35 research outputs found

    Algorithms for highly symmetric linear and integer programs

    Get PDF
    This paper deals with exploiting symmetry for solving linear and integer programming problems. Basic properties of linear representations of finite groups can be used to reduce symmetric linear programming to solving linear programs of lower dimension. Combining this approach with knowledge of the geometry of feasible integer solutions yields an algorithm for solving highly symmetric integer linear programs which only takes time which is linear in the number of constraints and quadratic in the dimensio

    Algorithms for highly symmetric linear and integer programs

    Get PDF
    Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch)This paper deals with exploiting symmetry for solving linear and integer programming problems. Basic properties of linear representations of finite groups can be used to reduce symmetric linear programming to solving linear programs of lower dimension. Combining this approach with knowledge of the geometry of feasible integer solutions yields an algorithm for solving highly symmetric integer linear programs which only takes time which is linear in the number of constraints and quadratic in the dimension

    Robust Design of Single-Commodity Networks

    Get PDF
    The results in the present work were obtained in a collaboration with Eduardo Álvarez- Miranda, Valentina Cacchiani, Tim Dorneth, Michael Jünger, Frauke Liers, Andrea Lodi and Tiziano Parriani. The subject of this thesis is a robust network design problem, i.e., a problem of the type “dimension a network such that it has sufficient capacity in all likely scenarios.” In our case, we model the network with an undirected graph in which each scenario defines a supply or demand for each node. We say that a flow in the network is feasible for a scenario if it can balance out its supplies and demands. A scenario polytope B defines which scenarios are relevant. The task is now to find integer capacities that minimize the total installation costs while allowing for a feasible flow in each scenario. This problem is called Single-Commodity Robust Network Design Problem (sRND) and was introduced by Buchheim, Liers and Sanità (INOC 2011). The problem contains the Steiner Tree Problem (given an undirected graph and a terminal set, find a minimum cost subtree that connects all terminals) and therefore is N P-hard. The problem is also a natural extension of minimum cost flows. The network design literature treats the case that the scenario polytope B is given as the finite set of its extreme points (finite case) and that it is given as the feasible region of finitely many linear inequalities (polyhedral case). Both descriptions are equivalent, however, an efficient transformation is not possible in general. Buchheim, Liers and Sanità (INOC 2011) propose a Branch-and-Cut algorithm for the finite case. In this case, there exists a canonical problem formulation as a mixed integer linear program (MIP). It contains a set of flow variables for every scenario. Buchheim, Liers and Sanità enhance the formulation with general cutting planes that are called target cuts. The first part of the dissertation considers the problem variant where every scenario has exactly two terminal nodes. If the underlying network is a complete, unweighted graph, then this problem is the Network Synthesis Problem as defined by Chien (IBM Journal of R&D 1960). There exist polynomial time algorithms by Gomory and Hu (SIAM J. of Appl. Math 1961) and by Kabadi, Yan, Du and Nair (SIAM J. on Discr. Math.) for this special case. However, these algorithms are based on the fact that complete graphs are Hamiltonian. The result of this part is a similar algorithm for hypercube graphs that assumes a special distribution of the supplies and demands. These graphs are also Hamiltonian. The second part of the thesis discusses the structure of the polyhedron of feasible sRND solutions. Here, the first result is a new MIP-based capacity formulation for the sRND problem. The size of this formulation is independent of the number of extreme points of B and therefore, it is also suited for the polyhedral case. The formulation uses so-called cut-set inequalities that are known in similar form from other network design problems. By adapting a proof by Mattia (Computational Optimization and Applications 2013), we show that cut-set inequalities induce facets of the sRND polyhedron. To obtain a better linear programming relaxation of the capacity formulation, we interpret certain general mixed integer cuts as 3-partition inequalities and show that these inequalities induce facets as well. The capacity formulation has exponential size and we therefore need a separation algorithm for cut-set inequalities. In the finite case, we reduce the cut-set separation problem to a minimum cut problem that can be solved in polynomial time. In the polyhedral case, however, the separation problem is N P-hard, even if we assume that the scenario polytope is basically a cube. Such a scenario polytope is called Hose polytope. Nonetheless, we can solve the separation problem in practice: We show a MIP based separation procedure for the Hose scenario polytope. Additionally, the thesis presents two separation methods for 3-partition inequalities. These methods are independent of the encoding of the scenario polytope. Additionally, we present several rounding heuristics. The result is a Branch-and-Cut algorithm for the capacity formulation. We analyze the algorithm in the last part of the thesis. There, we show experimentally that the algorithm works in practice, both in the finite and in the polyhedral case. As a reference point, we use a CPLEX implementation of the flow based formulation and the computational results by Buchheim, Liers and Sanità. Our experiments show that the new Branch-and-Cut algorithm is an improvement over the existing approach. Here, the algorithm excels on problem instances with many scenarios. In particular, we can show that the MIP separation of the cut-set inequalities is practical

    Learning to Configure Separators in Branch-and-Cut

    Full text link
    Cutting planes are crucial in solving mixed integer linear programs (MILP) as they facilitate bound improvements on the optimal solution. Modern MILP solvers rely on a variety of separators to generate a diverse set of cutting planes by invoking the separators frequently during the solving process. This work identifies that MILP solvers can be drastically accelerated by appropriately selecting separators to activate. As the combinatorial separator selection space imposes challenges for machine learning, we learn to separate by proposing a novel data-driven strategy to restrict the selection space and a learning-guided algorithm on the restricted space. Our method predicts instance-aware separator configurations which can dynamically adapt during the solve, effectively accelerating the open source MILP solver SCIP by improving the relative solve time up to 72% and 37% on synthetic and real-world MILP benchmarks. Our work complements recent work on learning to select cutting planes and highlights the importance of separator management

    Shortest Paths and Vehicle Routing

    Get PDF

    Primal Cutting Plane Methods for the Traveling Salesman Problem

    Get PDF
    Most serious attempts at solving the traveling salesman problem (TSP) are based on the dual fractional cutting plane approach, which moves from one lower bound to the next. This thesis describes methods for implementing a TSP solver based on a primal cutting plane approach, which moves from tour to tour with non-degenerate primal simplex pivots and so-called primal cutting planes. Primal cutting plane solution of the TSP has received scant attention in the literature; this thesis seeks to redress this gap, and its findings are threefold. Firstly, we develop some theory around the computation of non-degenerate primal simplex pivots, relevant to general primal cutting plane computation. This theory guides highly efficient implementation choices, a sticking point in prior studies. Secondly, we engage in a practical study of several existing primal separation algorithms for finding TSP cuts. These algorithms are all conceptually simpler, easier to implement, or asymptotically faster than their standard counterparts. Finally, this thesis may constitute the first computational study of the work of Fleischer, Letchford, and Lodi on polynomial-time separation of simple domino parity inequalities. We discuss exact and heuristic enhancements, including a shrinking-style heuristic which makes the algorithm more suitable for application on large-scale instances. The theoretical developments of this thesis are integrated into a branch-cut-price TSP solver which is used to obtain computational results on a variety of test instances

    Integrality and cutting planes in semidefinite programming approaches for combinatorial optimization

    Get PDF
    Many real-life decision problems are discrete in nature. To solve such problems as mathematical optimization problems, integrality constraints are commonly incorporated in the model to reflect the choice of finitely many alternatives. At the same time, it is known that semidefinite programming is very suitable for obtaining strong relaxations of combinatorial optimization problems. In this dissertation, we study the interplay between semidefinite programming and integrality, where a special focus is put on the use of cutting-plane methods. Although the notions of integrality and cutting planes are well-studied in linear programming, integer semidefinite programs (ISDPs) are considered only recently. We show that manycombinatorial optimization problems can be modeled as ISDPs. Several theoretical concepts, such as the Chvátal-Gomory closure, total dual integrality and integer Lagrangian duality, are studied for the case of integer semidefinite programming. On the practical side, we introduce an improved branch-and-cut approach for ISDPs and a cutting-plane augmented Lagrangian method for solving semidefinite programs with a large number of cutting planes. Throughout the thesis, we apply our results to a wide range of combinatorial optimization problems, among which the quadratic cycle cover problem, the quadratic traveling salesman problem and the graph partition problem. Our approaches lead to novel, strong and efficient solution strategies for these problems, with the potential to be extended to other problem classes
    corecore