grammar

using the metrics-guided approach we describe in Chapter 5.3.1. Finally, we evaluate the

recovered and refactored GNU C++ grammar by comparing it to the ISO C++98 grammar.

In Chapter 5.5.0.1 we describe the four test suites that we use in our studies. We

constructed multiple test suites because, using the methodology that we described in Chap-

ter 5.3, we only can recover a terminal, nonterminal, or production if it is exercised by a

test case; that is, if it is contained in the parse tree for a test case. Therefore, the coverage

of the subject language that we obtain using a test suite is more strongly dependent on the

variety than the number of terminals, nonterminals, and productions exercised. To address

this need for variety we selected 12 C++ programs, or test cases, from which we constructed

four test suites: (1) Benchmarks, (2) Libraries, (3) Applications, and (4) Mozilla.

In Chapter 5.5.0.2 we report results we obtained when applying our grammar recov-
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ery technique to the four test suites. We report results that address the following research

questions:

Q1. How many terminals, nonterminals, and productions are recovered from the

parse trees for each test case, each test suite, and all test suites? Specifically, we wanted

to determine whether the sets of terminals, nonterminals, and productions recovered from

the parse trees for the GCC test case, part of the Benchmarks test suite, contain the same

terminals, nonterminals, and productions recovered from the parse trees for all test cases.

That is, we wanted to determine whether any test case exercises parts of the GNU C++

grammar not exercised by the GCC test case. In addition, we wanted to determine whether

the Mozilla test cases exercise precisely the same parts of the GNU C++ grammar.

Q2. How many unique productions are recovered from the parse trees for each

test case and each test suite? We wanted to determine which test cases, if any, make

significant unique contributions to the overall recovered grammar. That is, we wanted to

determine if particular test cases contribute the majority of the unique productions, or if all

test cases contribute a proportional share of the unique productions. Moreover, we wanted

to determine whether any of the four test cases contribute a disproportionally high or low

number of unique productions.

Q3. How significantly can each test case and each test suite be reduced without

sacrificing coverage? We wanted to determine how many translation units (source files) in

each test case and each test suite can be removed without removing terminals, nonterminals,

or productions from the recovered GNU C++ grammar.

In Chapter 5.5.0.5 we report results we obtained when applying our metrics-guided

grammar refactoring approach to the recovered GNU C++ grammar. In addition, we report

information gathered from our comparison of the recovered grammar to the ISO C++98

grammar. We address the following additional research questions:

Q4. How many candidate nonterminals are identified using the three size metrics?
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We wanted to determine whether the size metrics can clearly identify a nonempty set of

candidates.

Q5. How many of the identified candidate nonterminals can be (reasonably) rewrit-

ten with left recursion? We wanted to determine whether candidate nonterminals identified

in the investigation of Q4: (a) are actually expressed using iteration and (b) can be rewritten

with left recursion without significantly changing the language recognized by the grammar.

Q6. How similar are the refactored left recursive nonterminals to their counterparts

in the ISO C++98 grammar? We wanted to compare the nonterminals produced by our

refactoring algorithm (shown in Figure 5.8) to their counterparts in the ISO C++98 grammar

to determine if our algorithm behaves as expected.

We obtained all results using a Dell™ OptiPlex™ 755 workstation with an In-

tel® Core™2 Q6600 processor, 4096 MB of RAM, and a 160GB 7200 RPM SATA hard

drive on which we installed the Slackware 12.0 operation system. We used xmllint version

20630 to validate the XML-encoded parse trees, we wrote a handler for the SAX parser

included with Python version 2.5.1 to recover a grammar from XML-encoded parse trees,

and we implemented our left recursion recovery algorithm in Python. Finally, we wrote

both Bash and Python scripts to automate execution of the grammar recovery system.

5.5.0.1 Test Suites

Table 5.1 lists information about the 12 test cases that form our four test suites.

For each test case we list the name, version, number of C++translation units (TUs), and

the approximate number of thousands of non-commented, non-preprocessed lines of code

(NCLOC). In C++, a translation unit consists of a source file and all files that it includes

either directly or transitively, and we used the source code line counter [79] to compute

NCLOC. For each test suite we list the three test cases that form the test suite, as well as

the total numbers of C++TUs and NCLOC for the test suite. In the last row of the table we
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Test Suite Test Case Version C++ TUs NCLOC (≈ K)

Benchmarks
Dr. Dobbs 1.0 407 4

GCC 4.0.0 1, 318 20

Keystone 0.6 111 2

Subtotal 1, 836 26

Libraries
Blitz++ 0.9 153 95

Boost 1.35.0 1, 646 320

POOMA 2.4.1 229 115

Subtotal 2, 028 530

Applications
Doxygen 1.5.5 79 188

FiSim 1.1b 23 14

Fluxbox 1.0.0 119 38

Subtotal 221 240

Mozilla
Gecko 1.9b5pre 254 215

Necko 1.9b5pre 114 75

XPCOM 1.9b5pre 188 120

Subtotal 556 410

Total 4, 641 1, 206

Table 5.1: Test suites. The four test suites that we use in our studies. For each test suite
we list the test cases that constitute the test suite. For each test case we list the version, the
number of C++ translation units (TUs), and the approximate number of thousands of non-
commented, non-preprocessed lines of code (NCLOC). The test suites contain 12 test cases,
and the test cases contain over 4, 600 C++ TUs and approximately 1.2 million NCLOC.

list the total numbers of C++TUs and NCLOC for the four test suites. The 12 test cases in

the test suites contain over 4, 600 C++TUs and approximately 1.2 million NCLOC.

The first test suite, Benchmarks, consists of three benchmarks designed to exercise

C++compilers, particularly their parsers and front ends. The first test case in Benchmarks

is Dr. Dobbs, a test suite designed by Malloy, et al. [60] to measure the conformance

of a C++parser to the ISO C++98 standard. We included only the translation units that

could be successfully compiled by version 4.0.0 of g++. The GCC test case consists of the

translation units from the g++.dgdirectory of the test suite for the C++compiler included

with GCC [30]. While GCC contains many TUs, many of those TUs contain code written

to test code optimization or code generation routines, not parser front end routines. The

third test case, Keystone, is the combination of a test suite written by the authors to evaluate

Keystone [64], an ISO C++98 conformant parser, and a test suite written by the authors to
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evaluate g4re [49], a tool chain for reverse engineering C++ programs. The Keystone test

case is intended to complement the Dr. Dobbs test case.

The second test suite, Libraries, consists of the test suites for three C++ class tem-

plate libraries: Blitz++, Boost, and Pooma. Blitz++ is a scientific computation library that

uses templates to achieve performance on par with Fortran [8]. Boost is a highly-regarded

free library that is peer-reviewed and portable [10]. POOMA is a collection of class tem-

plates that can be used to write parallel PDE solvers [25]. We chose these test cases because

they are listed on the GCC Testing Efforts page [31], they are listed in the GCC Release

Criteria, and they are each well-known for making heavy use of templates. However, as

these test cases are class template libraries, we had to instantiate them to compile them (and

thus to obtain parse trees for them). Therefore, to construct the Libraries test suite we used

translations units from the test suites provided with each of the test cases.

The third test suite, Applications, consists of three C++ applications: Doxygen,

FiSim, and Fluxbox. Doxygen is a documentation system for C, C++, and Java [85]; FiSim

is a scientific modeling tool for advanced engineering of fiber and film [13]; and Fluxbox

is a light-weight X11 window manager built for speed and flexibility [23]. We chose these

applications for their variety of size and application, including a language processing tool,

a scientific application, and a window managing system. We specifically chose FiSim for

its use of the Loki library [3], which make heavy use of templates.

The fourth test suite, Mozilla, consists of three modules from the open source,

cross-platform web and email application suite [68]: Gecko, Necko, and XPCOM. Gecko

(a.k.a. layout) is a cross-platform rendering engine that forms the core of the Mozilla

browser. Necko (a.k.a. netwerk) is the Mozilla network library and provides a platform-

independent API for several layers of networking ranging from the transport to the pre-

sentation layer. XPCOM is a cross-platform variant of the well-known Component Object

Model (COM). In addition to Mozilla being a popular application, it is also frequently used
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as a test suite for C++ fact extractors and other C++ reverse engineering tools. For exam-

ple, iPlasma is an integrated environment for analysis of object-oriented software systems

written in the C++ or Java languages. The scalability of the iPlasma environment is demon-

strated by its ability to handle large-scale projects in the size of millions of lines of code,

including Mozilla [33, 53]. Similarly, Mozilla is used to evaluate the TUAnalyzer sys-

tem [34] and the Columbus reverse engineering tool [21].

In the next two sections we report the results of applying our grammar recovery

system to the four test suites.

5.5.0.2 Grammar Recovery Study

In this section we report results we obtained when applying our grammar recovery

technique to the four test suites. These results address research questions Q1–Q3 from the

beginning of this section. In particular, Table 5.2 addresses Q1, Table 5.3 addresses Q2,

and Table 5.4 addresses Q3.

5.5.0.3 Measurements of the Recovered Grammars

Table 5.2 lists size metrics for the grammars that we recovered for each test case,

for each test suite, and for all test suites. For each recovered grammar we list three size

metrics: number of terminals (TERM), number of nonterminals (VAR), and number of

productions (PROD). The first size metric, TERM, is listed in the third column of the

table. For each test case, TERM is the number of unique terminals found in the recovered

grammars for the translation units in the test case. For each test suite, TERM is listed in

a row labeled Combined and is the number of unique terminals found in the recovered

grammars for the test cases in the test suite. For all test suites, TERM is listed in a row

labeled Recovered and is the number of unique terminals found in the recovered grammars

for all test suites. The second metric, VAR, is located in the fourth column of the table,
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Test Suite Test Case TERM VAR PROD

Benchmarks
Dr. Dobbs 90 125 368

GCC 136 138 612

Keystone 117 132 462

Combined 137 138 620

Libraries
Blitz++ 123 131 486

Boost 127 133 723

POOMA 122 125 517

Combined 127 133 765

Applications
Doxygen 107 113 401

FiSim 120 133 514

Fluxbox 119 131 515

Combined 122 133 581

Mozilla
Gecko 115 121 525

Necko 113 123 445

XPCOM 117 123 462

Combined 119 124 553

Recovered 137 138 930

Table 5.2: Grammar Size. This table lists the sizes of the grammars recovered for the test
cases in our four test suites.

while the third metric, PROD, is located in the fifth column of the table. Both of these

metrics are calculated over the same sets of recovered grammars as the first metric.

The data listed in Table 5.2 shows that the grammar recovered for the GCC test

case contains all but one of the 137 recovered terminals and that it contains all of the 138

recovered nonterminals. However, note that not only does this grammar contain only 65%

of the total productions recovered from all test suites, but also that this grammar does not

even contain the most productions of the 12 test cases. In particular, the grammar recovered

for the Boost test case contains 723 productions, which is 12% more than the grammar

recovered for GCC. Nonetheless, the grammar recovered for Boost does not contain 10 of

the terminals and 5 of the nonterminals recovered by other test cases in the test suites. We

also note that the Mozilla test cases do exercise different parts of the GNU C++ grammar,

although there is significant overlap.

Table 5.3 lists statistics about the number of unique productions contributed by each

test case and by each test suite to the grammars that we recovered for each test suite and
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Test Suite Test Case # This % This All % All

Suite Suite Suites Suites

Benchmarks
Dr. Dobbs 3 0.5 0 0.0

GCC 130 21.0 63 6.8

Keystone 5 0.8 3 0.3

Combined N/A N/A 74 8.0

Libraries
Blitz++ 9 1.2 9 1.0

Boost 221 28.9 113 12.2

POOMA 30 3.9 24 2.6

Combined N/A N/A 154 16.6

Applications
Doxygen 22 3.8 8 0.9

FiSim 40 6.9 8 0.9

Fluxbox 34 5.9 9 1.0

Combined N/A N/A 27 2.9

Mozilla
Gecko 71 12.8 35 3.8

Necko 11 2.0 3 0.3

XPCOM 14 2.5 3 0.3

Combined N/A N/A 47 5.0

Table 5.3: Unique Productions. This table lists the numbers of productions uniquely recov-
ered from each test case and test suite.

for all test suites. For the recovered grammar for each test case we list four statistics; for

the recovered grammar for each test suite we list only two statistics. We first describe the

two statistics that apply only to the recovered grammars for the test cases; we then describe

the two statistics that apply to the recovered grammars for the test cases as well as the

recovered grammars for the test suites.

The first statistic is located in the third column of the table and is the number of

unique productions contributed to the grammar for this test suite. For example, for the

Gecko test case the value in the third column is 71; this means that the recovered grammar

for Gecko contains 71 productions that are not found in either the recovered grammar

for the Necko test case or the recovered grammar for the XPCOM test case. The second

statistic is located in the fourth column of the table and is the number in the third column

of the table divided by the total number of unique productions for the grammar for this test

suite. Continuing the previous example, for the Gecko test case the value in the fourth

column is 12.8; this means that by uniquely contributing 71 of the 553 productions in the
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recovered grammar for the Mozilla test suite, Gecko uniquely contributes 12.8% of the

productions in that grammar.

The third statistic in Table 5.3 is listed in the fifth column and is the number of

unique productions contributed to the grammar for all test suites. For example, for the

Gecko test case the value in the fifth column is 35; this means that the recovered grammar

for Gecko contains 35 productions that are not found in the recovered grammars for the

other 11 test cases. Similarly, for the Mozilla test suite the value in the fifth column of the

table is 47; this means that the recovered grammar for Mozilla contains 47 productions that

are not found in the recovered grammars for the other three test suites. The fourth statistic

is listed in the sixth column of the table and is the number in the fifth column divided by

the total number of unique productions for the grammar for all test suites. Continuing the

previous example, for the Gecko test case the value in the sixth column is 3.8; this means

that by uniquely contributing 35 of the 930 productions in the recovered grammar for all

test suites, Gecko uniquely contributes 3.8% of the productions in that grammar. Similarly,

for the Mozilla test suite the value in the sixth column is 5.0; this means that by uniquely

contributing 47 of the 930 productions in the recovered grammar for all test suites, Mozilla

uniquely contributes 5.0% of the productions in that grammar.

For three of the four test suites, one of the three test cases in the test suite contributes

the majority of unique productions; only in the Applications test suite is there no test case

that does so. Yet, there is no test case among the 12 that does not contribute a unique pro-

duction within its test suite, though 7 of the 12 test cases uniquely contribute less than 5%

of the productions in their respective test suites. When considering productions uniquely

contributed among all 12 test cases, we note that Dr. Dobbs has a total of zero. We also

experimented with the FTensor library [26] and found that it too failed to contribute a pro-

duction among those recovered from our 12 test cases. Finally, we note that the GCC and

Boost test cases each contribute disproportionally high numbers of unique productions.
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5.5.0.4 Reduction of the Test Suites

Hennessy and Power present a test suite reduction technique for grammar-based

software that is based on rule coverage [37]. When performing grammar recovery, we store

data that allows us to apply an analogous technique. When recovering the grammar for

a test case, we store in a set the name of the translation unit that contributes each new

production. Upon completion of grammar recovery the resulting set of translation units

represents a (possibly) reduced version of the test case, known as the essential set. If

we apply the grammar recovery system to the reduced test case, we will obtain the same

grammar as we would from the unreduced test case. However, because we did not attempt

attempt to order the translation units (we simply ordered them alphabetically), we cannot

guarantee that we compute the minimal test case (set of translation units). Further, as noted

by Hennessy and Power, given the essential set, choosing the minimal test case that covers

the productions is equivalent to the minimum cardinality hitting set, which is an intractable

problem [29].

Table 5.4 lists percentage reductions achieved using the above technique. For each

test case we list two numbers: the number of translation units in the essential set and the

percentage reduction in the number of translation units. We also list the aggregate values for

each test suite and for all test suites. The first number is located in the third column of the

table and is the number of translation units in the essential set. For example, for the Gecko

test case the value in the third column is 52; this means that all of the productions from

the recovered grammar for Gecko can be recovered from a particular set of 52 translation

units. The second number is located in the fourth column of the table and is the percentage

reduction in the number of translation units. Continuing the previous example, for the

Gecko test case the value in the fourth column is 79.5; this means that by eliminating all

but 52 of the 254 translation units for the Gecko test case, we have reduced the Gecko test
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Test Suite Test Case # C++ TUs % Reduction

Benchmarks
Dr. Dobbs 91 77.6

GCC 129 90.2

Keystone 32 71.2

Subtotal 252 86.3

Libraries
Blitz++ 14 90.8

Boost 85 94.8

POOMA 17 92.6

Subtotal 116 94.3

Applications
Doxygen 26 67.1

FiSim 8 65.2

Fluxbox 29 75.6

Subtotal 63 71.5

Mozilla
Gecko 52 79.5

Necko 28 75.4

XPCOM 35 81.4

Subtotal 115 79.1

Total 546 88.2

Table 5.4: Percentage reduction of test suites. The reduced numbers of C++ translation
units (TUs) and the percentage reductions for the individual test cases and test suites, as
well as the aggregate reduction for the test suites.

case by 79.5%.

The results in Table 5.4 show that we can achieve an 88.2% reduction in the number

of C++ translation units in our test suites without sacrificing the recovery of any terminals,

nonterminals, or productions. We did not leverage this reduction in our studies or even

measure the time savings that result. However, we note that the largest reduction, 94.3%,

is for the Libraries test suite and that this test suite accounted for the vast majority of the

running time consumed by our grammar recovery process [18]. Furthermore, this result

has obvious utility to anyone who wishes to recover a grammar for a C++ dialect from test

cases.

5.5.0.5 Grammar Refactoring Study

In this section we report results we obtained when applying our metrics-guided

grammar refactoring approach to the GNU C++ grammar recovered in Chapter 5. These
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Grammar TERM VAR PROD LR RR

Recovered 137 138 930 0 39

Refactored 137 138 601 3 39

ISO 117 184 479 27 6

Table 5.5: Grammar Size Metrics. This table lists size metrics for the recovered grammar
before and after refactoring, and the ISO C++98 grammar.

results address research questions Q4 and Q5 from the beginning of this section. In ad-

dition, we report information gathered by inspection of the refactored grammar and from

our comparison of the recovered grammar to the ISO C++98 grammar. This information

addresses question Q6 from the beginning of this section.

As described in Chapter 5.3.1, the three grammar size metrics PROD, AVS, and

HAL can be computed at the nonterminal granularity. That is, we can compute the value

of the metric for a nonterminal and its set of right-hand sides and we did so for each of

the 138 nonterminals in the recovered GNU C++ grammar. When examining the results

we found that one nonterminal had values for PROD and AVS that were one order of

magnitude larger than the values for any other nonterminal. Further, we found that two

nonterminals had values for HAL that were one order of magnitude larger than the values

for any other nonterminal. More specifically, the values of PROD and AVS were particu-

larly large for postfix expression and the value of HAL was particularly large for

direct declarator and direct abstract declarator. Indeed, upon inspec-

tion of these three nonterminals, we found that each had expressions that were expressed

using iteration.

Table 5.5 lists data about the recovered grammar before refactoring, the recovered

grammar after refactoring by replacing iteration with left recursion, and (for comparison)

the ISO C++98 grammar. In particular, we list the numbers of terminals, nonterminals, and

productions, as well as the numbers of nonterminals that use left and right recursion. Only

two values differ between the recovered and refactored grammars; specifically, the number
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of productions and the number of nonterminals using left recursion. Note that the number of

productions for our recovered grammar has decreased by 329; this can largely be attributed

to postfix expression having 337 productions before the refactoring. Also note

that the recovered grammar now contains three nonterminals that use left recursion; in

particular, the three nonterminals that we identified as candidates using size metrics.

The recovered grammars (before and after refactoring) contain 20 terminals not

contained in the ISO grammar; these terminals are GNU extensions to C++, such as the

keyword restrict . Additionally, the recovered grammars contain 46 less nonter-

minals than the ISO grammar; however, this is largely due to the 41 distinct productions

that only implement optionality in the ISO grammar. The recovered grammars typically do

not use distinct productions to implement optionality, but rather simply introduce a lambda

production for the optional nonterminal. The two most striking differences between the

recovered grammars and the ISO grammar are in the number of productions and the use

of recursion. Before refactoring, the recovered grammar contains almost twice as many

productions as the ISO grammar; this is because iteration is used in the original recovered

grammar. Also, while the recovered grammars actually use more recursion than the ISO

grammar, because that recursion originates from a recursive descent parser, the recovered

grammars use right recursion rather left recursion.

Figure 5.5.0.5 illustrates the 22 productions for postfix expression that re-

main in the recovered grammar after refactoring. A comparison of these productions to

those in Figure 5.5.0.5 yields several items of interest. Firstly, the sets of productions are

very similar and, in fact, significant subsets of the productions are identical. Secondly, we

note that production 22 in Figure 5.5.0.5 is a GNU extension. Thirdly, some optionality

in the ISO grammar is expressed as multiple productions in the recovered grammar. Fi-

nally, note that in the recovered grammar, parentheses are included in the productions for

the nonterminal expression listopt; that is, expression listopt in the recovered grammar
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Grammar TERM VAR PROD LR RR

Recovered 137 138 930 0 39

ISO 117 184 479 27 6

Table 5.6: Grammar Coverage I (Before Refactoring). This table lists size metrics for the
grammars recovered for the test cases in our four test suites.

Grammar TERM VAR PROD LR RR

Recovered 137 138 601 3 39

ISO 117 184 479 27 6

Table 5.7: Grammar Coverage II (After Refactoring). This table lists size metrics for the
grammars recovered for the test cases in our four test suites.

is equivalent to ( expression listopt ) in the ISO grammar.

Table 5.6 lists data about our recovered grammar (before refactoring) and the ISO C++98

grammar. In particular, we list the numbers of terminals, nonterminals, and productions, as

well as the numbers of nonterminals that use left and right recursion. The recovered gram-

mar contains 20 additional terminals not contained in the ISO grammar; these terminals are

GNU extensions to C++, such as the keyword restrict . Additionally, the recovered

grammar contains 46 less nonterminals than the ISO grammar; however, this is largely due

to the 41 distinct productions that only implement optionality in the ISO grammar. The re-

covered grammar typically does not use distinct productions to implement optionality, but

rather simply introduces a lambda production for the optional nonterminal. The two most

striking differences between the two grammars are in the number of productions and the

use of recursion. The recovered grammar contains almost twice as many productions as the

ISO grammar; this is because iteration is used in the recovered grammar. Also, while the

recovered grammar actually uses more recursion than the ISO grammar, because it orig-

inates from a recursive descent parser, the recovered grammar uses right recursion rather

left recursion.

Table 5.7 lists data about our recovered grammar (after refactoring) and the ISO C++98
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grammar. Only two values differ from those listed in Table 5.6; specifically, the number

of productions and the number of nonterminals using left recursion. Note that the number

of productions for our recovered grammar has decreased by 329; this can largely be at-

tributed to postfix expression having 337 productions before the refactoring. Also

note that the recovered grammar now contains three nonterminals that use left recursion; in

particular, the three nonterminals that we identified as candidates using size metrics.

Figure 5.13 illustrates the 22 productions for postfix expression that remain

in the recovered grammar after refactoring. A comparison of these productions to those in

Figure 5.4 yields several items of interest. Firstly, the sets of productions are very similar

and, in fact, significant subsets of the productions are identical. Secondly, we note that

production 22 in Figure 5.13 is a GNU extension. Finally, some optionality in the ISO

grammar is expressed as multiple productions in the recovered grammar.
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(a) Parse Tree

<binary expression>
<postfix expression>

<primary expression>
<nested name specifieropt />
<identifier>

<token type=’ID’
value=’a’ />

</identifier>
</primary expression>

</postfix expression>
<token type=’PLUS’ />
<binary expression>

<postfix expression>
<primary expression>

<token type=’NUMBER’
value=’1’ />

</primary expression>
</postfix expression>

</binary expression>
</binary expression>

(b) Parse Tree in XML

binary expression
→ postfix expression
→ postfix expression + binary expression

postfix expression
→ primary expression

primary expression
→ nested name specifieropt identifier
→ NUMBER

nested name specifieropt
→ λ

identifier
→ ID

(c) Corresponding Grammar

Figure 5.5: Parse Trees and Corresponding Grammar. Two representations of an example
parse tree for the expression a+ 1 and the corresponding grammar.
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1 productions = set()

2 class Handler(xml.sax.ContentHandler):

3 def init (self):

4 self.production stack = [ ]

5 self.token = None

6

7 def startElement(self, tag, attrs):

8 self.production stack.append([tag])

9 if ’token’ == tag:

10 self.token = ’token(%s)’ % attrs[’type’]

11

12 def endElement(self, tag):

13 production = self.production stack.pop()

14 if self.production stack:

15 if self.token:

16 self.production stack[-1].append(self.token)

17 self.token = None

18 else:

19 self.production stack[-1].append(tag)

20 productions.add(production)

Figure 5.6: Grammar Recovery Algorithm. The important steps in our grammar recovery
algorithm expressed as a SAX parser and in Python syntax.

Production Sentence
postfix expression

→ primary expression o

→ primary expression . id expression o.x

→ primary expression . id expression ( expression listopt ) o.foo(p)

→ primary expression . id expression ( expression listopt )

. id expression o.foo(p).y

→ primary expression . id expression ( expression listopt )

. id expression ( expression listopt ) o.foo(p).bar(q)

Figure 5.7: Iterative Productions. An iterative expression of selected productions from
Figure 5.4 and corresponding sentences.
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1 replace iteration(lhs,rhsSet)

2 # PHASE 1: Replace Prefixes

3 max len = len(longest rhs in rhsSet)

4 do

5 foreach j in 1..max len

6 partition rhsSet into three sets: len j, len lt j, len gt j

7 foreach x in len j

8 foreach y in len gt j

9 if x is a prefix of y

10 remove first j symbols of y

11 add lhs to front of y

12 if y is not unique in rhsSet

13 remove y from rhsSet

14 while(rhsSet changes)

15

16 # PHASE 2: Remove Suffixes

17 partition rhsSet into two sets: left recursive,
not left recursive

18 foreach lr in left recursive

19 lr part = lr.pop front() # lr without the recursive “call”

20 for n in not left recursive where len(n) >= len(lr part)

21 if lr part is a suffix of n

22 remove last len(lr part) symbols of n

23 if n is not unique in rhsSet

24 remove n from rhsSet

Figure 5.8: Left Recursion Recovery Algorithm. The important steps in our left recursion
recovery algorithm.

postfix expression

→ primary expression

→ postfix expression . id expression

→ postfix expression ( expression listopt )

Figure 5.9: Left Recursive Productions. A left recursive expression of the productions from
Figure 5.7.

selection statement
→ if ( condition ) statement
→ if ( condition ) statement else

statement
→ switch ( condition ) statement

(a) Before Refactoring

selection statement
→ if ( condition ) statement
→ selection statement else

statement
→ switch ( condition ) statement

(b) After Refactoring

Figure 5.10: Result of Misapplying the Left Recursion Recovery Algorithm. The conse-
quences of misapplying the algorithm illustrated in Figure 5.8.
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postfix expression

→ primary expression (1)

→ postfix expression [ expression ] (2)

→ postfix expression ( expression listopt ) (3)

→ simple type specifier ( expression listopt ) (4)

→ typename ::opt nested name specifier identifier

( expression listopt ) (5)

→ typename ::opt nested name specifier

templateopt template id ( expression listopt ) (6)

→ postfix expression . templateopt id expression (7)

→ postfix expression -> templateopt id expression (8)

→ postfix expression . pseudo destructor name (9)

→ postfix expression -> pseudo destructor name (10)

→ postfix expression ++ (11)

→ postfix expression -- (12)

→ dynamic cast < type id > ( expression ) (13)

→ static cast < type id > ( expression ) (14)

→ reinterpret cast < type id > ( expression ) (15)

→ const cast < type id > ( expression ) (16)

→ typeid ( expression ) (17)

→ typeid ( type id ) (18)

Figure 5.11: Nonterminals Expressed Using Left Recursion. ISO Version
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postfix expression

→ primary expression (1)

→ postfix expression [ expression ] (2)

→ postfix expression expression listopt (3)

→ simple type specifier (4)

→ typename nested name specifier identifier (5)

→ typename :: nested name specifier template id (6)

→ typename :: nested name specifier template

template id expression listopt (7)

→ postfix expression . id expression (8)

→ postfix expression . template id expression

expression listopt (9)

→ postfix expression -> template id expression

expression listopt (10)

→ postfix expression -> id expression (11)

→ postfix expression . pseudo destructor name

expression listopt (12)

→ postfix expression -> pseudo destructor name

expression listopt (13)

→ postfix expression ++ (14)

→ postfix expression -- (15)

→ dynamic cast < type id > ( expression ) (16)

→ static cast < type id > ( expression ) (17)

→ reinterpret cast < type id > ( expression ) (18)

→ const cast < type id > ( expression ) (19)

→ typeid ( expression ) (20)

→ typeid ( type id ) (21)

→ ( type id ) { initializer list } (22)

Figure 5.12: Nonterminals Expressed Using Left Recursion. Recovered and Refactored
Version
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postfix expression

→ primary expression (1)

→ postfix expression [ expression ] (2)

→ postfix expression expression listopt (3)

→ simple type specifier (4)

→ typename nested name specifier identifier (5)

→ typename :: nested name specifier template id (6)

→ typename :: nested name specifier template

template id expression listopt (7)

→ postfix expression . id expression (8)

→ postfix expression . template id expression

expression listopt (9)

→ postfix expression -> template id expression

expression listopt (10)

→ postfix expression -> id expression (11)

→ postfix expression . pseudo destructor name

expression listopt (12)

→ postfix expression -> pseudo destructor name

expression listopt (13)

→ postfix expression ++ (14)

→ postfix expression -- (15)

→ dynamic cast < type id > ( expression ) (16)

→ static cast < type id > ( expression ) (17)

→ reinterpret cast < type id > ( expression ) (18)

→ const cast < type id > ( expression ) (19)

→ typeid ( expression ) (20)

→ typeid ( type id ) (21)

→ ( type id ) { initializer list } (22)

Figure 5.13: Production after Left Recursion Recovery. A left recursive expression of the
recovered productions for postfix expression.
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Chapter 6

Construction of an Abstract Semantic

Graph

In Chapter 5, we described the four modules that we developed to complete the

first phase of the construction of Hylian, our system that builds ASGs for comprehension

and analysis of C++ applications. This first phase entailed using the GNU compiler suite

to parse the input program and the development of post-processing modules to generate

and validate the parse trees, and to recover the gcc C++ grammar. In this chapter, we

describe the construction of abstract semantic graphs (ASGs) from the parse trees, their

storage and representation using the Graph Exchange Language (GXL), code generation

from the ASG to facilitate verification of the ASG, and an interactive GXL viewer to assist

in comprehension of the ASG and the corresponding program. To facilitate analysis of

user code, without the noise and clutter of library code, we have developed an extension

to Hylian that builds abbreviated ASGs consisting of information about user code, but not

library code. We refer to the Hylian module that builds abbreviated ASGs as a phantom

parser, because some of the type information in the abbreviated ASGs is unknown. We also

summarize CppInfo, a previously developed schema designed specifically to be capable
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of representing constructs in the C++ language, including templates [47, 48]. However,

since in its current form, CppInfo is not expressive enough to handle expressions [46], we

also describe our extensions to CppInfo to handle expressions, and extensions to enable

validation of the abbreviated ASGs generated in a phantom parse. We use our extended

version of CppInfo to validate the ASGs built with Hylian.

Construction of an ASG entails attaching semantic information to the names used

in the input program, including evaluation and lookup of constants, full type resolution for

the names, determination of type equivalency and type promotion, full and partial template

instantiation, operator overload resolution, function and method resolution including ar-

gument dependent (Koenig) name lookup, implicit method invocation commonly used in

class constructor and destructor creation and deletion.

6.1 Problems in the Construction of an ASG

The attachment of type information to the names used in an application is fairly

straightforward if the program is written in a procedural language such as C or Fortran.

However, attaching semantic information to names used in applications written in a multi-

paradigm, composite language [80, 15], such as C++, present unique challenges. These

features include data hiding, generics, multiple inheritance and other constructs that make

the attachment of semantic information much more difficult than in the processing of pro-

cedural languages. These challenges comprise the bulk of the effort required for the con-

struction of the Hylian analysis system. The most imposing of these challenges, name

lookup, actually sounds uniquely trivial, yet a solution to this problem entails resolving

type information for virtually every production in the C++ grammar. Thus, name lookup

is difficult firstly because of the breadth of the problem, since the C++ grammar is one of

the largest grammars in use, yet more importantly, is the most complex grammar [73]. For
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example, the impurity metric applied to the C++ grammar shows that, at 85%, the C++

grammar contains a considerable density in the edges in the closure of the call graph, es-

pecially compared to the grammars for C, Java and C#. The impurity metric, together with

the application of McCabe’s metric to the C++ grammar, provide further evidence of the

complexity, and the tight coupling of the C++ grammar productions [65, 73].

As an illustrative example of the issues involved in name lookup in C++, consider

resolution of the simple three-operand expression for printing “Hello World,” illustrated

here:

1 int main() { std::cout� “Hello, World!” � std::endl; }

The first operand, std::cout, is of type std::basic ostream<char> and the second

is a string literal, of type const char∗. Resolving the correct implementation of oper-

ator� involves examining seventeen methods of the instantation of std::basic ostream,

and five function templates in the std namespace, that accept a std::basic ostream object

as its first argument. Nine of the twenty-two candidate resolutions are shown in an excerpt

of the definition of the std::basic ostream class template in Figure 6.1. The parameters

for the partially-speciallized function template listed on lines 11 through 13 most closely

match the types of the first two operands. So, that function is instantiated, inserted into the

ASG, and the type of the subexpression is std::basic ostream.

The second subexpression, with the result of the first subexpression on the left,

and std::endl on the right, is more complicated. In this case, endl is an unqualified-id

naming the function template listed on lines 36 through 38. Resolving name lookup for

endl is problematic because, normally, operands in executable code reference memory

locations in the compiled code. However, endl is the name of a function template, which

is a compiler artifact with an ambiguous name and, therefore, has not been instantiated.

In the C++ grammar endl is an unqualified-id, as opposed to a template-id, which is an

unqualified-id whose template parameters have been resolved. When the arguments to
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endl have been resolved, the function template is instantiated and the template-id is no

longer an ambiguous name but a function pointer referencing an instantiation of std::endl.

However, since we do not explicitly supply the template arguments to std::endl, we do not

actually have a template-id but are left with an ambiguous unqualified-id. Therefore, the

closest match for the second subexpression is the method listed on lines 19 and 20 in Figure

6.1. This overload for operator� accepts a function pointer to a function that accepts an

std::basic ostream, instantiated with the same template arguments as the parent class

(that is, the left-hand side of the� operator). The match means that std::endl is resolved,

without explicitly defining its template arguments, so it is instantiated with its CharT

argument set to char and its Traits argument set to std::char traits<char>.
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1 namespace std {
2 template<typename CharT, typename Traits = char traits< CharT> >
3 class basic ostream {
4 typedef basic ostream< CharT, Traits> ostream type;
5
6 // There are 22 occurances of operator� in this template class
7 template<typename CharT2, typename Traits2>
8 friend basic ostream< CharT2, Traits2>&
9 operator�(basic ostream< CharT2, Traits2>&, const CharT2∗);

10
11 template<typename Traits2>
12 friend basic ostream<char, Traits2>&
13 operator�(basic ostream<char, Traits2>&, const char∗);
14
15 template<typename CharT2, typename Traits2>
16 friend basic ostream< CharT2, Traits2>&
17 operator�(basic ostream< CharT2, Traits2>&, const char∗);
18
19 inline ostream type&
20 operator�( ostream type& (∗ pf)( ostream type&));
21
22 inline ostream type&
23 operator�( ios type& (∗ pf)( ios type&));
24
25 inline ostream type&
26 operator�(ios base& (∗ pf) (ios base&));
27
28 ostream type& operator�(int n);
29 ostream type& operator�(const void∗ p);
31 ostream type& operator�( streambuf type∗ sb);
32 };
33 template<typename CharT, typename Traits>

34 basic ostream< CharT, Traits> &operator�(basic ostream< CharT, Traits>
& out,

35 const CharT ∗ s);
36 template<typename CharT, typename Traits>
37 basic ostream< CharT, Traits>& endl(basic ostream< CharT, Traits>& os)
38 { return flush( os.put( os.widen(’\n’))); }
39 }

Figure 6.1: An excerpt from the ostream header file.

6.2 ASG Schema

As a starting point for validation of our ASGs, we use a previously developed

schema, CppInfo, consisting of 137 nodes developed for the g4re system [46]. CppInfo

contains information about: (1) declarations, such as classes, class templates, class template

instantiations, and class template specializations; (2) namespaces; (3) functions, including

function templates and function template instantiations; (4) variables; and (5) most state-

ments, including control statements, exception statements, and function calls. However,

g4re was not developed for statement level analysis so that even though CppInfo includes

nodes for statements, they were never used for validation of the g4re system and, more
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importantly, CppInfo does not contain information to support validation of expressions.

Therefore, to validate expressions, we augment CppInfo with fifty-eight additional nodes,

including six nodes for unary expressions, twenty-two nodes for binary expressions, and

twenty-four nodes for additional expressions such as a ternary operator and C++ style casts.

In addition, to enable validation of ASGs generated with the phantom parser, we added five

additional nodes, which are explained in Chapter 6.4.
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6.3 Construction of a Full ASG

The algorithm in Figure 6.2 parses the XML representation of the parse-tree of the

original user application code. The parse-tree parser is a top-down SAX XML parser, but

we prefer to handle the grammar productions in bottom-up fashion. Thus, to simulate a

bottom-up parse we must buffer the XML tags that represent terminals and non-terminals

from the original user application code, and delay the semantic actions until a complete

sentence encountered. The semantic action for each production is handled by a function

that accepts two lists: (1) a list of the syntax symbols, and (2) a list of their corresponding

semantic values. The return value of the semantic action function is the semantic value of

that production.

To correctly handle template classes and functions, we delay total evaluation of

their subtree until we encounter a use later in the parse tree. When a template definition

is encountered, we must parse enough of its tree to determine its declaration all the while

buffering the entire subtree for later use. Once we determine the declaration, we stop han-

dling semantic actions until the matching close tag for the template declaration is reached.

We then store the template declaration and its corresponding parse tree in a dictionary until

a usage of the template requires instantiation.

The algorithm for ASG construction uses seven data structures and a while loop that

examines each XML tag in turn. The first data structure, tag, is the current XML tag. The

next two data structures facilitate a bottom up parse using the tags from the top-down XML

parser: syntaxStack, a stack of lists that contain terminals and non-terminals encountered

in the bottom-up parse; and semanticStack, a stack of lists that contain semantic values

encountered in the bottom up parse of the parse tree. The final four data structures facilitate

template declaration buffering and instantiation: parsetreeBuffer, a dictionary that maps

a template declaration to its respective parse tree; currentParsetreeBuffer, a buffer for a
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1 declare tag: XML tag
2 declare syntaxStack : stack
3 declare semanticStack : stack
4 declare parsetreeBuffer : dictionary
5 declare currentParsetreeBuffer : string
6 declare isBuffering: boolean
7 declare currentTemplateDecl : template declaration
8
9 push an empty list onto semanticStack and syntaxStack

10 tag ← getTag()
11 while ( more tags in XML Parse Tree ) :
12 if (tag is startTag) :
13 if ( tag is template declaration and not isBuffering ) :
14 currentParsetreeBuffer ← empty parse tree
15 currentTemplateDecl ← NULL
16 isBuffering ← TRUE
17 if ( isBuffering ) :
18 store tag in currentParsetreeBuffer
19 if (currentTemplateDecl is not NULL) :
20 continue at top of while
21 append tag to list at top of syntaxStack
22 if ( tag is tokenTag ) :
25 // keyword, constant, symbol, or identifier
26 if ( tag is literal ) :
27 determine representation and type
28 append semantic value of the literal to list at top of semanticStack
29 else if ( tag is name ) :
30 if ( tag is keyword ) :
31 replace ‘token’ with actual keyword in list at top of
32 syntaxStack (e.g., class)
33 append NULL to list at top of semanticStack
34 else :
35 push identifier onto list at top of semanticStack
36 else if ( tag is symbolTag ) :
37 replace ‘token’ with symbol value (e.g., replace token with ‘+’)
38 append NULL to list at top of semanticStack
39 else :
40 append NULL to list at top of semanticStack
41 else if ( tag is endTag ) :
42 if ( isBuffering ) :
43 store tag in currentParsetreeBuffer
44 if (not isBuffering xor currentTemplateDecl is not NULL) :
45 call function to perform semantic-action on tag name
46 i.e., for the tag ”</class head>” call on class head()
47 pop syntaxStack
48 pop semanticStack
49 replace NULL in list at top of semanticStack with result of
50 semantic-action, i.e. the semantic value of the production
51
52 if (isBuffering and currentTemplateDecl is not NULL) :
53 add to parsetreeBuffer, where the key is the declaration, and the
54 value is the partially created buffer (in progress).
55 if (matching close of template declaration that started buffering) :
56 isBuffering ← FALSE
57 tag ← getTag()

Figure 6.2: The algorithm used to convert a parse tree into a bottom-up style parse
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parse tree of a template so that when a template declaration is encountered the parse action

is delayed until the template is instantiated and fully defined by its usage; isBuffering, a

boolean indicating that the current tag is the child of a template declaration; and, finally,

currentTemplateDecl, a handle for a declaration that contains information to facilitate

name lookup for the currently buffered template declaration, which contains scope infor-

mation, name, arguments for the template, and possibly information about parameters to a

function template.

The algorithm consists of a while loop, lines 11 through 57, that examines each start

and end tag in the XML tree. The algorithm examines start tags first, lines 12 through 40,

taking special actions for the start of a template declaration, handling the buffering of tem-

plate declarations, and lexical tokens from the original C++ source code. If the start tag is

the beginning of a template declaration, and we are not currently buffering a template dec-

laration, then we reset the values of currentParsetreeBuffer and currentTemplateDecl

and turn on buffering (lines 13 through 16). If parse tree buffering is turned on, then store

the current tag in the current parse tree buffer (lines 17 and 18). If the parse tree is being

buffered, and we have identified the declaration for the template, then continue looping

(lines 19 and 20). If a token tag is encountered, lines 22 through 38, then we examine the

attributes on the tag and take one of four actions: (1) if the token represents a C++ key-

word, then the keyword is inserted into the syntaxStack (lines 30 through 33); (2) if the

token represents a C++ literal, then the type and representation must be determined, and

a literal token is inserted into the syntaxStack and the value of the literal is inserted into

the semanticStack (lines 26 through 28); (3) if the token represents a user-defined iden-

tifier, then an id token is inserted in the syntaxStack and the identifier is inserted into the

semanticStack (line 35); and finally (4) if the token represents a symbol, then the appro-

priate symbol is inserted into the syntaxStack (lines 36 through 38). Lines numbered 24

and 25 are skipped in this algorithm, the reason for this will be address in later in Chapter
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6.4.

Finally, the algorithm examines end tags, lines 41 through 56. If buffering is cur-

rently on, then the end tag is added to the current parse tree buffer (lines 42 and 43).

If buffering is currently off, or if buffering is on but the declaration for template being

buffered has not yet been determined, then (1) perform the semantic action for the current

production, as determined by the current close tag (left-hand side) and the list of sym-

bols on top of the syntaxStack (right-hand side); (2) pop the current production off the

syntaxStack and its semantic values off the semanticStack; and (3) insert the semantic

value of the production, as determined by step (1), into the semantic value list on top of the

semanticStack (line 44 through 49). If parse tree buffering is currently on and the decla-

ration for the template definition being buffered was determined in the previous semantic

action function, then the declaration and a handle to the current parse tree buffer are added

into the parsetreeBuffer dictionary (lines 52 through 54). And, finally, if the close tag

is the match to the open tag that started buffering a template declaration parse tree, then

buffering is turned off (lines 55 and 56).

61



6.4 Library Analysis in User Applications

For source code analysis, the user may or may not be interested in comprehension or

testing of the library or libraries that are used in the program. For example, when tracking

memory leaks in a program using Valgrind, Purify or Insure++, the user is interested in a

determination of whether or not the leak is in user code or library code because, if the leak

is in user code, the developer can find and fix the leak. If the memory leak is in the library,

the developer must decide (1) if they are using the library properly [61], (2) to live with the

leak, or (3) choose an alternative library.

However, there are other analysis activities where the user is completely disinter-

ested in comprehension or testing of the library code, and more importantly, inclusion of

header files for some libraries obscures and obfuscates comprehension and analysis of the

user application code. For example, consider libraries that make heavy use of the template

construct in C++, such as the C++ Standard Library, or the Boost C++ libraries[10]. The re-

sults that we present in Chapter 6.9 illustrate a large disparity in the magnitude of an ASG

for a “Hello World” program that includes type information and executable statements for

library code, as compared with an ASG that only includes user code and excludes library

code as part of the ASG.

This disparity motivated our inclusion of an option in the Hylian system to exclude

library code as part of ASG construction. This option resulted in ASGs that are built

more efficiently, are easier to comprehend and, therefore are more useful in analysis of

applications that utilize heavily templated library code. However, this additional option

further complicates name lookup resolution and requires construction of a schema that

incorporates additional kinds of vertices and edges that appear in the semantic graph. These

additional ASG elements build on the original schema and include information that is used

as a placeholder for information that describes names used in the library. We refer to
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these placeholder elements as phantom elements and we refer to the ASG that contains

these elements as a phantom ASG. Our results illustrate that, typically, a phantom ASG is

smaller and therefore potentially facilitates easier analysis and comprehension of the user

application, but required more effort and resources in development.

To generate phantom ASGs, we first need to know which declarations come from

system header files and which come from user code. To accomplish this, we modified the

parser tree generator (introduced in Chapter 5.1) to attach to each token the file name and

line number it came from, and a Boolean indicating if that file is considered a system file.

It is not enough to examining the path of the file for two reasons: (1) sometimes we only

have a relative path name to the file, and (2) the user can specify on the command line

what include file search paths are considered to be system directories with the -isystem

switch (as opposed to the more familiar -I switch). With this new metadata in the parse

tree, we can update the algorithm listed in Figure 6.2 to check for the “in-system-header”

attribute, and mark the tag if needed.

23 if ( getAttribute(tag, “in-system-header”) is true ):

24 mark tag as a phantom token

This update to the algorithm marks every token that comes in from a system header

file as a phantom token. Every semantic action has to be sure to check for it before applying

its actions. Only declarations that appear at namespace scope are considered, and we only

keep track of their name. When we find a class, and its name is tagged as a phantom token,

we do not parse its base specifiers, template declarations, or any members that appears in

the class’s body. The same applies for functions that are defined at namespace-scope. We

identify, and store its name, but its return type, parameter declaration, and function body

are not parsed.

To generate phantom ASGs, we need to augment the ASG schema we presented in

Chapter 6.2. While we don’t need to store definitions that appear in system header files,
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01. namespace std {
02.    template<typename _Tp, typename _Alloc = allocator<_Tp> >
03.    class vector : protected _Vector_base<_Tp, _Alloc>
04.    {
05.    public:
06.        typedef normal_iterator<pointer, vector_type> iterator;
07.        iterator begin()   { ... }
08.        size_type max_size() const   { ... }
09.        void resize(size_type new_size, const value_type& x)    {  ... }
10.    };
11.    template<typename _Tp, typename _Alloc>
12.    inline void
13.     swap (vector<_Tp, _Alloc>& x, vector<_Tp, _Alloc>& y)   {  ...  }
14. }
15. 
16.  int main() {
17.      std::vector<int>  v, w;
18. 
19.      std::vector<int>::iterator p;
20. 
21.      v.resize(w.max_size(), 0);
22. 
23.      swap(v, w);
24. }

Figure 6.3: Phantom Parse This figure illustrates the important points of interest for a
program that uses the vector class template from the Standard C++ Library.

we do need to provide nodes in the graphs as placeholders to those definitions. Figure

6.3 shows an excerpt of the vector header file, and small sample program that makes use

of it. There are five snippets of code colored in user-code segment. The table in Table

6.1 lists the additional ASG nodes required to generate phantom ASGs. The first column,

“ASG Schema Element” lists the name of the new node. The second column, “Cognition

Level” lists how much information we may infer about the node. We use three Cognition

Level types: (1) a “known-known” declaration is a declaration that appears in user-code,

we know all there is to know about it; (2) a “known-unknown” declaration is a declaration

that we known exists, because we have its name and where it was declared, but that is all

that is known about it; and (3) an “unknown-unknown” declaration is a declaration that we

did not expect, we know nothing about it. The third column, “Description” gives a quick

description about how the ASG node is used. And, the fourth column, “Example Use”,

references an example use of the node in Figure 6.3.
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The schema element in the first of the table, a known-unknown PhantomRefer-

ence, is used to hold names of non-type values found in namespace-scope of system

header files. These values are commonly function names, but occasionally a variable

at namespace-scope is declared (the most common being std::cout). In Figure 6.3, the

function swap, defined on Lines 11 through 13, and used on Line 23, is an example of a

known-unknown PhantomReference. The second schema element, a unknown-unknown

PhantomReference, is used to hold declarations that were never parsed, but their name

can be inferred from its use. Because the bodies of phantom classes are not parsed, this

element is used for accessing class members. In Figure 6.3, the use of resize on Line

21 creates an unknown-unknown PhantomReference. It was not found when the class

template vector was parsed, but we know it from its invocation. The third schema ele-

ment, a known-unknown PhantomTypename, is used to hold type declarations found at

namespace-scope inside system header files. These declarations are classes, struct, union,

and typedefs. In Figure 6.3, the use of std::vector on Line 17 to declare the variables v

and w is an example of a known-unknown PhantomTypename. The fourth schema ele-

ment, an unknown-unknown PhantomTypename, is used to hold type declarations that

were defined at class-scope, but their name is inferred from its use. These declarations are

generally nested classes, or typedefs that appear in the body of a class. In Figure 6.3, the

variable declaration on Line 19, std::vector<int>::iterator is an example of an unknown-

unknown PhantomTypename. We know the name std::vector is a PhantomTypename,

and from the use of iterator as the type in a variable declaration we know it must name

a type. The schema element in the fifth row of the table, PhantomType, is used to hold

the return type of phantom functions, and any expression that involves phantom types and

yields a value. This element is similar to PhantomTypename reference, except that it

is used when we encounter types without names. This schema element is used in the

expression-level analysis of user-code that gets mixed with declaration involving phantom
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types. For example, in Figure 6.3 on Line 21, there is a call to the max size method of the

w object. Because the type of w is a known-unknown PhantomTypename, the function

max size is a unknown-unknown PhantomReference, and therefore its return type is an

PhantomType.

Another addition to the schema, that is not listed in the table, is a new node, Sizeof-

Expr, which is required to handle the sizeof operator. In the absence of phantom types, this

is always immediately resolvable into a number. But if sizeof is evaluated on a phantom

type, then this new ASG node type is needed in order to store the expression in the graph.

ASG Schema Element Cognition Level Description Example Use
1 PhantomReference Known-unknown Reference to a

variable or func-
tion in a library
header

swap on Line
23

2 PhantomReference Unknown-unknown Reference to a
member of a
phantom class

resize on Line
21

3 PhantomTypename Known-unknown Reference to a
class\union\struct
or type alias in
namespace-scope

vector on Line
17

4 PhantomTypename Unknown-unknown Reference to a
class\union\struct
or type alias in
class-scope

iterator on
Line 19

5 PhantomType Unknown-unknown Return type of a
phantom func-
tion, or the type
of an expres-
sion involving
phantom types

Value of
max size on
Line 21

Table 6.1: New schema elements for phantom ASGs
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6.5 Two Illustrative ASG Examples

In Chapter 6.3, we introduced an algorithm for building an abstract semantic graph.

The majority of this algorithm is devoted to reconstructing a parse tree, evaluated with a

top-down SAX parser, into a structure that is evaluated in a bottom-up fashion, which is

more familiar to parsing languages defined in BNF. The actual construction of the ASG

is handled by the semantic actions executed on Line 45 of Figure 6.2. Because there are

488 right-hand sides in the grammar definition, a complete explanation of the grammar is

beyond the scope of this thesis. But we do present two code segments, and describe the

semantic actions required to construct an ASG. First, we show how to build an ASG for

binary expressions when user defined data-structures, overloaded methods, function tem-

plates, and phantom types are involved. And, secondly, we describe how an ASG is built

when evaluating an expression that takes advantage of C++’s template metaprogramming

feature to calculate a Fibonacci sequence at compile-time.

6.5.0.6 Evaluating Binary Expressions

Figure 6.4 lists the semantic action involved in a bottom-up parse of a binary ex-

pression. This algorithm accepts three arguments: a string representing of the operator,

op, the left-hand side operand, lhs, and the right operand, rhs; which produces a new ASG

node. On Lines 2 and 3, the algorithm acquires the types of the left- and right-hand side

operands, and then removes any type qualifiers, using the getType and stripQualifier al-

gorithms, respecively, and stores the results in the variables ltype and rtype. Type qualifiers

may include const, or volatile, and are not, for the most part, necessary in resolving binary

expressions. Next, on Lines 4 and 5, the algorithm checks if either of the types of the

operands are phantom types. If so, then there is no other semantic information that may

be obtained; therefore, a new binaryExpr object is created, with op as its operator, and lhs
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1 algorithm CreateBinaryExpr(op, lhs, rhs):
2 ltype← stripQualifiers(getType(lhs))
3 rtype← stripQualifiers(getType(rhs))
4 if isPhantomType(ltype) or isPhantomType(rtype):
5 return binaryExpr(op, lhs, rhs)
6 if isPrimativeType(ltype) and isPrimativeType(rtype):
7 if isContantExpr(lhs) and isContantExpr(rhs):
8 return reduceConstant(op, lhs, rhs)
9 else return binaryExpr(op, lhs, rhs)

10
11 opfunc ← “operator ” ◦ op
12 candidates← lookupFunctions(getCurrentNamespace(), opfunc)
13 if not isPrimativeType(ltype):
14 extend candidates with lookupMembers(ltype, opfunc)
15 extend candidates with lookupFunctions(getNamespace(ltype), opfunc)
16 if not isPrimativeType(rtype):
17 extend candidates with lookupFunctions(getNamespace(rtype), opfunc)
18 f ← resolveOverload(candidates, getType(lhs), getType(rhs))
19 if f is not null:
20 if isMemberOf(f, ltype):
21 ma← createMemberAccessExpr(lhs, f )
22 return createFunctionCallExpr(ma, rhs)
23 else:
24 return createFunctionCallExpr(f, lhs, rhs)
25
26 if not isPrimativeType(ltype):
27 foreach c in getTypeConversions(ltype):
28 if typesConvertable(getType(c), rtype):
29 ma← createMemberAccessExpr(lhs, c)
30 cast ← createFunctionCallExpr(ma)
31 return binaryExpr(op, cast, rhs)
32 if not isPrimativeType(rtype):
33 foreach c in getTypeConversions(rtype):
34 if typesConvertable(ltype, getType(c)):
35 ma← createMemberAccessExpr(rhs, c)
36 cast ← createFunctionCallExpr(ma)
37 return binaryExpr(op, lhs, cast)
38
39 foreach p in getBaseClasses(ltype):
40 if isPhantomType(p):
41 return binaryExpr(op, lhs, rhs)
42 foreach p in getBaseClasses(rtype):
43 if isPhantomType(p):
44 return binaryExpr(op, lhs, rhs)
45 return null

Figure 6.4: Algorithm for evaluating the semantics of a binary expression.

and rhs as its operands. On Line 6, the algorithm checks if the unqualified types of both

operands are primitive, or language-defined, types. If so, the algorithm further checks, on

Line 7, if both of the operands are constant expressions (that is, known values). If both

operands are constants, then, on Line 8, the algorithm reduces both operands to a single

value, using the operator, op. While this step does provide more exact information in the

semantic graph than a parse tree would, it is also crucial to properly evaluate templates, as

we demonstrate see in Chapter 6.5.0.7. Line 9 of the algorithm is reached, if both operands’

unqualified types are primitive, but the operands themselves are non-constant. On this line,

68



the algorithm creates a binaryExpr with op as its operator, and lhs and rhs as its operands.

Any implicit casting to make the operands’ types coherent with each other, or the operator,

are handled in the creation of the binaryExpr object. These implicit casts may include

convert an int to a double, in the case of 3.14/2; or converting the operand to a bool if op

is a logical operator, such as in the expression ptr && ptr->next.

If the algorithm reaches Line 11, then one of the operands is a user-defined type,

and the appropriate overloaded operator function must be located. On Line 11, a string is

created with the concatenation of the literal “operator ” and the string representation of the

operator op, and stored in the variable opfunc. On Line 12, a new set is created and stored

in the variable candidates. This set will hold all the references to the overloaded operator

functions with the correct name in the correct scope. The set, candidates, is then initialized

to all references to functions named opfunc that are defined in the namespace scope that

the binary expression appeared in. On Line 13, the algorithm checks if the unqualified type

of the left operand, ltype, is a user-defined type. If so, on Line 14, candidates is extended

with all references to opfunc found as member functions of ltype. And also, on Line 15, all

references to functions named opfunc found in the same namespace that ltype was defined

in is added to the candidates set. This lookup facilitates Koening, or argument-dependent,

lookup. Similarly, on Lines 16 and 17, if the unqualified type of the right-hand operand,

rtype, is a user-defined type, then all reference to functions named opfunc found in the

same namespace that rtype was defined in is added to the candidates set. On Line 18, the

resolveOverload algorithm is invoked. This algorithm takes a set of function references

and a list of the types of the actual parameters, and returns the reference to the function

that most closely matches the arguments, if any. In this instance, the algorithm passes in

candidates as the set of function references, and the complete types, not the unqualified

types, of the binary expression’s operands, lhs and rhs. The closest match, if found, is

stored in the variable f. On Line 19, the algorithm checks if resolveOverload found a
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function that is an appropriate match, by examining the variable f for nullness. On Line 20,

if f is non-null, and f is a member function of the unqualified type of lhs, then the algorithm

creates a new memberAccessExpr ASG node. A memberAccessExpr is used to store

expressions using the dot notation in the ASG. On Line 21, the memberAccessExpr node

is created, with lhs as the object, and f as its member, and then stored in the variable ma.

On the next line, Line 22, a functionCallExpr node is created, with ma set as the callee

function and rhs as its sole argument. On Line 24, if f is a valid function reference, but it

is not a member of the lhs object, then it is standalone function in either the namespace of

ltype or rtype. A new functionCallExpr node is created, with f as the callee function, and

with lhs and rhs as its two arguments.

Lines 26 through 37 of the algorithm checks to see if either of the operands have

defined conversion functions. A conversion function is a function, defined in a class, that

allows that class to be implicitly used as another type. Consider the following code seg-

ment:

1 class S {
2 operator int() { . . . }
3 }
4 void f(int);

5 S s;

6 f(s);

The method definition on Line 2, allows the variable s of type S to be passed as a

parameter to the function f which only accepts a single parameters of type int.

On Line 26 of Figure 6.4, the algorithm checks if the unqualified type of the left-

hand operand is a user-defined type. If so, on Line 27, the algorithm starts iterating all the

of conversion functions defined in ltype. On Line 28, the algorithm checks if the conversion

function, c and the unqualified type of the right-hand operand, rtype, are convertable. If so,

then on Line 29, a new memberAccessExpr node is created with lhs as the object and the

conversion function, c, as the member being accessed. This node is stored in the variable
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ma. On Line 30, a new functionCallExpr node is created, with ma as the callee function,

and because conversion functions are parameterless, no additional arguments are passed in.

The new functionCallExpr node is stored in the variable cast. Finally, a new binaryExpr

node is created, with op as the operator, and cast and rhs as the left- and right-hand side

operands. Similarly, on Lines 32 through 37, an appropriate conversion function for the

right-hand operand is sought for. If a conversion function is found, then a new binaryExpr

node is created with lhs as the left-hand operand, and a functionCallExpr node as the

right-hand operand.

If no exit point has been reached, then the algorithm reaches line 38; so far we know

that: (1) neither left- nor right-hand side operand is a phantom type, (2) both operands are

not constants, (3) at least one operand is a user- defined type, (4) there exists no over-

loaded operator in the current namespace scope, the scope of the left-hand operand’s class,

the scope of the left-hand operand’s namespace, or the scope of the right-hand operand’s

namespace, and (5) neither operand has a conversion function defined that make the two

types compatible. Since all avenues have been explored, as one final check, on Line 39,

the algorithm iterates all classes that the left-hand operand’s type inherit from. If any of

these parent classes, referenced by the variable p, are a phantom type, then the algorithm

assumes that an appropriate overloaded operator or conversion function was never found

because it was defined in a system header file that was never fully parsed. If this is the case,

then, on Line 41, a new binaryExpr node is created with op as its operator, and lhs and

rhs as its operands. Analogous to the action taken on Lines 4 and 5, no further semantic

information can be obtained in presence of phantom types. If no phantom types were found

in the left-hand operand’s type hierarchy, then the same search is mirrored in the right-hand

operand, on Lines 42 through 44.

We now present a source code example that exercises the CreateBinaryExpr al-

gorithm previously described. We will trace the example twice: first using the phantom
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parser, which only uses minimal information from system header files, and secondly, using

the full parser, which treats compiler vendor code and user code equally. After each trace

is evaluated, we will present an ASG representation of the expression. A simple “Hello

World” example is presented here:

1 #include <iostream>

2 int main() {
3 std::cout� “Hello, World!” � std::endl;

4 }

The expression on Line 3 is composed of two binary expressions, with a total of

three operands. The first operand, std::cout is defined in the ostream header file and is

of type std::basic ostream<char, std::char traits<char>>. A partial definition of the

std::basic ostream class template is provided in Figure 6.1. The second operand, the

string literal “Hello, World!”, is of type const char ∗. The third, and final, operand is

std::endl, which is a function template defined in the ostream header file. This function

template is defined on Lines 36 through 39 in Figure 6.1.

First, we evaluate Line 3 from the above program using our phantom parser. The

first invocation of the CreateBinaryExpr algorithm has its parameters set to: op is�, lhs

is std::cout, and rhs is “Hello, World!”. Since we are using our phantom parser, std::cout

is simply a PhantomReference; we know the variable was defined in a system header, but

we don’t have any type information. Since both lhs and rhs are already at their most basic

type, the calls to stripQualifiers have no effect. On Line 4, the algorithm checks if either

arguments’ type was a phantom type. In this case, the left-hand side is. An ASG node for

the operator is created, one of type LShiftExpr, with its left- and right-hand side operands

set to lhs and rhs. The ASG type of this node cannot be determined due to the presence of

phantom types, so the type is a PhantomType.

The second invocation of the CreateBinaryExpr occurs with: op is set to�, lhs

is the newly created LShiftExpr object, and rhs is std::endl. Just as with std::cout, only
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the name std::endl was parsed from the ostream header file, so its type is PhantomRef-

erence. This time, both operands are phantom types, so on Line 5, a new LShiftExpr

node is created. The new node has its left and right operands set to the previously created

LShiftExpr and std::endl. The type of the expression is indeterminate, so it is set to Phan-

tomType. The ASG for the “Hello World” program, using the phantom parser, is shown in

Figure 6.5.

We will now retrace the algorithm in Figure 6.4, using the above “Hello World”

program, this time using the full parser. On the first invocation of CreateBinaryExpr, lhs

is std::cout and rhs is the string literal “Hello, World!”. As neither operands’ type is a

phantom type, and lhs is not a primitive type, we can skip to Line 11 to collect all possible

function overloads for operator�. On Line 14, we collect seventeen operator� functions

from the std::basic ostream class; on Line 15, we collect five more from the namespace

std. Lines 16 and 17 are skipped, because rhs is a primitive type and, therefore, has no

namespace. On Line 18, from the twenty-two candidate functions, the closest match is

found to be this function in the std namespace:

33 template<typename CharT, typename Traits>

34
basic ostream< CharT, Traits> &operator�(basic ostream< CharT, Traits>

& out,

35 const CharT ∗ s);

A reference to this function is stored in the variable f. f is not a member of the

std::basic ostream class, so on Line 24, a new FunctionCallExpr ASG node is created,

with f as the callee function, and lhs and rhs as its operands. The type of the node is the re-

turn type of f, so this node has type std::basic ostream<char, std::char traits<char>>&.

In the second invocation of CreateBinaryExpr this newly created FunctionCallExpr node

is the lhs, and a name reference to the function template std::endl is its rhs. On Line 2 of

the algorithm, the reference-type qualifier (the &) is stripped from the type of lhs, and stored

in the variable ltype. Neither lhs or rhs is a phantom type or primitive type, so we can go
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to Line 11 to collect the function overload candidates for operator�. On lines 13 through

15, the seventeen operator� functions from the std::basic ostream class or added to the

candidates set. On Line 15, we add the five instances of the operator� function defined

the namespace std. On Lines 16 and 17, we collect instances of operator� function that

are defined in rhs’s namespace; as this is again the std namespace, we already have them.

On Line 18, the closest match for operator� is found to be the following method in the

std::basic ostream class:

19 inline ostream type&

20 operator�( ostream type& (∗ pf)( ostream type&));

A reference to this method is stored in the variable f. Since f is a member of of the

std::basic ostream class, on Line 29, we create a MemberAccessExpr ASG node. This

node is used to represent a member access using C++’s dot notation. In this case, the Func-

tionCallExpr created from the first invocation of CreateBinaryExpr is the object, and f,

the correct operator� function, is the member being accessed. We then create a new

FunctionCallExpr ASG node, with the MemeberAccessExpr ASG node as the callee

function, and std::endl as its only argument. Although not shown in the algorithm, the

creation the of FunctionCallExpr causes the reference to the function template std::endl

to have its template arguments fully resolved. Instead of inserting the name reference to

std::endl in the ASG, the function std::endl<char, std::char traits<char>>(std::basic ostream<char,

std::char traits<char>>&) is instantiated, and it the function pointer to that instantiation

that is used as the argument to the FunctionCallExpr. The ASG for the “Hello World”

program, using the full parser, is shown in Figure 6.6.

6.5.0.7 Template Metaprogramming

In this section we provide a second look the semantic actions required to build an

ASG in Hylian. We present a algorithm for evaluating template declarations. Unlike the
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Figure 6.5: Hello World ASG using phantom parser
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operator <<: Functionthis: Variable

basic-ostream<char,ns(std)::char-traits<[char]>>: Class

endl: Function

--p: Parameter

MemberAccess

std: Namespace

--pf: Parameter

Hello World!: Literal

ReferenceType
MemberAccess

StatementList
FunctionCallExpr

FunctionCallExpr

VariableDeclaration

cout: Variable

this: Variable

operator <<: Function
1

1

1

1

1

Figure 6.6: Hello World ASG using full parser

previous example, we do not provide a more detail view of this algorithm in pseudocode be-

cause handling template declarations affects most of the C++ grammar. Instead we present

the algorithm in a higher level view here:

1. Store parse trees for templates declarations in template dictionary

2. If a semantic action requires a member of a template-id then

3. If a matching template specialization exists in symbol table then

4. Return symbol table entry for fully-formed class

5. Else

6. Build a new parser instance

7. Look for general definition of template declaration in parsetreeBuffer
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8. Push provided template arguments onto new parser’s scope stack

9. Evaluate any default template arguments for template declaration, push re-

sults onto new parser’s scope stack

10. Set the new parser’s input to the parse found in parsetreeBuffer on Step 7 or

8

11. Execute the parse, when complete the new class template instantiated will

appear as a template specialization in the symbol table

12. Return symbol table entry for newly instantiated class template

As we step through he above algorithm, we refer to a template-id several times. A

template-id is a grammar entity that has both a template definition’s name, and a list of its

template arguments. It is defined in the C++ grammar in the following way:

template id→ template name < template argument list >

Step 1 of the above algorithm was covered previously in Chapter 6.3; as the source

code is being parsed in a bottom-up manner, only enough information needed to identify

a template declaration is parsed, and the entire parse tree for the template declaration is

stored in the parsetreeBuffer. Step 2 occurs in many of the semantic actions. In C++, when

a template-id is encountered we may not instantiate it until it is invoked (in the case of

function templates), one of its member’s is accessed (in the case of class templates), or its

size is needed (by way of the sizeof operator, or a variable of that type is defined). Consider

the two following typedef declarations:

1 typedef std::vector<int> ContainerType;

2 typedef std::vector<int>::const iterator IteratorType;

The definition of ContainerType only requires the template-id; nothing specific

about the vector is needed, so the vector class template is not instantiated. However, the
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second declaration requests the vector’s const iterator member, so the vector does have to

be instantiated in order properly evaluate this typedef declaration.

For Step 3, the parser’s symbol table is queried for an existing template specializa-

tion for the provided template-id. A template specialization is a class template that has been

fully defined in the code, or a template declaration that already been instantiated because of

a previous use. On Step 4, the template specialization found in the symbol table is returned

to semantic action handler that requested it. If an exact match for the given template-id

was not found in the symbol, then in Step 6, a new instance of the parser is created. This

parser will have its own input stream and scope stack, but shares the same symbol table and

parse tree buffer as the current parser handling semantic actions. In Step 7, the parse tree

for the template declaration is retrieved from the parsetreeBuffer. In Step 8, all template

arguments provided by the template-id are pushed onto the scope stack in the new parser

instance. In Step 9, any default template arguments, that were not provided in the template-

id, are evaluated and pushed onto the scope stack in the new parser instance. For Step 10,

the parse tree found in the parsetreeBuffer is fed into the new parser’s input stream. In

Step 11, the parser is executed, when the parse is complete the new class is instantiated

and, therefore, will appear as a template specialization is the parsers’ shared symbol table.

Finally, on Step 12, a template specialization for the template-id is guaranteed to be in the

symbol table; its is retrieved and returned to to semantic action handler that requested it.

To exercise the template instantiation algorithm, given above, we are going to em-

ploy C++’s template metaprogramming technique to calculate the Fibonacci sequence. The

familiar Fibonacci sequence is an integer sequence defined by the following recursive rela-

tionship:
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F0 = 0 (6.1)

F1 = 1 (6.2)

Fn = Fn−1 + Fn−2 (6.3)

This sequence is defined in C++ as metaprogram with following source code.

1 template<int N>

2 struct Fib {
3 enum { value = Fib<N-1>::value + Fib<N-2>::value };
4 };
5

6 template<>

7 struct Fib<1> {
8 enum { value = 1 };
9 };

10

11 template<>

12 struct Fib<0> {
13 enum { value = 0 };
14 };
15

16 int main() {
17 int f = Fib<4>::value;

18 }

On Lines 1 through 4, the template class Fib is defined. Fib has a single constant-

template parameter, N , and defines an enumeration, value, set to the sum of Fib<N-1>

and Fib<N-2>’s value enumeration. On Lines 6 through 9, a specialization for the class

template Fib is defined for the case N = 1. Instead of calculating a value for value, it is

assigned 1. Similarly, on Lines 11 through 14, a specialization for the class template Fib is

defined for the case N = 0; in this specialization, value is set to 0.

In the main function, on line 16 through 18, the local variable f is initialized with

the value enumeration of the class Fib<4>; this class is the class template Fib, instantiated

with its template parameter N set to 4. Following the algorithm we presented at the be-
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ginning of this section, the parse tree for Fib is saved in the parsetreeBuffer, and template

specializations for Fib<1> and Fib<0> exist in the symbol table. To evaluate the expres-

sion Fib<4>::value, the symbol table is queried for the template specialization for class

Fib<4>. Since it does not exists, Fib must first be instantiated with the template argument

N = 4. A new parser instance is created, and the parse tree for Fib is parsed with N = 4.

While parsing Fib<4>, to evaluate value requires the expression Fib<N-1>::value, or

Fib<3>::value, to be resolved. This expression means we have to restart the algorithm

with the template-id of Fib<3>. Fib<3> is not in symbol table, so another parser in-

stance is created, and the parse tree for Fib is again parsed, this time with the template

argument N = 3. As with Fib<4>, evaluating the value enumeration of Fib<3> requires

the expression Fib<N-1>::value, or Fib<2>::value, to be resolved. Fib<2> is not in the

symbol table either, so we create a fourth instance of the parser, set its input stream to the

parse tree for Fib, and parse with the template argument N = 2.

Parsing the template class Fib with its template argument N set to 2, requires the

evaluation of the expression Fib<1>::value. Fib<1> is a class in the symbol table, so

no further instantiation is required for this expression. The value of Fib<1>::value is

defined, in the above source code on Line 8, as 1. Further parsing the value enumer-

ation for the instantiation of Fib<2>, we encounter the expression Fib<N-2>::value,

which is equivalent to Fib<0>::value. The template-id Fib<0> is in the symbol table as

well, and its value enumeration is set to 0, so we can completely resolve the expression

Fib<N-1>::value + Fib<N-2>::value in Fib<2>, which is 1+0, or 1. This class is now

instantiated, so the class Fib<2> is inserted into the symbol table.

With the parse of Fib<2> complete, we jump back to the parse of Fib<3>. Its ini-

tialization of the value enumeration requires the value enumeration of the class Fib<2>.

It is in the symbol table, so we can use the value Fib<2>::value, which is 1. Further

evaluation of Fib<3>::value needs Fib<N-2>::value, or Fib<1>::value. The class
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Fib<1> is in the symbol table, so we lookup its value of the value enumeration and get a

1. Fib<3>::value can now be resolved to 1+1, or 2; the class Fib<3> is instantiated and

inserted into the symbol table.

Similarly, now that Fib<3> is instantiated, we go back to the evaluation of Fib<4>

::value. The first piece of the expression is Fib<3>::value, we have from the previous

instantiation of Fib<3>, which is 2. The second piece of the expression, Fib<2>::value,

requires the instantiation of Fib<2>, which we have stored in the symbol table from the

instantiation of Fib<3>. Fib<2>::value is equal to 1, so can resolve Fib<4>::value,

which has a value of 2 + 1, or 3.

The ASG for this program is shown in Figure 6.7. This ASG shows the main

function, with a single VariableDeclaration node. The node is for the declaration of the

variable f, which is shown being initialized to the value of 3. Through template metapro-

gramming, only semantics of the program matter; the template class Fib and its five instan-

tiations are not referenced from the main function at all.

Figure 6.7: ASG for the Fibonacci template metaprogram
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6.6 The Technique For Generating C++ Code From an ASG

In Chapter 4, we introduced all the modules that comprise the Hylian system. The

rectangles numbered VI and VII in the overview summary diagram in Figure 4.1 both rely

on the ability to convert an ASG into C++ code. In the “ASG Verification & Validation”

stage, our approach to ASG validation entails generation of C++ source code from an un-

modified, linked, ASG to ensure that the resulting code exhibits the same behaviour as the

original program. And second, in the “ASG Transformation” stage, to perform dynamic

analysis of the source code, we must perform transformations on the generated ASG, and

then generate source code from the transformed ASG. In this section, we present an algo-

rithm for generating C++ code from an ASG and walk through an example to demostrate

how the algorithm works.

1 algorithm GenerateCodeFromASG(asg):
2 todo← empty stack
3 depGraph← empty graph
4 global ← lookupChildNodeByType(asg, “asg.gxl#GlobalNamespace”)
5 main← lookupChildNodeByName(global, “main”)
6 push main onto todo
7 while todo not empty:
8 node← top of todo
9 pop todo

10 deps← generateCodeFromASGNode(node)
11 foreach dep in deps:
12 if dep not in depGraph:
13 push dep onto todo
14 if dep in depGraph and nodeHasType(dep, “asg.gxl#Class”):
15 decl ← generateCodeForClassDecl(dep)
16 addDirectedEdge(depGraph, node, decl)
17 else:
18 addDirectedEdge(depGraph, node, dep)

Figure 6.8: Algorithm for generating C++ source code from an ASG

The algorithm listed in Figure 6.8 traverses an ASG, creating C++ source code for

high-level structures and building a dependency graph to ensure the code is written in the

proper order. On Line 2, an empty stack is initialized, named todo, which will be used to

maintain a collection of high-level structures whose source code has not yet been gener-

ated. On Line 3, an empty graph is initialized, named depGraph, which will be used to
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enfore the dependency relationships among the high-level structures. On Lines 4 and 5,

the algorithm searches for the entry point into the application. First, the ASG node of type

“GlobalNamespace”, representing the global namespace, is found. The schema requires

that there is one, and only one, node of this type. Then, the algorithm searches the global

namespace for the ASG node with an attribute named “name” set to the value of “main”.

On Line 6, the handle to the main function is pushed onto the todo stack, since it will be the

first high-level structure for which code is generated. On Line 7 the main loop of this algo-

rithm starts, the remainder of the algorithm will be repeated for every high-level structure

found until the todo stack is exhausted.

On Lines 8 and 9, a reference to the high-level structure at the top of the todo

stack is stored in the variable node, and then popped from the stack. On Line 10, the

source code for the high-level structure referenced by node is generated. These high-level

structures are defined in namespace-scope and include language constructs such as class

definitions, function definitions, or variable declarations. As source code for this structure

is generated, a list of external dependencies is maintained and returned to the callsite. An

external dependency may be another function that is called, or a variable that is used, but

not defined, inside a function. Further specifics for generating the source code will be

uncovered later in this section. Next, on Lines 11 through 18, the algorithm examines the

list of dependencies returned by the code generator. On Lines 12 and 13, the dependency

is checked to see if it has not yet appeared in depGraph. If not, then it is added to the

todo stack, so that it’s code will be generated on a later iteration of the main loop. On Line

14, the dependency, dep, is checked to see if it is already in depGraph, and may also be a

recursive entity (such as a class or function). If so, on Lines 15 and 16, a declaration for

the high-level structure is generated, since its definition has been created previously, and

added as a dependency for the source code generated on Line 10 to depGraph. Finally on

Line 18, if a declaration was not inserted into the dependency graph, then the definition is
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added.

1 algorithm GenerateCodeForType(in node, out code, inout deps):
2 if nodeHasType(node, “asg.gxl#BuiltinType”):
3 code← getNodeAttribute(node, “name”)
4 else if nodeHasType(node, “asg.gxl#ReferenceType”):
5 basetype← getNodeFromEdgeType(node, “asg.gxl#BaseType”)
6 code← GenerateCodeForType(basetype, deps) ◦ “ &”
7 else if nodeHasType(node, “asg.gxl#PointerType”):
8 basetype← getNodeFromEdgeType(node, “asg.gxl#BaseType”)
9 code← GenerateCodeForType(basetype, deps) ◦ “ ∗”

10 else if nodeHasType(node, “asg.gxl#ConstType”):
11 basetype← getNodeFromEdgeType(node, “asg.gxl#BaseType”)
12 code← “const ” ◦ GenerateCodeForType(basetype, deps)
13 else if nodeHasType(node, “asg.gxl#ArrayType”):
14 basetype← getNodeFromEdgeType(node, “asg.gxl#BaseType”)
15 code← GenerateCodeForType(basetype, deps)
16 else if nodeHasType(node, “asg.gxl#Class”):
17 code← getNodeAttribute(node, “name”)
18 append node to deps

Figure 6.9: Algorithm for generating C++ source code from an ASG Node representing a
C++ type

The algorithm listed in Figure 6.9, GenerateCodeFromType, accepts an ASG

node referencing a type expression and returns both a string representation of its C++ code,

in the parameter code, and a list of dependencies defined outside the type expression, in the

parameter deps. This algorithm is used in generating code for constructs such as variable

declarations, parameter declarations, and cast expressions. On Line 2, the type of the ASG

node is checked to see if it is a “BuiltinType”. An ASG node of type “BuiltinType” has two

attributes, name and size. These are types that are defined by the language grammar, such

as int or float, so the code representing this type expression is simply the name attribute.

On Lines 4 through 6, code for representing nodes of type “ReferenceType” is generated.

First, the outgoing edge from node, of type “BaseType”, is found. The ASG node at the

head of that edge, which represents the base type of this type expression, is stored in the

variable basetype. On Line 6, the code of this type expression is set to the code of basetype

concatenated with symbol &. Lines 7 through 9 generate code for type epxression nodes

of type “PointerType”, and is very similar for the “ReferenceType” node. The base type of

the type expression is found, by following the “BaseType” edge, and stored in the basetype
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variable. The code for basetype is generated, appended with the symbol ∗, and stored in the

variable code. Similarly, on Lines 10 through 12, when generating the code for type expres-

sions of type “ConstType”, the algorithm follows the outgoing edge of type “BaseType“,

and stores the resulting node in the basetype variable. The code for this type expression

is the keyword const concatinated with the C++ code that represents the node referenced

by basetype. On Lines 13 through 15, code generation for nodes of type “ArrayType” is

partially handled. Because generating the code completely for an array declaration requires

tokens after the declarator identifier (such as a variable name, or a typedef alias), only the

code for the base type of the array is generated here. The code for the array bounds will

have to be handled specially later on. Finally, on Lines 16 thrugh 18, the algorithm gen-

erates code for handling type expressions of type class. Because this algorithm is used for

type expressions, only the class’s name attribute is needed to represent it in code. But to be

sure that the definition for the class, if it exists, appears earlier in the code, the algorithm

adds a reference to the class in the dependency list, deps.

1 algorithm GenerateCodeForVariableDecl(in node, out code, inout deps):
2 type← getNodeFromEdgeType(type, “asg.gxl#Type”)
3 code← GetCodeForType(type, deps)
4 if getNodeAttribute(node, “name”) is not null:
5 code � getNodeAttribute(node, “name”)
6 if nodeHasType(type, “asg.gxl#ArrayType”):
7 size← getNodeFromEdgeType(type, “ArraySize”)
8 if size is not null:
9 code � “[” ◦ GetCodeForExpression(size, deps) ◦ “]”

10 else: code � “[ ]”
11 append type to deps

Figure 6.10: Algorithm for generating C++ source code from an ASG Node representing a
variable declaration

The algorithm shown in Figure 6.10 generates code for ASG nodes of type “Vari-

able” or “Parameter”, which reference variable and parameter declarations. As with the

previous algorithm, GenerateCodeForVariableDecl returns both a string representation

of its C++ code, in the parameter code, and a list of dependencies defined outside the decla-

ration, in the parameter deps. On Line 2, the node reference the declaration’s type is found
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by following the outgoing edge of type “Type”, and stored in the variable type. On Line 3,

the code type is generated, by using the previously described algorithm, GenerateCode-

ForType, and stored in the variable code. On Line 4, the algorithm checks to see if the

ASG node for the declaration has a name attribute. Parameters in C++ are allowed to be

abstract, or nameless, so a name may not exist; if there is a name for the node, then on

Line 5, the name is appended to the variable code 1. On Line 6, the algorithm checks to

see if type has an ASG type of “ArrayType”, meaning the declaration is for an array. If so,

on Line 7, the ASG node representing the array’s size declaration is look for, by following

the outgoing edge of type “ArraySize”, and is stored in the variable size. On Line 8, the

algorithm checks if the size variable is non-null. If so, then on Line 9, the code representing

the size expression is generated, surrounded by square-brackets, and appended to the end

of the code variable. If no “ArraySize” edge was found coming from the declaration node,

then the code representing an abtract array, that is empty square-brackets, is appended to

the code variable. Finally, on Line 11, the type of the declaration is appended to the de-

pendency list to ensure that the type is defined in the source code before this declaration

occurs.

The algorithm shown in Figure 6.11 generates code for ASG nodes of type “Func-

tion”, which references function definitions. On Line 2, the code variable is initialized to

the empty string. On Line 3, the algorithm checks if the linkage attribute of the ASG node

is non-null. If not, then on Line 4, the keyword extern along with the linkage attribute

value is appended to the code variable. On Line 5, the algorithm checks if the is static

attribute is set to true. If so, then on Line 6, the algorithm appends the keyword static to

the variable code. On Line 7, the algorithm checks if the is inline attribute is set to true.

If so, then on Line 8, the algorithm appends the keyword inline to the variable code. On

1Although we show code for writing tokens, adding code to show where whitespace is needed would be
superfluous.
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1 algorithm GenerateCodeForFunction(in node, out code, inout deps):
2 code← empty string
3 if getNodeAttribute(node, “linkage”) is not null:
4 code � “extern ” ◦ getNodeAttribute(node, “linkage”)
5 if getNodeAttribute(node, “is static”) is true:
6 code � “ static ”
7 if getNodeAttribute(node, “is inline”) is true:
8 code � “ inline ”
9 retType← getNodeFromEdgeType(node, “asg.gxl#ReturnType”)

10 code � GetCodeForType(retType, deps)
11 code � getQualifiedName(node) ◦ “ (”
12 parameters← getOutgoingEdgesOfType(node, “asg.gxl#ParameterDeclaration”)
13 foreach p in parameters:
14 if getEdgeFromOrder(p) > 0:
15 code � “,”
16 param← getEdgeHead(p)
17 code � GetCodeForVariableDecl(param, deps)
18 if getNodeAttribute(node, “variable parameters”) is true:
19 code � “, ...”
20 code � “)”
21 if getNodeAttribute(node, “is const”) is true:
22 code � “ const ”
23 code � “{”
24 body ← getNodeFromEdgeType(node, “asg.gxl#FunctionBody”)
25 stmts← getOutgoingEdgesOfType(body, “asg.gxl#Statement”)
26 foreach s in stmts:
27 stmt ← getEdgeHead(s)
28 code � GetCodeForStatement(stmt, deps) ◦ “;”
29 code � “}”
30 append retType to deps

Figure 6.11: Algorithm for generating C++ source code from an ASG Node representing a
function

Line 9, the algorithm looks up the node at the head of the outgoing edge of type “Return-

Type”, and stores it in the variable retType. Using the GetCodeForType algorithm, the

code for the variable retType is generated and appeneded to the code variable, on Line 10.

On Line 11, the algorithm evaluates the qualified name of the function, the function’s name

prepended with its complete namespace specifier, and appends it to the code variable. An

open-parenthesis is also added to code to signify the start of the parameter declaration list.

On Line 12, the algorithm collects all outgoing edges from the function ASG node, of type

“ParameterDeclaration”, storing the result in the variable parameters. Lines 13 through 17

iterate the edges making up the parameter declaration list, parameters, using the loop con-

trol variable p. On Lines 14 and 15, if the “from-order” of the edge is greater than zero, that

is, not the first edge, then a comma is appended to the end of code. On Line 16, the ASG

node at the head of the p edge, is stored in the variable param. This ASG node is of type
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“Parameter” and references a parameter declaration. The code for param is generated and

appended to code, on Line 17. On Lines 18 and 19, after examining the parameter declara-

tion list, the algorithm checks the function declaration node for the “variable parameters”

attribute. If set to true, a comma and an ellipsis is appended to the code variable. Finally,

on Line 20, the closing parenthesis is added, concluding the parameter declaration. On

Line 21, the algorithm checks if the is const attribute is set to true, indicating that this

is a const-method and cannot modify its class’s member variables. If so, then on Line 22,

the algorithm appends the keyword const to the variable code. On Line 23, an open curly

brace is added to code, starting the function’s body. On Line 24, the outgoing edge of type

“FunctionBody” is followed, and the “StatementList” node at its head is stored in the body

variable. Next, all edges of type “Statement” coming from the body node are collected into

the stmts variable. On Lines 26 through 28, the statement list, stmts is iterated with the loop

control variable s. On Line 27, the variable stmt is set to the statement node at the head

of the edge s. Next, the code for the statement is generated using the GetCodeForState-

ment algorithm; the statement code and a statement-terminating semicolon are appened to

the code variable. Finally, on Lines 29 and 30, the closing curly brace is added to the code

variable, and the function’s return type node, retType, is inserted into the dependency list.

We have presented four algorithms thus far that make up the Code Generator

module shown in Figure 4.1. There are many more; we have not included the algorithms

for generating C++ source code for classes and expressions, for example, even though they

are referenced in the described algorithms. To explain the process for converting every

ASG node type defined by the schema into C++ is beyond the scope of this thesis, and

wouldn’t be very interesting.

We will now walk through a simple “Hello World” code example that exercies this

module. Assume an ASG for the following source code has been built:
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1 #include <cstdio>

2 int main() {

3 fprintf(stdout, “Hello World!\n”);

4 }

Refering back to algorithm listed in Figure 6.8, we start by locating the reference to

main function in the ASG and add it to the todo stack. On the first iteration of the loop todo

has one item, main, so we regenerate the source code for the main function and collect its

external dependecies.

1 int main() {

2 fprintf ( stdout , “Hello World!\n”);

3 }

The two hilighted items, fprintf and stdout, are defined externally with respect to

main. Both references are pushed onto the todo, and both references are inserted into the

depGraph dependency graph, as dependcies of the main function. On the next iteration of

the loop, stdout is popped off the todo stack. Its source code is generated and its depen-

dencies are collected.

1 extern “C” IO FILE ∗stdout;

This time there is only one dependcy. IO FILE is pushed onto the todo stack and it

is inserted into depGraph graph as a dependency of stdout. On the next iteration, IO FILE

is popped from the todo stack and source code is generated.

89



1 struct IO FILE

2 {

3 int flags;

4 char ∗ IO read ptr;

4 char ∗ IO read end;

5 char ∗ IO read base;

6 char ∗ IO write base;

7 char ∗ IO write ptr;

8 char ∗ IO write end;

9 char ∗ IO buf base;

10 char ∗ IO buf end;

11 char ∗ IO save base;

12 char ∗ IO backup base;

13 char ∗ IO save end;

14 IO marker ∗ markers;

15 IO FILE ∗ chain;

16 int fileno;

17 int flags2;

18 long int old offset;

19 unsigned short int cur column;

20 signed char vtable offset;

21 char shortbuf[1];

22 void ∗ lock;

23 long int offset;

24 void ∗ pad1;

25 void ∗ pad2;

26 void ∗ pad3;

27 void ∗ pad4;

28 unsigned long int pad5;

29 int mode;

30 char unused2[40];

31 };

This class has two dependencies: IO marker and itself. Because we now have the

source code for IO FILE, we only need to push IO marker to the todo stack. IO marker

is also added to the depGraph graph as a dependency of IO FILE. For the IO FILE de-

pendency, a declaration is created instead, and that declaration is added to depGraph as a

dependency of IO FILE. On the loop’s next iteration, IO marker is popped off the stack

and its source code is generated.
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1 struct IO marker

2 {

3 IO marker ∗ next;

4 IO FILE ∗ sbuf;

5 int pos;

6 };

This class has the same two dependencies as the previous class: IO marker and

IO FILE. The source code for both of these classes have already been generated, so they

are not pushed onto the todo stack. For the same reason, only declarations for these two

classes are added to the depGraph graph as dependencies of IO marker. On the next

iteration of the loop, fprintf is finally popped off the todo stack. The source code for this

function is now generated, but because the body resides in a library, only the function’s

declaration is created.

1 extern “C” int fprintf( IO FILE ∗ stream, const char ∗ format, . . . );

The single dependency for fprint is the IO FILE class, whose source code has

already been generated. It is not pushed on the todo stack, but a dependecy on IO FILE

for fprintf is created in the depGraph graph. The todo stack is now empty, so the loop

terminates. The final state of the dependency graph is shown in Figure 6.12. When the

graph is traversed in a depth-first order, the complete source code can be arranged in the

proper order. The complete regenerated source code for this “Hello World” example is

shown in Figure 6.13.

6.7 Verification & Validation of the ASG

6.7.1 Verifying Observable Behavior

One method for verifying the correctness of the ASGs produced is to employ a

blackbox test. In this test, the original C++ input program is compiled and executed. An

91



#7. main

#6. stdout#5. fprintf

#4. _IO_FILE

#3. _IO_MARKER

#2. _IO_FILE#1. _IO_MARKER

Figure 6.12: Dependency Graph

ASG is built from that same source code. C++ source code is then generated from the

unmodified ASG, and the new source code is compiled and executed with the same input

as the original program. Although the two programs will not be token-for-token identical,

the output from both executable should the same; discounting, of course, nondeterministic

values such as timers, random numbers, and memory addresses. If the two outputs differ

then we track down issues in ASG Generator module. With a testsuite that provides good

coverage on the source code, we gain confidence that the ASG builder is correct. In this

section we provide one instance where the blackbox test failed, leading us to discover a

significant error in the way our lookup rules were implemented.

Consider the same “Hello World” program we used in Chapter 6.5.0.6 to demon-

strate the CreateBinaryExpr algorithm:
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struct _IO_marker;

struct _IO_FILE;

struct _IO_marker
{
   _IO_marker* _next;
   _IO_FILE* _sbuf;
   int _pos;
};

struct _IO_FILE
{
   int _flags;
   char* _IO_read_ptr;
   char* _IO_read_end;
   char* _IO_read_base;
   char* _IO_write_base;
   char* _IO_write_ptr;
   char* _IO_write_end;
   char* _IO_buf_base;
   char* _IO_buf_end;
   char* _IO_save_base;
   char* _IO_backup_base;
   char* _IO_save_end;
   _IO_marker* _markers;
   _IO_FILE* _chain;
   int _fileno;
   int _flags2;
   long int _old_offset;
   unsigned short int _cur_column;
   signed char _vtable_offset;
   char _shortbuf[1];
   void* _lock;
   long int _offset;
   void* __pad1;
   void* __pad2;
   void* __pad3;
   void* __pad4;
   unsigned long int __pad5;
   int _mode;
   char _unused2[40];
};

extern "C" int fprintf(_IO_FILE* __stream, const char* __format, ...);

extern "C" _IO_FILE* stdout;

int main()
{
   fprintf(stdout,"Hello World!\n");
}

#1
#2

#3

#4

#5
#6

#7

Figure 6.13: Regenerated Code
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1 #include <iostream>

2 int main() {

3 std::cout� “Hello, World!” � std::endl;

4 }

When we first tested this program, the Code Generator module gave back the

following C++ source code for the main function (the rest of the code that came from the

system header files is not included):

1 int main() {

2 std::cout.operator�(“Hello, World!”).operator�(std::endl);

3 }

When we ran the program compiled from original source code, the string Hello,

World! was printed to the terminal, as expected. However, when we ran the program that

was compiled from the above source code, a memory address was printed. Upon tracing

the which function was matching the operands’ types in the binary expression, we were

matching the method that appears on Line 29 in ostream excerpt listed in Figure 6.1:

29 ostream type& operator�(const void∗ p);

The above function that was being selected accepts any possible pointer, and sends

its memory address to the output stream. From there we know what happened, but not why.

Reviewing our lookup rules revealed that we were prematurely resolving the overloaded

function without a complete set of candidates. The proper method requires the collection

of all possible candidate functions from the left-hand side operand’s class scope and names-

pace scope, and the right-hand side operand’s namespace scope, then the correct function is

selected in the resovleOverload algorithm. Instead we looked for the correct function in

only the left-hand operand’s class scope. If it was not found, then the operand’s namespace

scope was examined. And if it was not found there either, only then was it looked for the

right-hand side operand’s namespace code. The incorrect algorithm is shown in the listing

below:
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13 f ← null

14 if not isPrimativeType(ltype):

15 f ← resolveOverload(lookupMembers(ltype, opfunc))

16 if f is not null:

17 f ← resolveOverload(lookupFunctions(getNamespace(ltype), opfunc))

18 if not isPrimativeType(rtype) and f is null:

19 f ← resolveOverload(lookupFunctions(getNamespace(rtype), opfunc))

Fixing the lookup rules yields the correct implementation of BuildBinaryExpr

that’s listed in Figure 6.4. When we rerun the Code Generation module, we get the

following C++ source code, which does produce the correct output to the terminal.

1 int main() {

2 std::operator�(std::cout, “Hello, World!”).operator�(std::endl);

3 }

6.7.2 Interactive GXL Viewer

In the previous section, we described a technique for testing the observable behavior

of an ASG by taking advantage of Hylian Code Generation module. However, performing

blackbox testing may not always be sufficient. For example, every expression node in the

ASG has to have a C++ type associated with it. When we generated source code for an

ASG, we have no way to enforce the type of every intermediate value. We have to inspect

the ASG manually to ensure each expression node is linked to the correct C++ type. Also,

the implicit construction and destruction of intermediate objects cannot be expressed in

source code. Consider the following code sample:

1 struct Lock {

2 Lock() { acquireLock(); }

3 ∼Lock() { releaseLock(); }

4 };

5

6 int main() {

7 Lock(), doThreadUnsafeAction();

8 }
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In the above code, the class Lock acquires a lock in its constructor and releases

the lock in its destructor. On Line 7, a temporary, nameless Lock object is created before

the doThreadUnsafeAction function is called. Only when the function is complete is the

temporary Lock object deleted. If we were to build an ASG for this program, and regenerate

its code, the two programs would work the same. However, we would not know if the

implicit calls to Lock::Lock() and Lock::∼Lock() are inserted in the ASG. This would be

important if we wanted generated a call graph from the ASG to track the flow of data in the

program.

A GXL file is stored internally in an XML format, which make it is inherently

difficult to read a graph that is represented in a tree-like structure. To help gain insight

into how our GXL graphs were arranged, we created an interactive GXL viewer. The

viewers that were freely available only produced static images, which made it difficult to

comprehend large graphs. Our viewer is built upon the Gtk+ windowing toolkit, and uses

neato from the GraphViz project [28] to manage the graph layout algorithm.

The Hylian GXL Viewer allows the user to navigate the graph either by selecting

node from a list of node IDs, or to traverse the graph manually with their mouse, showing

as many or as few of the node’s neighbors as they desire. The viewer also has an attribute

explorer, to view all the attributes associated with a node or an edge. And there is a search

feature, will allows the user quickly find nodes and edges by type, attribute name, or at-

tribute value.

The ASGs shown in Figures 6.5, 6.6, and 6.7, and the ORD shown in Figure 6.15,

are all generated with the GXL viewer.
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6.8 Demonstrating Interoperability Through Schemas

classd

"GENERIC"

Hylian
ASGCppInfo API

LEVEL 0

LEVEL 1

LEVEL 2

Figure 6.14: Interoperability

An important feature in our approach to generation of abstract semantic graphs

(ASGs) is to ensure that our ASGs conform to a schema so that we can reuse previously

developed analysis tools that accept conformant ASGs [47, 48]. Figure 6.14 illustrates

dependencies in our approach to demonstrating this interoperability with a previously ex-

isting tool, classd, from the g4re suite. classd is a program that accepts ASGs written

to conform to the g4re Level I schema, and generates an object relation diagram (ORD)

conforming to a Level II schema. classd is shown at the top of Figure 6.14, and relies on

the CppInfo API to query and gather information about an ASG. In the diagram we also

show two possible ASG instance types that CppInfo can read. The first ASG instance,

GENERIC, corresponds to a g4re generated ASG that is conformant to the g4re Level 0

GENERIC ASG schema. The second ASG instance is a Hylian generated ASG that is con-

formant to the CppInfo schema. Using classd we generate ORDs using ASGs created by

Hylian without modification to the original classd source code. To verify this interoper-

ability, we exercised the test suite included in the g4re suite using ASGs from both g4re

and Hylian. The generated ORDs were identical, and Figure 6.15 shows a screenshot of

the GXL Viewer rendering an ORD from the g4re test suite.
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Figure 6.15: Interoperability

6.9 Results for the Construction of Abstract Semantic Graphs

In this section we provide some interesting results for ASGs that we have built

using Hylian. Table 6.2 summarizes these results for three programs in our test suite: a

Hello World program written in C and C++, and AlephOne, a rather large video game

translated into C++ that uses the Simple Direct Media Layer (SDL) API, as well as the Lua

embedded scripting engine. There are two sections of data in the table: the top section

that summarizes results for the construction of Parse Trees, and the bottom section that

summarizes results for the construction of ASGs. We are comparing parse trees and ASGs

in the top and bottom sections to show the reduction in the size of ASGs compared to parse

trees, and the reduction in size when the ASGs for each compilation unit in a program are

linked, or merged, into a single ASG for the entire program.

In comparing the various results, we first consider the results for the three “Hello

World” programs. The first column in the table describes the information in the particular
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Hello World Video Game
In C In C++ In C++ AlephOne

Parse Trees
No. Compilation Units 1 1 1 176
No. System Terminal 2,930 132,122 132,122 30,339,853
No. User Terminal 13 16 16 3,441,975
No. Total Terminal 2,943 132,138 132,138 33,781,828
No. Non-Terminals 13,404 518,788 518,788 128,818,128
Max Branch Length 223 374 374 3,671
Avg. Branch Length 123.47 215.33 215.33 652.71
Abstract Semantic Graph
Using Phantom Parser N N Y Y
No. Vertices 984 21,861 38 1,914,869
No. Vertices (linked) 478,642
No. Edges 2,098 45,444 39 3,632,959
No. Edges (linked) 1,003,413
No. Statements 137 2,263 1 1,512,638
No. Statements (linked) 115,534

Table 6.2: ASG Statistics.

row of the table, and the next three columns represent information for the “Hello World”

programs written in C and C++. Our first interesting result shows that both the C and C++

versions of “Hello World” consist of a single Compilation Unit, as shown by the first row

of data in the table for columns two, three and four; however, the No. System Terminals

in the C version has 2,930 terminals in the parse trees, but the C++ versions have 132,122

terminals in their parse trees, so that the C++ version has almost two orders of magnitude

more terminals than the C version. This is due to the fact that the C++ version of “Hello

World” includes the iostream library and much of the C++ standard library. Also, the No.

System Terminals in the AlephOne program is 30,339,853 (first row, last column of the

table), illustrating the large number of system terminals needed for a standard video game.

The remaining rows in the top section of Table 6.2 reflect similar comparisons.

The bottom section of Table 6.2 summarizes results for the ASGs that Hylian builds.

The second and third columns in the bottom section compare the ASG for a full parse of a

C and a C++ “Hello World” program. For example, the third row of the bottom section of
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the table shows that there are 984 vertices in the C version, and 21,861 vertices in the C++

version, an order of magnitude increase. However, the number of vertices in an ASG build

by the phantom parser of Hylian shows only 38 vertices, at least two orders of magnitude

reduction over the full ASG for C++ “Hello World,” and an order of magnitude reduction

in the full ASG for the C “Hello World.” The fourth row of the bottom section shows that

the ASG for the phantom parser required only 39 edges in the ASG for the C++ version, but

the full ASG required 45,444 nodes, which is almost three orders of magnitude larger. This

illustrates the considerable reduction in the size of ASGs built with the phantom parser and

illustrates the reduction in the cognitive burden placed on a maintenance engineer using the

Hylian system for program comprehension or analysis. Other rows of the bottom section

of Table 6.2 further illustrate this comparison.
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Chapter 7

Tranformations on an ASG

Developing and maintaining reliable object-oriented software requires a precise un-

derstanding of how individual classes must be used. Unfortunately, for many systems, es-

pecially those that are large, the available documentation is inadequate. Developers are

frequently confronted with incomplete information concerning the allowable set of call

sequences that each class can accommodate. Techniques for reverse engineering this infor-

mation and presenting it to developers in an intellectually scalable manner are critical. In

references [20] and [61] we presented a runtime trace collection system for large C++ ap-

plications along with a methodology for reverse engineering interface protocols from these

collected trace data.

There are several problems with the approach described in the paper. Our primary

data structure in gathering information about the programs under study, and the transfor-

mations, were performed on each compilation unit’s parse tree. First, we located a branch

in the parse for every defined class in a program and inserted a member variable to store

each of its objects’ “ticket”. This was accomplished by adding a subtree into the parse

tree that represented a member declaration. Second, for each class, we identified all of the

constructor methods for the class and inserted another subtree that represented the initial-
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ization of the ticket to some unique value. Third, for every non-static method of a class, we

inserted another subtree that represented a printf call that printed the object’s ticket number

and the fullname of the function. The last insertion is particularly problematic, since it was

difficult to decide if a method defined outside of its class was a static method or a member

of the class. For example, consider the following code segment:

1 class MyClass {

2 static void someFunction();

3 };

4 void MyClass::someFunction() {

5 . . .

6 }

In this example, someFunction is a static member of MyClass, but that is not obvi-

ous by examining only the site of the definition. It is not enough to keep track of the names

of static function declarations that appear in the class body. If we modify the above code

sample to the following:

1 class MyClass {

2 static void someFunction();

3 void someFunction(int);

4 };

5 void MyClass::someFunction() {

6 . . .

7 }

8 void MyClass::someFunction(int) {

9 . . .

10 }

In this modified example, we show that is possible to have multiple overloaded

definitions for a function, where some are static and others are not. In order to correctly

probe these functions, not only do we have to track the functions’ names, but also their

formal parameter declaration list. This is increasingly difficult to accomplish with just a

parse tree, since it requires semantic information to correctly determine type equivalency.

Faced with that problem, our script that inserted probes incorrectly probed static methods.
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This would cause a compiler error in the regenerated source code, since a static method

was trying to access an object’s member, requiring manual removal of the probe for each

erroneous insert.

By taking advantage of the Hylian ASG Generator we alleviate this problem. Using

an ASG to determine which functions need to be probed requires only two checks: (1) that

a Function ASG node has an incoming edge of type “Contains” from a Class node, and

(2) that the function’s ASG node has its “is static” attribute set to false. There are added

benefits to using an ASG that are not addressed in our previous research. First, because it is

easy to determine where, in scope, a class resides, we can be selective in which classes we

want to probe. This was difficult to determine with just a parse tree, so we probe every class

in the program. And, second, we can only probe methods that have public accessibility.

Since we are reverse engineering the interface protocol of the class, we are only interested

in the operations that are available to clients of the class. Having the ability to not trace

methods with protected or private accessibility would enhance the quality of our interface

protocols.
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Chapter 8

Concluding Remarks and Merits of

Hylian

In this thesis, we have described our system, Hylian, for statement-level analysis,

both static and dynamic, of a C++ application. In particular, we have described and demon-

strated our approach for building an abstract semantic graph, ASG, that links the ASGs for

each compilation unit in an application. In addition, to alleviate the burden of information

that may hinder comprehension of the generated ASG, we have developed an extension to

Hylian to build an abbreviated ASG that incorporates information about user code, but not

about compiler provided library code. We performed various verification and validation

metrics to the ASG, including a viewer that can visualize any graph in GXL format, to

provide assurance for a developer that the ASGs that Hylian builds correctly represent the

program under investigation.

The value of our system can be viewed in three phases. Chapter 5 details the Parse

Tree Generation Phase. In this chapter, we detailed the generation of parse trees by aug-

menting the gcc compiler’s C++ parsing subsystem, and the postprocessing work required

to backpatch tentatively parsed language constructs, the removal of incomplete, tentatively
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parsed subtrees, and the recovery of left-recursive grammar productions that were parsed

iteratively. These parse trees were verified for their structural correctness, and validated

against our grammar schema. By exercising the parse tree generator with an extensive

testsuite, we were able to recover the gcc dialect of the C++ programming language. We

represent this grammar in three formats: (1) a human-readable LATEXdocument, (2) a Relax-

NG schema, an XML schema for validating regular languages, which is used to validate

parse trees represented in XML, and (3) a YACC specification program, which was used as

a starting point in parsing parse trees for the second phase in Hylian.

Chapter 6 covers the generation of Abstract Semantic Graphs. In this chapter, we

detail extensions to the ASG schema, first defined in the g4re project, to handle statement-

and expression-level language consutrcts. We then provided two algorithms for construct-

ing ASGs. The first, an approach to represent every program artifact for an application in a

single graph; including all user-defined and system-provided data structions, all class- and

function-templates instatiated, all constants reduced, all type aliases resolved, all explicit-

and implicit-function calls resolved, and every expression-level ASG node decorated with

its appropriate type. The second approach to ASG construction, a superset of the first,

builds an abbrivated version of the ASG that excludes compiler-provided library files, and

only considers user developed source code. This second approach required additional ex-

tenstions to the ASG schema. We provided further detail to the construction of the ASG by

describing the algorithm we used to evaluate binary expressions and class template instana-

tiated, along with example traces. We provided an algorithm and examples for transforming

a complete ASG into C++ source code. We provided two approaches to ensuring the va-

lidity of our ASGs: (1) using the source code generator, we validate that the observable

behavior of an ASG is the same as its input source code; and (2) we developed a visual-

ization tool to manually inspect ASG for correctness beyond what may be determined by

black-box testing. We developed a compatibility layer conforming to the CppInfo API.
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This allows tools from the g4re project to accept ASGs produced by Hylian as input. We

demonstrated the usefulness of this compatibility layer by generating object relation dia-

grams using g4re’s classd program without modification. Finally, we presented statistics

about input programs to the ASG builders.

Chapter 7 covers the problems we encountered in previous research by relying only

on parse trees to transform C++ source code. We discuss the inadequacy of parse trees,

for certain problem domains, such as source code transformations to enable dynamic pro-

gram analysis, and the need for an type-complete ASG. We also explore possibilities for

improving the research that were not considered when the idea Hylian was conceived.
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