
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Shortest Paths and Vehicle Routing

Petersen, Bjørn; Pisinger, David

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Petersen, B., & Pisinger, D. (2011). Shortest Paths and Vehicle Routing. Kgs. Lyngby: DTU Management.  (PhD
thesis; No. 9.2011).

http://orbit.dtu.dk/en/publications/shortest-paths-and-vehicle-routing(dd816da9-64fe-4d0b-ae30-eb7f8e9db934).html


Bjørn Petersen
June 2011

PhD thesis 9.2011

DTU Management Engineering

Shortest Paths and Vehicle Routing



Shortest Paths and Vehicle Routing

Ph.D. Thesis

Bjørn Petersen

bjorn@diku.dk

DTU Management Engineering, Technical University of Denmark

Produktionstorvet Bygning 424, DK-2800 Kgs. Lyngby, Denmark

October, 2010





Preface

This Ph.D. thesis was written at the Department of Computer Science, University of Copen-
hagen (DIKU) from November 2007 to February 2009 and at the Department of Management
Engineering, Technical University of Denmark (DTU) from March 2009 to October 2010
under the supervision of Professor David Pisinger.

I would like to thank my colleagues at DIKU and DTU, especially Mads Jepsen and Simon
Spoorendonk for the many good discussions and my supervisor David Pisinger for making
this possible.

Bjørn Petersen
October 2010

iii



Preface

iv



Contents

Preface iii

I Introduction 1

1 Introduction 3

2 Resource Contrained Shortest Paths Problems Solved by a Labeling Algo-
rithm 11

II Shortest Paths and Vehicle Routing 23

3 Subset-Row Inequalities Applied to Vehicle Routing Problem with Time
Windows 25

4 Chvátal-Gomory Rank 1 Cuts used in a Dantzig-Wolfe Decomposition of
the Vehicle Routing Problem with Time Windows 53

5 A Branch-and-Cut Algorithm for the Elementary Shortest Path Problem
with Resource Constraints 73

6 Partial Path Column Generation for the Vehicle Routing Problem 91

7 Optimal Routing with Failure Independent Path Protection 107

III Conclusion 131

8 Conclusion 133

9 Summery in Danish 137

IV Other Contributions 139

10 The Simultaneous Vehicle Scheduling and Passenger Service Problem 141

11 The Multi-Commodity k-splittable Maximum Flow Problem 165

v



Contents

12 Partial Path Column Generation for the Elementary Shortest Path Prob-
lem with Resource Constraints 181

13 Partial Path Column Generation for the Vehicle Routing Problem with
Time Windows 189

14 The Vehicle Routing Problem Solved by Bounding and Enumeration of
Partial Paths 197

15 A solution approach to the ROADEF/EURO 2010 challenge based on Ben-
ders Decomposition 201

vi



Part I

Introduction

1





Chapter 1

Introduction

Bjørn Petersen
DTU Management Engineering, Technical University of Denmark

1 Motivation

Operation Research (OR) is an interdisciplinary branch of applied mathematics and formal
science that uses advanced analytical methods such as mathematical modeling, statistical
analysis, and mathematical optimization to arrive at optimal or near-optimal solutions to
complex decision making problems. OR is often concerned with determining the maximum
(of profit, performance, or yield) or minimum (of loss, risk, or cost) of some real-world ob-
jective, and strives to support the decision making by providing a number of tools such as
mathematical modeling and mathematical programming. Mathematical modeling is used to
formulate problems in a concrete way using mathematical equations, whereas mathematical
programming covers solution methods for the mathematical formulations. Even though this
approach by its nature often has an exponential running time, it has still been very successful,
partially due to increased computing power but primarily due to algorithmic improvements.
Optimization refers to choosing the best element from a set of available alternatives.

OR is used in many different disciplines including transportation (vehicles, trains, air-
planes, ships), production, telecommunication, and finance. In this thesis the focus is on
transportation and more concretely on vehicle routing and shortest path problems. Vehicle
routing problems, specifically the Capacitated Vehicle Routing Problem (CVRP) and the Ve-
hicle Routing Problem with Time Windows (VRPTW), are interesting because they contain
the structure of what makes this type of problems hard to solve. This has historically made
CVRP and VRPTW the test ground for new techniques and developments for many other
problems.

Through a focus on shortest paths this thesis will mainly look at how to solve vehicle
routing problems when they get hard to solve. The difficulty of these problems grows when
the solution space grows, e.g., VRPTW instances with loose time windows and large capacities
where the possibility of long routes (measured in number of customers) exists. Some instances
with these characteristics with as little as 100 customers cannot be solved at present.

3



Chapter 1

1.1 Mathematical Modeling and Programming

Mathematical modeling is defined by a set of variables, used to represent decisions in a
problem, and a set of equations (or inequalities) denoted constraints, used to limit the amount
of valid decisions. The constraints define the feasible solution space of a problem, i.e., a
polytope in a multi-dimensional space that contains all valid solutions to the problem. The
objective is a function of the variables that points to the solution(s) in the feasible solution
space where the objective function reaches the global optimum.

When the variables are continuous and the constraints and the objective function are
linear, the problem is called a linear program (LP). If integrality is imposed on the variables,
it is denoted an integer program (IP), and if both types of variables exist, a mixed integer
program (MIP) is obtained. In this thesis, problems of the two latter kinds are sought solved,
and in that process these problems are relaxed into LP problems.

Many problems can be formulated as (M)IPs and various solution methods have received
a lot of attention during the years. The different solution methods can roughly be divided
into three categories:

• Exact algorithms find solutions that are proven optimal, i.e., no other solution exists
with a better objective function value.

• Heuristics give no guaranty for the quality of the solution value. They can be useful in
cases where running time is an issue and it is not imperative that an optimal solution
is found.

• Approximation algorithms have bounds on how much their solution can differ from the
optimal solution.

Due to the P
?
=NP issues exact solution methods mostly have exponential running time.

Nonetheless, the study of exact methods often give insight into the problem behavior that
may otherwise be hard to obtain. Furthermore, the improvements of exact methods have
pushed the boundaries for what can be solved in reasonable time. Even though heuristic
solution methods can speed up exact solution methods the focus in this thesis is solely on
exact algorithms.

1.2 Exact Methods

Many exact methods are based on the Branch-and-Bound paradigm, where a relaxation of the
problem is used in each node of the branch tree, i.e., an enlarged solution space is considered.
If the gap between the lower (LB) and upper bounds (UB) for some node is non-positive
it is possible to fathom the sub-tree rooted in that node. Assuming a minimizing objective
function, one way of calculating a lower bound is by solving the LP relaxation of the (M)IP
defining the problem, i.e., the enlarged solution space allows for integer variables taking on
continuous values.

Raising the LB or lowering the UB will make the gap smaller. Still assuming a minimizing
objective function, a well studied way to raise the lower bound is by the use of cutting planes.
Cutting planes are inequalities that cut off some of the current fractional solution, i.e., the
non-integer solution obtained by the LP relaxation. For the raised LB to be a valid LB the
inequalities may not cut off any feasible solutions. When incorporating cutting planes into
the Branch-and-Bound paradigm a Branch-and-Cut algorithm is obtained.

4



Introduction

Some problem formulations may have special structure, i.e., there are variable sets where
some constraints are non-overlapping, or a sub-set of constraints is in itself a problem with an
effective solution algorithm. In these cases it is possible to apply Dantzig-Wolfe decomposition
to divide the problem into smaller subproblems that have their solutions combined in a master
problem, see Dantzig and Wolfe [2]. This approach is known as column generation. If the
subproblems are solved iteratively (until the master problem objective value cannot improve
further) it is called delayed column generation. When incorporating decomposition into the
Branch-and-Bound paradigm a Branch-and-Price algorithm is obtained. The subproblems
are often problem specific, e.g., shortest path problems which is the focus of this thesis.

It is possible to combine cutting planes with column generation. This is denoted Branch-
Cut-and-Price. However, adding cuts is not as straight forward as in the Branch-and-Cut
algorithms. The cuts can be divided into two categories:

• Cuts expressed in the original formulation.

• Cuts expressed in the master problem formulation.

The first alternative can be thought of as having the cuts part of the model before decom-
position and thereby handling them as any other constraint in the model would be handled.
This will in most cases mean that there are some changes in the costs associated with the
subproblem but no structural changes, i.e., the same special purpose algorithm can be used
without changes to solve the subproblems.

The second alternative may have complicating repercussions for the subproblems, since
cuts on master variables do not necessarily map back to the original model, and thus the
special structure of the subproblems. The altered subproblems may contain non-linear ob-
jective functions and it may be necessary to add additional variables. This may change the
complexity of the subproblems and can result in much higher computational efforts being
needed. This case is less studied both theoretically and experimentally and is in the context
of shortest paths the main focus of this thesis.

2 Goals

The focus of this thesis is on shortest path problems and how to solve them in the context
of column and cut generation algorithms, i.e., with negative weights and extra complicating
issues to handle costs not directly mappable to the edge weights. The main goals can be
summarized as:

• Investigate how to solve shortest path problems in the presence of negative cycles and
resource constraints.

• In a column generation context to investigate how to handle effects of cutting planes
derived from the master problem formulation.

• Investigate the impact of the cutting planes on the subproblems complexity, on the
quality of the lower bounds for the master problem, and the overall running time of the
Branch-Cut-and-Price algorithm.

• Explore alternative reformulations to target difficult part of problems.

5



Chapter 1

Shortest path problems are present many places, both on its own and as subproblems. Accord-
ing to Dror [3] solving the elementary shortest path problem on a graph containing negative
cost cycles is strongly NP-hard.

Many problems decompose into a set partitioning master problem and some kind of short-
est path problem. Cuts valid for the problem before the decomposition are often directly
applicable to the decomposed model. This is in contradiction to cuts valid for the set par-
titioning problem which often require some extra handling in the shortest path subproblem.
Very efficient cuts are known for the set partitioning polytope including some of the general
purpose cut family known as Chvátal-Gomory cuts.

Cuts valid for the set partition polytope are incorporated into the existing subproblem
algorithms by modifying these special purpose algorithms. The increased complexity (and
thereby potentially increased running times) of the subproblems is a trade-off with the quality
of the lower bound obtained in the master problem. The running time saved by exploring
fewer branch nodes due to the improved lower bound is hopefully overshadowing the increased
effort put in solving the subproblems.

Solving the shortest path problems is often the bottleneck of decomposition algorithms,
especially for hard instances. Alternative decompositions target this behavior by moving some
of the complexity from the pricing stage to the master problem.

3 Contribution

The main contributions of the thesis, summarized in the points below, is to show

• how to find resource constrained shortest paths by the use of a Branch-and-Cut algo-
rithm.

• how alternative reformulations can be obtained through the use of Partial Paths, so
that movement of complexity between master and pricing problem is facilitated.

• theoretically and experimentally how to apply the Chvátal-Gomory cuts of rank 1 known
from Branch-and-Cut algorithms for general MIPs to the vehicle routing problem with
time windows. Furthermore, to show how to incorporate this into a dynamic program-
ming algorithm for the subproblem. The approach appears very successful and it is
possible to solve several previously unsolved instances from the benchmarks of Solomon
[7].

A more detailed description of the contributions of each chapter can be found in the following
reading guide in Section 4.

4 Reading Guide

This thesis is divided into four parts. The first part consists of this introductory chapter and
a chapter on solving Resource Contrained Shortest Paths Problems by Labeling Algorithm.
The second part is the main contribution consisting of the most relevant papers produced.
The third part sums up the thesis. Finally, the fourth part acts as an appendix and presents
contributions that are not within the primary scope of the thesis, but have been performed
during the Ph.D. course.

6



Introduction

In the following is a chapter-wise guide for reading this thesis.

Chapter 2: Resource Contrained Shortest Paths Problems Solved by a Labeling Algorithm.
The chapter presents a general labeling algorithm for solving various resource constrained
shortest path problems. A parallelized version of the algorithm is introduced and some brief
computational results are presented. When labeling algorithms are applied throughout this
thesis this is the algorithm used.

4.1 Part II: Shortest Paths and Vehicle Routing

This part concerns the main topic of the thesis.

Chapter 3: Subset-Row Inequalities Applied to the Vehicle Routing Problem with Time Win-
dows. The paper presents how a subset of the Chvátal-Gomory cuts may be applied to the
master problem of a decomposition of the vehicle routing problem with time windows. It
is shown how each cut in the master problem increases the complexity of the subproblem
and how this is handled in a dynamic programming algorithm. Experimental results were
carried out on the Solomon instances and it was possible so solve several previously unsolved
instances by this new approach. Furthermore, experiments showed that the cuts improved
the lower bounds to an extent that significantly reduced the size of the branch tree. The
paper is co-authored with Mads Jepsen, Simon Spoorendonk, and David Pisinger and has
been published in the journal Operation Research, see Jepsen et al. [5].

Chapter 4: Chvátal-Gomory Rank 1 Cuts used in a Dantzig-Wolfe Decomposition of the Vehi-
cle Routing Problem with Time Windows. This paper is an extension of the work described in
Jepsen et al. [5], and shows how any Chátal-Gomory rank 1 cut can be applied to the vehicle
routing problem with time windows. Experimental results show that it was possible to solve
even more instances without branching. However, the cut separation times were substantial.
The work is co-authored with David Pisinger and Simon Spoorendonk and has been published
as a chapter in a book on recent advances within vehicle routing problems, see the chapter
by Petersen et al. [6] in the book edited by Golden et al. [4].

Chapter 5: Branch-and-Cut Algorithm for the Elementary Shortest Path Problem with a Ca-
pacity Constraint. Elementary shortest path problems with resource constraints occur as a
subproblem in many decompositions. This paper presents a very efficient Branch-and-Cut
algorithm that regards a single capacity constraint. This is joint work with Mads Jepsen and
Simon Spoorendonk. The paper has been submitted for publication.

Chapter 6: Partial Path Column Generation for the Vehicle Routing Problem. This presents
a column generation algorithm for the Capacitated Vehicle Routing Problem (CVRP) and
the Vehicle Routing Problem with Time Windows (VRPTW). This is joint work with Mads
Jepsen and David Pisinger. The paper has been submitted for publication.

Chapter 7: Optimal Routing with Failure Independent Path Protection. This paper presents
a practical application of finding shortest paths in the telecommunication industry. The
problem consists of finding a collection of paths in a telecommunication network that covers
a given bandwidth demand and follows a certain backup policy. Experimental results show

7



Chapter 1

that the implemented backup strategy gives significant bandwidth savings. The paper is co-
authored with Thomas K. Stidsen, Simon Spoorendonk, Martin Zachariasen, and Kasper B.
Rasmussen and has been published in the journal Networks, see Stidsen et al. [8].

4.2 Part III: Conclusion

This part of the thesis concludes and summarizes on the work presented in Part II.

Chapter 8: Conclusion. This chapter contains the concluding remarks and discussion of po-
tential directions for future research.

Chapter 9: Summary in Danish. This chapter contains a Danish summary of the thesis.

4.3 Part IV: Other Contributions

This part of the thesis presents contributions that are not within the primary scope of the
thesis, but have been performed during the Ph.D. course.

Chapter 10: The Simultaneous Vehicle Scheduling and Passenger Service Problem. Passen-
gers using public transport systems often experience waiting times when transferring between
two scheduled services. This paper propose a planning approach which seeks to obtain a
favorable trade-off between the two contrasting objectives; passenger service and operating
cost, by modifying the timetable. The planning approach is referred to as the Simultaneous
Vehicle Scheduling and Passenger Service Problem (SVSPSP). The paper is co-authored with
Hanne L. Petersen, Allan Larsen, Oli. B. G. Madsen, and Stefan Røpke, and has been sub-
mitted for publication.

Chapter 11: The Multi-Commodity k-splittable Maximum Flow Problem. The Multi-Commodity
k-splittable Maximum Flow Problem consists of routing as much flow as possible through a
capacitated network so that each commodity uses at most k paths and the capacities are
satisfied. The problem is solved to optimality through Branch-and-Price. This is joint work
with Mette Gamst. The paper has been submitted for publication.

Chapter 12: Partial Path Column Generation for the Elementary Shortest Path Problem with
Resource Constraints. As just noted previously, elementary shortest path problems with re-
source constraints occur as a subproblem in many decompositions. This paper introduces a
decomposition of the Elementary Shortest Path Problem with Resource Constraints (ESP-
PRC), where the path is combined by smaller sub-paths. Computational results by comparing
different approaches for the decomposition and comparing the best of these with existing al-
gorithms are shown. It is also shown that the algorithm for many instances outperforms a
bidirectional labeling algorithm. This is joint work with Mads Jepsen. The paper has been
published as an extended abstract at INOC 2009.

Chapter 13: Partial Path Column Generation for the Vehicle Routing Problem with Time
Windows. This paper is related to the work described in Chapter 6 and presents a column
generation algorithm for the Vehicle Routing Problem with Time Windows (VRPTW). The
traditionally elementary route-columns are relaxed into partial paths, i.e., not necessarily

8



Introduction

starting and ending in the depot. This way, the length of the partial path can be bounded
and a better control of the size of the solution space for the pricing problem can be obtained.
This is joint work with Mads Jepsen. The paper has been published as an extended abstract
at INOC 2009.

Chapter 14: The Vehicle Routing Problem Solved by Bounding and Enumeration of Partial
Paths. This paper is extended work of Chapter 6, and is inspired by work described by Bal-
dacci et al. [1] where columns with potentially negative reduced cost are enumerated after
good upper and lower bounds are found. This is joint work with Mads Jepsen. The paper
has been published as an extended abstract at Tristan 2010.

Chapter 15: A solution approach to the ROADEF/EURO 2010 challenge based on Benders
Decomposition. The French operations research society, Recherche Opérationnelle et d’Aide
à la Décision ROADEF, put forth a challenge to schedule and plan energy production in the
French energy sector. An approach based on Bender’s Decomposition has been developed.
The paper is co-authored with Richard Lusby and Laurent F. Muller.

References

[1] R. Baldacci, N. Christofides, and A. Mingozzi. An exact algorithm for the vehicle routing
problem based on the set partitioning formulation with additional cuts. Mathematical
Programming, 115(2):351–385, 2008. doi: 10.1007/s10107-007-0178-5.

[2] G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations
Research, 8(1):101–111, 1960. doi: 10.1287/opre.8.1.101.

[3] M. Dror. Note on the complexity of the shortest path models for column generation in
VRPTW. Operations Research, 42(5):977–979, 1994. doi: 10.1287/opre.42.5.977.

[4] B. Golden, R. Raghavan, and E. Wasil, editors. The Vehicle Routing Problem: Latest
Advances and New Challenges. Springer, 2008. doi: 10.1007/978-0-387-77778-8.

[5] M. Jepsen, B. Petersen, S. Spoorendonk, and D. Pisinger. Subset-row inequalities applied
to the vehicle-routing problem with time windows. Operations Research, 56(2):497–511,
2008. doi: 10.1287/opre.1070.0449.

[6] B. Petersen, D. Pisinger, and S. Spoorendonk. Chvátal-Gomory rank-1 cuts used in
a Dantzig-Wolfe decomposition of the vehicle routing problem with time windows. In
B. Golden, R. Raghavan, and E. Wasil, editors, The Vehicle Routing Problem: Lat-
est Advances and New Challenges, pages 397–420. Springer, 2008. doi: 10.1007/
978-0-387-77778-8 18.

[7] M. M. Solomon. Algorithms for the vehicle routing and scheduling problem with time
window constraints. Operations Research, 35(2):234–265, 1987. doi: 10.1287/opre.35.2.
254.

[8] Thomas Stidsen, Bjørn Petersen, Simon Spoorendonk, Martin Zachariasen, and
Kasper Bonne Rasmussen. Optimal routing with failure-independent path protection.
Netw., 55(2):125–137, 2010. ISSN 0028-3045. doi: http://dx.doi.org/10.1002/net.v55:2.

9



Chapter 1

10



Chapter 2

Resource Contrained Shortest Paths

Problems Solved by a Labeling Al-

gorithm

Bjørn Petersen
DTU Management Engineering, Technical University of Denmark

1 Introduction

The Shortest Path Problem with Resource Constraints (SPPRC) can be stated as: Let
G(V,E) with nodes V and edges E be a weighted directed graph, and let R be a set of
resources. For each edge e ∈ E and resource r ∈ R three parameters are given: A lower
limit ar(e) on the accumulation of resource r when traversing edge e ∈ E; An upper limit
br(e) on the accumulation of resource r when traversing edge e ∈ E; and an amount cr(e) of
resource r consumed by traversing edge e ∈ E. In general cr(e) can be a function and can also
be dependent on other resources, e.g., cr(e, r1, r2) : r1, r2 ∈ R, but will for ease of notation
be denoted cr(e) throughout this chapter. The objective is to find a minimum cost path P ,
i.e., minimize the cost resource c̄, from a source node o ∈ V to a destination node d ∈ V ,
where the accumulated resources of P satisfy the limits for all resources r ∈ R. Without
loss of generality it is assumed that the limits must be satisfied at the start of each edge e,
i.e., before cr(e) has been consumed. It is noted that equivalent upper and lower limits and
consumptions on the nodes can be “pushed” onto the edges, e.g., the outgoing edges of a
node.

The Shortest Path Problem with Resource Constraints and k-cycle Elimination (k-cyc-
SPPRC) can be stated as the SPPRC but with an additional constraint that the path is k-cycle
free. In k-cycle free paths, cycles of size k or smaller are not allowed, i.e., paths containing
node sequence (. . . , v0, v1, . . . , vk−1, v0, . . .) are forbidden. The Elementary Shortest Path
Problem with Resource Constraints (ESPPRC) can be stated as an SPPRC with an additional
constraint that path P is cycle free, i.e., no node v ∈ V is in P more than once. This is
essentially the same as a k-cyc-SPPRC with k = ∞. Relaxing the ESPPRC so that all nodes
do not have to be elementary gives rise to the Partial Elementary Shortest Path Problem with

11



Chapter 2

Resource Constraints (PESPPRC), where only a subset S ⊆ V of the nodes are not allowed
to be in the path more than once. Finally, the integration of k-cyc-SPPRC and PESPPRC
demands that the nodes in S ⊆ V are not allowed to be in the path more than once at the
same time as none of the other nodes S̄ = V \S among themselves forms a cycle of size k
or smaller. That is, paths containing node sequence (. . . , v0, e0, v1, e1, . . . , vk−1, ek−1, v0, . . .)
where vi ∈ S̄ ∧ ei ⊆ S ∪ ∅ : 0 ≤ i ≤ k − 1 are not allowed.

Dror [8] showed that the ESPPRC is strongly NP-hard, hence a relaxation of the ESPPRC
was used as the pricing problem in early BCP algorithms. The Shortest Path Problem
with Resource Constraints (SPPRC), first named so by Desrochers [6], can be solved in
pseudo-polynomial time, e.g., by use of labeling algorithms. Christofides et al. [4] denoted
the SPPRC solutions as q-routes when only a single capacity resource is present. To improve
lower bounds of the master problem Desrochers et al. [7] used 2-cycle elimination which was
later extended by Irnich and Villeneuve [13] to k-cycle elimination (k-cyc-SPPRC), still with
pseudo-polynomial running time.

Beasley and Christofides [1] proposed to solve the ESPPRC using Lagrangian relaxation.
However, recently labeling algorithms have become the most popular approach to solve the
ESPPRC, see e.g., Dumitrescu [9] and Feillet et al. [10]. When solving the ESPPRC with a
labeling algorithm a binary resource for each node is added which increases the complexity of
the algorithm compared to solving the SPPRC or the k-cyc-SPPRC. Righini and Salani [17]
developed a labeling algorithm using the idea of Dijkstra’s bi-directional shortest path algo-
rithm that expands both forward from the source node o and backward from the destination
node d and connects paths in the middle, thereby potentially reducing the running time of
the algorithm. Furthermore, Righini and Salani [16] and Boland et al. [2] proposed to solve
ESPPRC by use of a decremental state space algorithm that iteratively solves a SPPRC by
applying resources forcing nodes to be visited at most once. Recently Chabrier [3], Danna and
Le Pape [5], and Salani [18] successfully solved several previously unsolved instances of the
VRPTW from the benchmarks of Solomon [19] using a labeling algorithm for the ESPPRC.

The chapter is outlined as follows: In Section 2 a quick introduction to the concepts of
labeling algorithms as well as a description of how they are applied to general shortest paths
are given. Section 3 describes how to make the search for shortest paths bidirectional and
a proof of correctness is presented. Section 4 introduces a parallel labeling algorithm. In
Section 5 brief computational results are shown. Finally, Section 6 contains some concluding
remarks.

2 Labeling Algorithm

Several articles covering the basics of solving shortest path problems by use of labeling al-
gorithms already exist, so it is beyond the scope of this chapter to go into these details.
However, a short introduction to settle the notation will be given. For a detailed description
see e.g. Irnich [12].

The central part of the algorithm is the use of labels which represent partial paths rooted
at node o. Each label has associated a set of attributes:

• A node to which it belongs v̄ ∈ V

• A pointer to the label of the parent node p

12



Resource Contrained Shortest Paths Problems Solved by a Labeling Algorithm

• The accumulated consumption of each resource r ∈ R (including the cost resource c̄)

• An ordered set of last k − 1 visited nodes π ⊆ S̄

Thus, a label L with v̄(L) = v represents a partial path from node o to node v and all the
accumulated resources along the path. We will use f(L) to refer to attribute f of a label. E.g.
r(L) refers to the accumulated consumption of resource r in label L. The parent p(L) of label
L is the label Lp that was extended to create L. Lp is recursively used to find the path P (L)
that label L represents. V (P (L)) (or shorthand V (L)) is the multiset of the predecessors and
E(P (L)) (or shorthand E(L)) are the edges on P . The attributes r and π are not strictly
necessary and are only present for notational and computational reasons, they can always be
computed by following the chain of parent labels Lp, Lp−1, ..., Lo back to the starting node o.

In the following it is assumed that all resources are bounded strongly from above, and
weakly from below, i.e., if the current resource accumulation is below the lower limit on a
given edge e, it is allowed to fill up the resource to the lower limit, e.g., waiting for a time
window to open. This means that two consecutive labels Lu and Lv related by an edge
e = (u, v), i.e., Lu is extended and creates Lv, where v̄(Lu) = u and v̄(Lv) = v, must satisfy

r(Lv) ≤ br(e) ∀r ∈ R (1)

r(Lv) = max{r(Lu) + cr(e), ar(e)} ∀r ∈ R (2)

v 6= w ∀w ∈ π(Lu) (3)

Here (1) demands that Lv satisfies the upper limit of resource r corresponding to edge e =
(u, v), while (2) states that resource r at label Lv corresponds to the resource consumption at
label Lu plus the amount consumed by traversing edge e, respecting the lower limit on edge
e and (3) ensures no cycles of size smaller than k.

The concept of labeling algorithms is to iteratively extend labels (according to (1)–(3)) in
the following way, until there are no more labels left. When a label has been extended it, is
considered treated:

Labeling(G, o, d)

1 Linit = First-Label(o)
2 PQ.enqueue(Linit)
3 while PQ 6= ∅
4 Remove-Dominated(PQ)
5 L = PQ.dequeue()
6 for each node v ∈ Extendables(L) // Nodes to which L can be extended
7 Lv = Extend-Label(L, v)
8 if v̄(Lv) = d
9 Store-Solution(Lv, sol)

10 else PQ.enqueue(Lv)
11 return sol

Line 1 makes the first label which is then put in a queue in line 2. Lines 4–10 loop as long
as there are untreated labels left. A label is selected in line 5 which is then extended in line
7. If the new label represents a path from o to d, it is stored in line 9. Otherwise it is put in
the queue for later treatment.

From the pseudocode it is clear that without Remove-Dominated in line 4 this results
in a complete enumeration of all feasible paths.

13



Chapter 2

2.1 Dominance

The goal of dominance is to reduce the number of labels that are created during the execution
of the labeling algorithm, since it is not desirable to extend labels that are not part of
an optimal solution. Unfortunately, it is not known in advance which labels span optimal
solutions, but it might be possible to decide for some labels that they are not part of any
optimal solution. If just any optimal solution is sought, dominance is to reduce the number
of labels extended and still be able to find an optimal solution. A label is thus said to be
dominated if its removal during the run of the algorithm does not remove all optimal solution.

In the following it is assumed that all the extension functions cr(e) are non-decreasing. A
non-decreasing function cr(e) has the following property:

Definition 1. A function f is non-decreasing iff:

x ≤ y ⇒ f(x) ≤ f(y) ∀x, y

In relation to dominance it is necessary to consider extensions of labels. For this reason
three definitions are presented (slightly modified from Irnich and Villeneuve [13]):

Definition 2. The set of all feasible paths from label L to node u considering the resource
consumption of label L is defined as F(L, u).

Definition 3. The set of all feasible paths from label L to node u considering the k-cycle
elimination and the partial elementarity is defined to be S(L, u).

Definition 4. All feasible extensions of label L is defined as:

E(L) = F(L, t) ∩ S(L, t)

With Definition 4 as a building block the following definition of domination is now given:

Definition 5. A set of labels Li dominates label Lj if:

v̄(Li) = v̄(Lj) ∀Li ∈ Li (4)

c̄(Li) ≤ c̄(Lj) ∀Li ∈ Li (5)

E(Lj) ⊆
⋃

Li∈Li

E(Li) (6)

In other words, the paths corresponding to labels in Li and the path Lj should end at
the same node v̄(Li) = v̄(Lj) ∈ V : ∀Li ∈ Li, each path corresponding to some label Li ∈ Li

should cost no more than the path corresponding to label Lj, and finally any feasible extension
of Lj is also a feasible extension of some Li ∈ Li.

Definition 5 implies that if Lj is dominated then any path P (Lj , ǫ) consisting of Lj con-
catenated with a feasible extension ǫ ∈ E(Lj) is not a unique optimal solution, since at least
one other label Li ∈ Li can also be concatenated with ǫ and make a path P (Li, ǫ) that is as
least as cheap, because c̄(Li) + cc̄(ǫ, r(Li)) ≤ c̄(Lj) + cc̄(ǫ, r(Lj)) due to Definition 1, that is:

∀ǫ ∈ E(Lj) ∃Li ∈ Li : ǫ ∈ E(Li) ∧ c̄(Li) ≤ c̄(Lj)

⇒ ∀ǫ ∈ E(Lj) ∃Li ∈ Li : ǫ ∈ E(Li) ∧ c̄(P (Li, ǫ)) ≤ c̄(P (Lj , ǫ))

14



Resource Contrained Shortest Paths Problems Solved by a Labeling Algorithm

Each node in the set of elementary nodes S, i.e., the nodes that can only be visited once,
can be modeled using a binary resource. Feillet et al. [10] suggested to consider the set of
nodes in S that cannot be reached from a label Li and compare the set with the unreachable
nodes of a label Lj in order to determine if some extensions are impossible. Or in other words:
update the node resources in an eager fashion instead of a lazy. The following definition is a
generalization of Feillet et al. [10][Definition 3].

Definition 6. Given a start node o ∈ V and a label L with v̄(L) = u, a node v ∈ V is
considered unreachable if v has already been visited on the path from o to u, i.e., v ∈ V (L)
or if a resource window is violated, e.g.:

∃r ∈ R r(L) + ℓr(u, v) > br(v)

where ℓr(u, v) is a lower bound on the consumption of resource r on all feasible paths from u
to v. The node resources are then given as: v(L) = 1 indicates that node v ∈ V is unreachable
from node v̄(L) ∈ V , and v(L) = 0 otherwise.

In the following Ē(π(L)) (or shorthand Ē(L)) will be the set of all feasible extensions for
label L only considering the k-cycle elimination constraint, and is equivalent to the concept
of Hole-Sets as defined by Irnich [12].

To determine if (6) holds can be quite cumbersome, as the straightforward definition
suggests that we calculate all extensions of the involved labels. Therefore a sufficient criteria
for (6) is sought which can be computed faster. If label Li has consumed less resources than
label Lj , then no resources are limiting the possibilities of extending Li compared to Lj ,
hence the following proposition can be used as a restricted version of the dominance criteria
in Definition 5.

Proposition 1 (Sufficient condition). A set of labels Li dominates label Lj if:

v̄(Li) = v̄(Lj) ∀Li ∈ Li (7)

r(Li) ≤ r(Lj) ∀r ∈ R,∀Li ∈ Li (8)

Ē(Lj) ⊆
⋃

Li∈Li

Ē(Li) (9)

and node resources are set according to Definition 6.

Proof. We check Definition 5. Equation (4) follows directly from (7) and (5) follows from
(8) with r = c̄, i.e., the cost resource. The remaining concern is if (6) holds for Li and Lj .
The proof is by contradiction. Assume that (7), (8), and (9) are satisfied but that (6) is not
satisfied. Then an extension ǫ ∈ E(Lj)\

⋃

Li∈Li
E(Li) must exist which is feasible for Lj but

not for any Li ∈ Li. Let Lu denote the label that is obtained with v̄(Lu) = vu after Lj has
recursively been extended through ǫ, let Lu be equivalently defined, let v1, . . . , vh−1, vh, . . . be
the nodes on ǫ, and let vh be the first node on ǫ preventing the extension of all Lh−1

i ∈ Lh−1

i .
There are only three conditions where this can happen for each Lh−1

i ∈ Lh−1

i :

1) vh(L
h−1

i ) = 1

2) ∃r ∈ R, r(Lh−1

i ) + lr(vh−1, vh) > br(h)

15



Chapter 2

3) ǫ 6∈ Ē(Li)

Since Lj can be extended with ǫ, the equivalent conditions for Lh−1

j are:

1) vh(L
h−1

j ) = 0

2) r(Lh−1

j ) + cr(vh−1, vh) ≤ br(h), ∀r ∈ R

3) ǫ ∈ Ē(Lj)

Since all resources are consumed according to Definition 1 on ǫ until vh−1 for all Li ∈ Li

and Lj, the above conditions contradict that (7) and (8) are satisfied. Moreover, ǫ ∈ Ē(Lj)
and ǫ 6∈ Ē(Li) contradict that (9) is satisfied. Hence, E(Lj)\

⋃

Li∈Li
E(Li) = ∅, which implies

E(Lj) ⊆
⋃

Li∈Li
E(Li), and (6) holds. That is, Definition 5 holds and Li dominates Lj.

Using Proposition 1 as a dominance criteria is a restriction of the dominance criteria of
Definition 5 since only a subset of labels satisfying (7), (8), and (9) satisfies (4), (5), and (6).
It is noted that Condition (8) can be tightened by being lazy with r(Li) and eager with r(Lj).
Furthermore, if k ≤ 1 Condition (9) is automatically satisfied so |Li| = 1.

Decreasing extension-functions can always be handled by use of equality on the affected
resources, but can be tightened if a lower and an upper bound in known, see Reinhardt
and Pisinger [15] for further details. Being more aggressive in Remove-Dominated, i.e.,
removing non-dominated labels, yields a heuristic solution but with likely improved running
time.

3 Bidirectional Search

The concept of bidirectionality is to look for the shortest path from node o to node d by
finding paths from o to ‘the middle’ and ‘reverse paths’ from d to ‘the middle’. The paths
meeting in ‘the middle’ are then spliced together, and thereby a shortest path is obtained.
‘The middle’ is defined by the consumption of a monotone resource rmono, i.e., crmono

is either
non-negative or non-positive. Furthermore, it is required that all cycles defined by crmono

are
non-zero.

The reason for doing this for ESPPRC is to halve the exponential factor in the worst case
number of labels, e.g., O(V !2V ) can be reduced to O(V

2
!2V/2) by selecting rmono as the number

of visited nodes. For k-cyc-SPPRC and pure SPPRC the theoretical worst case number of
labels is not affected but a better practical running time is hoped for. For PESPPRC the
worst case number of labels is dependent on the number of nodes in S and will be somewhere
in between that of SPPRC and ESPPRC.

The bidirectional algorithm consists of the following three parts:

• Find (part of) the shortest forward path going from o towards d at the same time as
finding (part of) the shortest backward ‘reverse path’ going from d towards o.

• Combine a forward label Lf and backward label Lb with v̄(Lf ) = v̄(Lb) to obtain a
path P (Lf , Lb).

• Stop at the ‘middle’, e.g., stop when the consumption of resource rmono in a label reaches
xstop, where minv∈V (armono

(v)) ≤ xstop ≤ maxv∈V (brmono
(v)).

16



Resource Contrained Shortest Paths Problems Solved by a Labeling Algorithm

Forward and Backward Paths

The algorithm from Section 2 can be reversed by starting with a label Lb in node d with
the consumption of each resource set to the upper bound r(L) = br(d) for all r ∈ R. Then
go towards node o and treat extensions and dominance equivalently – this of course is only
possible if an inverse of the extension function exists. The algorithm from Section 2 will be
referred to as the forward algorithm and the reversed counterpart will be referred to as the
backward algorithm. Using equivalent argumentation as for the forward algorithm it is clear
that the backward algorithm also yields optimal solutions to the problems.

The bidirectional algorithm works by running a forward algorithm together with a back-
ward algorithm keeping two sets of labels: The forward labels Lf and the backward labels
Lb. The following pseudocode shows how the bidirectional algorithm works.

BiDirectional-Labeling(G, o, d)

1 Lo = First-Label-Forward(o)
2 Ld = First-Label-Backward(d)
3 PQf .enqueue(Lo)
4 PQb.enqueue(Ld)
5 while PQf 6= ∅ or PQb 6= ∅
6 if PQf .size() < PQb.size()
7 Remove-Dominated(PQf)
8 L = PQf .dequeue()
9 else Remove-Dominated(PQb)

10 L = PQb.dequeue()
11 for each node v ∈ Extendables(L)
12 Lv = Extend-Label(L, v)
13 PQ.enqueue(Lv)
14 for each label L ∈ Spliceable(Lv)
15 path = Splice(Lv, L)
16 Store-Solution(path, sol)
17 return sol

As before, after the initial labels are created and enqueued the algorithm loops until no labels
are left untreated. The functions in the pseudocode have knowledge about the direction
(forward or backward) and behave accordingly. Line 6 lets the two directions grow in parallel.

Disregarding the stopping criterion, it is clear that the algorithm will find at least two
optimal paths. One is found going forward and one is found going backwards. These two
paths may be identical.

Splicing the Paths

At any time during the execution of the algorithm above there are two sets of labels Lf
v : L ∈

Lf ∧ v̄(L) = v and Lb
v : L ∈ Lb ∧ v̄(L) = v belonging to each node v ∈ V . Consider a label

Lf ∈ Lf
v and a label Lb ∈ Lb

v. If the sub-path Lb is in the extension Lb ∈ E(Lf ) of Lf , the
two labels can be combined to form a feasible solution P , this is denoted splicing. Since a
path may use several nodes, a given path P may be the product of several different splicings,
e.g., one for each of the |P | nodes in P .

17



Chapter 2

For obvious reasons it is desirable only to get unique paths, so when searching for a path
P , two labels Lf ∈ Lf

v and Lb ∈ Lb
v in P with v̄(Lf ) = v̄(Lb) are only spliced when v̄(Lf ) = v

is a unique node v ∈ V (P ) on P . One way to find this unique node v to splice at was proposed
by Righini and Salani [17] and is defined as the node v ∈ V (P ) where Lf and Lb are as close
as possible to having the same consumption of rmono. A tie is broken arbitrarily, e.g., Lf

takes priority.

Consequently, we propose another way to find the unique node v. If more than half the
upper limit

xstop =

⌈

maxv∈V (brmono
(v))

2

⌉

of resource rmono is consumed on path P , one edge (i, j) ∈ E(P ) either crosses xstop or ends
at xstop, choosing node j as the splicing point for P will be unique. If the consumption of
rmono(P ) ≤ xstop, choosing the first (or the last) node of P as splicing point will be unique.

Stop at the Middle

It is clear that if rmono(P ) > xstop then at least one sub-path from the forward algorithm or
one sub-path from the backward algorithm has to contain the edge (i, j) ∈ E(P ) that crosses
the ‘middle’. Furthermore, at least one of them has to contain the first (or last) edge.

From the description of splicing nodes above, it is clear that there is no reason, for the
algorithm without the responsibility of crossing, to extend a label if a consumption of more
than xstop will be obtained. For the algorithm with the responsibility of crossing, there is no
reason to extend a label further when a consumption of xstop is obtained. Therefore, both
algorithms can be stopped early and an optimal path P is still found.

Proposition 2. The bidirectional algorithm returns an optimal solution for any value of
xstop.

Proof. Without loss of generality assume that the forward algorithm crosses xstop if rmono(P ) >
xstop, the last node is chosen for splicing if rmono(P ) ≤ xstop, and the optimal path P is unique.
Let P = v1 → . . . → vn, let L

i
f : v̄(Li

f ) = vi, ∀vi ∈ V (P ) be the labels representing P for the

forward algorithm, and let Li
b : v̄(L

i
b) = vi, ∀vi ∈ V (P ) be the labels representing P for the

backward algorithm.

The proof is by contradiction. Assume that the optimal path P is not found. This can
only happen in three cases:

1) For some node vi ∈ V (P ) neither Li
f nor Li

b is created.

2) For some node vi ∈ V (P ) neither Li
f nor Li

b exist after domination.

3) There is no node vi ∈ V (P ) where both Li
f and Li

b exist after domination.

It will now be shown that none of the three cases can happen.

Since both the forward and the backward algorithm find P , for ‘Case 1’ to happen the
stopping criteria must have stopped both of them before node vi was reached. This means
that rmono(L

i
f ) > xstop and rmono(L

i
b) ≤ xstop thus Li

f /∈ E(Li
b) which contradicts that P is

feasible.

18



Resource Contrained Shortest Paths Problems Solved by a Labeling Algorithm

For ‘Case 2’ to happen at least one of Li
f and Li

b must have been deleted during domination,
which is in contradiction with Definition 5 or that P is unique and optimal.

‘Case 3’ can be divided into two cases: one where rmono(P ) ≤ xstop and another where
rmono(P ) > xstop. If rmono(P ) ≤ xstop, then the splicing must be done at vn. L

n
b clearly exists,

so Ln
f must be absent. This can only happen when rmono(L

n−1

f ) > xstop which contradicts

that rmono(P ) ≤ xstop. If rmono(P ) > xstop, then there must be a node vi ∈ V (P ) where Li
b

cannot be extended more due to rmono(L
i
b)− rmono(e(vi−1, vi)) = rmono(L

i−1

b ) ≤ xstop. Since
Li
f does not exist, rmono(L

i−1

f ) > xstop. This means that rmono(L
i−1

f ) > xstop ≥ rmono(L
i−1

b )

implying Li−1

f /∈ E(Li−1

b ) which contradicts that P is feasible.

Since any value of xstop yields an optimal solution, xstop can be adjusted to balance the
amount of labels created by the forward and the backward algorithms respectively. As long
as xstop ≤ min(PQb) the value of xstop can be raised.

4 Parallel Labeling Algorithm

The algorithm just described is a so-called pushing algorithm because labels are extended
from a node to neighbouring nodes. A slightly different variant is a pulling algorithm where
labels are extended to a node from neighbouring nodes. Pulling nodes have a slightly differ-
ent structure that facilitates parallelization. Going from a label pushing to a label pulling
approach only takes a little rearranging of the pseudo-code and a priority queue for each node.

Parallel-Labeling(G, o, d)

1 PQo.enqueue(First-Label(o))
2 while ∃v ∈ V : PQv 6= ∅
3 for each node i ∈ V
4 for each node j ∈ V
5 Li = PQj.getSome()
6 for each L ∈ Li : Extendable(L, i)
7 Li = Extend-Label(L, i)
8 if v̄(Li) = d
9 Store-Solution(Li, sol)

10 else PQtemp
i .enqueue(Li)

11 Remove-Dominated(PQtemp
i )

12 for each node i ∈ V
13 PQi.deleteSome()

14 PQi.add(PQtemp
i )

15 return sol

As long as there is an untreated label left, each node tries to pull in labels, which have not
consumed too much of rmono, from neighbouring nodes. The consumption check is performed
in the getSome() function in line 5. Domination is performed in line 11 after the new labels
are created. When all nodes are finished pulling in labels, the priority queues are updated in
lines 13–14.

Since only local data are changed for each node i ∈ V in the lines 3–11, they can be run
in parallel.

19



Chapter 2

5 Computational Results

A bidirectional parallelized label-pulling algorithm has been implemented in C++ with GCC
[11] as compiler. POSIX thread [14] is used as means of obtaining concurrency. Binary
min heaps have been used for priority queues.

Only brief computational results are shown here, since the parallel bi-directional labeling
algorithm presented in this chapter is used in the following chapters and the performance
is documented there. The computational evaluation has been performed on a dual 2.66GHz
IntelR© Xeon R© X5355 machine with 16 GB of RAM. Table 1 shows the running times and
speedup for two different kinds of ESPPRC.

Instance T1 T2 Speedup2 T4 Speedup4 T8 Speedup8

A-n61-k9 3.05 2.19 1.39 1.80 1.69 1.71 1.78
A-n69-k9 6.48 4.83 1.34 3.81 1.70 3.36 1.93
B-n50-k8 7.61 5.32 1.43 4.47 1.70 4.09 1.86
C203.100 4.96 3.75 1.32 3.44 1.44 3.27 1.52
R112.100 2.84 1.95 1.46 1.66 1.71 1.35 2.10
R203.100 5.51 3.75 1.47 3.14 1.75 2.60 2.12
R204.50 163.06 138.58 1.18 95.29 1.71 75.74 2.15
R206.100 14.13 8.72 1.62 6.71 2.11 5.30 2.67
R210.100 15.16 9.65 1.57 7.68 1.97 6.37 2.38
RC203.100 13.80 9.46 1.46 8.01 1.72 7.38 1.87
RC206.100 1.18 0.89 1.33 0.84 1.40 0.71 1.66
RC207.100 8.34 5.27 1.58 4.09 2.04 3.35 2.49

Average 1.43 1.75 2.04

Table 1: ESPPRC solved by parallel bi-directional labeling algorithm. The A* and B* in-
stances have a single load resource, whereas the C*, R*, and RC* have a load as well as a
time resource. Ti is the time in seconds when run on i cores. Speedupi is the relative speedup
from one to i cores.

It can be concluded that some speedup is present. It can also be concluded that more
cores give larger speedup. The speedup is not linear in the number of cores, which can be
explained by limited memory bus speed. An average speedup of more than two must be
considered satisfactory.

6 Concluding Remarks

A general labeling algorithm for solving various resource constrained shortest path problems
has been presented. A parallel version was introduced and some computational results were
presented that showed that a speedup is experienced when running on multiple cores.

20



Resource Contrained Shortest Paths Problems Solved by a Labeling Algorithm

References

[1] J.E. Beasley and N. Christofides. An algorithm for the resource constrained shortest
path problem. Networks, 19:379–394, 1989. doi: 10.1002/net.3230190402.

[2] N. Boland, J. Dethridge, and I. Dumitrescu. Accelerated label setting algorithms for the
elementary resource constrained shortest path problem. Operation Research Letters, 34
(1):58–68, 2006. doi: 10.1016/j.orl.2004.11.011.

[3] A. Chabrier. Vehicle routing problem with elementary shortest path based column gen-
eration. Computers & Operations Research, 33(10):2972–2990, 2006. doi: 10.1016/j.cor.
2005.02.029.

[4] N. Christofides, A. Mingozzi, and P. Toth. Exact algorithms for the vehicle routing prob-
lem, based on spanning tree and shortest path relaxations. Mathematical Programming,
20(1):255–282, Dec 1981. doi: 10.1007/BF01589353.

[5] E. Danna and C. Le Pape. Branch-and-price heuristics: A case study on the vehicle
routing problem with time windows. In G. Desaulniers, J. Desrosiers, and M. M. Solomon,
editors, Column Generation, chapter 4, pages 99–129. Springer, 2005. doi: 10.1007/
0-387-25486-2\ 4.

[6] M. Desrochers. La fabrication d2̆019horaires de travail pour les conducteurs d2̆019autobus

par une mÃ c©thode de gÃ c©nÃ c©ration de colonnes. PhD thesis, UniversitÃ c© de
MontrÃ c©al, MontrÃ c©al, Canada, 1986.

[7] M. Desrochers, J. Desrosiers, and M. Solomon. A new optimization algorithm for the
vehicle routing problem with time windows. Operations Research, 40(2):342–354, 1992.
doi: 10.1287/opre.40.2.342.

[8] M. Dror. Note on the complexity of the shortest path models for column generation in
VRPTW. Operations Research, 42(5):977–979, 1994. doi: 10.1287/opre.42.5.977.

[9] I. Dumitrescu. Constrained Path and Cycle Problems. PhD thesis, Department of Math-
ematics and Statistics, University of Melbourne, Australia, 2002.

[10] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm for the ele-
mentary shortest path problem with resource constraints: Application to some vehicle
routing problems. Networks, 44(3):216–229, 2004. doi: 10.1002/net.v44:3.

[11] GCC. Gnu Compiler Collection version 4.4.3, 2010. http://gcc.gnu.org/.

[12] S. Irnich. Resource extension functions: Properties, inversion, and generalization to
segments. OR Spectrum, 30(1):113–148, 2008. doi: 10.1007/s00291-007-0083-6.

[13] S. Irnich and D. Villeneuve. The shortest path problem with resource constraints and
k-cycle elimination for k ≥ 3. INFORMS Journal on Computing, 18:391–406, 2006. doi:
10.1287/ijoc.1040.0117.

[14] POSIX thread. IEEE Std 1003.1, 2004 Edition, 2004.
http://www.unix.org/version3/ieee std.html.

21



Chapter 2

[15] L. B. Reinhardt and D. Pisinger. Multi-objective and multi-constrained non-additive
shortest path problems. Computers & Operations Research, 38(3):605 – 616, 2011. ISSN
0305-0548. doi: DOI:10.1016/j.cor.2010.08.003.

[16] G. Righini and M. Salani. New dynamic programming algorithms for the resource con-
strained shortest path problem. Technical Report 69, Note del Polo - Ricerca, Diparti-
mento di Tecnologie dell’Informazione, Universitá degli studi di Milano, 2005.

[17] G. Righini and M. Salani. Symmetry helps: bounded bi-directional dynamic program-
ming for the elementary shortest path problem with resource constraints. Discrete Op-

timization, 3(3):255–273, 2006. doi: 10.1016/j.disopt.2006.05.007.

[18] M. Salani. Branch-and-Price Algorithms for Vehicle Routing Problems. PhD thesis,
Universitá Degli Studi Di Milano, Facoltá di Scienza Matematiche, Fisuche e Naturali
Dipartimento di Technologie dell’Informazione, Milano, Italy, 2005.

[19] M. M. Solomon. Algorithms for the vehicle routing and scheduling problem with time
window constraints. Operations Research, 35(2):234–265, 1987. doi: 10.1287/opre.35.2.
254.

22



Part II

Shortest Paths and Vehicle Routing

23





Chapter 3

Subset-Row Inequalities Applied to

the Vehicle Routing Problem with

Time Windows

Mads Jepsen
DIKU Department of Computer Science, University of Copenhagen

Bjørn Petersen
DIKU Department of Computer Science, University of Copenhagen

Simon Spoorendonk
DIKU Department of Computer Science, University of Copenhagen

David Pisinger
DIKU Department of Computer Science, University of Copenhagen

Abstract

This paper presents a branch-and-cut-and-price algorithm for the vehicle routing prob-
lem with time windows. The standard Dantzig-Wolfe decomposition of the arc flow for-
mulation leads to a set partitioning problem as the master problem and an elementary
shortest path problem with resource constraints as the pricing problem. We introduce
the subset-row inequalities, which are Chvatal-Gomory rank-1 cuts based on a subset of
the constraints in the master problem. Applying a subset-row inequality in the master
problem increases the complexity of the label-setting algorithm used to solve the pricing
problem since an additional resource is added for each inequality. We propose a modi-
fied dominance criterion that makes it possible to dominate more labels by exploiting the
step-like structure of the objective function of the pricing problem. Computational ex-
periments have been performed on the Solomon benchmarks where we were able to close
several instances. The results show that applying subset-row inequalities in the master
problem significantly improves the lower bound, and in many cases makes it possible to
prove optimality in the root node.

Published in the journal Operations Research, 2008

25



Chapter 3

1 Introduction

The vehicle routing problem with time windows (VRPTW) can be described as follows: A set
of customers, each with a demand, needs to be serviced by a number of vehicles all starting
and ending at a central depot. Each customer must be visited exactly once within a given time
window, and the capacity of the vehicles must not be exceeded. The objective is to service
all customers traveling the least possible distance. In this paper we consider a homogenous
fleet, i.e., all vehicles are identical.

The standard Dantzig-Wolfe decomposition of the arc flow formulation of the VRPTW
is to split the problem into a master problem (a set partitioning problem) and a pricing
problem (an elementary shortest path problem with resource constraints (ESPPRC), where
capacity and time are the constrained resources). A restricted master problem can be solved
with delayed column generation and embedded in a branch-and-bound framework to ensure
integrality. Applying cutting planes either in the master or the pricing problem leads to a
branch-and-cut-and-price algorithm (BCP).

Kohl et al. [23] implemented a successful BCP algorithm for the VRPTW by applying
subtour elimination constraints and two-path cuts. Cook and Rich [8] generalized the two-
path cuts to the k-path cuts. Common for these BCP algorithms is that all applied cuts
are valid inequalities for the VRPTW, i.e., the original arc flow formulation, and contain
a structure making it possible to handle values of the dual variables in the pricing problem
without increasing the complexity of the problem. Fukasawa et al. [17] refer to this as a robust
approach in their paper, where a range of valid inequalities for the capacitated vehicle routing
problem are used in a BCP algorithm. The topic of column generation and BCP algorithms
has been surveyed by Barnhart et al. [1] and LÃ1

4bbecke and Desrosiers [27].

Dror [13] showed that the ESPPRC is strongly NP-hard, hence a relaxation of the ESP-
PRC was used as a pricing problem in earlier BCP approaches for the VRPTW. The relaxed
pricing problem where non-elementary paths are allowed is denoted the shortest path prob-
lem with resource constraints (SPPRC) and can be solved in pseudo-polynomial time using
a label-setting algorithm, which was initially done by Desrochers [11]. To improve lower
bounds of the master problem, Desrochers et al. [12] used 2-cycle elimination, which was later
extended by Irnich and Villeneuve [20] to k-cycle elimination (k-cyc-SPPRC) where cycles
containing k or less nodes are not permitted.

Beasley and Christofides [2] proposed to solve the ESPPRC using Lagrangian relaxation.
However, recently label-setting algorithms have become the most popular approach to solve
the ESPPRC; see e.g. Dumitrescu [14] and Feillet et al. [16]. When solving the ESPPRC
with a label-setting algorithm a binary resource for each node is added, which increases the
complexity of the algorithm compared to solving the SPPRC or the k-cyc-SPPRC. Righini
and Salani [32] developed a label-setting algorithm using the idea of Dijkstra’s bi-directio-
nal shortest path algorithm that expands both forward and backward from the depot and
connects routes in the middle, thereby potentially reducing the running time of the algorithm.
Furthermore Righini and Salani [32] and Boland et al. [3] proposed a decremental state space
algorithm that iteratively solves a SPPRC by applying resources that force nodes to be visited
at most once. Recently Chabrier [5], Danna and Le Pape [9], and Salani [33] successfully solved
several previously unsolved instances of the VRPTW from the benchmarks of Solomon [34]
using a label-setting algorithm for the ESPPRC.

In this paper, we extend the BCP framework to include valid inequalities for the master
problem, more specifically by applying the subset-row (SR) inequalities to the set partitioning

26



Subset-Row Inequalities Applied to the Vehicle Routing Problem with Time Windows

master problem. Nemhauser and Park [28] developed a similar BCP algorithm for the edge
coloring problem, but to our knowledge no such algorithms for the VRPTW have been pre-
sented. Applying the SR inequalities leads to an increased complexity of the pricing problem
since each inequality is represented by an additional resource. To improve the performance of
the label-setting algorithm, we introduce a modified dominance criterion that handles the re-
duced cost calculation in a reasonable way. Moreover, the SR inequalities potentially provide
better lower bounds and smaller branch trees.

The paper is organized as follows: In Section 2 we give an overview of the Dantzig-Wolfe
decomposition of the VRPTW and describe how to calculate the reduced cost of columns
when column generation is used. In Section 3 we introduce the SR inequalities and show that
the separation problem is NP-complete. In Section 4 we review the basics of a label-setting
algorithm for solving the ESPPRC and show how to handle the modified pricing problem
in the same label-setting algorithm. For details regarding label-setting algorithms (including
bi-directionality) we refer to Desaulniers et al. [10], Irnich and Desaulniers [19], Irnich [18],
Righini and Salani [31]. An algorithmic outline and computational results, using the Solomon
benchmark instances, are presented in Section 5. Section 6 concludes the paper.

2 Decomposition

Let C be the set of customers, let the set of nodes be V = C ∪ {o, o′} where {o} denotes the
depot at the start of the routes and {o′} denotes the depot at the end; and let E = {(i, j) :
i, j ∈ V, i 6= j} be the edges between the nodes. Let K be the set of vehicles with |K|
unbounded, each vehicle having capacity D, and let di be the demand of customer i ∈ C and
do = do′ = 0. Let ai be the beginning and bi be the end of the time window for node i ∈ V .
Let si be the service time for i ∈ V and let tik be the time vehicle k ∈ K visits node i ∈ V ,
if k visits i. Let cij be the travel cost on edge (i, j) ∈ E and let xijk be a variable indicating
whether vehicle k ∈ K traverses edge (i, j) ∈ E. Last let τij = cij + si > 0 be the travel time
on edge (i, j) ∈ E plus the service time of customer i. The three-index flow model (Toth and
Vigo [36]) for the VRPTW is:

min
∑

k∈K

∑

(i,j)∈E

cijxijk (1)

s.t.
∑

k∈K

∑

(i,j)∈δ+(i)

xijk = 1 ∀i ∈ C (2)

∑

(i,j)∈δ+(o)

xijk =
∑

(i,j)∈δ−(o′)

xijk = 1 ∀k ∈ K (3)

∑

(j,i)∈δ−(i)

xjik −
∑

(i,j)∈δ+(i)

xijk = 0 ∀i ∈ C, ∀k ∈ K (4)

∑

(i,j)∈E

dixijk ≤ D k ∈ K (5)

ai ≤ tik ≤ bi ∀i ∈ V, ∀k ∈ K (6)

xijk(tik + τij) ≤ tjk ∀(i, j) ∈ E, ∀k ∈ K (7)

xijk ∈ {0, 1} ∀(i, j) ∈ E, ∀k ∈ K (8)

27



Chapter 3

Here (2) ensures that every customer i ∈ C is visited, while (3) ensures that each route starts
and ends in the depot. Constraint (4) maintains flow conservation, while (5) ensures that the
capacity of each vehicle is not exceeded. Constraints (6), (7) ensure that the time windows
are satisfied. Note that (7) together with the assumption that τij > 0 for all (i, j) ∈ E
eliminates sub-tours. The last constraints define the domain of the arc flow variables. Note
that a zero-cost edge xoo′k between the start and end depot must be present for all vehicles
for (3) to hold if not all vehicles are used.

The standard Dantzig-Wolfe decomposition of the VRPTW, see e.g. Desrochers et al.
[12], leads to the following master problem:

min
∑

p∈P

∑

(i,j)∈E

cijαijpλp (9)

s.t
∑

p∈P

∑

(i,j)∈δ+(i)

αijpλp = 1 ∀i ∈ C (10)

λp ∈ {0, 1} ∀p ∈ P (11)

where P is the set of all feasible routes, the binary constant αijp is one if and only if edge
(i, j) is used by route p ∈ P , and the binary variable λp indicates whether route p is used.
The master problem can be recognized as a set partitioning problem, and the LP relaxation
may be solved using delayed column generation. Let π ∈ R be the dual variables of (10) and
let π0 = 0. Then the reduced cost of a route p is:

cp =
∑

(i,j)∈E

cijαijp −
∑

(i,j)∈E

πjαijp =
∑

(i,j)∈E

(cij − πj)αijp (12)

The pricing problem becomes an ESPPRC where the cost of each edge is cij = cij − πj
for all edges (i, j) ∈ E. When applying cuts during column generation we will distinguish
between valid inequalities for the VRPTW constraints (2)-(8) and valid inequalities for the
set partitioning constraints (10)-(11).

Consider a valid inequality for the VRPTW constraints (2)–(8) in terms of the arc flow
variables x:

∑

k∈K

∑

(i,j)∈E

βijxijk ≤ β0 (13)

When decomposed into the master problem, inequality (13) is reformulated as:

∑

p∈P

∑

(i,j)∈E

βijαijpλp ≤ β0 (14)

Let µ ≤ 0 be the dual variable of (14). The reduced cost of a column p is then

cp =
∑

(i,j)∈E

cijαijp −
∑

(i,j)∈E

πjαijp − µ
∑

(i,j)∈E

βijαijp

=
∑

(i,j)∈E

(cij − πj − µβij)αijp (15)

Compared to (12) an additional coefficient µβij is subtracted from the cost of edge (i, j)
and the complexity of the pricing problem remains unchanged if we use the edge costs cij =
cij − πj − µβij .

28



Subset-Row Inequalities Applied to the Vehicle Routing Problem with Time Windows

Now, consider adding a valid inequality for the set partitioning master problem (10)–(11)
that cannot be written as a linear combination of the arc flow variables:

∑

p∈P

βpλp ≤ β0 (16)

Let σ ≤ 0 be the dual variable of (16). The reduced cost of a column p is:

ĉp = cp − σβp =
∑

(i,j)∈E

cijαijp − σβp (17)

In addition to the reduced cost computed for a column p in (15) the cost −σβp must be
considered. To reflect the possible extra cost −σβp it may be necessary to modify the pricing
problem by adding constraints or variables, thereby increasing its complexity.

3 Subset-Row Inequalities

The set of valid inequalities for the set packing problem is a subset of the set of valid inequali-
ties for the set partitioning problem since the latter problem is a special case of first-mentioned.
Two well-known valid inequalities for the set packing problem are the clique and the odd-hole
inequalities, where the first is known to be facet-defining for the set partitioning problem
(Nemhauser and Wolsey [29]).

Since the master problem is a set partitioning problem, it would be obvious to go in this
direction when looking for valid inequalities for the master problem. Consider the separation
of a clique or an odd-hole inequality. The undirected conflict graph G′(P,E′) is defined as
follows: Each column is a vertex in G′ and the edge set is given as:

E′ =







(p, q) :
∑

(i,j)∈δ+(i)

αijp = 1 ∧
∑

(i,j)∈δ+(i)

αijq = 1, i ∈ C, p, q ∈ P, p 6= q







That is, an edge is present if the two columns p and q have coefficient one in the same row. In
a VRPTW context it reads: Two routes are conflicting if they are visiting the same customer.
A clique in G′ leads to the valid clique inequality:

∑

p∈P̂

λp ≤ 1 (18)

where P̂ ⊆ P are the columns corresponding to the vertices of a clique in G′. A cycle visiting
an odd number of vertices P in G′ leads to the valid odd-hole inequality:

∑

p∈P̂

λp ≤

⌊

|P̂ |

2

⌋

(19)

where P̂ ⊆ P are the columns corresponding to the vertices visited on the cycle in G′.
However, when column generation is applied, it is not obvious how to reflect the reduced cost
of (18) or (19) in the pricing problem since there is no specific knowledge of the columns of
the master problem when solving the pricing problem.

29



Chapter 3

Example 1

SR inequalities derived from the conflict graph of a set packing problem. In the LP-solution
to Aλ ≤ 1 all λ variables are 1

2 , which results in two violated SR inequalities:

• With |S| = 3 and k = 2 due to variables λ1, λ2, and λ3 giving the set of rows S =
{r1, r2, r3}

• With n = 5 and k = 2 due to variables λ1, λ2, λ3, λ4, and λ5 giving the set of rows
S = {r1, r3, r4, r5, r6}

λ1 λ2 λ3 λ4 λ5

r1 1 1 ≤ 1
r2 1 1 ≤ 1
r3 1 1 ≤ 1
r4 1 1 ≤ 1
r5 1 1 ≤ 1
r6 1 1 ≤ 1

Set packing problem Aλ ≤ 1.

u u

u

u

u

λ1 λ2

λ3

λ4

λ5

r1

r2 r3r4

r5r6

Corresponding conflict graph.

Inspired by the above inequalities (18) and (19) we introduce the subset-row inequalities
(SR inequalities). These inequalities are specifically linked to the rows (rather than the
columns) of the set packing problem, hence making it possible to identify the coefficient of a
column in an SR inequality.

Definition 1. Consider the set packing structure

X = {λ ∈ B
|P | : Aλ ≤ 1} (20)

with the set of rows M and columns P , and a |M | × |P | binary coefficient matrix A. The SR
inequality is defined as:

∑

p∈P

⌊

1

k

∑

i∈S

αip

⌋

λp ≤

⌊

|S|

k

⌋

(21)

where S ⊆ M and 0 < k ≤ |S|.

Example 1 illustrates some SR inequalities derived from the conflict graph of a set packing
problem.

Given a column p ∈ P we need to have
∑

i∈S αip ≥ k to get a non-zero coefficient of
λp in (21). For the master problem of VRPTW the coefficient matrix can be translated as
αip =

∑

(i,j)∈δ+(i) αijp, i.e., αip is the sum of all the outgoing edges of a customer i. Hence,

⌊

1

k

∑

i∈S

αip

⌋

=









1

k

∑

i∈S

∑

(i,j)∈δ+(i)

αijp









which is only 1 or larger when k or more customers of S are visited on route p.

30



Subset-Row Inequalities Applied to the Vehicle Routing Problem with Time Windows

Proposition 1. The SR inequalities (21) are valid for the Set Packing structure X.

Proof. The proof follows directly from Chavtal-Gomory’s procedure to construct valid in-
equalities (Wolsey [37]). Scale the |S| inequalities

∑

p∈P αipλp ≤ 1 for each row i ∈ S ⊆ M

from (20) with 1
k ≥ 0 and add them:

∑

p∈P

1

k

∑

i∈S

αipλp ≤
|S|

k

Flooring on left side and right side leads to (21).

Observe that, when the coefficient
⌊

1
k

∑

i∈S αip

⌋

evaluates to 0 or 1 for all p ∈ P and

the right hand side
⌊

|S|
k

⌋

= 1 then the set of SR inequalities (21) is a subset of the clique

inequalities (18).

From Definition 1 it is clear that the SR inequalities are Chvatal-Gomory rank-1 cuts, see
Chvatal [6]. Eisenbrand [15] has shown that the separation problem isNP-complete for general
Chvatal-Gomory rank-1 cuts. However, in some special cases polynomial time separation is
possible, e.g. the maximally violated mod-k cuts for a fixed k by Caprara et al. [4]. Since the
SR inequalities are another special case, the separation problem will be investigated further.

3.1 Separation of Subset-Row Inequalities

The separation problem of SR inequalities is defined as follows: Given the current LP-solution
λ where λp < 1 for all p ∈ P , and let n be the size of S. For some fixed values n and k where
1 < k ≤ n, find the most violated SR inequality. Using the binary variable xi to denote
whether i ∈ S this can be stated as:

max
∑

p∈P

⌊

1

k

∑

i∈M

aipxi

⌋

λp −
⌊n

k

⌋

(22)

s.t.
∑

i∈M

xi = n (23)

xi ∈ {0, 1} ∀i ∈ M (24)

The corresponding decision problem SR-DECISION asks whether

∑

p∈P

⌊

1

k

∑

i∈M

aipxi

⌋

λp ≥ c (25)

is feasible subject to (23) and (24), where 1 ≤ c < n and c ∈ Z. Since we may multiply (25)
by any coefficient 1

γ > 0, the coefficient bounds λp < 1 and c < n can be softened to

λp <
1

γ
, c <

n

γ
(26)

This leads to the following proposition:

Proposition 2. The separation problem SR-DECISION is NP-complete.

31



Chapter 3

Example 2

Illustration of the transformation 3CNF-SAT to SR-DECISION. Given the 3CNF-SAT ex-
pression

φ = (x1 ∨ ¬x1 ∨ ¬x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

the matrix A = (aij) becomes

1 . . . m m+ 1 . . . . . . m+ n m+ n+ 1
C1 . . . Cm x1 . . . . . . xn

1 x1 1 1
2 ¬x1 1 1 1

x2 1 1
... ¬x2 1 1

x3 1 1
¬x3 1 1
x4 1 1

2n ¬x4 1 1

2n+ 1 1
2n+ 2 1 1 1 1 1 1 1 1
2n+ 3 1 1 1 1 1 1 1 1

while we set k = 3, λp = 1 for p ∈ P and c = 8.

Proof. We will show the statement by reduction from 3-conjunctive normal form satisfiability
(3CNF-SAT). Given an expression φ written in three-conjunctive normal form, the 3CNF-
SAT problem asks whether there is an assignment of binary values to the variables such that
φ evaluates to true. An expression is in three-conjunctive normal form when it consists of
a collection of disjunctive clauses C1, . . . , Cm of literals, where a literal is a variable xi or a
negated variable ¬xi, and each clause contains exactly three literals.

Let x1, . . . , xn be the set of variables which occurs in the clause φ. We transform the
3CNF-SAT instance to a SR-DECISION instance by constructing a matrix A = (aij) with
2n+ 3 rows and m+ n+ 1 columns, i.e., M = {1, . . . , 2n + 3} and P = {1, . . . ,m+ n+ 1}.

The rows 1, . . . , 2n of matrix A corresponds to literals x1,¬x1, x2,¬x2, . . . , xn,¬xn, while
columns j = 1, . . . ,m correspond to clauses C1, . . . , Cm, and columns j = m + 1, . . . ,m + n
correspond to variables x1, . . . , xn.

We now define matrix A as follows: For j = 1, . . . ,m let aij = 1 iff the corresponding
literal appears in clause Cj . For j = 1, . . . , n let ai,j+m = 1 iff the corresponding literal is
xj or ¬xj. For j = m + n + 1 let aij = 0. The last three rows of A are defined as follows:
For j = 1, . . . ,m + n let a2n+1,j = 0, while a2n+1,m+n+1 = 1. For j = 1, . . . ,m + n + 1 let
a2n+2,j = a2n+3,j = 1. Finally we set k = 3, λp = 1 for all p ∈ P and c = m + n + 1. Note
that all coefficients are within the bounds (26) for γ sufficiently large. An example of the
transformation is illustrated in Example 2.

With the chosen constants, the SR-DECISION problem (25) reads

∑

p∈P

⌊

1

3

∑

i∈M

aipxi

⌋

≥ m+ n+ 1 = |P |

32



Subset-Row Inequalities Applied to the Vehicle Routing Problem with Time Windows

which is satisfied if and only if

∑

i∈M

aipxi ≥ 3 ∀p ∈ P

As the last three rows of A always must be chosen, it is equivalent to

2n
∑

i=1

aipxi ≥ 1 ∀p = 1, . . . ,m+ n

(i) Assume that there is a feasible assignment of binary values to x1, . . . , xn such that
φ evaluates to true in the 3CNF-SAT instance. In the corresponding SR-DECISION
problem choose row i if and only if the corresponding literal is true in φ. Since exactly
n literals are true, we will in this way choose n rows. Since at least one literal is true
in each clause, and each column 1, . . . ,m corresponds to a clause in A we will get a
contribution of at least one in each of these columns. Moreover, since exactly one of xi
and ¬xi is true in φ we will get a contribution of exactly one in column m+1, . . . ,m+n.
Hence, the corresponding SR-DECISION problem is true.

(ii) Assume on the other hand that SR-DECISION is true. Let P ′ ⊆ P be the set of rows
corresponding to the solution. By assumption |P ′| = n. First we notice that exactly
one of the rows corresponding to the literals xi and ¬xi is chosen. This follows from
the fact that we have n columns m+1, . . . ,m+n which needs to be covered by n rows,
and each row covers exactly one column. For each literal in φ let xi or ¬xi be true if
the corresponding row was chosen in SR-DECISION. Each variable will be well-defined
due to the above argument. Moreover, since the rows P ′ must cover at least one api = 1
for each column j = 1, . . . ,m, we see that each clause in φ becomes true.

Since the reduction is polynomial, and SR-DECISION obviously is in NP, we have proved
the statement.

Example 3 shows that typical separation problems of SR inequalities actually possess the
properties assumed in the NP-completeness proof.

4 Label-Setting Algorithm

When solving the pricing problem, it is noted that finding a route with negative reduced
cost corresponds to finding a negative cost path starting and ending at the depot, i.e., an
ESPPRC. Our ESPPRC algorithm is based on standard label setting techniques presented
by e.g. Beasley and Christofides [2], Dumitrescu [14], Feillet et al. [16], Chabrier [5], Danna
and Le Pape [9]; hence in the following we mainly focus on the dominance criterion used for
handling the modifications stemming from the SR inequalities of the master problem.

The ESPPRC can be formally defined as: Given a weighted directed graph G(V,E) with
nodes V and edges E, and a set of resources R. For each edge (i, j) ∈ E and resource r ∈ R
three parameters are given: A lower limit ar(i, j) on the accumulation of resource r when
traversing edge (i, j) ∈ E; an upper limit br(i, j) on the accumulation of resource r when
traversing edge (i, j) ∈ E; and finally an amount cr(i, j) of resource r consumed by traversing
edge (i, j) ∈ E. The objective is to find a minimum cost path p from a source node o ∈ V to

33



Chapter 3

Example 3

To illustrate that the bounds (26) indeed are realistic consider the case k = 3. Choose
γ = m+n+1

β where β = n−2
3 or β = n−1

3 depending on which of the expressions that evaluates
to an integral value. The right hand side of (25) evaluates to

c ·
1

γ
= (m+ n+ 1) ·

β

m+ n+ 1
= β

where an integral value of β gives

β =
⌊n

3

⌋

< n

The value of λ gives

λp ·
1

γ
= 1 ·

β

m+ n+ 1
≤ 1 ∀p ∈ P

Hence all bounds are valid according to the separation problem (22)-(24).

a target node o′ ∈ V , where the accumulated resources of p satisfy the limits for all resources
r ∈ R. Without loss of generality, we assume that the limits must be satisfied at the start of
each edge (i, j), i.e., before cr(i, j) has been consumed.

Remark that equivalent upper and lower limits and consumptions on the nodes can be
“pushed” onto the edges, e.g., the ingoing edges of the node.

For the pricing problem of the VRPTW, the resources are demand d, time t, a binary
visit-counter for each customer v ∈ C and reduced cost c. Note that also the reduced cost is
considered a resource. When considering the pricing problem of the VRPTW, the consump-
tions and upper and lower limits of the resources at each edge (i, j) in ESPPRC are:

ad(i, j) = 0, bd(i, j) = D − dj , cd(i, j) = dj ∀(i, j) ∈ E
at(i, j) = ai, bt(i, j) = bi, ct(i, j) = τij ∀(i, j) ∈ E
av(i, j) = 0, bv(i, j) = 1, cv(i, j) = 1 ∀v ∈ V : v = j, ∀(i, j) ∈ E
av(i, j) = 0, bv(i, j) = 1, cv(i, j) = 0 ∀v ∈ V : v 6= j, ∀(i, j) ∈ E
ac(i, j) = −∞, bc(i, j) = ∞ , cc(i, j) = cij ∀(i, j) ∈ E

In the label-setting algorithm labels at node v represent partial paths from o to v. The
following attributes for a label L are considered:

v(L) The current end-node of the partial path represented by L.
c(L) The sum of the reduced cost along path L.
r(L) The accumulated consumption of resource r ∈ R along path L.

A feasible extension ǫ ∈ E(L) of a label L is a partial path starting in a node v(L) ∈ V
and ending in the target node o′, that does not violate any resources when concatenated with
the partial path represented by L.

In the following it is assumed that all resources are bounded strongly from above, and
weakly from below. This means that if the current resource accumulation of a label is below
the lower limit on a given edge, it is allowed to fill up the resource to the lower limit, e.g.,
waiting for a time window to open. This means that two consecutive labels Lu and Lv related
by an edge (u, v), i.e., Lu is extended and creates Lv, where v(Lu) = u and v(Lv) = v, must

34



Subset-Row Inequalities Applied to the Vehicle Routing Problem with Time Windows

satisfy

r(Lv) ≤ br(u, v), ∀r ∈ R (27)

r(Lv) = max{r(Lu) + cr(u, v), ar(u, v)}, ∀r ∈ R (28)

Here (27) demands that each label Lu satisfies the upper limit br(u, v) of resource r cor-
responding to edge (u, v), while (28) states that resource r at label Lv corresponds to the
resource consumption at label Lu plus the amount consumed by traversing edge (u, v), re-
specting the lower limit ar(u, v) on edge (u, v).

A simple enumeration algorithm could be used to produce all these labels, but to limit
the number of labels considered, dominance rules are introduced to fathom labels which do
not lead to an optimal solution.

Definition 2. A label Li dominates label Lj if

v(Li) = v(Lj) (29)

c(Li) ≤ c(Lj) (30)

E(Lj) ⊆ E(Li) (31)

In other words, the paths corresponding to labels Li and Lj should end at the same node
v(Li) = v(Lj) ∈ V , the path corresponding to label Li should cost no more than the path
corresponding to label Lj, and finally any feasible extension of Lj is also a feasible extension
of Li.

Feillet et al. [16] suggested to consider the set of nodes that cannot be reached from a
label Li and compare the set with the unreachable nodes of a label Lj in order to determine
if some extensions are impossible. Or in other words: update the node resources in an eager
fashion instead of a lazy. The following definition is a generalization of Definition 3 in Feillet
et al. [16].

Definition 3. Given a start node o ∈ V , a label L, and a node u ∈ V where v(L) = u a node
v ∈ V is considered unreachable if v has already been visited on the path from o to u or if a
resource window is violated, e.g.:

∃r ∈ R r(L) + ℓr(u, v) > br(v)

where ℓr(u, v) is a lower bound on the consumption of resource r on all feasible paths from u
to v. The node resources are then given as: v(L) = 1 indicates that node v ∈ V is unreachable
from node v(L) ∈ V , and v(L) = 0 otherwise.

Determining if (31) holds can be quite cumbersome because the straightforward definition
demands that we calculate all extensions of the two labels. Therefore, a sufficient criterion
for (31) is sought that can be computed faster. If label Li has consumed less resources than
label Lj then no resources are limiting the possibilities of extending Li compared to Lj, hence
the following proposition can be used as a relaxed version of the dominance criterion.

Proposition 3. Desaulniers et al. [10]. If all resource extension functions are non-decreasing,
then label Li dominates label Lj if:

v(Li) = v(Lj) (32)

c(Li) ≤ c(Lj) (33)

r(Li) ≤ r(Lj) ∀r ∈ R (34)

35



Chapter 3

Using Proposition 3 as a dominance criterion is a relaxation of the dominance criterion
of Definition 2 since only a subset of labels satisfying (29), (30) and (31) satisfies inequalities
(32), (33) and (34).

4.1 Solving the Modified Pricing Problem

Consider some valid SR inequality of the form (21),

∑

p∈P

⌊

1

k

∑

i∈S

αip

⌋

λp ≤

⌊

|S|

k

⌋

where S ⊆ M and 0 < k ≤ |S|. Let σ ≤ 0 be the corresponding dual variable when solving
the master problem to LP-optimality. From (17) the reduced cost of a column in the VRPTW
master problem is:

ĉp = cp − σ

⌊
∑

i∈S

∑

(i,j)∈δ+(i) αijp

k

⌋

=
∑

(i,j)∈E

cijαijp − σ

⌊
∑

i∈S

∑

(i,j)∈δ+(i) αijp

k

⌋

(35)

We analyze how this additional cost can be handled in the label-setting algorithm for ESP-
PRC.

Let V (L) be the nodes visited on the partial path of label L. The cost of a label L can
then be expressed as:

ĉ(L) = c(L)− σ

⌊

|S ∩ V (L)|

k

⌋

(36)

A new resource m can be used to compute the coefficient of penalty σ for label L, i.e.,
m(L) = |S ∩V (L)|, the number of customers involved in the cut. Note that the consumption
of resource m is 1 for each e.g. outgoing edge of the involved customers. Therefore the
usual dominance criterion of Proposition 3 can be used. Note that in case Li dominates Lj ,
c(Li) ≤ c(Lj) and m(Li) ≤ m(Lj) so ĉ(Li) ≤ ĉ(Lj) since −σ > 0. Hence the penalty term
must only be considered on the last edge to the target node to compute the reduced cost ĉ(L)
of path L. However, further labels can be eliminated by exploiting the structure of (36).

For a label L let

T (L) = |S ∩ V (L)| mod k

be the number of visits made to S since the last penalty was paid for visiting k nodes in S.
Recall E(L) as the set of feasible extensions from the label L to the target node o′ and note
that when label Li dominates label Lj, their common extensions are E(Lj) due to (31). The
following cost dominance criterion is obtained for a single SR inequality:

Proposition 4. If T (Li) ≤ T (Lj), v(Li) = v(Lj), ĉ(Li) ≤ ĉ(Lj), and r(Li) ≤ r(Lj) ∀r ∈ R,
then label Li dominates label Lj.

Proof. Consider any common extension ǫ ∈ E(Lj). Since T (Li) ≤ T (Lj) the relation between
the number of future penalties for the two labels when concatenated with ǫ is:

⌊

|S ∩ ǫ|+ T (Li)

k

⌋

≤

⌊

|S ∩ ǫ|+ T (Lj)

k

⌋

36



Subset-Row Inequalities Applied to the Vehicle Routing Problem with Time Windows

This leads to the following relation between the costs:

ĉ(Li + ǫ) = ĉ(Li) + c(ǫ)− σ

⌊

|S ∩ ǫ|+ T (Li)

k

⌋

≤ ĉ(Lj + ǫ) = ĉ(Lj) + c(ǫ)− σ

⌊

|S ∩ ǫ|+ T (Lj)

k

⌋

Hence label Li dominates label Lj.

Proposition 5. If T (Li) > T (Lj), v(Li) = v(Lj), ĉ(Li)−σ ≤ ĉ(Lj), and r(Li) ≤ r(Lj) ∀r ∈
R, then label Li dominates label Lj .

Proof. Consider any common extension ǫ ∈ E(Lj). Since T (Li) > T (Lj) the relation between
the number of future penalties for the two labels when concatenated with ǫ is:

⌊

|S ∩ ǫ|+ T (Li)

k

⌋

≥

⌊

|S ∩ ǫ|+ T (Lj)

k

⌋

(37)

Since 0 ≤ T (Lj) < T (Li) ≤ k it is clear that the left hand side of (37) is at most one unit
larger than the right hand side, i.e., label Li will pay the penalty at most one more time than
label Lj. Hence,

⌊

|S ∩ ǫ|+ T (Li)

k

⌋

− 1 ≤

⌊

|S ∩ ǫ|+ T (Lj)

k

⌋

That is, the additional cost of extending Li with ǫ is at most −σ more than extending Lj

with ǫ. This leads to the following relation between the costs:

ĉ(Li + ǫ) = ĉ(Li) + c(ǫ)− σ

⌊

|S ∩ ǫ|+ T (Li)

k

⌋

= ĉ(Li)− σ + c(ǫ)− σ

(⌊

|S ∩ ǫ|+ T (Li)

k

⌋

− 1

)

≤ ĉ(Lj) + c(ǫ)− σ

⌊

|S ∩ ǫ|+ T (Lj)

k

⌋

= ĉ(Lj + ǫ)

Hence label Li dominates label Lj.

Observe that if T (Li) + |S ∩ ǫ| < k for all ǫ ∈ E(Lj), it is not possible to visit S enough
times to trigger a penalty, i.e., the temporary penalty to the cost of Li can be disregarded.

In case of several SR inequalities, the new dominance criterion is as follows:

Proposition 6. Let Q = {q : σq < 0∧Tq(Li) > Tq(Lj)}. Then label Li dominates label Lj if:

v(Li) = v(Lj) (38)

ĉ(Li)−
∑

q∈Q

σq ≤ ĉ(Lj) (39)

r(Li) ≤ r(Lj) ∀r ∈ R (40)

Proof. The validity of (39) follows directly from Propositions 4 and 5. The validity of (38)
and (40) follows from Proposition 3.

37



Chapter 3

5 Computational Results

The BCP algorithm has been implemented using the BCP framework and the open source
linear programming solver CLP, both parts of the framework COIN [7]. All tests are run on
an Intel R© Pentium R© 4 3.0 GHz PC with 4 GB of memory.

The benchmarks of Solomon [34] follow a naming convention of DTm.n. The distribution
D can be R, C and RC, where the C instances have a clustered distribution of customers,
the R instances have a random distribution of customers, and the RC instances are a mix of
clustered and randomly distributed customers. The time window T is either 1 or 2, where
instances of type 1 have tighter time windows than instances of type 2. The instance number
is given by m and the number of customers is given by n.

The outline of the BCP algorithm presented in this paper is as follows:

Step 1. Choose an unprocessed branch node. If the lower bound is above the upper bound,
then fathom branch node.

Step 2. Solve the LP master problem.

Step 3. Solve the pricing problem heuristically. If columns with negative reduced cost
have been found, then add them to the master problem and go back to Step 2.

Step 4. Solve the pricing problem to optimality. Update the lower bound. If the lower
bound is above the upper bound, then fathom the branch node. If some new columns have
been found, then add them to the master problem and go to Step 2.

Step 5. Separate SR inequalities. If any violated cuts are found, then add them to the
master problem and go to Step 2.

Step 6. If the LP solution is fractional then branch and add the children to the set of
unprocessed branch nodes. Mark the current node as processed and go to Step 1.

We allow a maximum of 400 variables and 50 cuts to be generated in each of steps 3, 4,
and 5 respectively. The pricing-problem heuristic is based on the label-setting algorithm but
a simpler heuristic dominance criterion is used. If a label Li dominates Lj on cost, demand
and time it is regarded as dominated and Lj is discarded. That is, no concern is taken to
the node resources. The separation of SR inequalities is done with a complete enumeration
of all inequalities with |S| = 3 and k = 2. Let B be the set of basic variables in the current
LP solution and C be the set of customers, then the separation can be done in O(|C|3|B|).
Preliminary tests showed that SR inequalities with different values of n and k seldom appeared
in the VRPTW instances, hence no separation of these inequalities was done.

The branch tree is explored with a best-bound search strategy, i.e., the node with the
lowest lower bound is chosen first, breaking ties based on the LP result of the strong branching.
We have adapted the branching rule used by Fukasawa et al. [17]: For a subset of customers
S ⊂ C the number of vehicles to visit that set is either two or greater than or equal to four,
i.e.,

∑

k∈K

∑

(i,j)∈δ+(S)

(xijk + xjik) = 2

and
∑

k∈K

∑

(i,j)∈δ+(S)

(xijk + xjik) ≥ 4

We are using the cut library of Lysgaard [25] to separate candidate sets for branching, which
is an implementation of the heuristic methods described in Lysgaard et al. [26].

38



Subset-Row Inequalities Applied to the Vehicle Routing Problem with Time Windows

Author(s) CPU SpecINT SpecCFP Normalized

Irnich and Villeneuve [20] P3 600 MHz∗ 295 204 0.23
Chabrier [5] P4 1.5 GHz 526 606 0.52
Jepsen et al. [this paper] P4 3.0 GHz 1099 1077 1.00

Table 1: Comparison of computer speed. Based on CPU2000 benchmarks from SPEC [35]. (∗) benchmarks
are given for P3 650 MHz since no benchmarks were available for P3 600. The normalized value is an average
of SpecINT and SpecCFP.

5.1 Running Times

To give a fair comparison between running times of our algorithm and the two most recent
algorithms presented by Irnich and Villeneuve [20] and Chabrier [5], the CPU speed is taken
into account. This is done according to the CPU2000 benchmarks reported by The Standard
Performance Evaluation Corporation SPEC [35]. Table 1 gives the integer and floating point
benchmark scores and a normalized value, e.g. our computations were carried out on a
computer approximately twice as fast as that of Chabrier.

A comparison of running times is shown in Table 2. To save space we only report results
on what we consider hard instances, i.e., the Solomon instances that were closed by either
Irnich and Villeneuve [20] or Chabrier [5] and by us.

Our algorithm outperforms those of Irnich and Villeneuve and Chabrier for 17 out of 22
instances. Seven of these instances were solved without any SR inequalities. In these cases,
the faster running times were probably due to the bi-directional label-setting algorithm.

With the introduction of SR inequalities our algorithm becomes competitive with the
algorithm based on solving k-cyc-SPPRC (e.g. instances R104.100, RC104.100, RC107.100,
RC108.100, and R211.50) and clearly outperforms the ESPPRC based algorithm on the harder
instances (e.g., instances R210.50, RC202.100, RC205.100, and RC208.25). In some cases
when solving the C1 and C2 instances the BCP algorithm tails off leading to slow solution
times or no solution at all. However, this must be seen in the light of a simple implementation
and no use of other cutting planes than the SR inequalities.

5.2 Comparing Lower Bounds in the Root Node

Table 3 reports the lower bounds obtained in the root node of the master problem with and
without SR inequalities and with best bounds obtained by Irnich and Villeneuve [20] using
k-cyc-SPPRC. Again we only report results on what we consider the hard instances from
Table 2 plus the instances closed by us.

As seen, the lower bounds obtained with SR inequalities are improved quite significantly
for most of the instances. Moreover, in most cases the problems are solved without branching.
Out of the 32 instances considered, the gap was closed in the root node in 8 instances due
to the ESPPRC and in an additional 16 instances due to the SR inequalities. However, one
needs to take into account that the running time of solving the root node is increased due to
the increased difficulty of the pricing problems.

39



Chapter 3

Irnich and Villeneuve [20] Chabrier [5] Jepsen et al.
[this paper]

Instance Time (s) Time (s) Time (s) Speedup

R104.100 268106.0 - 32343.9 1.9 / -

RC104.100 986809.0 - 65806.8 3.4 / -
RC107.100 42770.7 - 153.8 64.0 / -
RC108.100 71263.0 - 3365.0 4.9 / -

R203.50 217.1 3320.9 50.8 1.0 / 34.0
R204.25 123.1 171.6 7.5 3.8 / 11.9
R205.50 585.7 531.0 15.5 8.6 / 17.8
R206.50 22455.3 4656.1 190.9 27.1 / 12.7
R208.25 321.9 741.5 ∗

2.9 25.5 / 133.0
R209.50 142.4 195.4 16.6 2.0 / 6.1
R210.50 11551.4 65638.6 ∗

332.7 8.0 / 102.6
R211.50 21323.0 - 10543.8 0.5 / -

RC202.50 241.6 13.0
∗10.7 5.2 / 0.6

RC202.100 124018.0 19636.5 312.6 91.2 / 32.7
RC203.25 1876.0 5.1 ∗

0.7 616.4 / 3.8
RC203.50 54229.2 4481.5 ∗

190.9 65.3 / 12.2
RC204.25 - 13.0 ∗

2.0 - / 3.4
RC205.50 52.6 10.6

∗5.9 2.1 / 0.9
RC205.100 13295.9 15151.7 221.2 13.8 / 35.6
RC206.50 469.1 9.4

∗8.2 13.2 / 0.6
RC207.50 - 71.1 ∗

21.5 - / 1.7
RC208.25 - 33785.3 78.4 - / 224.1

Table 2: Comparison of running time. Speedup is calculated based on the normalized values in Table 1 and
are versus Irnich and Villeneuve and Chabrier respectively. Results with (∗) are based on an algorithm without
the SR inequalities. Results in boldface indicate the fastest algorithm after normalization. (-) indicates that
no running times were provided by the author(s) or that the instance was not solved.

40



Subset-Row Inequalities Applied to the Vehicle Routing Problem with Time Windows

Irnich and Villeneuve [20] Jepsen et al. [this paper]

Instance UB k LB LB(1) LB(2)

R104.100 971.5 3 955.8 956.9 971.3
R108.100 932.1 4 913.9 913.6 932.1

R112.100 948.6 3 925.9 926.8 946.7

RC104.100 1132.3 3 1114.4 1101.9 1129.9
RC106.100 1372.7 4 1343.1 1318.8 1367.3
RC107.100 1207.8 4 1195.4 1183.4 1207.8

RC108.100 1114.2 3 1100.5 1073.5 1114.2

R202.100 1029.6 0 933.5 1022.3 1027.3
R203.50 605.3 4 598.6 598.6 605.3

R203.100 870.8 2 847.1 867.0 870.8

R204.25 355.0 4 349.1 350.5 355.0

R205.50 690.1 4 682.8 682.9 690.1

R206.50 632.4 4 621.3 626.4 632.4

R207.50 575.5 4 557.4 564.1 575.5

R208.25 328.2 4 327.1 328.2 328.2

R209.50 600.6 4 599.9 599.9 600.6

R209.100 854.8 3 834.4 841.5 854.4
R210.50 645.6 4 633.1 636.1 645.3
R211.50 535.5 4 526.0 528.7 535.5

RC202.50 613.6 4 604.5 613.6 613.6

RC202.100 1092.3 3 1055.0 1088.1 1092.3

RC203.25 326.9 4 297.7 326.9 326.9

RC203.50 555.3 4 530.0 555.3 555.3

RC203.100 923.7 0 693.7 922.6 923.7

RC204.25 299.7 4 266.3 299.7 299.7

RC205.50 630.2 4 630.2 630.2 630.2

RC205.100 1154.0 3 1130.5 1147.7 1154.0

RC206.50 610.0 4 597.1 610.0 610.0

RC206.100 1051.1 3 1017.0 1038.6 1051.1

RC207.50 558.6 4 504.9 558.6 558.6

RC208.25 269.1 4 238.3 269.1 269.1

RC208.50 476.7 3 422.3 472.3 476.7

Table 3: Comparison of root lower bounds. LB by Irnich and Villeneuve is the best lower bound obtained with
k-cyc-SPPRC and valid inequalities, LB(1) is with ESPPRC and LB(2) is with ESPPRC and SR inequalities.
Lower bounds in boldface indicate lower bounds equal to the upper bound. Instances in boldface are the
Solomon instances closed by us.

41



Chapter 3

25 customers 50 customers 100 customers

Class No. Prev. Jepsen et al. Prev. Jepsen et al. Prev Jepsen et al.

[this paper] [this paper] [this paper]

R1 12 12 12 12 12 10 12
C1 9 9 9 9 9 9 9
RC1 8 8 8 8 8 8 8

R2 11 11 11 9 9 1 4
C2 8 8 8 8 7 8 7
RC2 8 8 8 8 7 3 5

Summary 56 56 56 55 52 39 45

Table 4: Summary of solved Solomon instances. No. is the number of instances in that class, and for 25, 50
and 100 customers the two columns refers to the number of instances previously solved to optimality and the
number of instances solved to optimality by us.

Instance UB LB Vehicles Tree LP Timeroot(s) Timevar(s) TimeLP(s) Time (s)

R108.100 932.1 932.1 10 1 132 5911.71 5796.04 77.36 5911.74
R112.100 948.6 946.7 10 9 351 55573.68 199907.03 1598.63 202803.94
R202.100 1029.6 1027.3 8 13 514 974.51 730.04 4810.47 8282.38
R203.100 870.8 870.8 6 1 447 54187.15 48474.45 3973.42 54187.40
R207.50 575.5 575.5 3 1 107 34406.92 34282.47 118.69 34406.96
R209.100 854.8 854.4 5 3 337 31547.45 74779.58 2978.42 78560.47
RC203.100 923.7 923.7 5 1 402 14917.18 13873.53 1025.65 14917.36
RC206.100 1051.1 1051.1 7 1 179 339.63 159.33 171.34 339.69

Table 5: Instances closed by Jepsen et al. [this paper]. UB is the optimal solution found by us, LB is lower
bound at the root node, Vehicles is the number of vehicles in the solution, Tree is the number of branch nodes,
LP is the number of LP iterations, Timeroot is the time solving the root node, Timevar is time spent solving
the pricing problem, TimeLP is the time spent solving LP problems, and Time is the total time.

5.3 Closed Solomon Instances

Table 4 gives an overview of how many instances were solved for each class of the Solomon
instances. We were able to close 8 previously unsolved instances. We did not succeed to solve
four previously solved instances (R204.50, C204.50, C204.100, and RC204.50).

Information on all solved Solomon instances can be found in Tables 6–8 in Appendix A.
Furthermore Table 5 provides detailed information of the instances closed in this paper. The
solutions can be found in Tables 9–16 in Appendix B.

6 Concluding Remarks

The introduction of the SR inequalities significantly improved the results of the BCP al-
gorithm. This made it possible to solve 8 previously unsolved instances from the Solomon
benchmarks.

42



Subset-Row Inequalities Applied to the Vehicle Routing Problem with Time Windows

Except for four cases (R204.50, C204.50 and C204.100 solved with k-cyc-SPPRC by Irnich
and Villeneuve [20] and RC204.50 solved by Danna and Le Pape [9]) our BCP algorithm is
competitive and in most cases superior to earlier algorithms within this field. With minor
modifications in the definition of the conflict graph the SR inequalities can be applied to the
k-cyc-SPPRC algorithm using the same cost-modified dominance criterion as described in this
paper. Preliminary results by Jepsen et al. [21] have shown that the lower bounds obtained
in a BCP algorithm for VRPTW using the k-cyc-SPPRC algorithm and SR inequalities are
almost as good as those obtained using the approach presented in this paper. This seems
to be a promising direction of research in order to solve large VRPTW instances, since the
ESPPRC algorithm is considerably slower than the k-cyc-SPPRC algorithm when the number
of customers increases.

Moreover, we note that the SR inequalities can be applied to any set packing problem.
That is, they can be used in BCP algorithms for other problems with a set packing problem
master problem. One only needs to consider how the dual variables of the SR inequalities
are handled in the pricing problems, however this is not necessarily trivial and must be
investigated for the individual pricing problems.

Adding SR inequalities to the master problem means that the pricing problem becomes a
shortest path problem with non-additive non-decreasing constraints or objective function. By
modifying the dominance criterion, we have shown that this is tractable in a label-setting al-
gorithm. A further discussion of shortest path problems with various non-additive constraints
can be found in Pisinger and Reinhardt [30]. The development of algorithms which efficiently
handle non-additive constraints is important to increase the number of valid inequalities which
can be handled.

A Results on Solomon Instances

This appendix contains detailed information about solved Solomon instances. The first col-
umn of the tables is the instance name, then three columns for the branch-and-cut-and-price
algorithm with ESPPRC and with ESPPRC and SR-inequalities follow. The columns are the
lower bound in the root node, the number of branch tree nodes and the total running time.
A (-) means that the instance was not solved. The last two columns are the optimal upper
bound and a reference to the authors who were the first to solve that instance, disregarding
Desrochers et al. [12] who solved many of the instances with a different calculation of the
travel times making it hard to compare with later solutions. The author legend is:

C: Chabrier [5]
CR: Cook and Rich [8]
DLP: Danna and Le Pape [9]
IV: Irnich and Villeneuve [20]
JPSP: Jepsen et al. [this paper]
KDMSS: Kohl et al. [23]
KLM: Kallehauge et al. [22]
L: Larsen [24]
S: Salani [33]

43



Chapter 3

with ESPPRC with ESPPRC and SR

Instance LB Tree Time (s) LB Tree Time (s) UB Ref.

R101 617.1 1 0.02 617.1 1 0.02 617.1 KDMSS
R102 546.4 3 0.13 547.1 1 0.09 547.1 KDMSS
R103 454.6 1 0.11 454.6 1 0.11 454.6 KDMSS
R104 416.9 1 0.12 416.9 1 0.12 416.9 KDMSS
R105 530.5 1 0.02 530.5 1 0.02 530.5 KDMSS
R106 457.3 5 0.29 465.4 1 0.10 465.4 KDMSS
R107 424.3 1 0.12 424.3 1 0.12 424.3 KDMSS
R108 396.9 3 0.31 397.3 1 0.24 397.3 KDMSS
R109 441.3 1 0.06 441.3 1 0.06 441.3 KDMSS
R110 438.4 17 1.16 444.1 3 0.29 444.1 KDMSS
R111 427.3 3 0.23 428.8 1 0.13 428.8 KDMSS
R112 387.1 13 1.19 393.0 1 0.52 393.0 KDMSS

C101 191.3 1 0.13 191.3 1 0.13 191.3 KDMSS
C102 190.3 1 0.53 190.3 1 0.53 190.3 KDMSS
C103 190.3 1 0.80 190.3 1 0.80 190.3 KDMSS
C104 186.9 1 3.29 186.9 1 3.29 186.9 KDMSS
C105 191.3 1 0.17 191.3 1 0.17 191.3 KDMSS
C106 191.3 1 0.14 191.3 1 0.14 191.3 KDMSS
C107 191.3 1 0.20 191.3 1 0.20 191.3 KDMSS
C108 191.3 1 0.37 191.3 1 0.37 191.3 KDMSS
C109 191.3 1 0.62 191.3 1 0.62 191.3 KDMSS

RC101 406.7 5 0.20 461.1 1 0.09 461.1 KDMSS
RC102 351.8 1 0.05 351.8 1 0.05 351.8 KDMSS
RC103 332.8 1 0.19 332.8 1 0.19 332.8 KDMSS
RC104 306.6 1 0.52 306.6 1 0.52 306.6 KDMSS
RC105 411.3 1 0.06 411.3 1 0.06 411.3 KDMSS
RC106 345.5 1 0.10 345.5 1 0.10 345.5 KDMSS
RC107 298.3 1 0.29 298.3 1 0.29 298.3 KDMSS
RC108 294.5 1 0.67 294.5 1 0.67 294.5 KDMSS

R201 460.1 3 0.44 463.3 1 0.27 463.3 CR+KLM
R202 410.5 1 0.61 410.5 1 0.61 410.5 CR+KLM
R203 391.4 1 0.80 391.4 1 0.80 391.4 CR+KLM
R204 350.5 19 18.40 355.0 1 7.51 355.0 IV+C
R205 390.6 3 1.62 393.0 1 1.06 393.0 CR+KLM
R206 373.6 3 1.67 374.4 1 0.93 374.4 CR+KLM
R207 360.1 5 4.03 361.6 1 1.39 361.6 KLM
R208 328.2 1 2.87 328.2 1 2.87 328.2 IV+C
R209 364.1 9 4.99 370.7 1 2.26 370.7 KLM
R210 404.2 3 1.52 404.6 1 1.04 404.6 CR+KLM
R211 341.4 29 38.17 350.9 1 22.62 350.9 KLM

C201 214.7 1 0.84 214.7 1 0.84 214.7 CR+L
C202 214.7 1 3.00 214.7 1 3.00 214.7 CR+L
C203 214.7 1 3.02 214.7 1 3.02 214.7 CR+L
C204 213.1 1 7.00 213.1 1 7.00 213.1 CR+KLM
C205 214.7 1 1.10 214.7 1 1.10 214.7 CR+L
C206 214.7 1 1.75 214.7 1 1.75 214.7 CR+L
C207 214.5 1 2.70 214.5 1 2.70 214.5 CR+L
C208 214.5 1 1.85 214.5 1 1.85 214.5 CR+L

RC201 360.2 1 0.25 360.2 1 0.25 360.2 CR+L
RC202 338.0 1 0.58 338.0 1 0.58 338.0 CR+KLM
RC203 326.9 1 0.72 326.9 1 0.72 326.9 IV+C
RC204 299.7 1 1.95 299.7 1 1.95 299.7 C
RC205 338.0 1 0.62 338.0 1 0.62 338.0 L+KLM
RC206 324.0 1 0.87 324.0 1 0.87 324.0 KLM
RC207 298.3 1 0.88 298.3 1 0.88 298.3 KLM
RC208 269.1 1 78.42 269.1 1 78.42 269.1 C

Table 6: Instances with 25 customers.

44



Subset-Row Inequalities Applied to the Vehicle Routing Problem with Time Windows

with ESPPRC with ESPPRC and SR

Instance LB Tree Time (s) LB Tree Time (s) UB Ref.

R101 1043.4 3 0.14 1044.0 1 0.09 1044.0 KDMSS
R102 909.0 1 0.27 909.0 1 0.27 909.0 KDMSS
R103 769.3 13 4.98 772.9 1 2.02 772.9 KDMSS
R104 619.1 21 33.29 625.4 1 6.73 625.4 KDMSS
R105 892.2 29 2.78 893.7 5 1.15 899.3 KDMSS
R106 791.4 5 1.41 793.0 1 0.83 793.0 KDMSS
R107 707.3 11 5.56 711.1 1 4.76 711.1 KDMSS
R108 594.7 789 1723.29 607.4 23 1601.68 617.7 CR+KLM
R109 775.4 77 20.11 783.3 7 11.54 786.8 KDMSS
R110 695.1 9 3.38 697.0 1 1.46 697.0 KDMSS
R111 696.3 41 19.21 707.2 1 3.67 707.2 CR+KLM
R112 614.9 165 169.26 630.2 1 35.67 630.2 CR+KLM

C101 362.4 1 0.47 362.4 1 0.47 362.4 KDMSS
C102 361.4 1 1.59 361.4 1 1.59 361.4 KDMSS
C103 361.4 1 6.06 361.4 1 6.06 361.4 KDMSS
C104 358.0 1 1564.88 358.0 1 1564.88 358.0 KDMSS
C105 362.4 1 0.49 362.4 1 0.49 362.4 KDMSS
C106 362.4 1 0.69 362.4 1 0.69 362.4 KDMSS
C107 362.4 1 0.97 362.4 1 0.97 362.4 KDMSS
C108 362.4 1 1.55 362.4 1 1.55 362.4 KDMSS
C109 362.4 1 3.62 362.4 1 3.62 362.4 KDMSS

RC101 850.1 39 5.60 944.0 1 2.12 944.0 KDMSS
RC102 721.9 127 60.41 822.5 1 8.68 822.5 KDMSS
RC103 645.3 9 8.56 710.9 1 40.05 710.9 KDMSS
RC104 545.8 1 5.71 545.8 1 5.71 545.8 KDMSS
RC105 761.6 21 7.22 855.3 1 4.31 855.3 KDMSS
RC106 664.5 11 3.35 723.2 1 3.88 723.2 KDMSS
RC107 603.6 7 4.60 642.7 1 4.49 642.7 KDMSS
RC108 541.2 5 15.88 594.8 5 260.95 598.1 KDMSS

R201 791.9 1 4.97 791.9 1 4.97 791.9 CR+KLM
R202 698.5 1 9.88 698.5 1 9.88 698.5 CR+KLM
R203 598.6 25 355.99 605.3 1 50.80 605.3 IV+C
R204 - - 506.4 IV
R205 682.9 35 118.12 690.1 1 15.45 690.1 IV+C
R206 626.4 47 288.00 632.4 1 190.86 632.4 IV+C
R207 564.1 141 15400.44 575.5 1 34406.96 575.5 JPSP

R208 - - - -
R209 599.9 3 24.45 600.6 1 16.63 600.6 IV+C
R210 636.1 49 332.70 645.3 3 18545.61 645.6 IV+C
R211 528.7 31 44644.89 535.5 1 10543.81 535.5 IV+DLP

C201 360.2 1 42.07 360.2 1 42.07 360.2 CR+L
C202 360.2 1 67.05 360.2 1 67.05 360.2 CR+KLM
C203 359.8 1 214.88 359.8 1 214.88 359.8 CR+KLM
C204 - - 350.1 KLM
C205 359.8 1 64.18 359.8 1 64.18 359.8 CR+KLM
C206 359.8 1 38.91 359.8 1 38.91 359.8 CR+KLM
C207 359.6 1 72.81 359.6 1 72.81 359.6 CR+KLM
C208 350.5 1 55.79 350.5 1 55.79 350.5 CR+KLM

RC201 684.8 1 3.00 684.8 1 3.00 684.8 L+KLM
RC202 613.6 1 10.69 613.6 1 10.69 613.6 IV+C
RC203 555.3 1 190.88 555.3 1 190.88 555.3 IV+C
RC204 - - 442.2 DLP
RC205 630.2 1 5.88 630.2 1 5.88 630.2 IV+C
RC206 610.0 1 8.17 610.0 1 8.17 610.0 IV+C
RC207 558.6 1 21.53 558.6 1 21.53 558.6 C
RC208 - 476.7 1 1639.40 476.7 S

Table 7: Instances with 50 customers.

45



Chapter 3

with ESPPRC with ESPPRC and SR

Instance LB Tree Time (s) LB Tree Time (s) UB Ref.

R101 1631.2 57 20.08 1634.0 3 1.87 1637.7 KDMSS
R102 1466.6 1 4.39 1466.6 1 4.39 1466.6 KDMSS
R103 1206.8 19 55.78 1208.7 1 23.85 1208.7 CR+L
R104 - 971.3 3 32343.92 971.5 IV
R105 1346.2 113 126.96 1355.2 5 43.12 1355.3 KDMSS
R106 1227.0 147 511.07 1234.6 1 75.42 1234.6 CR+KLM
R107 - 1064.3 3 1310.30 1064.6 CR+KLM
R108 - 932.1 1 5911.74 932.1 JPSP

R109 - 1144.1 19 1432.41 1146.9 CR+KLM
R110 - 1068.0 3 1068.31 1068.0 CR+KLM
R111 - 1045.9 39 83931.48 1048.7 CR+KLM
R112 - 946.7 9 202803.94 948.6 JPSP

C101 827.3 1 3.02 827.3 1 3.02 827.3 KDMSS
C102 827.3 1 12.92 827.3 1 12.92 827.3 KDMSS
C103 826.3 1 33.89 826.3 1 33.89 826.3 KDMSS
C104 822.9 1 4113.09 822.9 1 4113.09 822.9 KDMSS
C105 827.3 1 5.34 827.3 1 5.34 827.3 KDMSS
C106 827.3 1 7.15 827.3 1 7.15 827.3 KDMSS
C107 827.3 1 6.55 827.3 1 6.55 827.3 KDMSS
C108 827.3 1 14.46 827.3 1 14.46 827.3 KDMSS
C109 827.3 1 20.53 827.3 1 20.53 827.3 KDMSS

RC101 1584.1 59 56.62 1619.8 1 12.39 1619.8 KDMSS
RC102 - 1457.4 1 76.69 1457.4 CR+KLM
RC103 - 1257.7 3 2705.78 1258.0 CR+KLM
RC104 - 1129.9 7 65806.79 1132.3 IV
RC105 1472.0 191 309.83 1513.7 1 26.73 1513.7 KDMSS
RC106 - 1367.3 37 15891.55 1372.7 S
RC107 - 1207.8 1 153.80 1207.8 IV
RC108 - 1114.2 1 3365.00 1114.2 IV

R201 - 1143.2 1 139.03 1143.2 KLM
R202 - 1027.3 13 8282.38 1029.6 JPSP

R203 - 870.8 1 54187.40 870.8 JPSP

R204 - - - -
R205 - - - -
R206 - - - -
R207 - - - -
R208 - - - -
R209 - 854.8 3 78560.47 854.8 JPSP

R210 - - - -
R211 - - - -

C201 589.1 1 203.34 589.1 1 203.34 589.1 CR+KLM
C202 589.1 1 3483.15 589.1 1 3483.15 589.1 CR+KLM
C203 588.7 1 13070.71 588.7 1 13070.71 588.7 KLM
C204 - - 588.1 IV
C205 586.4 1 416.56 586.4 1 416.56 586.4 CR+KLM
C206 586.0 1 594.92 586.0 1 594.92 586.0 CR+KLM
C207 585.8 1 1240.97 585.8 1 1240.97 585.8 CR+KLM
C208 585.8 1 555.27 585.8 1 555.27 585.8 KLM

RC201 - 1261.7 3 229.27 1261.8 KLM
RC202 - 1092.3 1 312.57 1092.3 IV+C
RC203 922.6 11 34063.95 923.7 1 14917.36 923.7 JPSP

RC204 - - - -
RC205 - 1154.0 1 221.24 1154.0 IV+C
RC206 - 1051.1 1 339.69 1051.1 JPSP

RC207 - - - -
RC208 - - - -

Table 8: Instances with 100 customers.

46



Subset-Row Inequalities Applied to the Vehicle Routing Problem with Time Windows

B Solutions of Closed Solomon Instances

Cost Route

8.8 53
119.2 70, 30, 20, 66, 65, 71, 35, 34, 78, 77, 28
105.4 92, 98, 91, 44, 14, 38, 86, 16, 61, 85,100, 37
84.1 2, 57, 15, 43, 42, 87, 97, 95, 94, 13, 58

106.5 73, 22, 41, 23, 67, 39, 56, 75, 74, 72, 21, 40
114.6 52, 88, 62, 19, 11, 64, 63, 90, 32, 10, 31
78.4 6, 96, 59, 99, 93, 5, 84, 17, 45, 83, 60, 89

107.3 26, 12, 80, 68, 29, 24, 55, 4, 25, 54
93.2 27, 69, 76, 3, 79, 9, 51, 81, 33, 50, 1

114.6 18, 7, 82, 8, 46, 36, 49, 47, 48

932.1 10

Table 9: Solution of R108.100. The left column is
the cost of the routes and the total cost. The right
column is a comma separated list indicating the cus-
tomers visited on the routes in the order of visit and
the total number of routes.

Cost Route

78.1 6, 94, 95, 87, 42, 43, 15, 57, 58
115.8 2, 41, 22, 75, 56, 23, 67, 39, 25, 55, 54
117.4 28, 76, 79, 78, 34, 35, 71, 65, 66, 20, 1
128.2 31, 62, 19, 11, 63, 64, 49, 36, 47, 48
62.8 53, 40, 21, 73, 74, 72, 4, 26
98.0 52, 88, 7, 82, 8, 46, 45, 17, 84, 5, 89
76.4 12, 80, 68, 24, 29, 3, 77, 50

100.5 61, 16, 86, 38, 14, 44, 91,100, 37, 59, 96
67.6 18, 83, 60, 99, 93, 85, 98, 92, 97, 13

103.8 27, 69, 33, 81, 9, 51, 30, 32, 90, 10, 70

948.6 10

Table 10: Solution of R112.100.

Cost Route

8.8 53
93.6 52, 62, 63, 90, 10, 32, 70

177.2 83, 45, 82, 48, 47, 36, 19, 11, 64, 49, 46, 17, 5, 60, 89
223.8 50, 33, 65, 71, 29, 76, 3, 79, 78, 81, 9, 51, 20, 66, 35, 34, 68, 77
140.2 27, 69, 1, 30, 31, 88, 7, 18, 8, 84, 86, 91,100, 37, 98, 93, 59, 94
67.1 40, 73, 41, 22, 74, 2, 58

148.9 28, 26, 21, 72, 75, 39, 67, 23, 56, 4, 54, 55, 25, 24, 80, 12
170.0 95, 92, 42, 15, 14, 38, 44, 16, 61, 85, 99, 96, 6, 87, 57, 43, 97, 13

1029.6 8

Table 11: Solution of R202.100.

Cost Route

24.2 53, 40, 58
142.1 27, 69, 1, 76, 3, 79, 78, 81, 9, 66, 71, 35, 34, 29, 68, 77, 28
187.3 89, 18, 45, 46, 36, 47, 48, 19, 11, 62, 88, 7, 82, 8, 83, 60, 5, 84, 17, 61, 91,100, 37, 98, 93, 59, 94
183.3 95, 92, 97, 42, 15, 43, 14, 44, 38, 86, 16, 85, 99, 96, 6, 87, 57, 41, 22, 74, 73, 2, 13
190.3 50, 33, 51, 71, 65, 20, 30, 32, 90, 63, 64, 49, 10, 70, 31, 52
143.6 26, 21, 72, 75, 39, 67, 23, 56, 4, 55, 25, 54, 24, 80, 12

870.8 6

Table 12: Solution of R203.100.

47



Chapter 3

Cost Route

202.5 27, 31, 7, 48, 47, 36, 46, 45, 8, 18, 6, 37, 44, 14, 38, 16, 17, 5, 13
130.5 2, 42, 43, 15, 23, 39, 22, 41, 21, 40
242.5 28, 12, 3, 33, 50, 1, 30, 11, 49, 19, 10, 32, 20, 9, 35, 34, 29, 24, 25, 4, 26

575.5 3

Table 13: Solution of R207.50.

Cost Route

146.8 52, 7, 82, 83, 18, 6, 94, 13, 87, 57, 15, 43, 42, 97, 92, 37,100, 91, 93, 96
198.7 95, 99, 59, 98, 85, 5, 84, 61, 16, 44, 14, 38, 86, 17, 45, 8, 46, 36, 49, 48, 60, 89
205.9 27, 69, 31, 88, 62, 47, 19, 11, 64, 63, 90, 30, 51, 71, 9, 81, 33, 79, 3, 77, 68, 80, 24, 54, 26
157.6 28, 12, 76, 29, 78, 34, 35, 65, 66, 20, 32, 10, 70, 1, 50
145.8 40, 2, 73, 21, 72, 75, 23, 67, 39, 25, 55, 4, 56, 74, 22, 41, 58, 53

854.8 5

Table 14: Solution of R209.100.

Cost Route

139.4 81, 54, 72, 37, 36, 39, 42, 44, 41, 38, 40, 35, 43, 61, 68
172.8 90, 65, 83, 64, 85, 63, 89, 76, 23, 21, 48, 18, 19, 49, 22, 20, 51, 84, 56, 66
241.4 69, 98, 88, 53, 82, 99, 52, 86, 87, 9, 10, 47, 17, 13, 74, 59, 97, 75, 58, 77, 25, 24, 57
211.0 1, 3, 5, 45, 60, 12, 11, 15, 16, 14, 78, 73, 79, 7, 6, 8, 46, 4, 2, 55,100, 70
159.1 91, 92, 95, 62, 33, 32, 30, 27, 26, 28, 29, 31, 34, 50, 67, 94, 93, 71, 96, 80

923.7 5

Table 15: Solution of RC203.100.

Cost Route

8.4 90
186.6 81, 94, 67, 84, 85, 51, 76, 89, 48, 25, 77, 58, 74
168.6 92, 71, 72, 42, 39, 38, 36, 40, 44, 43, 41, 37, 35, 54, 93, 96
180.9 65, 83, 64, 95, 62, 63, 33, 30, 31, 29, 27, 28, 26, 32, 34, 50, 56, 91, 80
189.6 61, 2, 45, 5, 8, 7, 79, 73, 78, 53, 88, 6, 46, 4, 3, 1,100, 70, 68
120.9 82, 99, 52, 86, 57, 23, 21, 18, 19, 49, 20, 22, 24, 66
196.1 69, 98, 12, 14, 47, 16, 15, 11, 59, 75, 97, 87, 9, 13, 10, 17, 60, 55

1051.1 7

Table 16: Solution of RC206.100.

48



Subset-Row Inequalities Applied to the Vehicle Routing Problem with Time Windows

References

[1] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance.
Branch-and-price: Column generation for solving huge integer programs. Operations
Research, 46(3):316–329, 1998. doi: 10.1287/opre.46.3.316.

[2] J.E. Beasley and N. Christofides. An algorithm for the resource constrained shortest
path problem. Networks, 19:379–394, 1989. doi: 10.1002/net.3230190402.

[3] N. Boland, J. Dethridge, and I. Dumitrescu. Accelerated label setting algorithms for the
elementary resource constrained shortest path problem. Operation Research Letters, 34
(1):58–68, 2006. doi: 10.1016/j.orl.2004.11.011.

[4] A. Caprara, M. Fischetti, and A. N. Letchford. On the separation of maxi-
mally violated mod-k cuts. Mathematical Programming, 87(A):37–56, 1999. doi:
10.1007/s101079900107.

[5] A. Chabrier. Vehicle routing problem with elementary shortest path based col-
umn generation. Computers & Operations Research, 33(10):2972–2990, 2006. doi:
10.1016/j.cor.2005.02.029.

[6] V. Chvatal. Edmonds polytopes and hierarchy of combinatorial problems. Discrete
Mathematics, 4(4):305–337, 1973. doi: 10.1016/0012-365X(73)90167-2.

[7] COIN. COIN — COmputational INfrastructure for Operations Research, 2005.
http://www.coin-or.org.

[8] W. Cook and J. L. Rich. A parallel cutting plane algorithm for the vehicle routing
problem with time windows. Technical Report TR99-04, Computational and Applied
Mathematics, Rice University, Houston, Texas, USA, 1999.

[9] E. Danna and C. Le Pape. Branch-and-price heuristics: A case study on the vehicle
routing problem with time windows. In G. Desaulniers, J. Desrosiers, and M. M. Solomon,
editors, Column Generation, chapter 4, pages 99–129. Springer, 2005. doi: 10.1007/0-
387-25486-2 4.

[10] G. Desaulniers, J. Desrosiers, J. Ioachim, I. M. Solomon, F. Soumis, and D. Villeneuve. A
unified framework for deterministic time constrained vehicle routing and crew scheduling
problems. In T. G. Crainic and G. Laporte, editors, Fleet Management and Logistics,
pages 57–93. Kluwer, 1998.

[11] M. Desrochers. La fabrication d2̆019horaires de travail pour les conducteurs d2̆019autobus
par une mÃ c©thode de gÃ c©nÃ c©ration de colonnes. PhD thesis, UniversitÃ c© de
MontrÃ c©al, MontrÃ c©al, Canada, 1986.

[12] M. Desrochers, J. Desrosiers, and M. Solomon. A new optimization algorithm for the
vehicle routing problem with time windows. Operations Research, 40(2):342–354, 1992.
doi: 10.1287/opre.40.2.342.

[13] M. Dror. Note on the complexity of the shortest path models for column generation in
VRPTW. Operations Research, 42(5):977–979, 1994. doi: 10.1287/opre.42.5.977.

49



Chapter 3

[14] I. Dumitrescu. Constrained Path and Cycle Problems. PhD thesis, Department of Math-
ematics and Statistics, University of Melbourne, Australia, 2002.

[15] F. Eisenbrand. Note - on the membership problem for the elementary closure of a
polyhedron. Combinatorica, 19(2):297–300, 1999. doi: 10.1007/s004930050057.

[16] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm for the ele-
mentary shortest path problem with resource constraints: Application to some vehicle
routing problems. Networks, 44(3):216–229, 2004. doi: 10.1002/net.v44:3.

[17] R. Fukasawa, H. Longo, J. Lysgaard, M. Poggi de AragÃ£o, M. Reis, E. Uchoa, and R.F.
Werneck. Robust branch-and-cut-and-price for the capacitated vehicle routing problem.
Mathematical Programming, 106(3):491–511, 2006. doi: 10.1007/s10107-005-0644-x.

[18] S. Irnich. Resource extension functions: Properties, inversion, and generalization to
segments. OR Spectrum, 30(1):113–148, 2008. doi: 10.1007/s00291-007-0083-6.

[19] S. Irnich and G. Desaulniers. Shortest path problems with resource constraints. In
G. Desaulniers, Jacques Desrosiers, and M.M. Solomon, editors, Column Generation,
chapter 2, pages 33–65. Springer, 2005. doi: 10.1007/0-387-25486-2 2.

[20] S. Irnich and D. Villeneuve. The shortest path problem with resource constraints and
k-cycle elimination for k ≥ 3. INFORMS Journal on Computing, 18:391–406, 2006. doi:
10.1287/ijoc.1040.0117.

[21] M. Jepsen, B. Petersen, and S. Spoorendonk. A branch-and-cut-and-price framework
for the VRP applied on CVRP and VRPTW. Master’s thesis, DIKU Department of
Computer Science, University of Copenhagen, Denmark, 2005.

[22] B. Kallehauge, J. Larsen, and O.B.G. Madsen. Lagrangean duality and non-differentiable
optimization applied on routing with time windows - experimental results. Technical Re-
port Internal report IMM-REP-2000-8, Department of Mathematical Modelling, Techni-
cal University of Denmark, Lyngby, Denmark, 2000.

[23] N. Kohl, J. Desrosiers, O. B. G. Madsen, M. M. Solomon, and F. Soumis. 2-path cuts for
the vehicle routing problem with time windows. Transportation Science, 33(1):101–116,
1999. doi: 10.1287/trsc.33.1.101.

[24] J. Larsen. Parallelization of the vehicle routing problem with time windows. PhD the-
sis, Department of Mathematical Modelling, Technical University of Denmark, Lyngby,
Denmark, 1999.

[25] J. Lysgaard. CVRPSEP: A package of separation routines for the capacitated vehicle
routing problem. Working Paper 03-04, Dept. of Mgt. Science and Logistics, Aarhus
School of Business., 2003.

[26] J. Lysgaard, A. N. Letchford, and R. W. Eglese. A new branch-and-cut algorithm for
the capacitated vehicle problem. Mathematical Programming, 100(2):423–445, 2004. doi:
10.1007/s10107-003-0481-8.

[27] M. E. LÃ1
4bbecke and J. Desrosiers. Selected topics in column generation. Operations

Research, 53(6):1007–1023, 2005. doi: 10.1287/opre.1050.0234.

50



Subset-Row Inequalities Applied to the Vehicle Routing Problem with Time Windows

[28] G. Nemhauser and S. Park. A polyhedral approach to edge coloring. Operations Research
Letters, 10(6):315–322, 1991. doi: 10.1016/0167-6377(91)90003-8.

[29] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley
& Sons, Inc., 1988.

[30] D. Pisinger and L. B. Reinhardt. Multi-objective non-additive shortest path. DIKU
Department of Computer Science, University of Copenhagen, Denmark, submitted, 2007.

[31] G. Righini and M. Salani. Symmetry helps: bounded bi-directional dynamic program-
ming for the elementary shortest path problem with resource constraints. Discrete Op-
timization, 3(3):255–273, 2006. doi: 10.1016/j.disopt.2006.05.007.

[32] G. Righini and M. Salani. New dynamic programming algorithms for the resource con-
strained shortest path problem. Networks, 51(3):155–170., 2008. doi: 10.1002/net.20212.

[33] M. Salani. Branch-and-Price Algorithms for Vehicle Routing Problems. PhD thesis,
Universitá Degli Studi Di Milano, Facoltá di Scienza Matematiche, Fisuche e Naturali
Dipartimento di Technologie dell’Informazione, Milano, Italy, 2005.

[34] M. M. Solomon. Algorithms for the vehicle routing and scheduling problem with time win-
dow constraints. Operations Research, 35(2):234–265, 1987. doi: 10.1287/opre.35.2.254.

[35] SPEC. Standard Performance Evaluation Corporation, 2005. http://www.spec.org.

[36] P. Toth and D. Vigo, editors. The Vehicle Routing Problem. SIAM, 2002.

[37] L. A. Wolsey. Integer Programming. John Wiley & Sons, Inc., 1998.

51



Chapter 3

52



Chapter 4

Chvátal-Gomory Rank-1 Cuts used
in a Dantzig-Wolfe Decomposition
of the Vehicle Routing Problem with
Time Windows

Bjørn Petersen
DIKU Department of Computer Science, University of Copenhagen

David Pisinger
DIKU Department of Computer Science, University of Copenhagen

Simon Spoorendonk
DIKU Department of Computer Science, University of Copenhagen

Abstract

This chapter shows how Chvátal-Gomory (CG) rank-1 cuts can be used in a branch-
and-cut-and-price algorithm for the vehicle routing problem with time windows (VRPTW).
Using Dantzig-Wolfe decomposition we split the problem into a set partitioning problem
as master problem and an elementary shortest path problem with resource constraints as
pricing problem. To strengthen the formulation we derive general CG rank-1 cuts based
on the master problem formulation. Adding these cuts to the master problem means that
an additional resource is added to the pricing problem for each cut. This increases the
complexity of the label algorithm used to solve the pricing problem since normal dom-
inance tests become weak when many resources are present and hence most labels are
incomparable. To overcome this problem we present a number of improved dominance
tests exploiting the step-like structure of the objective function of the pricing problem.
Computational experiments are reported on the Solomon test instances showing that the
addition of CG rank-1 cuts improves the lower bounds significantly and makes it possible
to solve a majority of the instances in the root node of the branch-and-bound tree. This
indicates that CG rank-1 cuts may be essential for solving future large-scale VRPTW

Published in the book The Vehicle Routing Problem: Latest Advances and New Challenges, 2008

53



Chapter 4

problems where we cannot expect that the branching process will close the gap between
lower and upper bounds in reasonable time.

Keywords: Vehicle routing problem with time windows, Dantzig-Wolfe decomposition,
Chvatal-Gomory rank-1 cuts.

1 Introduction

In the vehicle routing problem with time windows (VRPTW) we are given a set of customers
with an associated demand and a number of identical vehicles. The task is to find a set
of minimum-length routes starting and ending at a central depot such that each customer is
visited exactly once within a given time window, and the capacity of each vehicle is respected.

The standard Dantzig-Wolfe decomposition of the arc flow formulation of the VRPTW
is to split the problem into a master problem (a set partitioning problem with a convexity
constraint, stating that all customers should be visited with a limited number of vehicles) and
a pricing problem (an elementary shortest path problem with resource constraints (ESPPRC),
where capacity and time are the constrained resources). Delayed column generation may be
used to solve the LP-relaxed master problem, which can be used as lower bound in a branch-
and-bound algorithm to reach integrality. Applying cutting planes either in the master or the
pricing problem leads to a branch-and-cut-and-price algorithm (BCP).

BCP algorithms have been frequently used to solve the VRPTW, e.g., Kohl et al. [25],
Cook and Rich [6], Larsen [26], Kallehauge et al. [24], Irnich and Villeneuve [22], Chabrier
[4], Danna and Le Pape [7], Salani [31]. In all cases the valid inequalities have been based
on the original arc flow formulation of the VRPTW, i.e., the inequalities added are valid
for both the original arc formulation and the master problem. Fukasawa et al. [16] refer
to this as a robust approach. Recently Jepsen et al. [23] showed how the subset row (SR)
inequalities, which are valid inequalities for the set partitioning problem, successfully can be
applied to VRPTW in a column generation context. In their computational results they report
solving 8 out of 18 previously unsolved instances from the set of benchmarks by Solomon
[33]. In a following paper Desaulniers et al. [9] added fast pricing heuristics and improved
cutting policies for the SR inequalities to obtain even better results by closing an additional
5 instances. The latter approaches are denoted non-robust according to the classification
by Fukasawa et al. [16], since the complexity of the pricing problem is increased when SR
inequalities are added to the master problem.

Jepsen et al. [23] showed that the separation of SR inequalities is NP-hard and that the
inequalities can be recognized as a subset of the Chvátal-Gomory (CG) rank-1 cuts. A simple
enumeration algorithm was used to separate the SR inequalities for sets of rows of size three,
and even for such small sets the computational results were very good as mentioned above.
Not surprisingly the separation of CG rank-1 cuts is also known to beNP-hard, see Eisenbrand
[13]. Fischetti and Lodi [15] used the CG rank-1 cuts as cutting planes in an integer problem
and showed how the separation can be formulated as a mixed integer problem. They obtained
lower bounds when optimizing over the first Chvátal closure, i.e., adding violated CG rank-1
cuts, and were the first to report an optimal solution to one instance from MIPLIB 3.0 by
Bixby et al. [1]. These results motivate the incorporation of the CG rank-1 cuts in a BCP
algorithm.

The pricing problem of the Dantzig-Wolfe decomposition of VRPTW, i.e., the ESPPRC,
was shown to beNP-hard by Dror [11]. Commonly the ESPPRC has been solved with labeling

54



Chvátal-Gomory Rank-1 Cuts used in a Dantzig-Wolfe Decomposition of the Vehicle...

algorithms, see Dumitrescu [12], Feillet et al. [14], Righini and Salani [29, 30], Boland et al.
[2]. Due to the difficulty of the ESPPRC most earlier approaches solved relaxations of the
ESPPRC, see Desrochers et al. [10], Irnich and Villeneuve [22]. For a general introduction to
resource constrained shortest path problems, see Desaulniers et al. [8], Irnich and Desaulniers
[21], Irnich [20]. Jepsen et al. [23] provides an introduction of the SR inequalities and how
their application in the master problem leads to an additional resource per inequality in the
pricing problem. Furthermore, it is shown how the dominance criteria of the label algorithm
can be improved.

In this chapter we extend the work by Jepsen et al. [23] to include general CG rank-1
cuts for the Set Partitioning master problem. Each cut results in a new resource constraint
in the ESPPRC pricing problem. As the resource extension functions are non-decreasing any
dynamic programming algorithm for the ESPPRC can be used to solve the resulting problem.
However, the addition of new resources means that more labels become incomparable when
using a traditional dominance test, and hence the number of labels in the dynamic program-
ming explodes. To overcome this problem we exploit the fact that in the pricing problem
it is sufficient to find a cost-minimal solution, and not all Pareto-optimal solutions. Due to
this fact we may temporarily replace each label with a number of equivalent labels such that
resources become comparable in the dominance test. This approach considerably decreases
the number of labels generated in the dynamic programming algorithm. As demonstrated in
the computational results we can in this way solve the ESPPRC pricing problem even when
several hundreds of CG rank-1 cuts have been added, and hence several hundreds of resources
are to be dealt with in the label algorithm.

The chapter is organized as follows: In Section 2 we give an overview of the Dantzig-Wolfe
decomposition of the VRPTW and describe how to calculate the reduced cost of columns when
delayed column generation is used. For completeness we review the CG rank-1 cuts and their
separation, as described by Fischetti and Lodi [15], in Section 3. Furthermore, we clarify
how to use these techniques in a VRPTW context. In Section 4 the improved dominance
criteria of the label algorithm are described. An algorithmic outline, implementation details,
and computational results using the Solomon benchmark instances are presented in Section
5. Section 6 provides some concluding remarks.

2 Decomposition

Let C be the set of customers, and let the set of nodes be V = C ∪{o, o′} where o denotes the
depot at the start of the routes and o′ denotes the depot at the end. Each customer i ∈ C
has a demand di while we set do = do′ = 0. Each node i ∈ V has an associated service si and
a time windows [ai, bi] in which it should be visited.

Let E = {(i, j) : i, j ∈ V, i 6= j} be the set of arcs between the nodes. The set of vehicles
K is sufficiently large, e.g., |K| = V , such that the convexity constraint is not binding, and
each vehicle has capacity D. If vehicle k ∈ K service node i ∈ V then the variable tik denotes
the arrival time of the vehicle. Let cij be the travel cost on arc (i, j) ∈ E and let xijk be the
variable indicating whether vehicle k ∈ K traverses arc (i, j) ∈ E. The overall travel time τij
on arc (i, j) ∈ E depends on the travel time of the arc and the service time si at customer i.

55



Chapter 4

The 3-index flow model (Toth and Vigo [34]) for the VRPTW becomes:

min
∑
k∈K

∑
(i,j)∈E

cijxijk (1)

s.t.
∑
k∈K

∑
(i,j)∈δ+(i)

xijk = 1 ∀i ∈ C (2)

∑
(i,j)∈δ+(o)

xijk =
∑

(i,j)∈δ−(o′)

xijk = 1 ∀k ∈ K (3)

∑
(j,i)∈δ−(i)

xjik −
∑

(i,j)∈δ+(i)

xijk = 0 ∀i ∈ C, ∀k ∈ K (4)

∑
(i,j)∈E

dixijk ≤ D k ∈ K (5)

ai ≤ tik ≤ bi ∀i ∈ V, ∀k ∈ K (6)

xijk(tik + τij) ≤ tjk ∀(i, j) ∈ E, ∀k ∈ K (7)

xijk ∈ {0, 1} ∀(i, j) ∈ E, ∀k ∈ K (8)

Constraints (2) ensure that every customer i ∈ C is visited, and (3) ensures that each route
starts and ends in the depot. Constraint set (4) ensure flow conservation for each vehicle
k. Note that a zero-cost arc xoo′k between the start and end depot must be present for all
vehicles to allow an empty tour in case not all vehicles are needed. The constraint set (5)
ensures that the capacity of each vehicle is not exceeded and constraint sets (6) and (7) ensure
that the time window constraints are satisfied. Note that (7) together with the assumption
that τij > 0 for all (i, j) ∈ E eliminates all sub-tours. The last constraint define the domain
of the arc flow variables.

The standard Dantzig-Wolfe decomposition of the VRPTW, see e.g. Desrochers et al.
[10], leads to the following master problem:

min
∑
p∈P

∑
(i,j)∈E

cijαijpλp (9)

s.t
∑
p∈P

∑
(i,j)∈δ+(i)

αijpλp = 1 ∀i ∈ C (10)

λp ∈ {0, 1} ∀p ∈ P (11)

where P is the set of all feasible routes, the binary constant αijp is one if and only if arc
(i, j) is used by route p ∈ P , and the binary variable λp indicates whether route p is used.
The master problem is a set partitioning problem and the LP relaxation can be solved using
delayed column generation, i.e., consider a restricted master problem containing a subset of
the columns P and generate additional columns as needed. For the remainder of this chapter
the master problem will refer to the the restricted problem. Let πi ∈ R for all i ∈ C be the
dual values of (10) and let π0 = 0. Then the reduced cost of a route p is:

cp =
∑

(i,j)∈E

cijαijp −
∑

(i,j)∈E

πjαijp =
∑

(i,j)∈E

(cij − πj)αijp (12)

The pricing problem is an ESPPRC where the cost of each arc is cij = cij − πj for all arcs
(i, j) ∈ E.

56



Chvátal-Gomory Rank-1 Cuts used in a Dantzig-Wolfe Decomposition of the Vehicle...

Valid inequalities based on the VRPTW constraints (2)-(8), i.e.,∑
k∈K

∑
(i,j)∈E

βijxijk ≤ β0 (13)

are handled as follows (Note that βij can be dependent on a vehicle k but then different pricing
problems must be considered). Let µ be the dual values of (13), then an additional µβij for
all arcs (i, j) ∈ E has to be subtracted from the reduced cost of a route, i.e., by subtracting
the dual value from the arc cost in the the pricing problem, i.e., cij = cij − πj − µβij .

Consider adding a valid inequality for the set partitioning master problem (10)–(11) that
cannot be written as a linear combination of the arc flow variables, i.e.,∑

p∈P
βpλp ≤ β0 (14)

Let σ ≤ 0 be the dual values of (14), then an additional σβp has to be subtracted when
calculating the reduced cost of the column, i.e, the new reduced cost is ĉp = cp − σβp. To
handle the cost −σβp it is necessary to modify the pricing problem by adding constraints or
variables, thereby increasing its complexity.

3 Chvátal-Gomory Rank-1 Cuts

CG cuts are well known valid inequalities for integer programming problems, see Gomory
[17], Chvatal [5]. However, in a BCP context these cuts have been given little attention.
Except for the recent papers by Jepsen et al. [23], Desaulniers et al. [9] only an early attempt
by Nemhauser and Park [28] has been found where general mixed-integer cuts for the master
problem is applied. Nemhauser and Park [28] solved the pricing problem as a MIP by adding
additional variables and constraints to take the dual values of the applied cuts into account.
As noted in Jepsen et al. [23], the SR inequalities are a subset of the CG cuts, and since the
SR inequalities were successfully used for VRPTW an obvious extension is to include a larger
set of the CG cuts into the BCP framework. Hence, in the following the focus will be on the
CG rank-1 cuts and their separation starting with the general case as described by Fischetti
and Lodi [15]. Next we specify the form of CG rank-1 cuts for the master problem of the
VRPTW and formulate the separation problem based the presented theory. Last we briefly
discuss the interpretation of the SR inequalities with regards to the CG cuts.

Consider an IP problem:

min{cλ : Aλ ≤ b, λ ≥ 0, λ ∈ Zn}

where A is a m× n matrix, N = 1, . . . , n is the set of indices of variables, and M = 1, . . . ,m
is the set of indices of constraints. The two polyhedra

PLP = {λ ∈ Rn : Aλ ≤ b, λ ≥ 0}
PIP = conv{λ ∈ Zn : Aλ ≤ b, λ ≥ 0} = conv(PLP ∩ Zn)

describe the solution space of the linear relaxation PLP and the convex hull of the integer
solutions in PLP . It is assumed that all coefficients of A and b are integer. A CG cut is a
valid inequality for PIP given as:

buAcλ ≤ bubc

57



Chapter 4

where u ≥ 0 is called the CG multiplier vector. The inequality is said to have rank-1 with
respect to Aλ ≤ b and λ ≥ 0. Higher rank cuts are obtained by considering systems that also
contain lower rank CG cuts, e.g., a rank-2 cut is based on Aλ ≤ b and λ ≥ 0 and some rank-1
cuts. Note that given the above assumptions on the integrality of A and b, undominated CG
cuts only arise for rational CG multipliers ui ∈ [0, 1), for all i = 1, . . . ,m, see Schrijver [32].

The first Chvátal closure of PLP is defined as the polyhedron:

P1 = {λ ≤ 0 : Aλ ≤ b, buAcλ ≤ bubc, u ≥ 0 ∀u ∈ Rn}

Clearly PIP ⊆ P1 ⊆ PLP but even more interesting is it, that P1 ⊂ PLP iff PIP 6= PLP . The
better approximation of PIP is obtained, since it is possible to use a CG cut to cut off a
fractional vertex λ∗ ∈ PLP corresponding to the basis B by choosing multipliers u equal to
the ith row of B−1 where i is the row associated with any fractional part of λ∗, see Gomory
[17, 18].

The separation problem is stated by Fischetti and Lodi [15] as:

Definition 1. Given a point λ∗ ∈ PLP . The CG separation problem consists of finding a CG
cut that is violated by λ∗, i.e., find u ≥ 0 for u ∈ Rn such that buAcλ > bubc, or prove that
no such u exist.

Eisenbrand [13] showed that the separation problem is NP-hard and computational results
performed by Fischetti and Lodi [15] indicate that separation times can be cumbersome.

Given a fractional solution λ∗ ∈ PLP the maximally violated CG cut γλ ≤ γ0, where
γ = buAc and γ0 = bubc for some CG multipliers u ≥ 0 for u ∈ Rn can be found by solving
the following MIP:

max γλ∗ − γ0 (15)

γj ≤ uAj ∀j ∈ N (16)

γ0 > ub− 1 (17)

ui ≥ 0 ∀i ∈M (18)

γj ∈ Z ∀j ∈ N ∪ {0} (19)

Note that only basis variables with non-zero values can contribute to the violation of the
CG rank-1 cut. Hence, all zero valued variables can be left out of the formulation and their
coefficients can be calculated after the CG multipliers are identified. This reduces the size of
the MIP problem in both the number of variables and constraints.

Furthermore Fischetti and Lodi [15] suggest to reformulate the problem in order to obtain
a stronger formulation and numerical stability. Based on the fact that the CG multipliers of
undominated cuts are less than 1, bounding them from above provides a stronger formulation.
However, later observations showed that the MIP heuristics performed much better without
these bounds. To obtain numerical stability a slack variable fj ∈ [0, 1− δ] (e.g., δ = 0.01) is
introduced for each coefficient αj .

Equivalent solutions to the separation problem can result in CG rank-1 cuts of different
strength with respect to PIP . A strong cut tends to be sparse, i.e., the number of non-zero
entries is small. In order to obtain stronger and sparser cuts the objective function is modified
by adding a small penalty wi (e.g., wi = 0.0001) for the selection of a multiplier ui.

58



Chvátal-Gomory Rank-1 Cuts used in a Dantzig-Wolfe Decomposition of the Vehicle...

Let N(λ∗) is the set of non-zero basis variables. This leads to the following formulation
of the separation problem:

max
∑

j∈N(λ∗)

γjλ
∗
j − γ0 −

∑
i∈M

wiui (20)

fj = uAj − γj ∀j ∈ N(λ∗) (21)

f0 = ub− γ0 (22)

0 ≤ fj ≤ 1− δ ∀j ∈ N(λ∗) ∪ {0} (23)

ui ≥ 0 ∀i ∈M (24)

γj ∈ Z ∀j ∈ N(λ∗) ∪ {0} (25)

The model (20)-(25) can be modified to handle systems as Aλ ≥ b and Aλ = b by modifying
the bounds of the CG multipliers, i.e., removing (24) and letting u be a free variables is a
way to handle equations.

For VRPTW the the CG rank-1 cuts are based on the master problem constraints (10).
The set partitioning constraints give rise to cuts with CG multipliers u ∈ R|C|, since they
are equalities. However, since the CG cuts will be used in a column generation context two
equally sparse cuts at separation time might not be equally sparse after column generation.
This is especially the case for CG rank-1 cuts with negative multipliers in a minimization
problem, where cuts tend to become very dense when columns price into the master problem.
Hence, we restrict ourselves to consider CG rank-1 cuts with non-negative multipliers for the
VRPTW.

The CG rank-1 cuts for the VRPTW with respect to the master problem (9)-(11) and
with non-negative CG multipliers are given as:

∑
p∈P

∑
i∈C

ui
∑

(i,j)∈δ+(i)

αijp

λp ≤ ⌊∑
i∈C

ui

⌋
(26)

Given a fractional solution λ∗ for the master problem (9)-(11) the most violated CG cut
of rank-1 can be found by solving the following MIP:

max
∑

p∈P (λ∗)

γpλ
∗
p − γ0 −

∑
i∈C

wiui (27)

fp =
∑

(i,j)∈δ(i)+
αijpui − γp ∀p ∈ P (λ∗) (28)

f0 =
∑
i∈C

ui − γ0 (29)

0 ≤ fp ≤ 1− δ ∀p ∈ P (λ∗) ∪ {0} (30)

0 ≤ ui ∀i ∈ C (31)

γj ∈ Z+ ∀p ∈ P (λ∗) ∪ {0} (32)

Again it is possible to reduce the number of variables by only considering the non-zero basis
variables.

59



Chapter 4

From Jepsen et al. [23] we recall the SR inequalities for the VRPTW based on the master
problem (9)-(11): ∑

p∈P

1

k

∑
i∈S

∑
(i,j)∈δ+(i)

αijp

λp ≤ ⌊1

k
|S|
⌋

(33)

where S ⊆ C and 0 < k ≤ |S|. This is equivalent to the set of CG rank-1 cuts where |S| of
the CG multipliers are equal to 1

k and the rest are equal to 0, i.e., a very sparse CG multiplier
vector. A SR cut can also be interpreted as a mod-k cut proposed by Caprara et al. [3]. The
mod-k cuts are CG rank-1 cuts with multipliers in the set {0, 1k , . . . ,

k−1
k }, i.e., a SR cut is a

mod-k cut with |S| multipliers equal to 1
k and the rest are equal to 0. Extending the SR cut

to allow a row (customer) to be present multiple times in S, i.e., let S be a multiset, leads to
an SR cut with maximal |S| multipliers in the set {0, 1k , . . . ,

k−1
k }. That is, the CG multiplier

of a row is raised by 1
k for each time it is present in S. This is indeed also a mod-k cut.

4 Label Algorithm

Finding a route with negative reduced cost in the pricing problem corresponds to finding
a negative reduced cost path starting and ending at the depot, i.e., an ESPPRC. In the
following sections we formally describe the ESPPRC and show how the pricing problem can
be solved when new resources are introduced as a consequence of adding CG cuts.

4.1 The Pricing Problem

Assuming that no cuts have been added, the ESPPRC can be formally defined as: Given a
weighted directed graph G(V,E) with nodes V and arcs E, and a set of resources R. For
each arc (i, j) ∈ E and resource r ∈ R three parameters are given: A lower limit ar(i, j) on
the accumulation of resource r when traversing arc (i, j) ∈ E; an upper limit br(i, j) on the
accumulation of resource r when traversing arc (i, j) ∈ E; and finally an amount cr(i, j) of
resource r consumed by traversing arc (i, j) ∈ E. The objective is to find a minimum cost
path p from a source node o ∈ V to a target node o′ ∈ V , where the accumulated resources
of p satisfy the limits for all resources r ∈ R. Without loss of generality we assume that the
limits must be satisfied at the end of each arc (i, j), i.e., after cr(i, j) has been consumed.

If the nodes have associated some resource consumptions and some upper and lower limits
on the accumulated resources are present, these can be expressed by equivalent resource
constraints on the arcs (e.g. the incoming arcs of the node).

For the pricing problem of VRPTW the resources are load d, time t, and a binary visit-
counter for each customer v ∈ C. When considering the pricing problem of VRPTW, the
consumptions and upper and lower limits of the resources at each arc (i, j) in ESPPRC are:

ad(i, j) = 0, bd(i, j) = D − dj , cd(i, j) = dj ∀(i, j) ∈ E
at(i, j) = ai, bt(i, j) = bi, ct(i, j) = τij ∀(i, j) ∈ E
av(i, j) = 0, bv(i, j) = 1, cv(i, j) = 1 ∀v ∈ V : v = j, ∀(i, j) ∈ E
av(i, j) = 0, bv(i, j) = 1, cv(i, j) = 0 ∀v ∈ V : v 6= j, ∀(i, j) ∈ E

In the label algorithm labels at node v represent partial paths from o to v. The following
attributes for a label L are considered:

60



Chvátal-Gomory Rank-1 Cuts used in a Dantzig-Wolfe Decomposition of the Vehicle...

v(L) The current end-node of the partial path represented by L.
c(L) The sum of the reduced cost along path L.
r(L) The accumulated consumption of resource r ∈ R along path L.

A feasible extension ε ∈ E(L) of a label L is a partial path starting in node v(L) ∈ V and
ending in the target node o′ without violating any resource constraints when concatenated
with the partial path represented by L.

In the following it is assumed that all resources are bounded strongly from above, and
weakly from below. This means that if the current resource accumulation of a label is below
the lower limit on a given arc, it is allowed to fill up the resource to the lower limit, i.e.,
waiting for a time window to open. This means that two consecutive labels Lu and Lv related
by an arc (u, v), i.e., Lu is extended and creates Lv, where v(Lu) = u and v(Lv) = v, must
satisfy

r(Lv) ≤ br(u, v), ∀r ∈ R (34)

r(Lv) = max{r(Lu) + cr(u, v), ar(u, v)}, ∀r ∈ R (35)

Here (34) demands that each label Lv satisfies the upper limit br(u, v) of resource r corre-
sponding to arc (u, v), while (35) states that resource r of Lv corresponds to the resource
consumption at label Lu plus the amount consumed by traversing arc (u, v), respecting the
lower limit ar(u, v) on arc (u, v). Other authors refer to (35) as a resource extension function,
see e.g. Desaulniers et al. [8].

A simple enumeration algorithm could be used to produce all these labels, but to limit
the number of labels considered, dominance rules are introduced to fathom labels which do
not lead to an optimal solution.

Definition 2. A label Li dominates label Lj if

v(Li) = v(Lj) (36)

c(Li) ≤ c(Lj) (37)

E(Lj) ⊆ E(Li) (38)

In other words, the paths corresponding to labels Li and Lj should end at the same node
v(Li) = v(Lj) ∈ V , the path corresponding to label Li should cost no more than the path
corresponding to label Lj , and finally any feasible extension of Lj is also a feasible extension
of Li. Notice that we are only interested in one cost-minimal path and not all pareto-optimal
paths, hence our dominance rule is tighter than the one used in e.g. Desaulniers et al.
[8], Irnich and Desaulniers [21].

Feillet et al. [14] suggested to consider the set of nodes that cannot be reached from a
label Li and compare the set with the unreachable nodes of a label Lj in order to determine if
some extensions are impossible and thereby potentially dominate where else not possible, since
vold(Li) ≤ vold(Lj) ⇒ vnew(Li) ≤ vnew(Lj) but vnew(Li) ≤ vnew(Lj) 6⇒ vold(Li) ≤ vold(Lj).
Or in other words: update the node resources in an eager fashion instead of a lazy one. The
following definition is a generalization of Feillet et al. [14][Definition 3].

Definition 3. Given a start node o ∈ V , a label L, and a node u ∈ V where v(L) = u a node
v ∈ V is considered unreachable if v has already been visited on the path from o to u or if a
resource window is violated, i.e.:

∃r ∈ R r(L) + `r(u, v) > br(v)

61



Chapter 4

where `r(u, v) is a lower bound on the consumption of resource r on all feasible paths from u
to v. The node resources are then given as: v(L) = 1 indicates that node v ∈ V is unreachable
from node v(L) ∈ V , and v(L) = 0 otherwise.

To determine if (38) holds can be quite cumbersome, as the straightforward definition
demands that we calculate all extensions of the two labels. Therefore a sufficient criterion for
(38) to hold is sought which can be computed faster. If label Li has consumed less resources
than label Lj then no resources are limiting the possibilities of extending Li compared to Lj ,
hence the following proposition can be used as a relaxed version of the dominance criteria.

Proposition 4. Desaulniers et al. [8]. If all resource extension functions are non-decreasing,
then label Li dominates label Lj if:

v(Li) = v(Lj) (39)

c(Li) ≤ c(Lj) (40)

r(Li) ≤ r(Lj) ∀r ∈ R (41)

Using Proposition 4 as a dominance criteria is a relaxation of the dominance criteria of
Definition 2 since only a subset of labels satisfying (36), (37), and (38) satisfies inequalities
(39), (40), and (41).

4.2 Solving the Pricing Problem with New Resources

Recall that a CG rank-1 cut (26) for the VRPTW master problem (9)–(11) is:

∑
p∈P

∑
i∈C

ui
∑

(i,j)∈δ+(i)

αijp

λp ≤ ⌊∑
i∈C

ui

⌋

Let σ ≤ 0 be the corresponding dual variable when solving the master problem to LP-
optimality. The reduced cost of column p in the VRPTW master problem is:

ĉp = cp − σ

∑
i∈C

ui
∑

(i,j)∈δ+(i)

αijp

 =
∑

(i,j)∈E

cijαijp − σ

∑
i∈C

ui
∑

(i,j)∈δ+(i)

αijp


We analyze how this additional cost can be handled in the label algorithm for ESPPRC.

Let V (L) = {i ∈ V : i(L) = 1} be the nodes visited on the partial path of label L. The
reduced cost of L can then be expressed as:

ĉ(L) = c(L)− σ

 ∑
i∈V (L)

ui

 (42)

A new resource m can be used to compute the coefficient of penalty σ for label L, i.e.,
m(L) =

∑
i∈V (L) ui, is the unfloored amount involved in the cut. Note that the consumption

of resource m is ui for each outgoing (incoming) arc of the customers i ∈ C. Even though
the update of resource ĉ is defined by a decreasing function, the usual dominance criteria
of Proposition 4 can still be used, because in case Li dominates Lj , c(Li) ≤ c(Lj) and
m(Li) ≤ m(Lj) so ĉ(Li) ≤ ĉ(Lj) since −σ > 0. Note that the resource ĉ can be ignored

62



Chvátal-Gomory Rank-1 Cuts used in a Dantzig-Wolfe Decomposition of the Vehicle...

during the label algorithm and only be considered at the last arc to the target node to
compute the reduced cost ĉ(L) of path L from c(L) and m(L).

Since all resource extension functions (including m(L)) are non-decreasing we can apply
the label algorithm described in the previous section to solve the ESPPRC, using the domi-
nance rule from Proposition 4 for the extended set of resources. However, as further cuts are
added and hence more resources are to be compared in (41) the dominance rule is satisfied
very rare. In order to overcome this problem, we note the following property of constraint
(42)

ĉ(L) = c(L)− σ bm(L)c = c(L) + kσ − σ bm(L)− kc (43)

for any integer k. Hence a label (ĉ(L), r(L),m(L)) is equivalent to a label (ĉ(L)−kσ, r(L),m(L)−
k), meaning that we can make resources comparable in (41) at the cost of modifying c(L) in
(40) and vice versa. This is the main idea in Proposition 5, 6 and 7 to be presented.

For a label L let

T (L) =

 ∑
i∈V (L)

ui

 mod 1

be the amount involved in the cut since the last penalty was paid, i.e., the fractional part of∑
i∈V (L) ui. Recall E(L) as the set of feasible extensions from the label L to the target node

o′ and note that when label Li dominates label Lj , their common extensions are E(Lj) due
to (38). The following cost dominance criteria are obtained for a single CG rank-1 cut:

Proposition 5. If T (Li) ≤ T (Lj), v(Li) = v(Lj), ĉ(Li) ≤ ĉ(Lj), and r(Li) ≤ r(Lj) ∀r ∈ R,
then label Li dominates label Lj.

Proof. Consider any common extension ε ∈ E(Lj). Since T (Li) ≤ T (Lj) the relation between
the number of future penalties for the two labels when concatenated with ε is:⌊∑

i∈ε
ui + T (Li)

⌋
≤

⌊∑
i∈ε

ui + T (Lj)

⌋

This leads to the following relation between the costs:

ĉ(Li + ε) = ĉ(Li) + c(ε)− σ

⌊∑
i∈ε

ui + T (Li)

⌋

≤ ĉ(Lj) + c(ε)− σ

⌊∑
i∈ε

ui + T (Lj)

⌋
= ĉ(Lj + ε)

Hence, label Li dominates label Lj .

Proposition 6. If T (Li) > T (Lj), v(Li) = v(Lj), ĉ(Li)−σ ≤ ĉ(Lj), and r(Li) ≤ r(Lj) ∀r ∈
R, then label Li dominates label Lj.

Proof. Consider any common extension ε ∈ E(Lj). Since T (Li) > T (Lj) the relation between
the number of future penalties for the two labels when concatenated with ε is:⌊∑

i∈ε
ui + T (Li)

⌋
≥

⌊∑
i∈ε

ui + T (Lj)

⌋
(44)

63



Chapter 4

Since 0 ≤ T (Lj) < T (Li) < 1 it is clear that the left hand side of (44) is at most one unit
larger than the right hand side, i.e., label Li will pay the penalty at most one more time than
label Lj . Hence, ⌊∑

i∈ε
ui + T (Li)

⌋
− 1 ≤

⌊∑
i∈ε

ui + T (Lj)

⌋
That is, the additional cost of extending Li with ε is at most −σ more than extending Lj
with ε. This leads to the following relation between the costs:

ĉ(Li + ε) = ĉ(Li) + c(ε)− σ

⌊∑
i∈ε

ui + T (Li)

⌋

= ĉ(Li)− σ + c(ε)− σ

(⌊∑
i∈ε

ui + T (Li)

⌋
− 1

)

≤ ĉ(Lj) + c(ε)− σ

⌊∑
i∈ε

ui + T (Lj)

⌋
= ĉ(Lj + ε)

Hence label Li dominates label Lj .

Observe that if T (Li)+
∑

i∈ε ui < 1 for all ε ∈ E(Lj), it is not possible to trigger a penalty,
i.e., the temporary penalty to the cost of Li can be disregarded.

In case of several CG rank-1 cuts, the new dominance criteria are as follows:

Proposition 7. Let Q = {q : σq < 0∧Tq(Li) > Tq(Lj)}. Then label Li dominates label Lj if:

v(Li) = v(Lj) (45)

ĉ(Li)−
∑
q∈Q

σq ≤ ĉ(Lj) (46)

r(Li) ≤ r(Lj) ∀r ∈ R (47)

Proof. The validity of (46) follows directly from Propositions 5 and 6. The validity of (45)
and (47) follows from Proposition 4.

5 Experimental Results

The experimental study is intended to show how much it is possible to strengthen the lower
bound by adding CG rank-1 cuts, while still being able to solve the corresponding pricing
problem in reasonable time. The SR inequalities have already proved their worth, see Jepsen
et al. [23], Desaulniers et al. [9], but in both cases only sets of rows with size 3 were included,
i.e., CG rank-1 cuts with precisely 3 non-zero entries in the CG multiplier vector. Hence, it is
expected that the introduction of a separation routine for denser CG multiplier vectors could
improve the lower bounds further. Using the exact separation routine for the CG rank-1 cuts
is expected to be time consuming, but for test purposes it is interesting to see how well the
column generation reacts to these cuts and also how much the lower bounds are improved.

64



Chvátal-Gomory Rank-1 Cuts used in a Dantzig-Wolfe Decomposition of the Vehicle...

5.1 Settings

The test instances are the well known benchmarks introduced by Solomon [33]. The bench-
marks are divided into two series, both of which are again divided into a C (customers are
grouped in larger clusters), an R (customers are distributed randomly), and an RC (a mix of
the two previous) series. Of the 56 instances with 100 customers five instances are unsolved
at the time of writing. Furthermore, 16 of the solved instances have not yet been solved in
the root node of the branch-and-bound tree. We will only consider the R and RC instances,
since all C instances can be solved in the root node without cutting planes, see Jepsen et al.
[23], Desaulniers et al. [9].

The experiments were performed on a Pentium 4 3.0 GHz with 1 GB RAM. The basic BCP
algorithm was developed with the framework COIN, see Lougee-Heimer [27]. The exact MIP-
based CG rank-1 separation procedure is a slight modified version of a procedure provided
by Hunsaker [19]. The MIPs were solved using CPLEX 9.1 with a maximal running time of
3600 seconds.

An exact separation procedure for a limited set of the SR inequalities have been devel-
oped exploiting the SSE2 vector-processing instructions intended for multimedia floating-
point purposes which are present in all x86 processors since the introduction of Pentium 4
in 2001. The separation routine is an exact enumeration of SR inequalities with multipliers
ui ∈ {0, 1k , . . . ,

k−1
k } for i ∈ C where

∑
i∈C ui = n

k , and 0 < k < n ≤ |C| and k and n are
integer, i.e., mod-k cuts with restriction on the sum of the multipliers.

Our implementation of the brute-force evaluation of all sub-multisets of rows of size n,
can evaluate the SR inequalities (33) in constant time for each sub-multiset using the vector-
processing capabilities. This makes it possible to separate all violated cuts in time |S|n/n!
when |P | ≤ 16, where S is the set of rows and P is the set of basis columns. Still, the
complexity is so high that we cannot expect to separate inequalities with more than seven
non-zero coefficients in reasonably time.

Note that our implementation of the BCP algorithm is not competitive with the recent
implementation by Desaulniers et al. [9]. Also it is slower than the one used in Jepsen et al.
[23] due to the implementation of the more general dominance criteria in the label algorithm.
However, the point of our experiments is to study the quality of the lower bounds, i.e., the
number of branch nodes, compared to the increase in computational time of the pricing
problem by adding various cuts. These conclusions hold for all implementations based on the
same decomposition.

5.2 Lower Bounds

Table 1 and 2 show the lower bounds obtained in the root node when different cutting policies
are applied.

The cutting policies are:

“no” No cutting planes
“n = 3” SR cuts with n = 3 and k = 2
“n ≤ 5” Like option n = 3 and with n = 5 and k = 2, 3
“n ≤ 7” Like option n ≤ 5 and with n = 7 and k = 2, 3, 4
“CG1” General CG rank-1 cuts

A maximum of 50 cuts violating more than 0.0001 are added in each iteration. No time
limit was imposed, but the space limit of 1 GB RAM prevented some instances to run to

65



Chapter 4

Table 1: Lower bound comparison for the 1-series.

Instance no n = 3 n ≤ 5 n ≤ 7 CG1 UB

R101 1631.2 1634.0 1636.3 1636.3 1637.7 1637.7
R102 1466.6 1466.6 1466.6 1466.6 1466.6 1466.6
R103 1206.8 1208.7 1208.7 1208.7 1208.7 1208.7
R104 956.9 971.3 971.5 971.5 971.5 971.5
R105 1346.2 1355.2 1355.3 1355.3 1355.3 1355.3
R106 1227.0 1234.6 1234.6 1234.6 1234.6 1234.6
R107 1053.3 1064.3 1064.6 1064.6 1064.6 1064.6
R108 913.6 932.1 932.1 932.1 932.1 932.1
R109 1134.3 1144.1 1146.7 1146.9 1146.9 1146.9
R110 1055.6 1068.0 1068.0 1068.0 1068.0 1068.0
R111 1034.8 1045.9 1047.3 - - 1048.7
R112 926.8 943.5 - - - 948.6
RC101 1584.1 1619.8 1619.8 1619.8 1619.8 1619.8
RC102 1406.3 1457.4 1457.4 1457.4 1457.4 1457.4
RC103 1225.6 1257.7 1258.0 1258.0 1258.0 1258.0
RC104 1101.9 1129.9 - - - 1132.3
RC105 1472.0 1513.7 1513.7 1513.7 1513.7 1513.7
RC106 1318.8 1367.3 1371.9 1372.7 1372.7 1372.7
RC107 1183.4 1207.8 1207.8 1207.8 1207.8 1207.8
RC108 1073.5 1114.2 1114.2 1114.2 1114.2 1114.2

completion.

Upper bounds in the “UB” column are optimal values or best known upper bounds.
Entries in tables marked with an asterisk ∗ are from Danna and Le Pape [7], entries marked
with a double-asterisk ∗∗ are from Desaulniers et al. [9], and entries marked with a triple-
asterisk ∗∗∗ are from Jepsen et al. [23]. A dash indicates that our implementation failed due
to memory limitation. Entries in bold face indicate optimal integer solution.

Of the 28 solved instances one instance (R102) was solved without adding any cuts. The
lower bounds for all remaining instances were considerably improved by adding “n = 3” cuts
resulting in integer solutions for 15 of the 27 remaining (17 out of 33 when considering the
results of Desaulniers et al. [9]). When adding “n ≤ 5” cuts improvements were present in
all but one instance (RC201) resulting in further five integer solutions of the 10 remaining
instances that could be solved with this approach. Of the remaining four instances solved
with “n ≤ 7” cuts, two showed no improvement and two resulted in integer solutions. The last
two instances were solved to integrality when applying CG rank-1 cuts. Hence, we succeeded
in closing the gap between the upper and lower bound for all the instances that we were able
to solve within the memory limit.

Tables 1 and 2 also show that the SR inequalities provide almost as good lower bounds as
general CG rank-1 cuts. For “n = 7” the SR inequalities become time consuming to separate,
and hence in practical applications one should confine to “n = 3” or “n ≤ 5”.

Table 3 presents an overview of problems solved in the root node as reported in this chapter
or by Jepsen et al. [23] or Desaulniers et al. [9]. Column “solved” refers to the number of
instances solved to optimality at the time of writing and “total” refers to the total number
of instances. Results from the C-series are included for completeness.

As already noted, adding SR inequalities and CG rank-1 cuts greatly strengthens the

66



Chvátal-Gomory Rank-1 Cuts used in a Dantzig-Wolfe Decomposition of the Vehicle...

Table 2: Lower bound comparison for the 2-series.

Instance no n = 3 n ≤ 5 n ≤ 7 CG1 UB

R201 1140.3 1143.2 1143.2 1143.2 1143.2 1143.2
R202 1022.3 1027.3 1029.6 1029.6 1029.6 1029.6
R203 867.0 870.8 870.8 870.8 870.8 870.8
R204 - - - - - ∗∗731.3
R205 939.0 - - - - 949.8
R206 866.9 ∗∗875.9 - - - 875.9
R207 ∗∗790.7 ∗∗794.0 - - - 794.0
R208 - - - - - ∗701.2
R209 841.5 ∗∗∗854.8 - - - 854.8
R210 889.4 - - - - 900.5
R211 - - - - - ∗∗746.7
RC201 1256.0 1261.7 1261.7 1261.7 1261.8 1261.8
RC202 1088.1 1092.3 1092.3 1092.3 1092.3 1092.3
RC203 922.6 923.7 923.7 923.7 923.7 923.7
RC204 - - - - - ∗783.5
RC205 1147.7 1154.0 1154.0 1154.0 1154.0 1154.0
RC206 1038.6 1051.1 1051.1 1051.1 1051.1 1051.1
RC207 947.4 - - - - 962.9
RC208 - - - - - ∗∗776.5

Table 3: Summary of instances solved in the root node.

Instance no n = 3 n ≤ 5 n ≤ 7 CG1 solved total

C1 9 9 9 9 9 9 9
C2 8 8 8 8 8 8 8
R1 1 5 8 9 10 12 12
R2 0 4 5 5 5 8 11
RC1 0 5 6 7 7 8 8
RC2 0 4 4 4 5 6 8
All 18 35 40 42 44 51 56

lower bounds. Of the 56 instances 35 were previously reported solved in the root node by
Jepsen et al. [23], Desaulniers et al. [9]. With our additional cutting planes we were able
to solve an additional nine instances in the root node of the remaining 16 previously solved
instances. Note that all the instances we were able to solve were solved in the root node.
The remaining seven instances, which have previously been solved with “n = 3”, could not
be solved with the current implementation due to hardware limitations. Hence, there exists
12 Solomon instances (seven solved with branching and five unsolved) where CG rank-1 cuts
could potentially improve the lower bound in the root node.

5.3 Running Times of the Pricing Problem

Table 4 and 5 contain the results obtained when solving the instances to optimality using
different cutting planes. In column “CPU” we report the CPU-time in seconds for solving the
last pricing problem, while column “cuts” gives the number of cuts applied. Column “BB”
indicates the number of branch-and-bound nodes considered. As before, a dash in the tables

67



Chapter 4

indicates that a memory insufficiency had occurred. Entries marked with a double-asterisk
∗∗ are from Desaulniers et al. [9].

Table 4: Running time for pricing problem and number of branch-and-bound nodes for the
1-series. 1) Data log-files were lost during machine upgrade.

no n = 3 n ≤ 5 CG1
Instance CPU BB CPU cuts BB CPU cuts BB CPU cuts BB

R101 0.1 11 0.1 2 3 0.1 4 3 0.1 15 1
R102 0.2 1 0.2 0 1 0.2 0 1 0.2 0 1
R103 0.4 15 1.3 33 1 1.3 33 1 1.3 33 1
R104 5.8 - 910.5 328 3 - - 11 - - 1
R105 0.1 55 0.2 52 3 0.2 56 1 0.2 56 1
R106 0.5 147 4.8 114 1 4.8 114 1 4.8 114 1
R107 2.2 - 46.1 224 3 78.4 242 1 78.4 242 1
R108 13.0 - 244.8 192 1 244.8 192 1 244.8 192 1
R109 0.3 - 1.6 127 17 8.7 374 3 10.0 367 1
R110 1.1 - 26.0 269 1 26.0 269 1 26.0 269 1
R111 1.5 - 36.6 175 39 293.7 379 - - - -
R112 35.9 - - - 91 - - - - - -
RC101 0.1 59 0.2 69 1 0.2 69 1 0.2 69 1
RC102 0.3 - 1.4 140 1 1.4 140 1 1.4 140 1
RC103 1.2 - 42.8 276 3 49.1 290 1 49.1 290 1
RC104 15.6 - 569.2 237 7 - - - - - -
RC105 0.2 191 0.5 73 1 0.5 73 1 0.5 73 1
RC106 0.3 - 3.5 250 37 16.5 543 5 21.6 572 1
RC107 1.4 - 4.3 85 1 4.3 85 1 4.3 85 1
RC108 9.7 - 86.7 175 1 86.7 175 1 86.7 175 1

The tables show that adding “n ≤ 5” cuts and “CG1” cuts is relatively cheap with respect
to the running time of the pricing problem, while decreasing the number of branch-and-bound
nodes significantly e.g., in instances R109, RC106, and R202.

If we had access to “ideal” heuristics for the pricing problem (with low running time and
high solution quality) we would only need to solve one pricing problem to optimality in each
branch-and-bound node. The running time of the overall algorithm would then be dictated
by the running time for optimally solving the pricing (CPU) and the number of branch-and-
bound nodes (BB). With the exception of R202 (where massive paging occurred due to lack
of memory) the lower bound on the running time “BB × CPU” is not increasing when n
grows and “CG1” cuts are applied. This shows, that good heuristics for the pricing problem
can make the addition of SR and CG-1 cuts attractive for the overall running time.

6 Concluding Remarks

We have demonstrated that it is possible to apply general CG rank-1 cuts derived from the
master problem formulation in a BCP algorithm for VRPTW. As each cut results in the
introduction of a new resource in the pricing problem it was necessary to develop new, tighter
dominance rules for use in the pricing algorithm.

Our computational experiments indicate that the addition of CG rank-1 cuts leads to
significantly improved lower bounds. In our tests the cuts made it possible to close the gap

68



Chvátal-Gomory Rank-1 Cuts used in a Dantzig-Wolfe Decomposition of the Vehicle...

Table 5: Running time for pricing problem and number of branch-and-bound nodes for the
2-series.

no n = 3 n ≤ 5 CG1
Instance CPU BB CPU cuts BB CPU cuts BB CPU cuts BB

R201 0.2 - 0.4 15 1 0.4 15 1 0.4 15 1
R202 2.9 - 3.0 24 13 419.6 132 1 419.6 132 1
R203 83.2 - 505.6 35 1 505.6 35 1 505.6 35 1
R204 - - - - - - - - - - -
R205 1.5 - - ∗∗345 ∗∗9 - - - - - -
R206 131.7 - - ∗∗171 ∗∗1 - - - - - -
R207 - - - ∗∗24 ∗∗1 - - - - - -
R208 - - - - - - - - - - -
R209 6.5 - - ∗∗248 ∗∗3 - - - - - -
R210 - - - ∗∗266 ∗∗5 - - - - - -
R211 - - - - - - - - - - -
RC201 0.2 - 0.3 25 3 0.3 25 3 0.3 29 1
RC202 0.6 - 1.7 26 1 1.7 26 1 1.7 26 1
RC203 58.8 11 185.2 15 1 185.2 15 1 185.2 15 1
RC204 - - - - - - - - - - -
RC205 1.0 - 1.8 21 1 1.8 21 1 1.8 21 1
RC206 1.7 - 4.6 23 1 4.6 23 1 4.6 23 1
RC207 - - - ∗∗210 ∗∗5 - - - - - -
RC208 - - - - - - - - - - -

between the upper and lower bounds in the root node of the branch-and-bound tree for 44
of the 51 currently solvable instances from Solomon’s test library. This is an additional 9 in-
stances compared to previous results. The increased complexity of the pricing problem caused
by CG rank-1 cuts do affect the running time of the pricing problems but not significantly.

This indicates that CG rank-1 inequalities may be essential when solving larger instances
to optimality, as one cannot expect that the branching process will close the gap between the
upper and lower bound in reasonable time. Note that one should also take into account the
additional time spent in each branch node since the number of LP iterations increases when
valid inequalities are added. As for classical branch-and-cut algorithms it will always be a
question when to add cuts and when to start branching.

Another important note is the separation time of the CG rank-1 cuts which can indeed
be very time consuming. Also the current MIP-based heuristics only finds a limited number
of violated cuts as the main effort is put in cut violation quality not violated cut quantity.
We suggest that MIP-based heuristics which focus on finding numerous violated CG rank-1
cuts could improve the performance of the BCP algorithm. Fortunately the SR inequalities
generally give rise to almost as tight lower bounds as general CG rank-1 cuts, while being
easier to handle in the pricing problem (due to integer modulo operations, see Jepsen et al.
[23]). For n = 7 the separation of SR inequalities takes almost one hour, making them too
expensive to separate. For n ≤ 5 the inequalities can be separated in a couple of minutes.
So until more efficient separation methods have been developed, one should only apply SR
inequalities for n ≤ 5.

During our experiments we noticed that specific values of the CG multipliers u occurred
more frequently than others. For instance, multiplier vectors u ∈ {0, 12}

|C| occurred very

69



Chapter 4

frequently, showing that it is promising to investigate these inequalities further (note that
the SR inequalities for a given n with k = 2 are a subset of these inequalities). Knowing the
structure of promising CG rank-1 inequalities will make it possible to develop fast, specialized
separation heuristics and better handling of these specific inequalities in the pricing problem.
Adapting the separation algorithm by Caprara et al. [3] for maximally violated mod-k cuts
in the master problem could be an interesting direction of research.

References

[1] R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. P Savelsbergh. An updated mixed
integer programming library: MIPLIB 3.0. Optima, 58:12–15, 1998.

[2] N. Boland, J. Dethridge, and I. Dumitrescu. Accelerated label setting algorithms for the
elementary resource constrained shortest path problem. Operation Research Letters, 34
(1):58–68, 2006. doi: 10.1016/j.orl.2004.11.011.

[3] A. Caprara, M. Fischetti, and A. N. Letchford. On the separation of maxi-
mally violated mod-k cuts. Mathematical Programming, 87(A):37–56, 1999. doi:
10.1007/s101079900107.

[4] A. Chabrier. Vehicle routing problem with elementary shortest path based col-
umn generation. Computers & Operations Research, 33(10):2972–2990, 2006. doi:
10.1016/j.cor.2005.02.029.

[5] V. Chvatal. Edmonds polytopes and hierarchy of combinatorial problems. Discrete
Mathematics, 4(4):305–337, 1973. doi: 10.1016/0012-365X(73)90167-2.

[6] W. Cook and J. L. Rich. A parallel cutting plane algorithm for the vehicle routing
problem with time windows. Technical Report TR99-04, Computational and Applied
Mathematics, Rice University, Houston, Texas, USA, 1999.

[7] E. Danna and C. Le Pape. Branch-and-price heuristics: A case study on the vehicle
routing problem with time windows. In G. Desaulniers, J. Desrosiers, and M. M. Solomon,
editors, Column Generation, chapter 4, pages 99–129. Springer, 2005. doi: 10.1007/0-
387-25486-2 4.

[8] G. Desaulniers, J. Desrosiers, J. Ioachim, I. M. Solomon, F. Soumis, and D. Villeneuve. A
unified framework for deterministic time constrained vehicle routing and crew scheduling
problems. In T. G. Crainic and G. Laporte, editors, Fleet Management and Logistics,
pages 57–93. Kluwer, 1998.

[9] G. Desaulniers, F. Lessard, and A. Hadjar. Tabu search, partial elementarity, and gen-
eralized k-path inequalities for the vehicle routing problem with time windows. Trans-
portation Science, 42(3):387–404, 2008. doi: 10.1287/trsc.1070.0223.

[10] M. Desrochers, J. Desrosiers, and M. Solomon. A new optimization algorithm for the
vehicle routing problem with time windows. Operations Research, 40(2):342–354, 1992.
doi: 10.1287/opre.40.2.342.

70



Chvátal-Gomory Rank-1 Cuts used in a Dantzig-Wolfe Decomposition of the Vehicle...

[11] M. Dror. Note on the complexity of the shortest path models for column generation in
VRPTW. Operations Research, 42(5):977–979, 1994. doi: 10.1287/opre.42.5.977.

[12] I. Dumitrescu. Constrained Path and Cycle Problems. PhD thesis, Department of Math-
ematics and Statistics, University of Melbourne, Australia, 2002.

[13] F. Eisenbrand. Note - on the membership problem for the elementary closure of a
polyhedron. Combinatorica, 19(2):297–300, 1999. doi: 10.1007/s004930050057.

[14] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm for the ele-
mentary shortest path problem with resource constraints: Application to some vehicle
routing problems. Networks, 44(3):216–229, 2004. doi: 10.1002/net.v44:3.

[15] M. Fischetti and A. Lodi. Optimizing over the first Chvátal closure. Mathematical
Programming, 110(1):3–20, 2006. doi: 10.1007/s10107-006-0054-8.

[16] R. Fukasawa, H. Longo, J. Lysgaard, M. Poggi de AragÃ£o, M. Reis, E. Uchoa, and R.F.
Werneck. Robust branch-and-cut-and-price for the capacitated vehicle routing problem.
Mathematical Programming, 106(3):491–511, 2006. doi: 10.1007/s10107-005-0644-x.

[17] R.E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin
of the AMS, 64:275–278, 1958. doi: 10.1090/S0002-9904-1958-10224-4.

[18] R.E. Gomory. An algorithm for integer solutions to linear programs. In R.L. Graves
and P. Wolfe, editors, Recent Advances in Mathematical Programming, pages 269–302.
McGraw-Hill, New York, 1963.

[19] B. Hunsaker. Cg-rank. http://www.rosemaryroad.org/brady/cg-rank/index.html, 2005.

[20] S. Irnich. Resource extension functions: Properties, inversion, and generalization to
segments. OR Spectrum, 30(1):113–148, 2008. doi: 10.1007/s00291-007-0083-6.

[21] S. Irnich and G. Desaulniers. Shortest path problems with resource constraints. In
G. Desaulniers, Jacques Desrosiers, and M.M. Solomon, editors, Column Generation,
chapter 2, pages 33–65. Springer, 2005. doi: 10.1007/0-387-25486-2 2.

[22] S. Irnich and D. Villeneuve. The shortest path problem with resource constraints and
k-cycle elimination for k ≥ 3. INFORMS Journal on Computing, 18:391–406, 2006. doi:
10.1287/ijoc.1040.0117.

[23] M. Jepsen, B. Petersen, S. Spoorendonk, and D. Pisinger. Subset-row inequalities applied
to the vehicle-routing problem with time windows. Operations Research, 56(2):497–511,
2008. doi: 10.1287/opre.1070.0449.

[24] B. Kallehauge, J. Larsen, and O.B.G. Madsen. Lagrangean duality and non-differentiable
optimization applied on routing with time windows - experimental results. Technical Re-
port Internal report IMM-REP-2000-8, Department of Mathematical Modelling, Techni-
cal University of Denmark, Lyngby, Denmark, 2000.

[25] N. Kohl, J. Desrosiers, O. B. G. Madsen, M. M. Solomon, and F. Soumis. 2-path cuts for
the vehicle routing problem with time windows. Transportation Science, 33(1):101–116,
1999. doi: 10.1287/trsc.33.1.101.

71



Chapter 4

[26] J. Larsen. Parallelization of the vehicle routing problem with time windows. PhD the-
sis, Department of Mathematical Modelling, Technical University of Denmark, Lyngby,
Denmark, 1999.

[27] Robin Lougee-Heimer. The Common Optimization INterface for Operations Research:
Promoting open-source software in the operations research community. IBM Journal of
Research and Development, 47(1):57–66, 2003. doi: 10.1147/rd.471.0057.

[28] G. Nemhauser and S. Park. A polyhedral approach to edge coloring. Operations Research
Letters, 10(6):315–322, 1991. doi: 10.1016/0167-6377(91)90003-8.

[29] G. Righini and M. Salani. Symmetry helps: bounded bi-directional dynamic program-
ming for the elementary shortest path problem with resource constraints. Discrete Op-
timization, 3(3):255–273, 2006. doi: 10.1016/j.disopt.2006.05.007.

[30] G. Righini and M. Salani. New dynamic programming algorithms for the resource con-
strained shortest path problem. Networks, 51(3):155–170., 2008. doi: 10.1002/net.20212.

[31] M. Salani. Branch-and-Price Algorithms for Vehicle Routing Problems. PhD thesis,
Universitá Degli Studi Di Milano, Facoltá di Scienza Matematiche, Fisuche e Naturali
Dipartimento di Technologie dell’Informazione, Milano, Italy, 2005.

[32] A. Schrijver. On cutting planes. Annals of Discrete Mathematics, 9:291–296, 1980. doi:
10.1016/S0167-5060(08)70085-2.

[33] M. M. Solomon. Algorithms for the vehicle routing and scheduling problem with time win-
dow constraints. Operations Research, 35(2):234–265, 1987. doi: 10.1287/opre.35.2.254.

[34] P. Toth and D. Vigo. An overview of vehicle routing problems. In P. Toth and D. Vigo,
editors, The Vehicle Routing Problem, chapter 1, pages 1–26. SIAM, 2002.

72



Chapter 5

A Branch-and-Cut Algorithm for

the Elementary Shortest Path Prob-

lem with Resource Constraints

Mads Jepsen
DIKU Department of Computer Science, University of Copenhagen

Bjørn Petersen
DIKU Department of Computer Science, University of Copenhagen

Simon Spoorendonk
DIKU Department of Computer Science, University of Copenhagen

Abstract

This paper introduces a branch-and-cut (BAC) algorithm for the elementary short-
est path problem with resource constraints (ESPPRC), which commonly appears as a
subproblem in column generation based algorithms, e.g., in the classical Dantzig-Wolfe
decomposition of the capacitated vehicle routing problem. Specifically, we consider an
undirected graph with arbitrary edge costs (i.e., negative cost cycles may appear) and
with resources that are equally constrained at all nodes and arcs. A mathematical model
and valid inequalities are presented, including a new family of valid inequalities denoted
the generalized capacity inequalities. Experimental tests are performed on a set of gener-
ated instances with graphs of high edge density and a set of instances from the literature.
Traditionally, labeling algorithms have been the dominant solution method for the ESP-
PRC, but experimental results show that the BAC algorithm is superior on all the tested
instances.

Keywords: Branch-and-cut algorithm, elementary shortest path problem with resource
constraints

In revision.

73



Chapter 5

1 Introduction

The elementary shortest path problem with resource constraints (ESPPRC) can informally be
stated as the problem of finding a shortest path between two nodes in a graph where resources
are accumulated along the path, and where the amount of resources are constrained.

In this paper, we consider the case where the graph is undirected and edge costs are
allowed to take on any value. Furthermore, we demand that the path is simple such that no
nodes are visited more than once. The resources considered in this paper are all bounded such
that the lower and upper bound of the amount of a resource that are accumulated along the
path is equal for all nodes and edges. We assume, that the resource lower bounds are zero and
that the accumulations are monotone increasing and only performed at the nodes. This type
of globally constrained resource compares to the vehicle capacity known from the capacitated
vehicle routing problem, where the resource accumulates a positive value (demand) at each
node and the upper bound (capacity of the vehicle) may not be exceeded.

It is now possible to give a more formal statement of the ESPPRC. Let G = (V,E) be
an undirected graph with nodes V and edges E. Let a cost ce be associated with each edge
e ∈ E, let dri be a positive resource accumulation associated to each node i ∈ V for each
resource r ∈ R, and let Qr be the upper bound on the resource r. Then given a source node
s ∈ V and a target node t ∈ V ; find a path between s and t with minimum cost satisfying
that the sum of the resource r from at each of the visited nodes is not more than Qr for all
r ∈ R.

The ESPPRC defined as above is NP-hard in the strong sense. This is easily verified
by reduction from the longest path problem. The definition of the ESPPRC varies in the
literature, especially with regard to edge costs, resource bounds, and resource accumulations.

Beasley and Christofides [7] presented a mathematical model (very similar to the one used
in this paper) and performed experimental tests using a branch-and-bound algorithm based
on Lagrangian dual bounds. Dumitrescu and Boland [15] presented a labeling algorithm that
was improved by preprocessing based on resource availability. Carlyle et al. [10] proposed a
Lagrangian relaxation algorithm where paths with cost between the Lagrangian bound and
the current upper bound are found using the k-shortest path algorithm by Carlyle and Wood
[9]. Common for these approaches are that they all assume that the graph have no negative
cost cycles. This makes it easier to ensure simplicity of the path, since it cannot pay off to
visit a node more than once. The ESPPRC in this form is weakly NP-hard, and results of
the algorithms presented above are therefore not directly comparable to the results in this
paper.

Another common definition is to consider resource bounds individually for each node (or
edge). In this case, it is often necessary to consider an undirected graph, because the direction
of the path determines the correct resource accumulation at a given node. Such resources
compare to the time in the vehicle routing problem with time windows, where the resource
(time) accumulates for each edge and the nodes must be visited within a resource window (a
time window defined by a minimum and a maximum arrival time for a node). Such resources
are said to be locally constrained. Dror [14] proved that the ESPPRC with a single globally
constrained resource and a single locally constrained resource is NP-hard in the strong sense.
Feillet et al. [16] presented a labeling algorithm where the simplicity of the path is ensured with
the use of an additional globally constrained resource per node. Chabrier [11] improved on
the labeling algorithm by applying various bounding procedures to avoid extending unwanted
paths. Righini and Salani [24] proposed a bi-directional labeling algorithm where paths are

74



A Branch-and-Cut Algorithm for the Elementary Shortest Path Problem with...

extended from both the source node and the target node until a given middle of a monotone
increasing resource is reached, e.g., when half the time was consumed on the path. The partial
paths are then combined to construct a full path. Independently, Boland et al. [8] and Righini
and Salani [25] proposed to extend the labeling algorithm by relaxing the node resources and
adding them incrementally until the path is simple. In the former paper, this is referred to
as a state space augmentation algorithm, and in the latter, it is denoted a decremental state

space relaxation algorithm. Furthermore, Righini and Salani [25] propose to use the result of
the relaxed problem in a branch-and-bound algorithm.

The algorithms presented above are mainly labeling algorithms. As mentioned in Beasley
and Christofides [7], even the algorithms based on Lagrangian relaxation make use of a dy-
namic programming algorithm if negative costs cycles are allowed. The strength of the la-
beling algorithms is, that the locally constrained resources are easily implemented, since the
paths are build piece by piece such that resource limits can be checked at every step. In fact,
non-linear functions for accumulation of resources can be handled easily, see e.g., Desaulniers
et al. [12]. Generally, labeling algorithms are assumed to perform well on a sparse graphs
with tightly constrained resources, since this yields a very reduced solution space to search,
i.e., few states in the dynamic programming table needs to be searched. However, when the
graph is dense and the resources are loosely constrained, the labeling algorithms get closer to
a full enumeration of all paths.

Modeling of resources (accumulation and bounds) is limited in branch-and-cut (BAC)
algorithms that are based on linear programming (which is the case in this paper). Glob-
ally constrained resources with positive accumulation can be modeled as single knapsack
constraints (and remain simple to model with negative accumulation). Locally constrained
resources with positive accumulation can be modeled for a directed graph with the use of
the Miller-Tucker-Zemlin (MTZ) constraints, see Miller et al. [22]. This gives rise to |E|
additional constraints and |V | variables per resource. Another modeling approach gives rise
to |V | constraints and |E| variables per resource, see e.g., Ascheuer et al. [1, 2]. A different
approach is to relax the resource constraints and, in a cutting plane fashion, make use of the
infeasible path inequalities which cuts of any path (or partial path) that violates a resource
bound. In Ascheuer et al. [2] a BAC algorithm for the traveling salesman problem with time
windows makes use of the three modeling approaches described above. Results indicate that
the infeasible path inequalities are to be preferred.

When considering the ESPPRC as a subproblem in a column generation context, another
issue comes up. Recent branch-and-cut-and-price algorithms, see e.g., Jepsen et al. [20],
Petersen et al. [23], Desaulniers et al. [13], Spoorendonk and Desaulniers [27], Baldacci et al.
[5], make use of cutting planes where the dual values are not directly subtractable from the
edge costs, which has previously been the preferred approach, see e.g., Fukasawa et al. [18].
The subtraction of such dual values depend on the complete path and can be very cumbersome
to overcome in labeling algorithms. However, when following the ideas in Spoorendonk et al.
[28] it is clarified how to model the additional costs in the subproblem, whereupon the BAC
algorithm can be applied.

Results by Ascheuer et al. [2] for the traveling salesman problem with time windows
indicate, that it is expensive (in running time) in a BAC algorithm, to use either of the
modeling approaches for locally constrained resources, i.e., the time windows. However,
when only globally constrained resources are considered, it seem likely that a BAC algorithm
can be competitive with labeling algorithms. So, although locally constrained resources can
be modeled in a BAC algorithm, it is not within the scope of this paper to investigate

75



Chapter 5

that approach. The reason for considering an undirected graph in this paper is mainly for
simplicity. The BAC algorithm can easily be extended to the directed case by doubling the
number of variables in the mathematical formulation. Neither of the separation routines are
affected by this (except for the doubling of variables). the undirected graphs favors the

The main contribution of this paper is the introduction of a BAC algorithm for solv-
ing the ESPPRC. This includes a 2-index mathematical model and a presentation of valid
inequalities with emphasis on the introduction of the generalized capacity inequalities. The
computational results indicate that the BAC algorithm is competitive with labeling algorithms
when considering dense graphs, and even more so when the resources are loosely constrained.

The paper is outlined as follows: Section 2 presents work on BAC algorithms for problems
that are related to the ESPPRC and Section 3 contains a formal integer programming model
of the ESPPRC. Section 4 describes the cutting planes used in the BAC algorithm and
the computational results are found in Section 5. Section 6 holds concluding remarks and
suggestions for further research.

2 Related Work

Bauer et al. [6] suggested to solve the ESPPRC by a BAC algorithm, but to our knowledge
nothing further has been published in the literature, although several BAC algorithms exist
for problems related to the ESPPRC. Bauer et al. [6] consider the knapsack constrained circuit
problem (KCCP) where a minimal capacitated cycle in a graph is sought. This is equivalent
to the ESPPRC if one node is fixed in the KCCP, since this node can be spilt into a source and
a target node in the ESPPRC. A BAC algorithm was implemented to solve the KCCP where
the demand of the nodes was given with unit weights. This variant is denoted the cardinality
constraint circuit problem. The instances considered by Bauer et al. [6] have positive edge
costs, but negative cost cycles would not affect the algorithm.

In the prize collecting traveling salesman problem (PCTSP), see e.g., Balas [3, 4], a prize
is collected at each visited node and a minimum amount of accumulated prizes must be
collected on the tour. That is, the edge costs are positive but the prizes may yield an overall
negative solution value. The difference with this variant of the TSP and the ESPPRC is,
that in the PCTSP a minimum amount of prizes need to be collected, which forces some of
the intermediate nodes to be visited. This is not the case for the ESPPRC as defined in this
paper.

In the orienteering problem, see e.g., Fischetti et al. [17], the profit of visiting the nodes is
maximized and the length of the tour is bounded by a maximum length. The only difference
compared to the definition of the ESPPRC of this paper is, that the resource accumulation
is on the edges instead of in the nodes. The instances considered by Fischetti et al. [17] have
positive edge costs, but again negative cost cycles would not affect the algorithm.

3 Mathematical Models

This section presents a flow model for the ESPPRC in the undirected graph G. Recall
the resource demand dri for nodes i ∈ V , and the resource upper bound Qr for resource
r ∈ R. Let the binary variable xe indicate the flow on edge e ∈ E. When describing
the model some shorthand notation will be used. For a set of nodes S ⊆ V let the set

76



A Branch-and-Cut Algorithm for the Elementary Shortest Path Problem with...

of edges δ(S) = {(i, j) : i ∈ S ∧ j ∈ V \ S} denote the edges between S and V \ S where
δ(i) is shorthand for δ({i}) when the node set S consists of a single node i ∈ V . Let
E(S) = {(i, j) : i ∈ S ∧ j ∈ S} be the set of edges between the nodes in S. Let the short-hand
notation

x(T ) =
∑

e∈T

xe

indicate the flow in the edge set T . Let the shorthand notation yi =
∑

e∈δ(i) xe/2 indicate
the flow in node i ∈ V \ {s, t}, and for a set of nodes S ⊆ V let

y(S) =
∑

i∈S

yi

be the flow in that node set. The mathematical model of the ESPPRC is then:

min
∑

e∈E

cexe (1)

s.t. x(δ(s)) = 1 (2)

x(δ(t)) = 1 (3)

x(δ(i)) = 2yi i ∈ V \ {s, t} (4)
∑

i∈V

dri yi ≤ Qr r ∈ R (5)

x(E(S)) ≤ y(S)− yi i ∈ S, S ⊂ V, |S| ≥ 2 (6)

xe ∈ {0, 1} e ∈ E (7)

The objective function (1) minimizes the overall edge cost. Constraints (2) and (3) ensure
that the source node and the target node are end points of the path. Constraints (4) are the
flow conservation constraints. Constraints (5) impose the resource constraints. Constraints
(6) impose connectivity and subtour elimination. Finally, constraints (7) define the domain
of the variables. Note, that yi ∈ {0, 1} due to (2), (3), (6), and (7).

This model has |E|+|V −2| variables and an exponential number of constraints due to (6).
In a BAC algorithm, these constraints will be relaxed and separated when violated to ensure
feasibility. That is, when disregarding constraints (6) the model have |V |+ |R| constraints.

4 Cutting Planes

This section presents the inequalities used in the BAC algorithm: The generalized subtour
elimination constraints (constraints (6) the mathematical model), the 0-1 knapsack cover
inequalities, and the generalized capacity inequalities for the ESPPRC.

4.1 Generalized Subtour Elimination Constraints

These constraints are generalizations of the subtour elimination constraints known from the
traveling salesman problem, which are also valid for ESPPRC on the form:

x(E(S)) ≤ |S| − 1 ∀S ⊂ V (8)

77



Chapter 5

Restricting the constants on the right-hand side to reflect the actual node flow provides a
tighter inequality, since yi ≤ 1 for all i ∈ V \ {s, t}. The generalized subtour elimination
constraints can be written on either of the forms:

x(E(S)) ≤ y(S)− yi ∀i ∈ S,∀S ⊂ V (9)

x(δ(S)) ≥ 2yi ∀i ∈ S,∀S ⊂ V \ {s, t} (10)

Separation of (9) and (10) can be done by solving a minimum cut problem from each node
i ∈ V \ {s, t} to the target node t (or the source node s) on the induced graph of the LP
solution (x⋆, y⋆) with edge weights we given as:

we =

{

x⋆e e ∈ E \ {(s, t)}
M e = (s, t)

where M is a sufficiently large constant to ensure that s and t are on the same side of the
cut, see Wolsey [30].

4.2 0-1 Knapsack Cover Inequalities

A 0-1 knapsack cover inequality for a set of nodes S ⊆ V where
∑

i∈S dri > Qr for some r ∈ R
is given as:

y(S) ≤ |S| − 1 (11)

The inequality states, that if a set of nodes violates the upper bound on the resource r, then
not all nodes in the set can be visited by the path. The 0-1 knapsack cover inequality (11)
can be rewritten as

∑

i∈S

(1− yi) ≥ 1 (12)

Given the LP solution (x∗, y∗), the separation problem becomes finding a cover S, i.e, a set
S ⊆ V satisfying

∑

i∈S dri > Qr for some r ∈ R such that

∑

i∈S

(1− y∗i ) < 1 (13)

in which case the corresponding 0-1 knapsack cover inequality (11) is violated. The most
violating (11) is identified by minimizing the left-hand side of (13) for all r ∈ R, i.e., by
solving:

ζ = min
r∈R

{

min
S⊆V

{

∑

i∈S

(1− y∗i )zi :
∑

i∈S

dri zi > Qr, z ∈ {0, 1}|V |

}}

If ζ ≥ 1, no cover that violates (11) exists. The separation problem consists of |R| mini-
mization versions of the well known 0-1 knapsack problem, see Kellerer et al. [21], Wolsey
[30].

Jepsen and Spoorendonk [19] suggested to exploit the fact that, since yi ≤ 1 for all
i ∈ V \ {s, t, }, the flow through a set of nodes S can be less than 2 in an LP solution. That
is, scaling the right-hand side of (11) with half the flow x(δ(S)) yields

y(S) ≤
1

2
(|S| − 1)x(δ(S)) (14)

78



A Branch-and-Cut Algorithm for the Elementary Shortest Path Problem with...

When x(δ(S)) < 2, there are cases where the inequality (14) is violated and the normal 0-1
knapsack cover inequality (11) is not. Jepsen and Spoorendonk [19] suggested an enumeration
scheme to separate the inequalities. Their results indicated, that (14) did improve the lower
bound in the root node, but had a negative effect on the convergence of the BAC algorithm.
Therefore, this family of inequalities are not pursued further in this paper.

4.3 Generalized Capacity Inequalities

This subsection introduces a family of inequalities inspired by the fractional capacity in-
equalities of the capacitated vehicle routing problem (CVRP), see Toth and Vigo [29]. The
generalized capacity inequalities are given as:

1

2
Qrx(δ(S)) ≥

∑

i∈S

dri yi S ⊆ V \ {s, t}, r ∈ R (15)

The inequalities ensure that a set S of nodes are visited according to their demand, e.g., if
2/3 of the resource is consumed in S, then the flow in and out of S should be at least 4/3.
An example of a violated (15) can be seen in Figure 4.3.

The validity of (15) is proved in the following proposition:

Proposition 1. The generalized capacity inequalities (15) are valid for the ESPPRC.

Proof. If y(S) = 0 then x(δ(S)) = 0, therefore both the left-hand side and the right hand side
evaluate to 0. If y(S) ≥ 1 then x(δ(S)) ≥ 2 and due to the resource constraint (5) for resource
r, the right-hand side can never evaluate to more than Qr which will be the minimal value of
the left-hand side, i.e., in this case the resource constraint (5) for resource r dominates the
generalized capacity inequality.

Given an LP solution (x⋆, y⋆) the separation problem of (15) is the problem of finding a
set S ⊆ V \ {s, t} for a resource r ∈ R such that

1

2
Qrx⋆(δ(S)) <

∑

i∈S

dri y
⋆
i

⇔
1

2
Qrx⋆(δ(S)) −

∑

i∈S

dri y
⋆
i +

∑

i∈V

dri <
∑

i∈V

dri

⇔
1

2
Qrx⋆(δ(S)) +

∑

i∈S

dri (1− y⋆i ) +
∑

i∈V \S

dri <
∑

i∈V

dri

Separating (15) for an be done by solving |R|(|V | − 2) different minimum cut problems one
from each node h ∈ V \ {s, t} to the target node t for each resource r ∈ R. The problems
are solved as maxflow problems using the same procedure as for separating (9) and (10).
The maxflow problem for each h is solved on a directed graph induced from the LP solution
(x⋆, y⋆), i.e., edges are split into opposite directed arcs, and the arcs into h are disregarded.
The edge weights eij are given as:

wij =















1
2Q

rx⋆hj + drj i = h, j ∈ V \ {h, t}
1
2Q

rx⋆it + dri (1− y⋆i ) i ∈ V \ {s, t} , j = t
1
2Q

rx⋆ij i ∈ V \ {h, t}, j ∈ V \ {h, t}

M i = s, j = t

79



Chapter 5

Consider the fractional solution given by
the graph to the right with different frac-
tional edge values indicated by the dotted
and dashed lines. The nodes are numbered
0, . . . , 5 where a path is sought from node 0
to 0. For a single resource, the resource de-
mands are given as d = {0, 2, 2, 2, 2, 1} and
the resource upper bound Q is 5.

Consider a generalized capacity inequality
(15) covering the node set S = {1, 2, 3} result-
ing in a fractional flow x⋆(δ(S)) = x⋆01+x⋆03 =
4
3 through the node set. The corresponding
(15) is violated since

1

2
Qx⋆(δ(S)) =

10

3
�

∑

i∈S

diy
⋆
i =

12

3

0

1

4

2

3

5
2/3

1/3

Figure 1: A violated generalized capacity inequality (15).

where M is a sufficiently large constant to ensure that s and t are on the same side of the
cut. The induced graph is denser than the induced graph used for separating (9) and (10),
therefore the separation of (15) is expected to be slower.

5 Computational Results

The experiments begin with an investigation of the impact of the parameter settings for
the cut generation of the generalized subtour elimination constraints (9). Next, the impact
of the generalized capacity inequalities (15) are investigated. For the parameter test, we
consider 10 of the harder problems of the generated instances. This is followed by a lower
bound comparison on the generated instances using different separation strategies. Last is
a comparison of the BAC algorithm and a labeling algorithm. We use a labeling algorithm,
that is implemented as described in Righini and Salani [24]. For the known instances, the
comparison is made with the results obtained in Righini and Salani [25]. The mathematical
model for the ESPPRC presented in this paper contains an exponential number of constraints,
so it is not possible to input it directly into a general purpose mixed integer solver such as
ILOG’s CPLEX. However, it is possible to model the globally constrained resources in a
similar way as the locally constrained resources, e.g., with the MTZ constraints. Such a
model can be plugged into CPLEX and solved directly, but preliminary results indicate that
this approach is always significantly slower than using the BAC algorithm proposed in this
paper.

All experiments are performed on a 2.66 GHz Intel(R) Xeon(R) X5355 machine with 8 GB
memory using CPLEX 10.2. The BAC algorithm is implemented using callback functions for
the cut generation, which is available in the CPLEX callable library. The tests are performed
using the default CPLEX parameters. This includes the generation of cuts for general mixed-
integer programs such as Chvátal-Gomory, mixed-integer rounding, and disjunctive cuts.

80



A Branch-and-Cut Algorithm for the Elementary Shortest Path Problem with...

Also, the 0-1 knapsack covers are included in the CPLEX default settings and preliminary
tests indicated, that the separation time nor the change in lower bounds were much affected
by the cuts. Therefore, we have not performed any further tests of the 0-1 knapsack covers
but rely on the CPLEX default settings.

5.1 The Benchmark Instances

A set of benchmarks derived from the CVRP instances (divided in series A, B, E, G, M,
and P) available at http://www.branchandcut.org has been generated. Here, the source
and target nodes are chosen by splitting the node representing the depot in two. To identify
sufficiently hard instances of the ESPPRC, we have used the BAC algorithm for the ESPPRC
in a simple column generation algorithm for the CVRP, see e.g., Baldacci et al. [5] for the
details on mathematical models. We have not included results for the CVRP, since it is not
in the scope of this paper. Note, that for all the generated instances there is a valid upper
bound of 0, since they are constructed from a column generation algorithm. The instances
are named from the derived CVRP instances, which are given as letter indicating the series
followed by the number of nodes and vehicles (the latter is not used for the ESPPRC). At
the end a number, indicating the final iteration number of our column generation algorithm,
is added, e.g., the instance P-n50-k7-92 is from the P-series and consists of 50 nodes (where
7 vehicles are used for the CVRP), and is from iteration 92. The ESPPRC instances are
gathered in the SPPRCLIB available at http://www.diku.dk/~spooren/spprclib.htm.

Beside the generated instances, we consider the instances used in Feillet et al. [16], Righini
and Salani [24, 25] with 100 nodes and a single globally constrained resource (the capacity
resource). These instances are derived from the benchmarks by Solomon [26] for the vehicle
routing problem with time windows, where the time constraints have been discarded. For
the c101, r101, and rc101, three different distributions of nodes are chosen, and ten instances
have been created for each distribution, where the resource bounds (capacity) range from 10
to 100 in steps of 10. We consider only instances with bounds of 60 and above. Additionally,
we have extended the set of instances by setting bounds to 200, 500, 700, and 1000. A larger
resource bound results in loosely constrained instances, that are expected to be harder to solve
to optimality. The instances are named according to the series and a tenth of the capacity,
e.g., c 100 09 is from the c101 instance, with capacity 90.

5.2 Impact of the Parameters for the Generalized Subtour Elimination

Constraints

The setting of the parameters for the generation of violated generalized subtour elimination
constraints (6) can have a huge influence on the computation time of the BAC algorithm. A
low threshold on violation will result in good lower bounds and fewer branch nodes, but a
slower convergence in each node, while the opposite is true for a high threshold. Also, the
number of violated cuts added in each iteration can influence the convergence and the time
spent when reoptimizing the LP-problem.

Figure 2 shows a plot with two axes given as the violation threshold and number of cuts
to add per iteration. The requirement of violation is ranging from 0.1 to 1 in steps of 0.1, and
the number of cuts to add is starting at 1 and then from 10 to 100 in steps of 10. The vertical
axis indicates the average time spent. The time for each instance is scaled to the interval
]0, 1] where 1 is the maximum time given for all the parameter settings for that instance.

81



Chapter 5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

Time

Violation threshold

Max number of cuts

Time

Figure 2: Parameter test for the generalized subtour elimination constraints (9). Above is a plot of
the average time given the violation threshold and the number of cuts to add.

From Figure 2, it is observed that the best parameter setting appears to be to add 1 cut
per iteration with a violation of at least 0.4. This indicates that the cut separation time is
insignificant compared to solving the LPs.

5.3 Investigating the Generalized Capacity Inequalities

Note, that the generalized capacity inequalities (15) can substitute the generalized subtour
elimination constraints (9) in the model (1)-(7), since any infeasible integer solution will be
violated by some generalized capacity inequality. However, due to the computational expen-
sive separation routine for constraints (15), a cut policy was chosen such that constraints
(15) are only separated (and possible added) whenever no violated constraints (9) are sepa-
rated (using the default parameters found above). Preliminary tests indicated, that due to
a computational expensive separation routine for constraints (15), the cuts were not worth
the effort. A slow separation was expected since the max-flow calculations are done on very
dense graphs compared to the very sparse graph used in the separation of constraints (9).
However, we believe that constraints (15) may become useful, e.g., with the use of a faster
heuristic separation routine.

Figure 3 shows, as before, a plot of the violation threshold, number of cuts to add per
iteration, and average time. The time is calculated without the separation time of constraints
(15), and therefore only indicates if the convergence of the BAC is improved or not, when con-
straints (15) are added. Figure 3 indicates that a large violation threshold (≥ 0.8) is preferred
for constraints (15) and that, the convergence of the BAC algorithm is faster when few of the
constraints (15) are added. Figure 4 substantiate this result, as it can be seen that almost no
cuts are added with violation thresholds 0.8 and higher. Although the generalized capacity
inequalities (15) are a theoretically interesting set of inequalities, our tests have shown that
in their current form and with the proposed exact separation routine, the inequalities do not
appear to be computationally competitive.

82



A Branch-and-Cut Algorithm for the Elementary Shortest Path Problem with...

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Time

Violation threshold

Max number of cuts

Time

Figure 3: Parameter test for the generalized capacity inequalities (15). Above is a plot of the average
time given the violation threshold and the number of cuts to add.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

A
vg

. n
um

be
r 

of
 c

ut
s

Violation threshold

Figure 4: Parameter test for the generalized capacity inequalities (15). Above is given the average
scaled number of generalized capacity inequalities added with different violation thresholds when
solving the instances, i.e., with a violation threshold of 0.1 the number of cuts are decreased by about
50 % compared to the setting with a violation threshold of 0.01.

83



Chapter 5

5.4 Lower Bound Comparison

Table 1 sums up the root lower bounds (root) and the number of branch nodes (nodes) for
three different cut separation parameter settings. A ‘-’ entry in the branch node columns
indicates that the BAC algorithm timed out at 600 seconds. The three parameter settings
tested are:

• GSEC is the BAC algorithm where at most 1 violated generalized subtour elimination
constraint (9) with a minimum violation of 0.01 is added per iteration.

• GCI is the BAC algorithm with the GSEC parameter setting and when no violated (9)
are found then at most 1 violated generalized capacity inequality (15) with a minimum
violation of 0.01 is added.

• default is the BAC algorithm where at most 1 violated generalized subtour elimination
constraint (9) with a minimum violation of 0.4 is added per iteration.

The optimal solution is given in the rightmost column.
When comparing the parameter settings GSEC and GCI, it is obvious that the general-

ized capacity inequalities (15) improve the lower bounds considerably. The average gap is
decreased by 63% when comparing the two settings, this includes the instances that timed
out and potentially could have improved the lower bound further. Surprisingly, the number
of branch nodes does not decrease proportionally with the size of the gap. That is, for the
instances that did not time out, the average gap is closed by 76% but with only 7% fewer
branch nodes. In several cases, the number of branch nodes actually increases considerably
(A-n63-k9-157, B-n45-k6-54, P-n50-k10-24, P-n55-k10-44). This indicates that (15) compli-
cates the branch decisions. The comparison of the settings GSEC and default is more as
expected: A worse lower bound with the default setting leads to more branch nodes. How-
ever, the previous test for the generalized subtour elimination (9) constraints showed, that
this setting was the fastest on average.

5.5 Comparison with a Labeling Algorithm

Table 2 shows the running time of the BAC algorithm (BAC time (s)) with default parameters
compared to the running time of our implementation of a labeling algorithm (LA) (LA time
(s)) for the generated instances. The time limit was set to two hours and a timeout is indicated
with a ’-’ in the table. The rightmost column presents the speed up if both algorithms
finished. The BAC algorithm clearly outperforms the labeling algorithm. That is, in all 45
instances. However, it is worth noting that when the solution is near 0 (which is and upper
bound for all instances since they are generated as pricing problems in a column generation
algorithm) then the labeling algorithm performs much better than on the instances that
contains much negativity. That is, the label algorithm is faster when there are less negativity
in the problem whereas the BAC algorithm appears to be more robust. It should be noted
that the implementation of our labeling algorithm may be improved, but it is doubtful, that
it will be competitive with the BAC algorithm for the instances with a speed up of more than
100.

84



A Branch-and-Cut Algorithm for the Elementary Shortest Path Problem with...

GSEC GCI default

Name nodes root nodes root nodes root solution

A-n54-k7-149 231 -90877 - -41213 280 -109018 -12492
A-n60-k9-57 1641 -98206 - -64557 3071 -118437 -1000
A-n61-k9-80 205 -63534 92 -41032 462 -73397 -23549
A-n62-k8-99 133 -103839 - -47340 301 -122973 -35969
A-n63-k9-157 122 -63082 492 -38929 113 -78190 -24189
A-n63-k10-44 127 -76475 149 -51035 280 -80765 -32561
A-n64-k9-45 358 -92812 157 -65209 425 -104686 -50550
A-n65-k9-10 152 -93117 129 -58526 189 -103936 -42835
A-n69-k9-42 72 -56453 - -53299 179 -60410 -43290
A-n80-k10-14 84 -121510 45 -112483 120 -128508 -105283

B-n45-k6-54 277 -95588 497 -88761 502 -103214 -74278
B-n50-k8-40 166 -105497 - -41212 237 -128488 -12832
B-n52-k7-15 25 -85997 22 -79129 59 -90278 -74998
B-n57-k7-20 12 -876421 19 -876421 328 -882924 -867154
B-n66-k9-50 239 -81006 28 -38097 1195 -94120 -26520
B-n67-k10-26 184 -55180 178 -26808 343 -63086 -21924
B-n68-k9-65 150 -88375 - -55175 342 -99383 -31001
B-n78-k10-70 344 -91021 - -54330 480 -101516 -44333

E-n76-k7-44 117 -30127 115 -25885 338 -32038 -22214
E-n76-k10-72 239 -36569 164 -31404 138 -38613 -25241
E-n76-k14-102 3163 -28126 - -16153 3992 -31018 -1
E-n76-k15-40 3747 -25752 - -17526 4993 -28675 -1
E-n101-k8-291 48 -8296 - -7398 197 -9472 -4266
E-n101-k14-158 1468 -25748 - -22729 1350 -30882 -3590

G-n262-k25-316 669 -1434843 - -1434843 1510 -1434883 -1426535

M-n101-k10-97 40 -35323 37 -34758 76 -37825 -32628
M-n121-k7-260 89 -162680 - -161424 147 -164742 -160097
M-n151-k12-15 338 -87899 - -85488 822 -92880 -79996
M-n200-k16-143 6 -199411 4 -199411 118 -201772 -198792
M-n200-k17-12 4 -121506 1 -121210 7 -121506 -121210

P-n50-k7-92 950 -18594 1152 -12245 1319 -21516 -2
P-n50-k8-19 160 -89868 40 -89848 207 -90606 -83307
P-n50-k10-24 197 -19811 608 -11971 443 -21975 -2965
P-n51-k10-30 1028 -23812 - -18488 1588 -27061 -2
P-n55-k7-116 84 -27065 36 -22945 105 -28094 -17824
P-n55-k8-260 101 -18839 145 -11377 167 -22237 -3573
P-n55-k10-44 913 -21448 2197 -11798 1192 -25131 -1090
P-n55-k15-88 5971 -26723 - -20135 4781 -28128 -2
P-n60-k10-24 242 -26948 137 -21183 301 -29289 -15001
P-n60-k15-8 1495 -21889 1889 -13812 1507 -24674 -534
P-n65-k10-102 2390 -18923 - -10975 2532 -21424 -3
P-n70-k10-12 2 -72264 1 -70317 21 -73460 -70317
P-n76-k4-41 1 -88276 1 -88276 1 -88276 -88276
P-n76-k5-16 6 -108884 10 -108884 24 -108884 -107633
P-n101-k4-174 174 -19656 165 -19041 395 -19887 -17702

Table 1: Comparison of the number of branch nodes and lower bounds for the generated instances
using three different cut separation strategies.

85



Chapter 5

Name BAC time (s) LA time (s) speed up

A-n54-k7-149 6.96 1735.23 249.3
A-n60-k9-57 36.55 242.64 6.6
A-n61-k9-80 4.44 - ∞

A-n62-k8-99 17.94 - ∞

A-n63-k9-157 3.16 - ∞

A-n63-k10-44 2.12 693.80 327.3
A-n64-k9-45 14.57 - ∞

A-n65-k9-10 4.43 - ∞

A-n69-k9-42 1.76 3246.72 1844.7
A-n80-k10-14 12.14 - ∞

B-n45-k6-54 1.32 - ∞

B-n50-k8-40 11.01 - ∞

B-n52-k7-15 1.00 - ∞

B-n57-k7-20 1.74 - ∞

B-n66-k9-50 66.93 - ∞

B-n67-k10-26 4.62 - ∞

B-n68-k9-65 11.88 - ∞

B-n78-k10-70 24.30 - ∞

E-n76-k7-44 6.02 - ∞

E-n76-k10-72 1.19 - ∞

E-n76-k14-102 14.77 45.19 3.1
E-n76-k15-40 19.59 151.59 7.7
E-n101-k8-291 8.08 - ∞

E-n101-k14-158 37.84 - ∞

G-n262-k25-316 53.00 - ∞

M-n101-k10-97 3.12 - ∞

M-n121-k7-260 34.46 - ∞

M-n151-k12-15 78.03 - ∞

M-n200-k16-143 3.18 - ∞

M-n200-k17-12 17.75 - ∞

P-n50-k7-92 2.42 104.22 43.1
P-n50-k8-19 0.36 - ∞

P-n50-k10-24 0.72 2.91 4.0
P-n51-k10-30 2.18 4.06 1.9
P-n55-k7-116 0.58 2275.07 3922.5
P-n55-k8-260 1.20 133.45 111.2
P-n55-k10-44 2.14 14.69 6.9
P-n55-k15-88 3.97 44.73 11.3
P-n60-k10-24 1.04 110.20 106.0
P-n60-k15-8 1.95 2.50 1.3
P-n65-k10-102 6.65 163.48 24.6
P-n70-k10-12 0.24 - ∞

P-n76-k4-41 1.85 - ∞

P-n76-k5-16 0.57 - ∞

P-n101-k4-174 11.25 - ∞

Best 45 0

Table 2: Time comparison of the BAC algorithm and the labeling algorithm.

86



A Branch-and-Cut Algorithm for the Elementary Shortest Path Problem with...

Name BAC time (s) DSSR time (s)

c 100 06 0.36 0.21
c 100 07 0.38 0.18
c 100 08 0.53 1.34
c 100 09 0.62 2.02
c 100 10 1.14 7.68
c 100 20 0.82 n.a.
c 100 50 3.07 n.a.
c 100 70 2.70 n.a.
c 100 100 4.43 n.a.

r 100 06 0.75 34.64
r 100 07 0.85 143.63
r 100 08 1.35 281.62
r 100 09 1.04 1002.30
r 100 10 0.80 -
r 100 20 2.09 n.a.
r 100 50 26.96 n.a.
r 100 70 16.25 n.a.
r 100 100 1.76 n.a.

rc 100 06 0.23 0.35
rc 100 07 0.66 0.92
rc 100 08 0.90 1.77
rc 100 09 0.36 1.40
rc 100 10 0.77 7.33
rc 100 20 1.08 n.a.
rc 100 50 4.10 n.a.
rc 100 70 4.17 n.a.
rc 100 100 6.47 n.a.

Best 28 (13) 2

Table 3: Time comparison of the BAC algorithm and the labeling algorithm (Righini and Salani [25]).

In Table 3 the BAC algorithm is compared to the results obtained with the decremental
state-space relaxation (DSSR) algorithm by Righini and Salani [25] (recall from Section 1
that this a specialized labeling algorithm). The running times for the two algorithms are
given in the columns (BAC time (s)) and (DSSR time (s)). Since Righini and Salani [25]
performed their tests on a 1.6 GHz Intel (R) Pentium 4(R) with 512 MB memory, and an
exact time comparison with our machine is hard, so we have not included the speed up factor.
’-’ indicates that the algorithm timed out after one hour, the ’n.a.’ entry indicates that no
result is available for that instance.

Although the DSSR algorithm is faster on two instances out of the 15 comparable cases, it
is only marginally better (even when taken their slower machine into account). There is a clear
tendency, that when the capacity increases (i.e., when the ESPPRC becomes more loosely
constrained) the running times of the DSSR algorithm increase significantly. The running
times are also generally increasing for the BAC algorithm when the capacity increases (except
for r 100 100), but not as drastically as for the DSSR algorithm. Results are not available
for the DSSR algorithm for the extended instances (with capacity from 200 and above), but
if the tendency from the smaller instances continues, then the DSSR algorithm will probably
not be able to solve the larger instances within the time limit. The BAC algorithm is clearly
superior for the loosely constrained instances.

87



Chapter 5

6 Concluding Remarks

This paper introduces a BAC algorithm for solving the ESPPRC. The algorithm clearly
outperformed the labeling algorithms (our own implementation of the one describes in Righini
and Salani [24] as well as the one by Righini and Salani [25]) for the tested instances. Labeling
algorithms have been the preferred solution approach up until now, but the experimental
results presented in this paper suggest otherwise. Furthermore, the generalized capacity
inequalities were introduced as a set of valid inequalities for the ESPPRC. It can be concluded
that the inequalities improve the lower bounds significantly. However, this comes at a cost
of complicating the branch decision, and leads to a large amount of additional branch nodes.
Also, the exact separation routine takes a considerable amount of time. This is due to solving a
maxflow problem on an almost complete graph. That is, the generalized capacity inequalities
improve the lower bound, but lead to increased running times.

Future research could include the adaption of more valid inequalities known from related
problems, e.g., two-matching inequalities, comb inequalities, and infeasible path inequalities.
Another interesting direction is the conditional cuts by Fischetti et al. [17]. Such cuts resemble
a specialized branch rule, as they cut off some of the branch tree after solving a subproblem
that finds the optimal solution for the subtree. Another natural extension of the work pre-
sented in this paper is to extend the BAC algorithm to include locally constrained resources.
This would lead to a larger mathematical formulation and will most definitely pose a serious
challenge for future research.

References

[1] N. Ascheuer, M. Fischetti, and M. GrÃ¶tschel. A polyhedral study of the asymmetric
travelling salesman problem with time windows. Networks, 36(2):69–79, 2000. doi:
10.1002/1097-0037(200009)36:2〈69::AID-NET1〉3.0.CO;2-Q.

[2] N. Ascheuer, M. Fischetti, and M. GrÃ¶tschel. Solving the asymmetric travelling sales-
man problem with time windows by branch-and-cut. Mathematical Programming, 90(3):
475–506, 2001. doi: 10.1007/PL00011432.

[3] E. Balas. The prize collecting traveling salesman problem. Networks, 19(6):621–636,
1989. doi: 10.1002/net.3230190602.

[4] E. Balas. The prize collecting traveling salesman problem: Ii. polyhedral results. Net-

works, 25(4):199–216, 1995. doi: 10.1002/net.3230250406.

[5] R. Baldacci, N. Christofides, and A. Mingozzi. An exact algorithm for the vehicle routing
problem based on the set partitioning formulation with additional cuts. Mathematical

Programming, 115(2):351–385, 2008. doi: 10.1007/s10107-007-0178-5.

[6] P. Bauer, J. T. Linderoth, and M. W. P. Savelsbergh. A branch and cut approach to
the cardinality constrained circuit problem. Mathematical Programming, 91(2):307–348,
2002. doi: 10.1007/s101070100209.

[7] J.E. Beasley and N. Christofides. An algorithm for the resource constrained shortest
path problem. Networks, 19:379–394, 1989. doi: 10.1002/net.3230190402.

88



A Branch-and-Cut Algorithm for the Elementary Shortest Path Problem with...

[8] N. Boland, J. Dethridge, and I. Dumitrescu. Accelerated label setting algorithms for the
elementary resource constrained shortest path problem. Operation Research Letters, 34
(1):58–68, 2006. doi: 10.1016/j.orl.2004.11.011.

[9] W. M. Carlyle and R. K. Wood. Near-shortest and k-shortest simple paths. Networks,
46(2):98–109, 2005. ISSN 0028-3045. doi: 10.1002/net.v46:2.

[10] W.M. Carlyle, J.O. Royset, and R.K. Wood. Lagrangian relaxation and enumeration
for solving constrained shortest-path problems. Networks, 51(3):155–170, 2008. doi:
10.1002/net.20212.

[11] A. Chabrier. Vehicle routing problem with elementary shortest path based column gen-
eration. Computers & Operations Research, 33(10):2972–2990, 2006. doi: 10.1016/j.cor.
2005.02.029.

[12] G. Desaulniers, J. Desrosiers, J. Ioachim, I. M. Solomon, F. Soumis, and D. Villeneuve. A
unified framework for deterministic time constrained vehicle routing and crew scheduling
problems. In T. G. Crainic and G. Laporte, editors, Fleet Management and Logistics,
pages 57–93. Kluwer, 1998.

[13] G. Desaulniers, F. Lessard, and A. Hadjar. Tabu search, partial elementarity, and gen-
eralized k-path inequalities for the vehicle routing problem with time windows. Trans-

portation Science, 42(3):387–404, 2008. doi: 10.1287/trsc.1070.0223.

[14] M. Dror. Note on the complexity of the shortest path models for column generation in
VRPTW. Operations Research, 42(5):977–979, 1994. doi: 10.1287/opre.42.5.977.

[15] I. Dumitrescu and N. Boland. Improved preprocessing, labeling and scaling algorithms
for the weight-constrained shortest path problem. Networks, 42(3):135–153, 2003. doi:
10.1002/net.10090.

[16] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm for the ele-
mentary shortest path problem with resource constraints: Application to some vehicle
routing problems. Networks, 44(3):216–229, 2004. doi: 10.1002/net.v44:3.

[17] M. Fischetti, J. J. Salazar-Gonzalez, and P. Toth. Solving the orienteering problem
through branch-and-cut. INFORMS Journal on Computing, 10(2):133–148, 1998. ISSN
1526-5528. doi: 10.1287/ijoc.10.2.133.

[18] R. Fukasawa, H. Longo, J. Lysgaard, M. Poggi de AragÃ£o, M. Reis, E. Uchoa, and R.F.
Werneck. Robust branch-and-cut-and-price for the capacitated vehicle routing problem.
Mathematical Programming, 106(3):491–511, 2006. doi: 10.1007/s10107-005-0644-x.

[19] M. Jepsen and S. Spoorendonk. A note on the flow extended 0-1 knapsack cover inequal-
ities for the elementary shortest path problem with a capacity constraint. Technical
Report 08-02, DIKU Department of Computer Science, University of Copenhagen, Den-
mark, 2008.

[20] M. Jepsen, B. Petersen, S. Spoorendonk, and D. Pisinger. Subset-row inequalities applied
to the vehicle-routing problem with time windows. Operations Research, 56(2):497–511,
2008. doi: 10.1287/opre.1070.0449.

89



Chapter 5

[21] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, Berlin, Germany,
2004.

[22] C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer programming formulation of
traveling salesman problems. Journal of the ACM, 7(4):326–329, 1960. doi: 10.1145/
321043.321046.

[23] B. Petersen, D. Pisinger, and S. Spoorendonk. Chvátal-Gomory rank-1 cuts used
in a Dantzig-Wolfe decomposition of the vehicle routing problem with time win-
dows. In B. Golden, R. Raghavan, and E. Wasil, editors, The Vehicle Routing

Problem: Latest Advances and New Challenges, pages 397–420. Springer, 2008. doi:
10.1007/978-0-387-77778-8 18.

[24] G. Righini and M. Salani. Symmetry helps: bounded bi-directional dynamic program-
ming for the elementary shortest path problem with resource constraints. Discrete Op-

timization, 3(3):255–273, 2006. doi: 10.1016/j.disopt.2006.05.007.

[25] G. Righini and M. Salani. New dynamic programming algorithms for the resource con-
strained shortest path problem. Networks, 51(3):155–170., 2008. doi: 10.1002/net.20212.

[26] M. M. Solomon. Algorithms for the vehicle routing and scheduling problem with time
window constraints. Operations Research, 35(2):234–265, 1987. doi: 10.1287/opre.35.2.
254.

[27] S. Spoorendonk and G. Desaulniers. Clique inequalities applied to vehicle routing prob-
lem with time windows. Submitted, 2008.

[28] S. Spoorendonk, G. Desaulniers, and J. Desrosiers. A note on cutting planes in Dantzig-
Wolfe decompositions of integer programs. Submitted, 2008.

[29] P. Toth and D. Vigo, editors. The Vehicle Routing Problem. SIAM, 2002.

[30] L. A. Wolsey. Integer Programming. John Wiley & Sons, Inc., 1998.

90



Chapter 6

Partial Path Column Generation for

the Vehicle Routing Problem

Mads Jepsen
DTU Management Engineering, Technical University of Denmark

Bjørn Petersen
DTU Management Engineering, Technical University of Denmark

David Pisinger
DTU Management Engineering, Technical University of Denmark

Abstract

This paper presents a column generation algorithm for the Capacitated Vehicle Rout-
ing Problem (CVRP) and the Vehicle Routing Problem with Time Windows (VRPTW).
Traditionally, column generation models of the CVRP and VRPTW have consisted of
a Set Partitioning master problem with each column representing a route. The use of
Elementary routes, where no customer is visited more than once, have shown superior re-
sults for both CVRP and VRPTW. However, algorithms for solving the pricing problems
do not scale well when the number of feasible routes increases. We suggest to relax the
constraint that ‘each column is a route’ into ‘each column is a part of the giant tour’; a
so-called partial path, i.e., not necessarily starting and ending in the depot. This way, the
length of the partial path can be bounded and a better control of the size of the solution
space for the pricing problem can be obtained. It is shown that the LP-relaxed partial
path formulation gives a tighter bound than the LP-relaxation of a 2-index formulation,
and in some cases it is even tighter than the bound found by classical decomposition into
routes.

Keywords: Vehicle Routing Problem, Column Generation, Elementary Shortest Path
Problem with Resource Constraints

In revision.

91



Chapter 6

1 Introduction

The Capacitated Vehicle Routing Problem (CVRP) can be described as follows: A set of
customers C having a demand di, needs to be serviced by a number of vehicles all starting
and ending at a central depot. Each customer must be visited exactly once and the capacity
Q of the vehicles may not be exceeded. The objective is to service all customers traveling the
least possible distance. In this paper we consider a homogeneous fleet, i.e., all vehicles are
identical. The Vehicle Routing Problem with Time Windows (VRPTW) extends the CVRP
by imposing that each customer must be visited within a given time window. We will use the
term VRP to denote Vehicle Routing Problems with time and/or capacity constraints.

The standard Dantzig-Wolfe decomposition of the arc flow formulation of the VRP is to
split the problem into a master problem formulated as a Set Partitioning Problem, and a pric-
ing problem formulated as an Elementary Shortest Path Problem with Resource Constraints
(ESPPRC), where capacity (and time) are the constrained resources. A restricted master
problem can be solved with delayed column generation and embedded in a branch-and-bound
framework to ensure integrality. Applying cutting planes either in the master or the pricing
problem leads to a Branch-and-Cut-and-Price algorithm (BCP). Kohl et al. [24] implemented
a successful BCP algorithm for the VRPTW by applying sub-tour elimination constraints and
two-path cuts, Cook and Rich [10] generalized the two-path cuts to k-path cuts, and Fukasawa
et al. [19] applied a range of valid inequalities for the CVRP based on the branch and cut
algorithm of Lysgaard et al. [25]. Common for these BCP algorithms is that all applied cuts
are valid inequalities for the VRPTW respectively the CVRP with regard to the original arc
flow formulation, and have a structure which makes it possible to handle values of the dual
variables in the pricing problem without increasing the complexity of the problem. Fukasawa
et al. [19] refer to this as a robust approach in their paper. The topic of column generation
and BCP algorithms has been surveyed by Barnhart et al. [4] and LÃ1

4bbecke and Desrosiers
[26]. Recently the BCP framework was extended to include valid inequalities for the master
problem, more specifically by applying the subset row (SR) inequalities to the Set Partitioning
master problem in Jepsen et al. [23] and later by applying Chvátal-Gomory Rank-1 (CG1)
inequalities in Petersen et al. [28]. Desaulniers et al. [13] solved several unsolved instances
by adding generalized k-Path inequlities and generated columns heuristically using a tabu
search and finally introduced a new algorithm to solve the pricing problem where partial
elementarity is used. Baldacci et al. [2] improved the lower bound by adding strengthened
capacity inequalities and clique inequalities to an algorithm where columns with potentially
negative reduced cost are enumerated (after good upper and lower bounds are found).

Dror [16] showed that the ESPPRC, with time and capacity constraints, is strongly NP-
hard. Hence, a relaxation of the ESPPRC was used as the pricing problem in earlier BCP
approaches for the VRPTW. The relaxed pricing problem where non-elementary paths are
allowed is denoted the Shortest Path Problem with Resource Constraints (SPPRC) and can
be solved in pseudo-polynomial time by dynamic programming using for instance a labeling
algorithm, see Desrochers [14]. Considering a single capacity resource Christofides et al. [9]
suggested to remove 2-cycles from the paths. This was later generalized to the variant with
time windows by Desrochers et al. [15]. Irnich and Villeneuve [22] extended the framework
further to k-cycle elimination (k-cyc-SPPRC), where cycles containing k or less nodes are
forbidden.

Beasley and Christofides [5] proposed to solve the ESPPRC using Lagrangian relaxation.

92



Partial Path Column Generation for the Vehicle Routing Problem

7
2

6

2

1
2

4

3
21

5 2

3

1
1

3

121
2

1 1 2 1 3

s

s
s

s

s

s s s s

s

s
s

s

s s

s

s

ss

s

s

s

s

s

s

�

7
2

6

2

1
2

4

3
21

5 2

3

1
1

3

121
2

1 1 2 1 3

s

s
s

s

s

s s s s

s

s
s

s

s s

s

s

ss

s

s

s

s

s

s

�

Figure 1: Giant-tour (left) and corresponding giant-tour split into partial paths (right), each
bounded by the capacity Q = 10.

However, labeling algorithms have recently become the most popular approach to solve the
ESPPRC, see e.g. Dumitrescu [17] and Feillet et al. [18]. When solving the ESPPRC with a
labeling algorithm, a binary resource for each node is added, increasing the complexity of the
algorithm compared to the solution of the SPPRC or the k-cyc-SPPRC. Righini and Salani
[29] developed a labeling algorithm using the idea of Dijkstra’s bi-directional shortest path
algorithm that expands both forward and backward from the depot and connects routes in
the middle, thereby potentially reducing the running time of the algorithm. Furthermore,
Righini and Salani [30] and Boland et al. [6] proposed a decremental state space algorithm
that iteratively solves a SPPRC, by iteratively applying binary resources to force nodes to
be visited at most once. Recently Chabrier [7], Danna and Le Pape [11], and Salani [31]
successfully solved several previously unsolved instances of the VRPTW from the benchmarks
of Solomon [32] using a labeling algorithm for the ESPPRC. However, these algorithms have
some weaknesses when dealing with very long (measured in the number of visited nodes)
paths, when resource constraints are not tight. Christofides and Eilon [8] introduced the
giant-tour representation in which all the routes are represented by one single giant tour, i.e.,
all the routes are concatenated into a single tour.

In this paper we propose a decomposition approach based on the generation of partial
paths and the concatenation of these. The main idea is to limit the solution space of the
pricing problem by bounding a resource, e.g., the number of nodes on a path or the capacity
on it. The master problem combines a known number of these bounded partial paths such
that all customers are visited. In this way we get a better controle of the pricing problem. If
the original pricing problem is too difficult to solve for each vehicle, we may imposing a limit
on the nodes in a partial path. If the original pricing problem for each vehicle is easy, we can
choose looser bounds such that the partial paths get longer and lead to tighter bounds.

The paper is organized as follows: In Section 2 we describe how to use the giant tour
formulation of VRP to obtain the partial path formulation. Section 3 introduces a mathe-
matical model based on partial paths. Section 4 shows how the model is decomposed through
Dantzig-Wolfe decomposition, and describes how to calculate the reduced cost of columns in
a delayed column generation framework. Section 5 describes how to use the load resource to
divide the solution space. Section 6 concludes the paper discussing future work.

93



Chapter 6

2 Bounded Partial Paths

Given a graph G(V,A) with nodes V = C ∪ {0} and arcs A, where C is the set of customers,
and 0 is the depot. Moreover, we have a set R of resources which e.g. can be load and/or
time. Each resource r ∈ R has a resource window [ari , b

r
i ] that must be met upon arrival to

node i ∈ V , and a consumption τ rij ≥ 0 for using arc (i, j) ∈ A. A resource consumption at a
node i ∈ C is modeled by a resource consumption at edge (i, j), and hence usually τ r0j = 0 for
all j ∈ C. A global capacity limit Q can be modeled by imposing a resource window [0, Q]
for the depot node 0.

The VRP can now be stated as: Find a set of routes starting and ending at the depot
node 0 satisfying all resource windows, such that the cost is minimized and all customers C
are visited.

A solution to the VRP will consist of a number of routes

0 → i11 → . . . → i1k1 → 0,

0 → i21 → . . . → i2k2 → 0,
...
0 → in1 → . . . → inkn → 0

where n is the number of vehicles, and kj is the length of the j’th route. A natural decompo-
sition of the VRP is to split the problem into these separate routes, where a master problem
ensures that all customers are visited once. We will call this the classical decomposition.
However, using the classical decomposition, the number of nodes in each individual route
may vary a lot, making it difficult to solve some of the subproblems.

Instead we consider the giant-tour representation by Christofides and Eilon [8]

0 → i11 → . . . → i1k1 → 0 → i21 → . . . → i2k2 → 0 → . . . → 0 → in1 → . . . → inkn → 0

A giant-tour (see Figure 1) is one long path visiting all customers once and the depot several
times. The consumption of resources r ∈ R is reset each time the depot node is encountered.
If we decompose the VRP into smaller segments of the giant-tour, we may to a larger extent
controle that the number of nodes visited in each partial path is of similar length. In this
way we can balance the hardness of the subproblems (see Figure 1 for an illustration).

The decompostion is done by imposing an upper limit on a resource r′ ∈ R, e.g., bounding
the path length in the number of nodes for each partial path, or bounding the load. The
giant tour introduced in Figure 1 can be decomposed into a number of partial paths by
bounding a resource. In the following the number of visited customers in C is considered to
be the bounding resource. Bounding the load resource is a bit more complicated and will be
addressed in Section 5.

Each segment represents a partial path of the giant-tour. With a bounded number of
customers L on each partial path, K partial paths are needed to ensure that all customers
are visited i.e., L ·K ≥ |C|. The partial paths can start and end in any node in V and it can
visit the depot several times. A partial path could for example be:

i1 → i2 → 0 → i3 → 0 → i4

In the following we will make a graph representation for the problem of finding the K
partial path of length at most L. This is done by replicating the graphK times and connecting

94



Partial Path Column Generation for the Vehicle Routing Problem

the replications by special arcs. Each of the replications is connected with arcs directed from
one replication to a following replication. This leads to a layered graph with K layers 1, ..,K
where there are no outgoing arcs of the final layer. Each layer k 6= K is connected to the
subsequent layer k + 1. Each pair of subsequent layers are connected with the set of arcs
leaving node i in layer k 6= K and entering layer k + 1.

Consider the graph G′(V ′, A′) consisting of a set of layers K = {1, . . . ,K}, each layer
representing G for a partial path. Let Gk be the sub graph of G′ representing layer k with
node set V k = {(i, k) : i ∈ V } for all k ∈ K and arc set Ak = {(i, j, k) : (i, j) ∈ A} for all
k ∈ K. Let A∗ = {(i, i, k) : (i, k) ∈ V k∧(i, k+1) ∈ V k+1∧k ∈ K} be the set of interconnecting
arcs, i.e., the arcs connecting a layer k with the layer above k namely layer k+1 for all k ∈ K
and all nodes i ∈ V (layer K+1 is defined to be layer 1 ∈ K and layer 0 is defined to be layer
K ∈ K). Let V ′ =

⋃

k∈K V k and let A′ =
⋃

k∈KAk ∪A∗. An illustration of G′ can be seen in
Figure 2. Note, that arcs (i, i, k) are not present in Ak and that arcs (i, j, k) with i 6= j are
present in A∗, so all arcs (i, j, k) ∈ A′ can be uniquely indexed.

The resource consumption τ rij of arcs (i, j) ∈ Ak is the same as in the original graph A,
hence we omit the index k. The resource consumption of interconnecting arcs (i, j) ∈ A∗ is
τ rij = 0.

Let L be the upper bound on the length of each partial path, and let |C| be the length
of the combined path (the giant-tour). Now, exactly K = ⌈|C|/L⌉ partial paths are needed
to form the combined path, since L ⌈|C|/L⌉ ≥ |C| > L (⌈|C|/L⌉ − 1). Once K has been
calculated, we can further reduce the path length to L = ⌈|C|/K⌉.

With the length of a path defined as the number of customers on it, the problem is now
to find partial paths of length at most L in K layers with L ·K ≥ |C| > L · (K − 1), so that
each partial path p ending in node i ∈ V is met by another partial path p′ starting in i. All
partial paths are combined while not visiting any customers more than once and satisfying
all resource windows. A customer i ∈ C is considered to be on a partial path p if i is visited
on p and is not the end node of p.

Layer: 1

0

i1 i2

i3

2

0

i1 i2

i3

. . .

. . .

K

0

i1 i2

i3

Figure 2: Illustration of G′ with |C| = 3, K = 3, and L = 1. Full-drawn lines represent two
arcs; one in each direction. Dashed lines are the interconnecting arcs A∗.

95



Chapter 6

3 The Vehicle Routing Problem

We present two models for the VRP problem defined in previous section. The 2-index model
is most compact, while the 3-index model is better suited for decomposition.

2-index formulation of the VRP In the following let cij be the cost of arc (i, j) ∈ A,
xij be the binary variable indicating the use of arc (i, j) ∈ A, and T r

ij (the resource stamp)
be the consumption of resource r ∈ R at the beginning of arc (i, j) ∈ A. Let δ+(i) and δ−(i)
be the set of outgoing respectively ingoing arcs of node i ∈ V . Combining the two index
model from Bard et al. [3] with the constraints ensuring the time windows for the ATSP by
Ascheuer et al. [1] a mathematical model can be formulated as follows:

min
∑

(i,j)∈A

cijxij (1)

s.t.
∑

(i,j)∈δ+(i)

xij = 1 ∀i ∈ C (2)

∑

(j,i)∈δ−(i)

xji =
∑

(i,j)∈δ+(i)

xij ∀i ∈ V (3)

∑

(j,i)∈δ−(i)

(T r
ji + τ rjixji) ≤

∑

(i,j)∈δ+(i)

T r
ij ∀r ∈ R, ∀i ∈ C (4)

arixij ≤ T r
ij ≤ brixij ∀r ∈ R, ∀(i, j) ∈ A (5)

T r
ij ≥ 0 ∀r ∈ R, ∀(i, j) ∈ A (6)

xij ∈ {0, 1} ∀(i, j) ∈ A (7)

The objective (1) sums up the cost of the used arcs. Constraints (2) ensure that each customer
is visited exactly once, and (3) are the flow conservation constraints. Constraints (4) and (5)
ensure the resource windows are satisfied. It is assumed that the bounds on the depot are
always satisfied. Note, that no sub-tours can be present since only one resource stamp per
arc exists and the arc weights are positive for all (i, j) ∈ A : i ∈ C.

For a one dimensional resource such as load a stronger lower bound of the LP relaxation
can be obtained by replacing (4) to (6) with

∑

(i,j)∈δ+(S) xij ≥ r(S), where r(S) is a minimum
number of vehicles needed to service the set S. All though this model can not be directly
solved it is possible to overcome this problem by only including the constraints that are
violated. For more details on how to separate the constraint and calculate the value of r(S)
the reader is refered to Toth and Vigo [33].

96



Partial Path Column Generation for the Vehicle Routing Problem

3-index formulation of the VRP Let xkij be the variable indicating the use of arc
(i, j, k) ∈ A′. Problem (1)–(7) is rewritten to:

min
∑

k∈K

∑

(i,j)∈A

cijx
k
ij (8)

s.t.
∑

k∈K

∑

(i,j)∈δ+(i)

xkij = 1 ∀i ∈ C (9)

∑

(i,j)∈δ+(i)

xkij ≤ 1 ∀k ∈ K, ∀i ∈ C (10)

∑

k∈K



xk−1
ii +

∑

(j,i)∈δ−(i)

xkji



 =
∑

k∈K



xkii +
∑

(i,j)∈δ+(i)

xkij



 ∀i ∈ V (11)

xk−1
ii +

∑

(j,i)∈δ−(i)

xkji = xkii +
∑

(i,j)∈δ+(i)

xkij ∀k ∈ K, ∀i ∈ V (12)

∑

k∈K

∑

i∈V

xkii = K (13)

∑

i∈C

∑

(i,j)∈A

xkij ≤ L ∀k ∈ K (14)

∑

k∈K

∑

(j,i)∈δ−(i)

(

T rk
ji + τ rjix

k
ji

)

≤
∑

k∈K

∑

(i,j)∈δ+(i)

T rk
ij ∀r ∈ R, ∀i ∈ C (15)

∑

(j,i)∈δ−(i)

(

T rk
ji + τ rjix

k
ji

)

≤
∑

(i,j)∈δ+(i)

T rk
ij ∀r ∈ R, ∀k ∈ K, ∀i ∈ C (16)

ari
∑

k∈K

xkij ≤
∑

k∈K

T rk
ij ≤ bri

∑

k∈K

xkij ∀r ∈ R, ∀(i, j) ∈ A (17)

arix
k
ij ≤ T rk

ij ≤ brix
k
ij ∀r ∈ R, ∀k ∈ K, ∀(i, j) ∈ A (18)

T rk
ij ≥ 0 ∀r ∈ R, ∀k ∈ K, ∀(i, j) ∈ A (19)

xkij ∈ {0, 1} ∀k ∈ K, ∀(i, j) ∈ A (20)

The objective (8) sums up the cost of the used arcs. Constraints (9) ensure that all cus-
tomers are visited exactly once, while the redundant constraints (10) ensure that no customer
is visited more than once. Constraints (11) maintain flow conservation between the original
nodes V , and can be rewritten as

∑

k∈K

∑

(j,i)∈δ−(i)

xkji =
∑

k∈K

∑

(i,j)∈δ+(i)

xkij ∀i ∈ V

since
∑

k∈K xk−1
ii =

∑

k∈K xkii. Constraints (12) maintain flow conservation within a layer.
Constraint (13) ensures that K partial paths are selected and constraints (14) that the length
of the partial path in each layer is at most L. Constraints (15) connect the resource variables
on a global level and constraints (16) connect the resource variables within each single layer.
Note, that since constraints (15) and (16) are omitted for the depot, it is not constrained
by resources. Constraints (17) globally enforce the resource windows and the redundant
constraints (18) enforce the resource windows within each layer.

97



Chapter 6

4 Dantzig-Wolfe Decomposition

We use Dantzig-Wolfe decompostion of the 3-index formulation of the VRP, defined in (8)–
(20) to reach the following master and a pricing problem. In the process of the decomposition
the K identical pricing problems are combined into a single pricing problem.

4.1 Master Problem

Let λp a binary variable indicating whether partial path p is used. We use Dantzig-Wolfe
decomposition where the constraints (9), (11), (13), (15), and (17) are kept in the master
problem. Since the vehicles are identical, we can aggregate over the sets Ak getting the
following master problem (PP):

min
∑

p∈P

cpλp (21)

s.t.
∑

p∈P

∑

(i,j)∈δ+(i)

αp
ijλp = 1 ∀i ∈ C (22)

∑

p∈P :ep=i

λp =
∑

p∈P :sp=i

λp ∀i ∈ V (23)

∑

p∈P

λp = K (24)

∑

(j,i)∈δ−(i)



T r
ji +

∑

p∈P

τ rjiα
p
jiλp



 ≤
∑

(i,j)∈δ+(i)

T r
ij ∀r ∈ R, ∀i ∈ C (25)

ari
∑

p∈P

αp
ijλp ≤ T r

ij ≤ bri
∑

p∈P

αp
ijλp ∀r ∈ R, ∀(i, j) ∈ A (26)

T r
ij ≥ 0 ∀r ∈ R, ∀(i, j) ∈ A (27)

λp ∈ {0, 1} ∀p ∈ P (28)

In this formulation, αp
ij is the number of times arc (i, j) ∈ A is used on path p ∈ P and sp and

ep indicate the start respectively the end node of partial path p ∈ P . Constraints (22) ensure
that each customer is visited exactly once. Constraints (23) link the partial paths together by
flow conservation. Constraint (24) is the convexity constraint ensuring that K partial paths
are selected. Constraints (25) and (26) enforce the resource windows.

Tightness of bounds: Before we turn our attention to the pricing problem we prove the
following theorems about the quality of the bounds obtained by the decomposition.

Theorem 1. Let zLP be an LP-solution to (1)–(7) and let zPP be an LP-solution to (21)–(28)
then zLP ≤ zPP for all instances of VRP.

Proof. zLP ≤ zPP since all solutions to (21)–(28) map to solutions to (1)–(7), see Nemhauser
and Wolsey [27].

Theorem 2. Let zPP as before be an LP-solution to (21)–(28), and zEP be the LP-solution to
the classical decomposition of VRP into an elementary route for each vehicle. Then instances
exist where zPP > zEP .

98



Partial Path Column Generation for the Vehicle Routing Problem

1

2 0

3

0

0

0

2

1

2

Figure 3: Three customers with demand of 1 and vehicle capacity Q = 2. Distances are
indicated on the edges. There are six feasible routes ({0, 1, 0}, {0, 2, 0}, {0, 3, 0}, {0, 1, 2, 0},
{0, 1, 3, 0}, {0, 2, 3, 0}) having the costs (4, 2, 4, 3, 4, 3). The LP solution is (0, 0, 0, 1

2 ,
1
2 ,

1
2 )

with objective zEP = 5. Using the partial path formulation with max path length L = 3 and
K = 1 we find the optimal solution ({0, 1, 3, 0, 2, 0}) with objective zPP = 6.

Proof. An instance with zPP > zEP can be constructed with three customers each with a
demand of 1 and vehicle capacity Q = 2. Using a max path length of L = 3, we find zPP = 6
while zEP = 5. (See Figure 3).

4.2 Pricing Problem

The K pricing problems corresponding to the master problem (21)–(28) are defined by con-
straints (10), (12), (14), (16), and (18) and can be formulated as a single ESPPRC where the
depot is allowed to be visited more than once. Let s and e be a super source respectively a
super target node. Arcs (s, i) and (i, e) for all i ∈ V are added to G with cost and resource
consumption 0.

min
∑

(i,j)∈A

cijxij (29)

s.t.
∑

(s,i)∈δ+(s)

xsi = 1 (30)

∑

(i,e)∈δ−(e)

xie = 1 (31)

∑

(i,j)∈A

xij ≤ 1 ∀i ∈ C (32)

∑

(j,i)∈δ−(i)

xji =
∑

(i,j)∈δ+(i)

xij ∀i ∈ V (33)

∑

(i,j)∈A

τ r
′

ij xij ≤ L (34)

∑

(j,i)∈δ−(i)

(T r
ji + τ rjixji) ≤

∑

(i,j)∈δ+(i)

T r
ij ∀r ∈ R, ∀i ∈ C (35)

arixij ≤ T r
ij ≤ brixij ∀r ∈ R, ∀(i, j) ∈ A (36)

xij ∈ {0, 1} ∀(i, j) ∈ A (37)

The objective (29) minimizes the reduced cost of a column in (PP). Constraints (30) and (31)
ensure that the path starts in s respectively ends in e. Constraints (32) dictates that no node

99



Chapter 6

is visited more than once, thereby ensuring elementarity. Constraints (33) conserve the flow.
Constraint (34) ensures that the partial path does not use more than the allowed amount
L of the restricted resource r′. Constraints (35) and (36) ensure the resource windows are
satisfied for all customers. Note, since constraints (35) hold for i ∈ U (excluding the depot),
a resource is only restricted by its lower limit ar0 for all r ∈ R each time a path leaves the
depot.

Let π (πi ≥ 0 : ∀i ∈ C) be the duals of (22) and π0 = 0, let µ be the duals of (23), let
β ≤ 0 be the dual of (24), let ν (ν ≤ 0 : ∀i ∈ C) be the duals of (25) and ν0 = 0, and let
ω ≤ 0 and ω ≥ 0 be the dual of (26). The cost of the arcs in this ESPPRC are then given as:

cij = −β +







cij − πi − τijνj −
∑

r∈R ariω
r
i +

∑

r∈R briω
r
i ∀(i, j) ∈ A \ (δ+(s) ∪ δ−(e))

µj ∀(s, j) ∈ δ+(s)
−µi ∀(i, e) ∈ δ−(e)

The pricing problem is now an to find an elementary shortest path from s to e.

Solving the pricing problem: ESPPRCs can be solved by various labeling algorithms,
see e.g. Desaulniers et al. [12], Irnich [20], Irnich and Desaulniers [21], and Righini and Salani
[29].

Branching: Integrality can be obtained by branching on the original variables, which can
be accomplished by cuts in the master problem (see Vanderbeck [34]), e.g., let Xij be the set
of partial paths that utilize arc (i, j) then the branch rule xij = 0 ∨ xij = 1 can be expressed
by the dichotomy:

∑

p∈Xij

λp = 0 ∨
∑

p∈Xij

λp = 1.

5 Bounding the Load Resource

The giant tour introduced in Section 1 can be decomposed into a number of partial paths by
bounding a resource r′, e.g. the number of nodes, the time, or the load. In this section we
consider the latter. The load constraint is present in CVRP and VRPTW and is a special
type of resource constraints. If Q is the maximal load of a vehicle and di : i ∈ C is the
demand of the costumers, then the accumulated demand on a route may not exceed Q. The
goal is that equation (34) is expressed on the form:

∑

(i,j)∈A

dixij ≤ L

where L is a given threshold value for the load resource. This will potentially lead to an easier
pricing problem. For dynamic programming based algorithms the complexity is dependent
on the size of L. In the length case we rounded up the expression |C|/K to ensure feasibility.
In the following we will discuss a similar approach for bounding on the load resource.

Let the total demand of the customers be D =
∑

i∈C di. A lower bound on the number
of partial paths needed is: K = ⌈D/L⌉. However, we cannot just split the giant tour into K
partial paths of capacity L since there is no guaranty that the optimal giant tour can be split
into partial paths of equal capacity.

100



Partial Path Column Generation for the Vehicle Routing Problem

Layer: 1

0

i1 i2

i3

2

0

i1 i2

i3

. . .

. . .

K

0

i1 i2

i3

Figure 4: Small subset of the connector arcs. Connector arcs from node 0 in layer 1 to nodes
in layer 2, and connector arcs from node 2 in layer 2 are shown as dashed lines. Not all
connector arcs are shown due to readability of the graph.

Let the largest demand be defined as dmax = maxi∈C di, and assume that L ≥ dmax. Then,
we need to allow up to dmax−1 extra capacity in each partial path, to compensate for possibly
uneven splitting. This means that for a given K we find Lub = ⌈D/K⌉ + (dmax − 1) as the
upper bound on the resource consumption.

An alternative approach to increasing L to Lub is to allow an additional edge exceeding
L to be selected in the pricing problem. This may complicate the pricing problem, though.

The remainder of this section addresses alternative strategies to avoid complicating the
pricing problem. One such alternative is to introduce the concept of connector arcs. A
connector arc is a single arc between two nodes which combines two partial paths. For each
layer k ∈ K and original arc (i, j) ∈ A there is connector arc to the subsequent layer.

Figure 4 illustrates the idea of the connector arcs. The dashed lines from node 0 in layer 1
orientated towards layer 2 to node i1, i2 and i3, illustrates the connectors out of node 0 in layer
1. Similar nodes i1 in layer one will have connectors to nodes 0,i2,i3 in layer 2, and likewise
for nodes i2 and i3 in layer 1 has connectors to layer 2. In layer 2 the dashed lines from node
i2 illustrates its connectors to layer 3. Similare all other nodes in layer 2 has connectors to
layer 3. In layer 3 the dashed lines illustrates the final set of connectors, which are the last
edges that can be used in the system and they therefor point to the depot from all nodes.
The connector arcs plays the same role as the additional arc in the pricing problem suggested
above. They make it possible to obtain a path which exceeds L−1 by the demand of a single
customer. By allowing K connector arcs it is therefore possible to obtain a solution to the
problem where all the K layers include one additional node.

To model the connector arcs we introduce new variables ykij for all (i, j) ∈ A and for all

k ∈ K. These variables substitute the variables xkii by connecting every node (i, k) ∈ V k

in each layer k ∈ K with the nodes (j, k + 1) ∈ V k+1 : (i, j) ∈ A in the subsequent layer.
Furthermore, constraints (11) are modified to:

∑

k∈K

∑

(j,i)∈δ−(i)

(

xkji + ykji

)

=
∑

(i,j)∈δ+(i)

(

xkij + ykij

)

, ∀i ∈ V

This ensures the global flow by taking the flow of the connector arcs into account. A similar

101



Chapter 6

substitution is made in constraint (12) and (13). The connector arcs are also present in
the resource constraints where they are added to any sum bounding the resource variables.
Constraint (15) is therefore changed to:

∑

k∈K

∑

(j,i)∈δ−(i)

(

T rk
ji + τ rji

(

xkji + ykji

))

≤
∑

k∈K

∑

(i,j)∈δ+(i)

T rk
ij , ∀r ∈ R,∀i ∈ C

A similar addition is made for constraints (16), (17), and (18).

When the model is decomposed into the K pricing problems each set of up to K connector
arcs yij : y

k
ij , (i, j) ∈ A, k ∈ K becomes a single connector arc connecting the paths ending in

node i with the path starting in node j. Using the aggregated connector arcs constraints (23)
are substituted with:

∑

p∈P :ep=i

λp +
∑

j∈δ−(i)

yji =
∑

j∈δ+(i)

yij +
∑

p∈P :sp=i

λp ∀i ∈ V

6 Conclusion and Future Work

A new decomposition model of the VRP has been presented with the ESPPRC as the pricing
problem. The model makes it possible to balance the running time of the pricing problem
against the tightness of the lower bound. Due to the aggregation of the model, LP relaxed
bounds of (21)–(28) are better than the direct model (1)–(7). Since (21)–(28) is a generaliza-
tion of the traditional Dantzig-Wolfe decomposition model with elementary routes as columns,
the LP relaxed bounds may be both weaker and stronger. It has been shown that the bound
of the presented LP relaxation is sometimes better than that of the classical decomposition
of VRP into an elementary route for each vehicle.

Future work: The quality of the bounds can be further improved by using special purpose
cutting planes, which this paper has not focused on. Furthermore, effective cuts such as
Subset Row-inequalities by Jepsen et al. [23] and Chvátal-Gomory Rank-1 cuts (see Petersen
et al. [28]) can be applied to the Set Partition master problem to strengthen the bound.

More and better cuts have been added to the VRPTW Branch-and-Cut algorithm used in
this paper for comparison, but all of these cuts could also be added to this model obtaining
at least as good a bound.

Considering the approach of Baldacci et al. [2] where columns are enumerated dependent
on strong upper and lower bounds, it should be clear that the partial path approach should
contain fewer enumerated columns due to the smaller solution space of the pricing problem.
Combining the relatively strong bound with the small solution space a powerful strategy
should be obtained.

References

[1] N. Ascheuer, M. Fischetti, and M. GrÃ¶tschel. Solving the asymmetric travelling sales-
man problem with time windows by branch-and-cut. Mathematical Programming, 90(3):
475–506, 2001. doi: 10.1007/PL00011432.

102



Partial Path Column Generation for the Vehicle Routing Problem

[2] R. Baldacci, N. Christofides, and A. Mingozzi. An exact algorithm for the vehicle routing
problem based on the set partitioning formulation with additional cuts. Mathematical

Programming, 115(2):351–385, 2008. doi: 10.1007/s10107-007-0178-5.

[3] J. F. Bard, G. Kontoravdis, and G. Yu. A branch-and-cut procedure for the vehicle
routing problem with time windows. Transportation Science, 36(2):250–269, May 2002.
doi: http://dx.doi.org/10.1287/trsc.36.2.250.565.

[4] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance.
Branch-and-price: Column generation for solving huge integer programs. Operations

Research, 46(3):316–329, 1998. doi: 10.1287/opre.46.3.316.

[5] J.E. Beasley and N. Christofides. An algorithm for the resource constrained shortest
path problem. Networks, 19:379–394, 1989. doi: 10.1002/net.3230190402.

[6] N. Boland, J. Dethridge, and I. Dumitrescu. Accelerated label setting algorithms for the
elementary resource constrained shortest path problem. Operation Research Letters, 34
(1):58–68, 2006. doi: 10.1016/j.orl.2004.11.011.

[7] A. Chabrier. Vehicle routing problem with elementary shortest path based column gen-
eration. Computers & Operations Research, 33(10):2972–2990, 2006. doi: 10.1016/j.cor.
2005.02.029.

[8] N. Christofides and S. Eilon. An algorithm for the vehicle-dispatching problem. Opera-

tional Research Quarterly, 20(3):309–318, Sep 1969.

[9] N. Christofides, A. Mingozzi, and P. Toth. Exact algorithms for the vehicle routing prob-
lem, based on spanning tree and shortest path relaxations. Mathematical Programming,
20(1):255–282, Dec 1981. doi: 10.1007/BF01589353.

[10] W. Cook and J. L. Rich. A parallel cutting plane algorithm for the vehicle routing
problem with time windows. Technical Report TR99-04, Computational and Applied
Mathematics, Rice University, Houston, Texas, USA, 1999.

[11] E. Danna and C. Le Pape. Branch-and-price heuristics: A case study on the vehicle
routing problem with time windows. In G. Desaulniers, J. Desrosiers, and M. M. Solomon,
editors, Column Generation, chapter 4, pages 99–129. Springer, 2005. doi: 10.1007/
0-387-25486-2\ 4.

[12] G. Desaulniers, J. Desrosiers, J. Ioachim, I. M. Solomon, F. Soumis, and D. Villeneuve. A
unified framework for deterministic time constrained vehicle routing and crew scheduling
problems. In T. G. Crainic and G. Laporte, editors, Fleet Management and Logistics,
pages 57–93. Kluwer, 1998.

[13] G. Desaulniers, F. Lessard, and A. Hadjar. Tabu search, partial elementarity, and gen-
eralized k-path inequalities for the vehicle routing problem with time windows. Trans-

portation Science, 42(3):387–404, 2008. doi: 10.1287/trsc.1070.0223.

[14] M. Desrochers. La fabrication d2̆019horaires de travail pour les conducteurs d2̆019autobus

par une mÃ c©thode de gÃ c©nÃ c©ration de colonnes. PhD thesis, UniversitÃ c© de
MontrÃ c©al, MontrÃ c©al, Canada, 1986.

103



Chapter 6

[15] M. Desrochers, J. Desrosiers, and M. Solomon. A new optimization algorithm for the
vehicle routing problem with time windows. Operations Research, 40(2):342–354, 1992.
doi: 10.1287/opre.40.2.342.

[16] M. Dror. Note on the complexity of the shortest path models for column generation in
VRPTW. Operations Research, 42(5):977–979, 1994. doi: 10.1287/opre.42.5.977.

[17] I. Dumitrescu. Constrained Path and Cycle Problems. PhD thesis, Department of Math-
ematics and Statistics, University of Melbourne, Australia, 2002.

[18] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm for the ele-
mentary shortest path problem with resource constraints: Application to some vehicle
routing problems. Networks, 44(3):216–229, 2004. doi: 10.1002/net.v44:3.

[19] R. Fukasawa, H. Longo, J. Lysgaard, M. Poggi de AragÃ£o, M. Reis, E. Uchoa, and R.F.
Werneck. Robust branch-and-cut-and-price for the capacitated vehicle routing problem.
Mathematical Programming, 106(3):491–511, 2006. doi: 10.1007/s10107-005-0644-x.

[20] S. Irnich. Resource extension functions: Properties, inversion, and generalization to
segments. OR Spectrum, 30(1):113–148, 2008. doi: 10.1007/s00291-007-0083-6.

[21] S. Irnich and G. Desaulniers. Shortest path problems with resource constraints. In
G. Desaulniers, Jacques Desrosiers, and M.M. Solomon, editors, Column Generation,
chapter 2, pages 33–65. Springer, 2005. doi: 10.1007/0-387-25486-2\ 2.

[22] S. Irnich and D. Villeneuve. The shortest path problem with resource constraints and
k-cycle elimination for k ≥ 3. INFORMS Journal on Computing, 18:391–406, 2006. doi:
10.1287/ijoc.1040.0117.

[23] M. Jepsen, B. Petersen, S. Spoorendonk, and D. Pisinger. Subset-row inequalities applied
to the vehicle-routing problem with time windows. Operations Research, 56(2):497–511,
2008. doi: 10.1287/opre.1070.0449.

[24] N. Kohl, J. Desrosiers, O. B. G. Madsen, M. M. Solomon, and F. Soumis. 2-path cuts for
the vehicle routing problem with time windows. Transportation Science, 33(1):101–116,
1999. doi: 10.1287/trsc.33.1.101.

[25] J. Lysgaard, A. N. Letchford, and R. W. Eglese. A new branch-and-cut algorithm for
the capacitated vehicle problem. Mathematical Programming, 100(2):423–445, 2004. doi:
10.1007/s10107-003-0481-8.

[26] M. E. LÃ1
4bbecke and J. Desrosiers. Selected topics in column generation. Operations

Research, 53(6):1007–1023, 2005. doi: 10.1287/opre.1050.0234.

[27] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley
& Sons, Inc., 1988.

[28] B. Petersen, D. Pisinger, and S. Spoorendonk. Chvátal-Gomory rank-1 cuts used
in a Dantzig-Wolfe decomposition of the vehicle routing problem with time win-
dows. In B. Golden, R. Raghavan, and E. Wasil, editors, The Vehicle Routing

Problem: Latest Advances and New Challenges, pages 397–420. Springer, 2008. doi:
10.1007/978-0-387-77778-8 18.

104



Partial Path Column Generation for the Vehicle Routing Problem

[29] G. Righini and M. Salani. Symmetry helps: bounded bi-directional dynamic program-
ming for the elementary shortest path problem with resource constraints. Discrete Op-

timization, 3(3):255–273, 2006. doi: 10.1016/j.disopt.2006.05.007.

[30] G. Righini and M. Salani. New dynamic programming algorithms for the resource con-
strained shortest path problem. Networks, 51(3):155–170., 2008. doi: 10.1002/net.20212.

[31] M. Salani. Branch-and-Price Algorithms for Vehicle Routing Problems. PhD thesis,
Universitá Degli Studi Di Milano, Facoltá di Scienza Matematiche, Fisuche e Naturali
Dipartimento di Technologie dell’Informazione, Milano, Italy, 2005.

[32] M. M. Solomon. Algorithms for the vehicle routing and scheduling problem with time
window constraints. Operations Research, 35(2):234–265, 1987. doi: 10.1287/opre.35.2.
254.

[33] P. Toth and D. Vigo. An overview of vehicle routing problems. In P. Toth and D. Vigo,
editors, The Vehicle Routing Problem, chapter 1, pages 1–26. SIAM, 2002.

[34] F. Vanderbeck. On Dantzig-Wolfe decomposition in integer programming and ways to
perform branching in a branch-and-price algorithm. Operation Research, 48(1):111–128,
2000. doi: 10.1287/opre.48.1.111.12453.

105



Chapter 6

106



Chapter 7

Optimal Routing with Failure Inde-
pendent Path Protection

Thomas Stidsen
DTU Management Engineering, Technical University of Denmark

Bjørn Petersen
DIKU Department of Computer Science, University of Copenhagen

Simon Spoorendonk
DIKU Department of Computer Science, University of Copenhagen

Martin Zachariasen
DIKU Department of Computer Science, University of Copenhagen

Kasper Bonne Rasmussen
Department of Computer Science, ETH Zurich, Switzerland

Abstract

Reliable communication has become crucial in today’s information society. Modern
communication networks are required to deliver reliable communication to their cus-
tomers. Unfortunately, protection against network failures significantly hampers efficient
utilization of network investments, because the associated routing problems become much
harder. In this paper we present a rigorous mathematical analysis of one of the most
promising protection methods: Failure independent path protection. We present an LP
model which is solved by column generation. The subproblem is proven to be strongly
NP-hard, but still solvable for medium sized networks through the use of specialized dy-
namic programming algorithms. This enables us to evaluate the performance of failure
independent path protection for 8 networks with up to 37 nodes and 57 links. The results
indicate that only between 3% and 8% extra network capacity is necessary when com-
pared to the capacity required by complete rerouting (which is the absolute lower bound
for single link failure protection).

Published in the journal Networks, 2009

107



Chapter 7

Keywords: Failure independent path protection, column generation, protection capacity
minimization

1 Introduction

Today’s information society relies increasingly on advanced communication networks. This
has led to massive investments in increased communication network capacity. In order to
utilize these investments the network operators perform traffic engineering, i.e., they route
communication to maximize the utilization of the capital invested in the communication
network.

Most of the backbone networks which today carry long distance communication traffic use
path based routing, i.e., a communication connection between two points in the network is
established along one or more fixed paths. Despite the huge success of the packet switched
Internet, path based routed network technology will continue to be the dominant technique
of backbone networks, because traffic engineering can be performed much more efficiently
than in packet switched networks. Examples of such path switched network technologies are
SDH/SONET or DWDM networks or circuit switched network technologies like PSTN/ISDN.
Furthermore, the new Multi Path Label Switching (MPLS) [34] protocol enables packets to
be routed on fixed paths.

The standard model of a path switched communication network is a directed graph
G = (V,A) consisting of a set of nodes V and a set of arcs A. The nodes correspond to
telecommunication switches. The telecommunication switches route the communication sig-
nals through cables. We will assume that all cables enable bidirectional communication and
therefore we will model one cable using two arcs, one each way between the end nodes. We
assume that a static communication connection demand is given which requires one-way com-
munication between an origin node ok and a terminating node dk of volume ρk for a set of
demands k ∈ K. For each demand k we should construct a single primary (or working) path
from ok to dk, and all the required volume of traffic ρk should be sent over this primary path
(i.e., traffic should be non-bifurcated).

Communication networks are increasingly required to be reliable. If we cannot trust our
messages to reach the receiver, the use of a communication network is limited. Communication
networks are prone to failures and many different types of failures can occur. Switches (nodes)
can lose power, experience software and hardware failures, etc. Cables (arcs) can be cut by
entrepreneurs or by natural disasters. For simplicity, in this paper we will only consider single
cable failures, i.e., simultaneous failure of the two arcs which correspond to a cable. This is
a well-known and widely used simplification [15, 26].

Multiple cable failures can occur in networks, but are less probable. Several cables can fail,
if, e.g., a switch fails or a single cable failure in a lower network layer may result in multiple
failures in the upper layers. These kind of network errors are of increasing importance but
they also make network protection significantly harder, e.g., the problem of finding failure
independent paths is NP-complete in the face of multiple cable failures [17].

When a cable fails, the network operator either has to repair the cable or re-route the failed
paths around the failure. Because repairing a cable can take considerable time, rerouting is
an interesting alternative. The main problem with rerouting is that enough capacity needs to
be available on the remaining non-failed cables to enable rerouting. Traffic engineering which
takes into account the possibility of a cable failure becomes significantly more complex, but

108



Optimal Routing with Failure Independent Path Protection

is again important in order to utilize network investments.

In this paper we assume that traffic which is routed along one primary paths is rerouted
along the same backup (or protection) path. Hence rerouted traffic is non-bifurcated. The
cost function is simple: We assume that a linear cost term ca for using capacity on arc a has
to be paid. The required capacity of an arc is the maximum capacity required for all failure
situations (the network should be able to accommodate necessary rerouting). The total cost
of the network is the sum of costs over all arcs. It should be noted that in our model arcs
have no capacity bounds — in contrast to the well-known multi-commodity flow model [1].

In Figure 1(a) two paths are established, from node 2 to node 6 and from node 5 to
node 9, both with a volume of 1, that is, (o1, d1, ρ1) = (2, 6, 1) and (o2, d2, ρ2) = (5, 9, 1). In
Figure 1(a) — and all the other figures in this paper — we have only drawn the bidirectional
cables, and not the two corresponding arcs for each cable, in order not to complicate the figures
unnecessarily. The necessary capacity of a cable corresponds to the sum of the necessary arc
capacities for that cable. Given the paths chosen in Figure 1(a) an arc capacity of 1 is then
required on the arcs (2, 4), (4, 6), (5, 7) and (7, 9), resulting in a total required Non-Failure
(NF) network capacity of 4. In Figure 1(b) the cable between node 5 and node 7 fails resulting
in the failure of arc (5, 7) and arc (7, 5). This results in a communication breakdown for the
path from node 5 to node 9.

1

2

3

4

5

6

7

8

9

(a) Two paths

1

2

3

4

5

6

7

8

9

(b) A cable break

Figure 1: Path switched routing.

In order to protect communication against a cable failure, a rerouting strategy needs to
be planned for each possible cable failure, i.e., a protection method needs to be installed.
(Because rerouting methods protect against failures, we will use rerouting methods and pro-
tection methods interchangeably.) The importance of network reliability and the importance
of minimizing network investments have resulted in a large number of rerouting methods. It is
beyond the scope of this paper to review these and we refer the reader to [15] for a recent and
comprehensive survey. One of the promising methods is p-cycle protection. This is a clever
extension of the well-known ring protection scheme, which significantly improves the capac-
ity requirements necessary for protection [15, 31]. Furthermore, the use of p-cycles enable
fast protection of communication, as provided by ring protection. Despite these promising
features, p-cycles have not (yet) achieved widespread application.

In this paper we will consider traffic engineering optimization methods for the Failure
Independent Path Protection (FIPP) method for path switched networks. In this protection
method the backup path for a given demand is independent of the failure related to the
primary path, i.e., independent of which of the cables in the primary path have failed. This
protection method is also called Shared Backup Path Protection in [15] or Global Backup
Path Protection in [6].

The outline of the paper is as follows. In Section 2 we give a brief description of different
path protection methods. This leads us to focus on the FIPP method for which we give a

109



Chapter 7

mathematical model in Section 3. In the same section we also present a column generation
algorithm to solve a relaxed model and discuss the computational complexity of the sub-
problem. In Section 4 we then present and discuss the results when applying the column
generation algorithm to a number of test cases. In Section 5 we discuss possible extensions
and in Section 6 we draw some conclusions.

2 Path protection method

The classic path protection method employed in path switched networks is 1+1 protection.
Figure 2(a) shows how the 1+1 protection method can be used to protect the path connections
from Figure 1. In 1+1 protection, two cable disjoint paths (and hence arc disjoint paths) are
established and actively used. If an arc fails on one path, the other path will survive and
enable the receiving node to restore communication by just switching to the other incoming
signal. This method is simple, there are well-defined standards, but the required network
capacity is always at least twice the required non-failure network capacity. The total network
capacity required in the example in Figure 2(a), assuming the same demands, is 10. Notice
in particular that a capacity of 2 is required on arc (5, 6).

1

2

3

4

5

6

7

8

9

(a) 1+1 protection

1

2

3

4

5

6

7

8

9

(b) FIPP

Figure 2: Capacity sharing illustrated.

2.1 Comparing path protection methods

We now define two measures: Restoration Over Build (ROB) network capacity and Relative
Restoration Over Build (RROB) network capacity.

ROB: The extra network capacity necessary to ensure protection, i.e., the network capacity
for both routing and protection minus the NF network capacity, assuming shortest path
routing. In the example from Figure 2(a), ROB = 10− 4 = 6.

RROB: The relative extra network capacity necessary to ensure protection, i.e., the ROB
network capacity divided by the NF network capacity. In the example from Figure 2(a),
RROB = 10−4

4
= 1.5, meaning that 1+1 protection in this case costs 150% extra

network capacity compared to the necessary non-failure network capacity.

The FIPP method is a slight variation of 1+1 protection: Instead of actively sending data
packets on both paths, one path is designated the primary path and only when that path fails
will the data packets be sent along the backup path. In Figure 2(b) the same two protected
connections as in Figure 2(a) are shown, but now there is a primary path (full line) and a
backup path (dashed line) for each path. But the required network capacity has decreased.
The arc (5, 6) now only needs a capacity of 1, because the backup paths are not being used

110



Optimal Routing with Failure Independent Path Protection

at the same time. This concept is called sharing and is possible because we only guarantee
protection against single cable failures and because the two primary paths are cable disjoint.
For the FIPP method, the NF network capacity is again 4, but the ROB network capacity is
now 9, which leads to an RROB network capacity of 1.25.

In order to utilize the path protection methods traffic engineering has to be performed in
order to minimize the RROB network capacity. When working with 1+1 protection this is a
well-studied problem for which there exist polynomial-time algorithms [4, 33]. This is not the
case for the FIPP method. Because of the possibility of sharing the capacity for the backup
paths, the best choice of primary path and backup path for each end-to-end demand node
pair becomes interdependent.

A practical solution to the FIPP traffic engineering problem is studied in [23]. In order to
simplify the problem, the dependency between different protected communication connections
is ignored in [23]. Instead, the focus is on algorithms which can find pairs of disjoint paths,
where the cost of backup paths is assumed to be some constant factor cheaper than the
primary paths. Because of the sharing possibility it is reasonable that the capacity costs
for each arc of the backup path are less than the capacity costs for each arc of the primary
path. Even this simplified problem is NP-hard [23] and a number of different heuristics are
suggested to find good, though not optimal, solutions to the problem. This line of research
is continued in [22]. It should be emphasized that the cost model for backup paths used in
[22, 23] is approximate. We quantify the exact relationship between costs for primary and
backup paths in Section 3.1 and prove that the resulting optimization problem is strongly
NP-hard.

In [26] the full FIPP traffic engineering problem is considered. A column generation
approach, similar to the approach in this paper, is considered. The same mathematical
model for the column generation master problem is formulated, but the subproblem is not

formulated. This means that if an optimal solution is required, the full set of disjoint paths
has to be pre-generated, and this is only feasible for small networks.

2.2 Different path protection methods

The Failure Independent Path Protection method is just one example of a path protection
scheme, and there are a number of other methods. The different path protection methods
all use one primary path, but protect the primary path in different ways. In Figure 3, which
is (partly) taken from [6], six path protection methods are presented. If the path protection
methods are only allowed to choose the backup path based on the failed cable, this list
is complete, but a number of additional variations exists, some of which are described in
Section 2.3.

Full Backup Path Protection (FBPP)

Theoretically FBPP [24], see Figure 3(a), is the most efficient path protection method. (This
method is not included in [6].) Given a primary path, each cable which can fail on the
primary path is protected by a unique backup path. There are no limitations regarding these
backup paths, except they are, obviously, not allowed to use any of the two failed arcs in the
cable which they protect. This gives the highest possible freedom in choosing the cheapest
protection paths and all the other path protection methods are more restrictive in the choice
of backup paths and hence more costly.

111



Chapter 7

node
Terminating

node
Start

1

2

3

4

5

6

7

8

9

Active Path

Notification

The backup path for this particular edge failure

(a) Full Backup Path Protection

node
Terminating

node
Start

1

2

3

4

5

6

7

8

9

Active Path

The backup path for this segment

Notification

(b) Segment Backup Path Protection

node
Terminating

node
Start

1

2

3

4

5

6

7

8

9

Active Path

Notification

The global backup path

(c) Failure Independent Path Protection

Start
node

Terminating
node

1

2

3

4

5

6

7

8

9

Active Path

The local backup path

(d) Local Backup Path Protection

Start
node

Terminating
node

1

2

3

4

5

6

7

8

9

Active Path

Local destination retouting path 

(e) Local Destination Rerouting

node
Terminating

node
Start

1

2

3

4

5

6

7

8

9

Active Path

The front local backup path

(f) Front Dynamic Backup Path Protec-
tion

Figure 3: Different path protection schemes.

Segment Backup Path Protection (SEBPP)

SEBPP, see Figure 3(b), protects segments (sets of cables) of the primary path with the same
backup path. Hence several cables in the same segment are forced to share backup paths.

Failure Independent Path Protection (FIPP)

FIPP, see Figure 3(c), limits the choice of backup path even further, such that only one
backup path is allowed. This forces the backup path to be cable disjoint with the primary
path.

Local Backup Path Protection (LBPP)

LBPP [24], see Figure 3(d), performs a local protection, i.e., the rerouting paths are required
to lead from one node of the failed cable to the other node of the failed cable. This resembles
the classical span protection, but in this case different reroute paths may be chosen for each
connection.

Local Destination Rerouting (LDR)

LDR [2], see Figure 3(e), is a variation of local protection, where the connection paths are
rerouted directly to the end node of the connection. LDR preserves the fast rerouting time
of Local Backup Path Protection, but is more efficient regarding ROB network capacity.

112



Optimal Routing with Failure Independent Path Protection

Front Dynamic Backup Path Protection (FDBPP)

FDBPP, see Figure 3(f), is another variation of local protection, where the connection path is
rerouted from the start node to the end node of the failed cable. To the best of our knowledge
this type of protection has not been suggested anywhere else and is only included to make
the list of path protection methods complete. We do not expect the FDBPP method to be
implemented anywhere.

2.3 Further variations

The description of the different path protection schemes is very simplified and a number of
variations can be added. Here we briefly mention two of these.

Stub-release is a technique which can be applied to further lower the required network
capacity. The idea is that in case of a failed cable, the unharmed parts of the primary path,
which are not in use any longer, are released and can be used for protection [25]. Stub-release
can improve the capacity efficiency of each method, with the exception of the Local Backup
Path Protection method, at the price of a more complicated protection scheme.

To speed up the recovery process, Hashkin protection can be applied [16]. The idea is
to loop-back the communication signals at the switch just before the failed cable, to where
the backup path starts. Hashkin protection minimize packet-loss, but requires more network
capacity and cannot be used in Local Backup Path Protection and Local Dynamic Backup
Path Protection.

2.4 Motivation for FIPP

Out of the 6 different types of path protection described in Section 2.2, we only consider the
FIPP method in this paper.

FIPP is the only path protection method for which the protection action does not depend
on which cable actually fails — it is failure independent. This makes FIPP the simplest of
the path protection methods. Furthermore, the complex switching schemes take place at the
start node of the connection path, which may be an advantage in future networks. It is not
the most capacity efficient path protection method. The most efficient method is FBPP, but
FBPP requires administration of a large number of backup paths. Furthermore, in Section 4
we demonstrate that the FIPP method is indeed a very efficient protection method, when
optimal routing of the primary path and the backup path is performed.

The main disadvantage with the FIPP method is the relatively long restoration time, i.e.,
the time it takes to restore communication. This is because of the notification time – which
is the backward communication time between the node which observes the failure and the
node from which the connection paths originates. We have illustrated the notification time
by dotted arrows in Figure 3 for the path protection methods for which this is necessary. For
a more complete discussion of restoration time, we refer to [6].

3 LP model and column generation approach

In this section we start by defining the FIPP optimization problem formally. Then we present
an LP model for a relaxed version of the FIPP optimization problem, the so-called fractional

FIPP optimization problem. The LP model has an exponential number of variables, and

113



Chapter 7

hence we solve it using column generation. In Section 3.1 we describe the associated pricing
problem (or subproblem). A MIP model for solving the subproblem is given in Section 3.2,
and in Section 3.3 we show that the subproblem is in fact strongly NP-hard. Finally, in
Section 3.4 we give a labeling algorithm for solving the subproblem, and summarize our
column generation algorithm in Section 3.5.

Given, as previously defined, a directed graph G = (V,A) with nodes V and arcs A. For
each failure situation s ∈ S we have a set of failed arcs Fs ⊆ A. There is a cost ca for using
one unit of capacity of an arc a. We further assume to know a static set of demand node pairs
for which protected connections using the FIPP method should be established. A directed
connection between an origin node ok and a terminating node dk with a volume of ρk should
be established for each demand k ∈ K. The optimization objective is to minimize the cost of
the required capacity when applying the FIPP method to protect the established connections.
This means that for each demand a pair of directed failure disjoint paths needs to be found:
A primary path ppri and a backup path pbac, both connecting node ok to node dk. Such a
pair of failure disjoint paths is denoted a path pair π = (ppri, pbac). The objective in the FIPP
problem is to find a path pair for each demand k ∈ K, such that the total cost of the capacity
required is minimized. Note that the capacity required by an arc is the maximum capacity
required taken over all failure situations.

Given these definitions we are ready to present an LP model for the fractional FIPP
optimization problem. In this problem we allow more than one path pair to accommodate
the flow required by a demand. Let Pk be the set of path pairs that can satisfy demand k,
that is, the set of primary/backup paths that connect origin node ok with terminating node
dk. Let Pk(a) ⊆ Pk be the subset of path pairs for which the primary path uses arc a ∈ A.
Similarly, let Pk(a, s) ⊆ Pk be the set of path pairs for which the primary path fails and the
backup path uses arc a ∈ A \ Fs in failure situation s ∈ S. Finally, let variable λk

π denote
the amount of communication flow through path pair π ∈ Pk, and let variable θa denote the
capacity required for arc a ∈ A.

FIPP

minimize:

∑

a∈A

ca · θa (1)

subject to:

∑

π∈Pk

λk
π ≥ ρk ∀ k ∈ K (2)

∑

k∈K

∑

π∈Pk(a)

λk
π +

∑

k∈K

∑

π∈Pk(a,s)

λk
π ≤ θa ∀ s ∈ S, a ∈ A \ Fs (3)

λk
π, θa ∈ R+

The objective function is given by (1) and it is the cost of the summed network capacity.
The demand constraint (2) ensures that enough capacity is established on the path pairs. The
capacity constraint (3) ensures that enough capacity is allocated to route the communication
on each arc a in each failure situation s which does not disrupt the arc.

114



Optimal Routing with Failure Independent Path Protection

The problem with this LP-model is that the number of path pairs grows exponentially
with the network size, and hence the complete model can only be solved for small network
sizes. Instead, we will use a column generation algorithm such that only a subset of the path
pairs is generated. The optimization subproblem to generate new path pairs with negative
reduced costs is given in Section 3.1, and in Section 3.5 the column generation algorithm is
given.

It is clear that the fractional FIPP optimization problem is a relaxation of the original
FIPP optimization problem which is NP-hard [32]. The hardness of the fractional FIPP
optimization problem on the other hand is still an open problem. The LP model can there-
fore be used for lower bounding in a branch-and-price algorithm for the FIPP optimization
problem. The bound can however be weak, because the bound of the relaxed FIPP model
is equivalent to the bound of the relaxed FBPP model, if the primary paths consists of one
link. For primary paths of one link, each of the backup paths for the FBPP model can be
constructed by generating path pairs, i.e., the one hop primary path and different backup
paths. For primary paths which are not one hop however, the relaxed FIPP model and the
relaxed FBPP model are not equivalent, because in the FIPP model the feasible backup paths
are more limited than the feasible backup paths for the FBPP model. In other words, it will
depend on the network and the communication demand how good a bound the relaxed FIPP
model can deliver compared to the bound of the FBPP model.

3.1 Subproblem: Quadratic Cost Disjoint Path Problem

For the master problem for FIPP optimization problem let αk ≥ 0, k ∈ K, be the dual
variables associated with the (negated version of) constraint (2), and let βs

a ≥ 0, s ∈ S,
a ∈ A \Fs, be the dual variables associated with constraint (3). Our task is to decide if there
exists a pair of primary and backup paths π = (ppri, pbac) from some origin node ok to some
terminating node dk with negative reduced cost for some k ∈ K.

The reduced cost of a pair of paths (ppri, pbac) is computed as follows. The cost of an arc
a ∈ ppri is

∑

s∈S β
s
a, while the cost of an arc a ∈ pbac is

∑

s∈S:Fs∩ppri 6=∅ β
s
a. Note the asymmetry

in the definition of arc costs in primary and secondary paths: For an arc on the primary path
the cost is the sum taken over all failure situations, while for an arc on the backup path the
sum is only taken over the failure situations that affect an arc on the primary path. The total
reduced cost of (ppri, pbac) is now

−αk +

primary path cost
︷ ︸︸ ︷

∑

a∈ppri

∑

s∈S

βs
a +

backup path cost
︷ ︸︸ ︷

∑

a∈pbac

∑

s∈S:Fs∩ppri 6=∅

βs
a

The Quadratic Cost Disjoint Path Problem (QCDPP) is to compute a pair of paths π =
(ppri, pbac) with minimum total cost. The name of the problem comes from the fact there
is a pairwise (or quadratic) dependence on the cost of the backup path as a function of the
primary path. Since the dual variables βs

a are non-negative, there clearly exists an optimal
solution where both the primary path ppri and the backup path pbac are simple. Hence in the
following we require that the paths ppri and pbac are simple and arc disjoint.

115



Chapter 7

3.2 MIP model for QCDPP

A primary path is defined by the binary variables xa for all a ∈ A and a backup path is
defined by the binary variables ya for all a ∈ A. We define the sets δ+(i) as the arcs going
out of node i ∈ V and δ−(i) as the set of arcs going into node i ∈ V . We again use the set of
failed arcs Fs and define the cardinality of the set as |Fs|, i.e., the number of arcs which fails
in situation s ∈ S. The binary variables us for all s ∈ S detect whether the primary path is
interrupted by failure s and the binary variables vs for all s ∈ S detect whether the backup
path is interrupted by failure s. Furthermore, the auxiliary variables zas for all s ∈ S and all
a ∈ A detect if the primary path is interrupted by failure s at the same time as the backup
path use arc a.

QCDPP

minimize:

ckreduced = −αk +

primary path cost
︷ ︸︸ ︷

∑

a∈A

∑

s∈S

βs
a · xa +

backup path cost
︷ ︸︸ ︷

∑

a∈A

∑

s∈S

βs
a · z

a
s (4)

subject to:

∑

a∈δ+(i)

xa −
∑

a∈δ−(i)

xa =







1 i = ok
−1 i = dk
0 otherwise

∀ i ∈ V (5)

∑

a∈δ+(i)

ya −
∑

a∈δ−(i)

ya =







1 i = ok
−1 i = dk
0 otherwise

∀ i ∈ V (6)

|Fs| · us ≥
∑

a∈Fs

xa ∀ s ∈ S (7)

|Fs| · vs ≥
∑

a∈Fs

ya ∀ s ∈ S (8)

us + vs ≤ 1 ∀ s ∈ S (9)

zas ≥ us + ya − 1 ∀ s ∈ S, a ∈ A (10)

xa, ya, us, vs ∈ {0, 1}, zsa ∈ [0, 1] (11)

The objective function (4) is the reduced cost ckreduced of the two disjoint paths. The
first double sum calculates the costs for the primary path. The second double sum then
calculates the cost for the backup paths. Notice that each arc a in the backup path only costs
βs
a in situation s if the primary path is disrupted in failure situation s. This is detected by

the variable zas . Finally the dual value αk from constraint (2) is subtracted to calculate the
corresponding reduced cost. Both the primary path variables x and the backup path variables
y are constrained to form paths by constraint (5) and (6), respectively. The path disruption
variables, u for the primary path and v for the backup path, are set by constraint (7) and (8)
respectively. Variables u and v are then used in constraint (9) to ensure failure disjointness of
the paths. In constraint (10) the auxiliary variable zas is forced to the value 1 if the primary

116



Optimal Routing with Failure Independent Path Protection

path is disrupted in situation s and the backup path uses the arc a. Finally the domains of
the variables are given by constraint (11).

We consider two variants of failure situations: In the single arc failure variant there is
one failure situation for each arc in A. In the single link failure variant there is one failure
situation for each pair of opposite arcs, i.e., when the corresponding undirected edge is broken.

In Section 3.3 it is proved that the sub-problem above is NP-hard. However, if instead
the primary paths were pre-calculated and the task was to find the best usage of the primary
paths, at the same time finding the best backup paths, the sub-problem would be a simple
shortest path problem (with links of the primary path removed from the network).

3.3 NP-hardness of QCDPP

We now prove that QCDPP is strongly NP-hard for the single arc and single link failure
variants. First we present the proof for the single arc variant and then we indicate how this
leads to an NP-hardness proof for the single link variant. In the single arc variant the set
of failure situations S is identical to the set of arcs A. The decision version of QCDPP with
single arc failures is formally defined as follows (where the constant term −αk in the objective
function of QCDPP is ignored).

INSTANCE: Directed graph G = (V,A), pairwise (integer and non-negative) costs βf
a for all

ordered pairs of arcs (a, f) ∈ A×A, origin node ok ∈ V , terminating node dk ∈ V and integer
C.

QUESTION: Does there exist a pair of simple arc disjoint paths π = (ppri, pbac) from ok to
dk in G such that

∑

a∈ppri

∑

f∈A

βf
a +

∑

a∈pbac

∑

f∈ppri

βf
a ≤ C ?

We prove that this problem isNP-complete by reduction from 3-SATISFIABILITY (3SAT) [14].
It is obvious that the decision version of QCDPP is in NP, since given π = (ppri, pbac) we can
compute the corresponding cost and compare it to C in polynomial time.

Let (U,C) be an instance of 3SAT, where U = (x1, x2, . . . , xn) is a finite set of n variables
and C = (c1, c2, . . . , cm) is a set of clauses where |ci| = 3, i = 1, . . . ,m. We assume without
loss of generality that each variable appears in at least one clause.

Based on the 3SAT instance we create an instance of the QCDPP with the structure
illustrated in Figure 4. The graph consists of two chains of arcs – the so-called top chain and
the bottom chain. Two node disjoint paths from ok to dk must necessarily have the property
that one of the paths travels through the top chain while the other travels through the bottom
chain. By assigning costs appropriately, we will force the primary path to use the bottom
chain and the backup path to use the top chain.

We will first assume that we seek two node disjoint paths from ok to dk in this graph. Later
we describe how we can modify the graph so that the paths become arc disjoint. Furthermore,
the graph that is shown is a directed multigraph, and later we also describe how this graph
can be transformed into an ordinary directed graph.

The arcs in the top chain are denoted variable arcs, while the arcs in the bottom chain are
denoted clause arcs. For each clause ci ∈ C we have 8 parallel arcs, one for each combination
of assignments for the three literals; these assignments are denoted 000, 001, 010 etc. As

117



Chapter 7

x1 = 1

xn = 0

000

111

x2 = 1

111

x2 = 0

xn = 1

x1 = 0

000

001

c2

001

dkok

c1
cm

Figure 4: Graph construction for NP-completeness proof.

an example, for the clause (x1 ∨ x2 ∨ x̄3) the assignment 011 means that x1 = 0, x2 = 1
and x3 = 0. Note that an assignment different from 000 corresponds to a satisfied clause.
Similarly, we have two variable arcs for each variable xj, one arc for xj = 0 and one arc for
xj = 1.

We will now assign pairwise costs βf
a for all ordered pairs of arcs (a, f) ∈ A× A. We set

βf
a = 0 for all (a, f) ∈ A×A except from the following pairs:

• For a clause arc a corresponding to the assignment 000 we have βf ′

a = 1 for one arbitrary
variable arc f ′ (say, the arc corresponding to x1 = 0). This means that if the arc a is

used by a primary path from ok to dk then the cost of a is
∑

f∈A βf
a = 1.

• For a variable arc a and clause arc f , if the variable assignment given by arc a does not
match the clause assignment given by arc f , then βf

a = 1. As an example, the variable
arc a corresponding to x3 = 1 has βf

a = 1 for the arc f corresponding to the clause
(x1 ∨ x2 ∨ x̄3) with assignment 011. In Table 1 an extended example on how costs are
assigned for variable arcs is given.

Since we assume that each variable appears in at least one clause, each variable edge a
has cost at least 1 as a primary edge, since there will be at least one clause assignment
that does not match with the variable assignment given by a.

Finally, we set C = 0 in the QCDPP instance. Now we prove that we have YES-instance
for QCDPP if and only if we have a YES-instance for 3SAT.

Consider a YES-instance for QCDPP, that is, an instance with zero cost. Such an instance
must have a primary path ppri following the clause arcs from ok to dk, since the variable arcs

118



Optimal Routing with Failure Independent Path Protection

Assignment x1 = 0 x1 = 1 x2 = 0 x2 = 1 x3 = 0 x3 = 1

000 0 1 0 1 1 0
001 0 1 0 1 0 1
010 0 1 1 0 1 0
011 0 1 1 0 0 1
100 1 0 0 1 1 0
101 1 0 0 1 0 1
110 1 0 1 0 1 0
111 1 0 1 0 0 1

Table 1: Costs βf
a associated with variable arcs a for clause f being equal to (x1 ∨ x2 ∨ x̄3).

have positive costs as primary path arcs. Consequently, the backup path pbac must follow
the variable arcs from ok to dk. Since the total cost of the solution π = (ppri, pbac) is zero,
all arcs of the path ppri correspond to clauses being satisfied (i.e., are different from the
clause assignments 000 which have cost 1 as primary path arcs). Also, since the total cost of
π = (ppri, pbac) is zero, the variable arcs followed by pbac match the assignments in the clause
arcs. Therefore, assigning the variables xj, j = 1, . . . , n, to the values indicated by the path
pbac gives a satisfying assignment for the 3SAT-instance.

For the other direction, consider a YES-instance for 3SAT. By letting pbac follow the
variable arcs in the QCDPP instance as given by a satisfying 3SAT-assignment, and letting
ppri follow the clause arcs corresponding to the 3SAT-assignment, we obtain a solution to
QCDPP of total cost zero.

By splitting each node in the graph (apart from ok and dk) – that is, replacing the node
with an arc (u, v), and connecting all in-coming arcs to u and all out-going arcs to v – we
force the paths to be edge disjoint. Furthermore, the multigraph can be transformed into an
ordinary directed graph G by replacing each arc in the multigraph by a sequence of two arcs,
and assigning pairwise costs appropriately. Thus we have the following:

Theorem 1 The decision version of QCDPP when reduced to single arc failures is NP-

complete even when all pairwise costs are 0 or 1 (and only distinct pairs of arcs can have

non-zero costs).

Consider the directed graph G resulting from the above construction. If, for each arc
in G, we add an arc in the opposite direction we obtain a graph G′, where bidirectional
communication is feasible for each underlying link. Consider the single link failure variant
of QCDPP for the graph G′, where the costs are assigned as in the construction above, but
where the βf

a costs are replaced with βl
a costs (where l corresponds to a link). Since the

primary and backup paths in G′ should be simple, no backward arcs in G′ will ever be used,
and therefore we obtain the following:

Theorem 2 The decision version of QCDPP when reduced to single link failures is NP-

complete even when all pairwise costs are 0 or 1 (and non-overlapping pairs of arcs and links

can have non-zero costs).

119



Chapter 7

3.4 Labeling algorithm for the QCDPP

The QCDPP can be formulated as a Shortest-Path Problem with Resource Constraints (SP-
PRC). The SPPRC is a common subproblem in many graph based problems when using a
column generation based algorithm, e.g., the Vehicle Routing Problem with Time Windows
[20, 21] and the Crew Pairing Problem [8]. In the following we will shortly define the SPPRC,
discuss complexity issues and the application of recent developments within this area, and
describe the basic labeling algorithm. Last we will present the reformulation of the QCDPP
into an SPPRC.

The SPPRC can be stated as: Given a weighted directed graph G′ = (V ′, A′) with nodes
V ′ and arcs A′, and a set of resources R. For each node i ∈ V ′ and arc (i, j) ∈ A′ there
is a weight of each resource r ∈ R that is determined by a (not necessarily linear but often
constant) function, as well as a lower and upper limit on r. For a sub-path in G′ there is a
resource accumulation of resource r ∈ R when visiting node i or traversing arc (i, j), i.e., an
amount of resource r is accumulated on the path. The total amount of r must respect the
lower and upper limits of r in when arriving at node i ∈ V ′ or when using arc (i, j) ∈ A. The
increase in resource consumption and cost of a path when extended along an arc is defined by
a function, that are sometimes denoted resource extension functions, see [18]. The objective
is to find a minimum cost path from an origin node o ∈ V ′ to an destination node d ∈ V ′,
where the resources satisfy the limits for all resources r ∈ R. In many cases it suffices to have
the limits of the resources only at the nodes; in these cases the limits on the edges can be
made non-binding.

The SPPRC is NP-hard in the weak sense when the number of resources is a constant
and can be solved with dynamic programming based labeling algorithms in pseudo-polynomial
time. An extension of the SPPRC is the node elementary version; the elementary shortest path
problem with resource constraints (ESPPRC) where paths must be simple. The elementarity
constraint can be enforced with the use of a binary resource for each node to indicate if the
node is visited on the path and solved as an SPPRC. The ESPPRC is strongly NP-hard,
see [11]. However, if G′ does not contain negative weight cycles the additional resources can
be disregarded since a least weight path that is simple will always exist, hence the problem
can be solved in pseudo-polynomial time. Although the reformulation (see details below)
of the QCDPP into a SPPRC leads to a graph with no negative weight cycles, the number
of resources amounts to one binary resource per failure scenario, i.e., one per two arcs in
G for the single link failure case in the QCDPP. That is, the number of resources in the
SPPRC depends on the input of the QCDPP, hence the complexity of the labeling algorithm
is exponential when regarding the reformulation of the QCDPP. Also, it is important to note
that the reformulation of the QCDPP into a SPPRC results in a non-constant extension
function where the weight of the arcs on the backup path depend on the failure scenarios that
are affected by the primary path.

A comprehensive overview of work related to SPPRC is outside the scope of this article,
but we will briefly discuss some recent results. For further details on mathematical models and
solution methods we refer the reader to the survey of Irnich and Desaulniers [19]. Dynamic
programming based methods denoted labeling algorithms are to date the most dominant
approach to solving the SPPRC. However, recently Carlyle et al. [7] present a Lagrangian
relaxation based method. The approach is applicable for problems with no negative weight
cycles and shows good results when few resources are considered. However, due to the nature
of the non-constant extension function on the arc weights in our reformulation this approach

120



Optimal Routing with Failure Independent Path Protection

is not directly applicable; also we consider a large number of resources which may limit the
effect of the Lagrangian relaxation.

Dumitrescu and Boland [12] present an improved preprocessing for the SPPRC (with
no negative cost cycles) and embed it into a labeling algorithm. They present resource
lower bound calculations using Lagrangian relaxation, hence solving a shortest path problems.
Again this approach is not applicable in our case due to the arc weight extension function in
our reformulation. Furthermore, this approach have very limited use when only considering
binary resources, which is indeed the case for our reformulation, since the resource bounds
are already very tight. Feillet et al. [13] address the ESPPRC and propose to consider
unreachable nodes instead of visited nodes with the binary resources. The unreachability of a
node is determined based on limits on other resources. In our context this would correspond
to deciding if a failure scenario cannot be triggered. However, this is difficult to decide without
actually visiting the arcs of the scenario, since triggering a scenario does not directly depend
on other resources but on the topology of the graph. Therefore the unreachability concept
cannot readily be used in our case.

A very successful labeling algorithm by Righini and Salani [27] showed how a significant
speedup can be gained by using a bi-directional approach. That is, based on a monotone
resource (e.g., the number of nodes on the path) a breaking point is chosen (e.g., when half
the nodes have been visited) and the labeling algorithm is run from both sides. By splicing
paths starting at the origin node o with a reverse path coming from the destination node
d one can construct a full path. For this method to work all extension functions must be
reversible which unfortunately is not the case for our objective function. Boland et al. [5]
and Righini and Salani [28] independently proposed to relax the state-space of the labeling
algorithm such that only a subset of resources are considered to begin with. Any violated
resource is then added iteratively until a feasible path has been found. By construction of the
graph and the definition of the objective function used in our reformulation, it is doubtful that
this approach would perform satisfactory since relaxing resources would yield zero weight arcs
in the associated backup path, making it necessary to add resources until all feasible backup
paths are covered.

In a labeling algorithm the labels represent partial paths that are extended (using the
extension functions) in all feasible directions from the origin node o. Each label L (a vector
with R+1 components) stores the cost of the partial path Tcost(L) and the current value Tr(L)
of each resource r ∈ R. To avoid enumerating all feasible paths in G′, only Pareto-optimal
labels (i.e., labels that are not proved to be dominated by other labels) are kept during the
execution of the algorithm. When using non-decreasing extension functions (which is the case
for the reformulation of QCDPP), the label dominance criterion can be stated as follows.

Proposition 1 ([9]) Let L and L′ be two labels representing partial paths ending at the same

node. Label L dominates label L′ (which can be discarded) if

Tcost(L) ≤ Tcost(L
′)

Tr(L) ≤ Tr(L
′) ∀r ∈ R.

When equality holds for all label components, one of the two labels must be kept. Figure 5
summarizes the concept of a labeling algorithm. The initial state is represented by the label
Lo at the starting node. This label is enqueued on a priority queue Q that keeps track of all
unprocessed labels. The algorithm runs until all labels have been processed. In each iteration
the next label L from Q is dequeued. The set of nodes (FEASIBLE EXTENSION(L)) that

121



Chapter 7

Initialize label Lo

ENQUEUE(Q,Lo)
while Q is not empty

L := DEQUEUE(Q)
for each node i ∈ FEASIBLE EXTENSION(L)

Li := EXTEND LABEL(L, i)
if i = d

then ENQUEUE(S,Li)
else ENQUEUE(Q,Li)

REMOVE DOMINATED(Q)
return S

Figure 5: Pseudo-code for labeling algorithm.

are feasible extensions of the partial path represented by L, with regard to connectivity and
resource limits, is determined. L is extended to these nodes using the resource extension
functions (implemented in EXTEND LABEL(L, i)) to create the new label Li for node i. If
the extended label Li is extended to the end node d it is stored as a solution in the queue S
otherwise Li is enqueued on Q for future processing. Last Q is cleaned for dominated labels
so only Pareto-optimal labels remain.

Next, we consider the transformation of the QCDPP stated as (4)-(11) into a SPPRC
Recall the graph G = (V,A) for the QCDPP where a minimum cost primary and backup
path pair must be found from ok ∈ V to dk ∈ V over all k ∈ K. Let V ′ = {i′ : i ∈ V } be a
copy of all nodes in V and let A′ = {(j′, i′) : (i, j) ∈ A, i′, j′ ∈ V ′} be a reversed version of
all arcs in A connecting the nodes in V ′, and let A′′

k = {(dk, d
′
k) : dk ∈ A, d′k ∈ A′} be the arc

connecting the two node and arc sets for demand pair k. The transformed graph for the kth
demand pair is then G′

k = (V ∪ V ′, A ∪A′ ∪A′′
k) where a primary path will be sought in the

first part of the graph with nodes V , then by the arc (dk, d
′
k) the search is switched to the

other part of the graph consisting of the nodes V ′ where a reverse backup path is found. G′
k

is illustrated on Figure 6. For each failure situation s ∈ S it must be ensured that no arcs
from Fs is used on the backup path if any of the arcs in Fs was used on the primary path. A
binary resource is added for each failure situation s ∈ S. Hence, the set of resources have size
|S|. Let a label L consist of 1 + |S| components, Tcost(L) to store the cost of the path and
Ts(L) for s ∈ S to store the bit value of the failure situation resources. Ts(L) will be set to
one if the failure scenario s is triggered on the primary path, and resource limits are enforced
on the arcs when extending labels. The upper bound for resource s ∈ S when extending a
label on arc a′ are given as 0 for a′ ∈ A′∧a ∈ Fs and 1 otherwise. That is, a label L cannot be
extended on arc (i′, j′) ∈ A′ with (j, i) ∈ Fs for s ∈ S on the backup path if arc a ∈ Fs is used
on the primary path, i.e., the resource value Ts(L) = 1 and the upper bound for s on (i′, j′)
is 0. Hence, in Figure 5 the end node of a is not in the set FEASIBLE EXTENSION(L).
Recall that the cost of the backup path depends on the arcs used on the primary path and
that βs

a ≥ 0 and αk ≤ 0. The extension along an arc a of a label L (implemented in EXTEND

122



Optimal Routing with Failure Independent Path Protection

Backup path

Primary pathok

o
′
k

dk

d
′
k

Figure 6: The transformed graph for the kth demand pair. The backup path part of the graph
is a reversion of the primary path part, i.e., the path found is a forward directed primary
path and a reversed backup path.

LABEL(L, i)) proceeds as follows to create a new label L′:

Tcost(L
′) = Tcost(L) +







∑

s∈S βs
a a ∈ A

∑

s∈S:Ts(L)=1
βs
(j,i) a = (i′, j′) ∈ A′

−αk a ∈ A′′
k

Ts(L
′) =

{

1 a ∈ Fs

max{Ts(L), 0} otherwise
s ∈ S

Both extension functions are non-decreasing, hence the dominance criterion of Proposition 1
can be applied in the labeling algorithm. For the kth pricing problem; a path represented by
label L ending in o′k have the cost:

ckreduced = −αk +

primary path cost
︷ ︸︸ ︷

∑

a∈A(L)

∑

s∈S

βs
a +

backup path cost
︷ ︸︸ ︷

∑

a=(i′,j′)∈A′(L)

∑

s∈S:Ts(L)=1

βs
(j,i) (12)

where A(L) and A′(L) are the set of arcs used in A and A′ respectively. Minimizing expression
(12) is equivalent to the objective function stated in (4) and the path found by the labeling
algorithm can trivially be split into a primary and a backup path.

123



Chapter 7

Initialize αk , βs
a

k = 1
do

k′ := k
do

SOLVE QCDPP(k, αk , βs
a)

k := k + 1

while cp,kreduced ≥ 0 and k′ 6= k
Update set of path pairs
SOLVE FIPP with new set of path pairs
Update αk , βs

a

while k′ 6= k

Figure 7: Column Generation algorithm.

3.5 Column Generation Algorithm

Given the LP model in Section 3 we can now apply column generation to solve the model,
where the subproblem described in Section 3.2 is either solved using a MIP solver or the
labeling algorithm described in Section 3.4. Below we briefly describe the column generation
algorithm (Figure 7).

In the column generation algorithm in Figure 7 we first initialize αk and βs
a with artificial

values: αk =
∑

a∈A ca and βs
a = ca

|S| (where S is the set of failure situations). This means that
it is always profitable to include a path pair of primary and backup paths for each demand
k. After entering the main loop, promising path pairs are found based on the current values
of αk and βs

a. The resulting paths are then added to the set of path pairs and the master
problem is solved with the new set of path pairs. This process continues until no negative
reduced-cost path pair for any demand can be found.

4 Results

In this section the efficiency of the FIPP protection method is tested on 8 different networks.
Basic network data for the 8 networks is given in Table 2. We have chosen to use the simple
demand matrix Dkl = 1 for each pair of nodes.

In Table 3 and Table 4 we compare the computation times when the QCDPP subproblem
is solved using the SPPRC labeling algorithm and a standard MIP solver, respectively.

It can be seen from Table 3 and Table 4 that the SPPRC labeling algorithm is significantly
faster on all tested networks. Furthermore, two of the networks, Norway and Ta1, cannot be
solved using the MIP solver due to excessive memory consumption.

Given the column generation algorithm, we are now able to calculate the optimal protec-
tion capacity required for relaxed FIPP protection (Table 5). We find the results in Table 5
interesting because it shows how efficient the relaxed FIPP method is. The FIPP method use
at most 8% extra network capacity compared to the theoretical lower bound achieved using
Complete Rerouting [30] and on average only 4% extra network capacity. We acknowledge
that this is only part of the story and that the moment the demands are required to be integer,

124



Optimal Routing with Failure Independent Path Protection

Network Nodes Edges Avg. Node No.
Degree Demands

Cost239 [3] 11 26 4.73 55
Europe 13 21 3.23 78
Newyork [29] 16 49 6.12 120
Ta1 [29] 24 51 4.25 276
FranceSND [29] 25 45 3.60 300
Norway [29] 27 51 3.77 351
USA [10] 28 45 3.21 378
Cost266 [29] 37 57 3.08 666

Table 2: Tested networks and their characteristics.

Network Rows Columns Iter Time
Initial Final PerIt PerDem Total CG CGPct

Cost239 [3] 705 81 1451 42.81 0.78 32 11 1 4.56
Europe [29] 498 99 470 46.38 0.59 8 1 1 36.36
Newyork [29] 2472 169 5292 47.44 0.40 108 2438 1875 76.94
Ta1 [29] 2826 327 4013 43.88 0.16 84 17612 17385 98.71
FranceSND [29] 2280 345 2944 57.76 0.19 45 235 191 81.29
Norway [29] 2901 402 3704 58.96 0.17 56 1177 967 82.22
USA [10] 2358 423 3076 60.30 0.16 44 156 77 49.65
Cost266 [29] 3858 723 6516 62.29 0.09 93 2050 1051 51.29

Table 3: SPPRC labeling algorithm results. Rows: Number of rows in LP. Initial: Initial
number of master problem columns. Final: Final number of master problem columns. PerIt:
Number of columns added per iteration. PerDem: Number of columns added per iteration
per demand. Iter: Number of column generation iterations. Total: Total running time in
seconds. CG: Total column generation running time in seconds. CGPct: Column generation
(label) solve time as percentage of total time.

i.e., that for each demand the entire communication flow is routed on the same primary path
and the same backup path, the ROBB is going to increase.

5 Future Research

The mathematical model we on which we base our results is by choice constructed to be as
simple as possible. A number of additional model features can be incorporated into the model
and some of these may certainly change the above conclusions. In this section we will briefly
describe the two model refinements which we regard as the most important.

Firstly, in the current model we consider the demands as a volume of communication ρk
to be established between two nodes in the network. In the fractional FIPP problem this
volume may be divided between a number of path pairs and this is probably not desirable for
the communication customers. Instead, each customer should be offered one path pair with
a certain volume of traffic — corresponding to the original FIPP problem. For the model

125



Chapter 7

Network Rows Columns Iter Time
Initial Final PerIt PerDem Total CG CGPct

Cost239 [3] 705 81 677 1.00 0.02 597 154 145 93.77
Europe [29] 498 99 307 1.00 0.01 209 31 31 98.36
Newyork [29] 2472 169 2328 1.00 0.01 2160 6491 5943 91.56
Ta1 [29] 2826 - - - - - - - -
FranceSND [29] 2280 345 1408 1.00 0.00 1064 9434 9356 99.17
Norway [29] 2901 - - - - - - - -
USA [10] 2358 423 1532 1.00 0.00 1110 2406 2304 95.77
Cost266 [29] 3858 - - - - - - - -

Table 4: MIP results. Rows: Number of rows in LP. Initial: Initial number of master problem
columns. Final: Final number of master problem columns. PerIt: Number of columns
added per iteration. PerDem: Number of columns added per iteration per demand. Iter:
Number of column generation iterations. Total: Total running time in seconds. CG: Total
column generation running time in seconds. CGPct: Column generation (MIP) solve time as
percentage of total time.

Network NP capacity CR RROB FIPP RROB Difference

Cost239 86 0.13 0.19 0.06
Europe 158 0.57 0.65 0.08
Newyork 412 0.19 0.24 0.05
Ta1 733 0.76 0.78 0.02
FranceSND 9825 0.66 0.67 0.01
Norway 61 0.59 0.61 0.02
USA 1273 0.50 0.55 0.05
Cost266 14587 0.62 0.64 0.02

Avg. 0.50 0.54 0.04

Table 5: FIPP protection method comparison. NP capacity: Non-Protected required network
capacity. CR RROB: Complete Rerouting [30] required network capacity relative to NP
capacity. FIPP RROB: FIPP required network capacity relative to NP capacity. Difference:
Absolute difference between RROB for CR and FIPP.

presented in Section 3, this results in more variables, and furthermore, these variables have to
be binary variables. Hence, to solve this model to optimality, a branch-and-price optimization
algorithm is necessary.

Secondly, in the current model there is no bound on the capacity θa of an arc a ∈ A. In
real-life applications, capacities are acquired in modular amounts and economies of scale can
be modeled. Modular capacities can be included into the model by changing the right hand
side of constraint (3) to a sum of integer variables, as shown in the modified constraint (13)
below:

∑

k∈K

∑

π∈Pk(a)

λk
π +

∑

k∈K

∑

π∈Pk(a,s)

λk
π ≤

∑

m

Cm · θa,m ∀ s ∈ S, a ∈ A \ Fs

Here the capacity variables θa,m ∈ Z+ correspond to different types of connections, each

126



Optimal Routing with Failure Independent Path Protection

possessing a capacity Cm. The objective function is then modified to include different prices
for each type of technology. The price pr. capacity unit reflect the economies of scale.

6 Conclusion

In this paper we presented an LP model for the fractional Failure Independent Path Protection
(FIPP) optimization problem. The LP model was solved using column generation. We
analyzed the subproblem, proved it to be strongly NP-hard and devised a labeling algorithm
for solving the subproblem more efficiently. Finally, we evaluated the capacity efficiency of
the FIPP method on a number of network instances. The results indicate that the FIPP
method appears to be a very efficient protection method — on average only requiring 4%
more network capacity than complete rerouting, the absolute lower bound for single link
failure protection.

References

[1] R. K. Ahuja, J. B. Orlin, and T. L. Magnanti. Network Flows: Theory, Algorithms, and

Applications. Prentice Hall, 1993.

[2] J. Anderson, B.T. Doshi, S. Dravida, and P. Harshavardhana. Fast restoration of atm
networks. IEEE Journal on Selected Areas in Communications, 12(1):128–138, 1994.
ISSN 07338716.

[3] P. Batchelor, B. Daino, P. Heinzmann, D. R. Hjelme, P. Leuthold, R. Inkret, G. De
Marchis, H. A. Jager, F. Matera, M. Joindot, B. Mikac, A. Kuchar, H.-P. Nolting,
E. Coquil, J. Spath, F. Tillerot, B. Caenegem, N. Wauters, and C. Weinert. Study on the
implementation of optical transparent transport networks in the european environment-
results of the research project COST 239. Photonic Network Communication, 2(1):15–32,
2000. ISSN 1387974X. doi: 10.1023/A:1010050906938.

[4] R Bhandari. Survivable Networks - Algorithms for Diverse Routing. Kluwer, 1999.

[5] N. Boland, J. Dethridge, and I. Dumitrescu. Accelerated label setting algorithms for the
elementary resource constrained shortest path problem. Operation Research Letters, 34
(1):58–68, 2006. doi: 10.1016/j.orl.2004.11.011.

[6] E. Calle, J. L. Marzo, and A. Urra. Protection performance components in MPLS
networks. Computer Communications, 27(12):1220–1228, 2004. ISSN 01403664. doi:
10.1016/j.comcom.2004.02.025.

[7] W.M. Carlyle, J.O. Royset, and R.K. Wood. Lagrangian relaxation and enumeration
for solving constrained shortest-path problems. Networks, 51(3):155–170, 2008. doi:
10.1002/net.20212.

[8] G. Desaulniers, J. Desroisers, Y. Dumas, S. Marc, B. Rioux, M. M. Solomon, and
F. Soumis. Crew pairing at Air France. European Journal of Operations Research,
97:245 – 259, 1997. doi: 10.1016/S0377-2217(96)00195-6.

127



Chapter 7

[9] G. Desaulniers, J. Desrosiers, J. Ioachim, I. M. Solomon, F. Soumis, and D. Villeneuve. A
unified framework for deterministic time constrained vehicle routing and crew scheduling
problems. In T. G. Crainic and G. Laporte, editors, Fleet Management and Logistics,
pages 57–93. Kluwer, 1998.

[10] J. Doucette, D. He, W. D. Grover, and O. Yang. Algorithmic approaches for efficient
enumeration of candidate p-cycles and capacitated p-cycle network design. In Pro-

ceedings. Fourth International Workshop on Design of Reliable Communication Net-

works, 2003. (DRCN 2003), pages 212–220. IEEE, 2003. ISBN 0780381181. doi:
10.1109/DRCN.2003.1275359.

[11] M. Dror. Note on the complexity of the shortest path models for column generation in
VRPTW. Operations Research, 42(5):977–979, 1994. doi: 10.1287/opre.42.5.977.

[12] I. Dumitrescu and N. Boland. Improved preprocessing, labeling and scaling algorithms
for the weight-constrained shortest path problem. Networks, 42(3):135–153, 2003. doi:
10.1002/net.10090.

[13] Dominique Feillet, Pierre Dejaxa, Michel Gendreaua, and Cyrille Gueguen. An exact al-
gorithm for the elementary shortest path problem with resource constraints: Application
to some vehicle routing problems. Networks, 44(3):216–229, 2004. ISSN 0028-3045. doi:
10.1002/net.v44:3.

[14] M. R. Garey and D. S. Johnson. Computers and Intractability. A guide to the theory of

NP-completeness. Freeman, 1979.

[15] W. D. Grover. Mesh-Based Survivable Networks. Prentice Hall PTR, 2004.

[16] D. Haskin and R Krishnan. A method for setting and alternative label switch path to
handle fast reroute. Technical report, Internet Engineering Task Force, 2002.

[17] Jian Qiang Hu. Diverse routing in optical mesh networks. IEEE Transactions on Com-

munications, 51(3):489–494, 2003. ISSN 00906778. doi: 10.1109/TCOMM.2003.809779.

[18] S. Irnich. Resource extension functions: Properties, inversion, and generalization to
segments. OR Spectrum, 30(1):113–148, 2008. doi: 10.1007/s00291-007-0083-6.

[19] S. Irnich and G. Desaulniers. Shortest path problems with resource constraints. In
G. Desaulniers, Jacques Desrosiers, and M.M. Solomon, editors, Column Generation,
chapter 2, pages 33–65. Springer, 2005. doi: 10.1007/0-387-25486-2 2.

[20] S. Irnich and D. Villeneuve. The shortest path problem with resource constraints and
k-cycle elimination for k ≥ 3. INFORMS Journal on Computing, 18:391–406, 2006. doi:
10.1287/ijoc.1040.0117.

[21] M. Jepsen, B. Petersen, S. Spoorendonk, and D. Pisinger. Subset-row inequalities applied
to the vehicle-routing problem with time windows. Operations Research, 56(2):497–511,
2008. doi: 10.1287/opre.1070.0449.

[22] P. Laborczi and T. Cinkler. Efficient algorithms for physically-disjoint routing in sur-
vivable GMPLS/ASTN networks. In 11th International Telecommunications Network

128



Optimal Routing with Failure Independent Path Protection

Strategy and Planning Symposium. (NETWORKS 2004), pages 185–192. IEEE, 2004.
ISBN 3800728400. doi: 10.1109/NETWKS.2004.1341839.

[23] P. Laborczi, J. Tapolcai, P.-H. Ho, T. Cinkler, A. Recski, and H. T. Mouftah. Algorithms
for asymmetrically weighted pair of disjoint paths in survivable networks. In T. Cinkler,
editor, Third International Workshop on Design of Reliable Communication Networks,

2001. (DRCN 2001), pages 220–227. BME - Budapest Univ. Technol. & Econ, 2001.

[24] Jean François Maurras and Sonia Vanier. Network synthesis under survivability con-
straints. 4OR, 2(1):53–67, 2004. doi: 10.1007/s10288-003-0025-3.

[25] S. Orlowski. Local and global restoration of node and link failures in telecommuni-
cation networks. Master’s thesis, Technische Universität Berlin, February 2003. URL
http://www.zib.de/orlowski/Orlowski2003.pdf.gz.

[26] M. Pioro and D. Medhi. Routing, Flow, and Capacity Design in Communication and

Computer Networks. Elsevier, 2004.

[27] G. Righini and M. Salani. Symmetry helps: bounded bi-directional dynamic program-
ming for the elementary shortest path problem with resource constraints. Discrete Op-

timization, 3(3):255–273, 2006. doi: 10.1016/j.disopt.2006.05.007.

[28] Giovanni Righini and Matteo Salani. New dynamic programming algorithms for the
resource constrained elementary shortest path problem. Networks, 51(3):155–170, 2008.
ISSN 0028-3045. doi: 10.1002/net.v51:3.

[29] SNDlib. SNDlib 1.0–Survivable network design data library, 2005. URL
http://sndlib.zib.de.

[30] T. Stidsen and P. Kjærulff. Complete rerouting protection. Journal of Optical Network-

ing, 5(6):481–492, 2006. doi: 10.1364/JON.5.000481.

[31] T. Stidsen and T. Thomadsen. Joint routing and protection using p-
cycles. Technical report, Technical University of Denmark, 2005. URL
http://www2.imm.dtu.dk/pubdb/p.php?3939.

[32] T. Stidsen, M. Kiese, B. Petersen, S. Spoorendonk, and M. Zachariasen. Network capacity
planning with shared protection. Work in progress, 2008.

[33] J.W. Suurballe. Disjoint paths in a network. Networks, 4(2):125–145, 1974. doi:
10.1002/net.3230040204.

[34] G. Swallow and L. Andersson. MPLS working group, 2003. URL
http://www.ietf.org/html.charters/mpls-charter.html.

129



Chapter 7

130



Part III

Conclusion

131





Chapter 8

Conclusion

Bjørn Petersen
DTU Management Engineering, Technical University of Denmark

1 Summing Up

The main focus of this thesis is on shortest path problems and how to solve them in the context
of column and cut generation algorithms. It has been investigated how to solve various forms
of resource constrained shortest path problems. The emphasis has been on difficult versions
of this problem, namely with the presence of negative weight cycles and costs not directly
mappable to the edge weights. These problems appear in a column generation context when
handling effects of cutting planes derived from the master problem formulation.

It has been shown theoretically and experimentally how to apply the general purpose
mixed integer programming (MIP) cutting planes known as Chvátal-Gomory cuts of rank 1
to the master problem formulation of a Dantzig-Wolfe decomposition of the Vehicle Routing
Problem with Time Windows (VRPTW). Furthermore, it has been shown how to incorporate
this into a dynamic programming algorithm for the subproblem. Investigations of how cutting
planes impact the subproblems complexity, the quality of the lower bounds for the master
problem, and the overall running time of Branch-Cut-and-Price (BCP) algorithms have been
performed.

It has been shown how to solve the Elementary Shortest Path Problem with Capacity
Constrains (ESPPCC) by the use of a Branch-and-Cut algorithm. It has also been shown how
alternative reformulations of the Elementary Shortest Path Problem with Resource Constrains
(ESPPRC), the Capacitated Vehicle Routing Problem (CVRP), and the VRPTW can be
obtained through the use of Partial Paths, so that the difficult part of problems is targeted
and movement of complexity between master and pricing problems is facilitated. Finally, an
example of how to utilize resource constrained shortest paths in a telecommunication context
has been presented.

Experimental results are reported for the VRPTW, the CVRP, the ESPPCC, the ESP-
PRC, and the problem of finding Optimal Routing with Failure Independent Path Protection.

In Chapter 3 and Chapter 4 it has been shown how the Chv́atal-Gomory cuts of rank 1 can
be applied to a decomposition model of the VRPTW. In the former chapter, it was shown how
a small subset of the Chv́atal-Gomory cuts of rank 1, denoted subset-row inequalities, can

133



Chapter 8

be applied to the Set Partitioning master problem, and how to incorporate their dual costs
into the pricing problem (the ESPPRC) with the use of additional resources. At the time of
publication this algorithm was the most successful exact solution method for the VRPTW.
In the latter chapter, these results were extended to include all Chvátal-Gomory cuts of rank
1. However, a slightly more complicated dominance criterion made the pricing problem a bit
harder to solve. Running times could not be improved compared to the former approach, but
on all problem instances successfully considered it was possible to close the integrality gap
completely in the root node.

In Chapter 5 a Branch-and-Cut algorithm for solving the (ESPPCC) was introduced. A
compact mathematical model and valid inequalities developed for the ESPPCCwere presented
as were experimental results on benchmark instances from the literature and on a new set
of hard instances. Chapter 6 presented a new decomposition algorithm for Vehicle Routing
Problems based on the concept of partial paths where the routes are found by combining
smaller sub-routes. Chapter 7 showed in a real world example, namely Optimal Routing with
Failure Independent Path Protection, how resource constrained shortest paths problems are
useful in a completely different context.

2 Concluding Remark

Considering the successful work with the subset-row inequalities on the VRPTW and the less
successful work with the Chvátal-Gomory rank 1 cuts on the VRPTW, it can be concluded
that you need to be careful when choosing which cutting planes to include for a given problem.
Do not get disencouraged by making subproblems harder, but do not overdo it. It appears
that the pricing problem of the decomposed problem should be hard to solve before applying
the cutting planes for the master problem. Most likely, the best results would be achieved if
the pricing problem is strongly NP-hard to begin with. Also, for the master problem based
cutting planes to be effective it is preferable to have a large integrality gap. Otherwise a few
quick branches could just as easy close it.

For some kinds of ESPPRC, e.g., the ESPPCC, it appears that labeling algorithms are
clearly outperformed by Branch-and-Cut based algorithms. It must be remarked, though, that
labeling algorithms sometimes are used in a context where finding several “good” solutions
are desired. Labeling algorithms are superb at this but it is not a property that the Branch-
and-Cut based algorithms excel at.

Reformulating with partial paths make it possible to balance the running time of the
pricing problem against the tightness of the lower bound. It has been shown in theory that
both weaker and stronger root bounds can be obtained compared to models with full paths.

Labeling based algorithms can be parallelized with one thread per node of the graph on
which the paths are defined. Due to the overhead of handling multiple threads the parallelized
code works best when instances are hard. A general framework can be used for different
problems solely by changing the functions that define extensions, dominance, and search
structures.

3 Future Research

There are many different ways of dividing into partial paths. Striving for a strong bound in
the master problem and for an easy pricing problem are conflicting goals. To find the right

134



Conclusion

division whereby obtaining a good compromise between both goals demands testing many
alternatives or possessing lots of luck. Implementation of a column generation algorithm
requires some coding and testing both of which are time consuming.

The transportation problems faced by many companies can in general terms be stated
as transporting an amount of commodities between a number of locations by some means
of transportation. There are typically restrictions associated with the use of different vehi-
cles, e.g., capacity or availability. Furthermore, there may be restrictions on handling the
commodities such as specific times for sending and receiving shipments. When optimizing
the solution process of a transportation problem, typical objectives are to minimize overall
travel cost or time. These problems are basically contained in CVRP and VRPTW. An often
overlooked factor in current solution methods is the important concept of uncertainty, both
during transportation and in demand and availability of commodities. These stochastic el-
ements are much less studied than their deterministic counterparts. A future research goal
could be to investigate how to handle these stochastic events.

135



Chapter 8

136



Chapter 9

Summery in Danish

Bjørn Petersen
DTU Management Engineering, Technical University of Denmark

1 Resumé

Det primære fokus for denne ph.d.-afhandling har været p̊a korteste vej problemer og hvorledes
de løses i forbindelse med kolonnegenereringsalgoritmer. Det er blevet undersøgt hvordan di-
verse former for resourcebegrænsede korteste vej problemer kan blive løst. Vægten er blevet
lagt p̊a svære udgaver af problemet; mere specifikt n̊ar kredse med negativ vægt og omkost-
ninger, der ikke kan afspejles direkte p̊a kanterne, har været tilstedeværende. Disse problemer
viser sig i kolonnegenereringssammenhænge, n̊ar de duale omkostninger fra snitplan i master-
problemet skal behandles.

Det er blevet vist teoretisk s̊avel som eksperimentelt, hvorledes generelle mixed integer
programming (MIP) snitplan af typen Chvátal-Gomory rank 1 kan anvendes p̊a master-
problem formuleringen af en Dantzig-Wolfe dekomponering af ruteplanlægningsproblemet
med tidsvinduer (VRPTW). Endvidere er det blevet vist, p̊a hvilken vis dette kan indar-
bejdes i en dynamisk programmerings algoritme til løsning af delproblemerne. Undersøgelser
af hvordan snitplan influerer delproblemernes kompleksitet, kvaliteten af de nedre grænser i
master-problemet og den overordnede køretid for Branch-Cut-and-Price (BCP) algoritmer er
blevet udført.

Det er blevet vist, hvordan det simple kortestevejproblem med kapacitetsbegrænsninger
(ESPPCC) kan løses vha. en Branch-and-Cut algoritme. Det er ligeledes blevet vist hvor-
dan forskellige reformuleringer af det simple kortestevejproblem med ressourcebegrænsninger
(ESPPRC), det kapacitetsbegrænsede ruteplanlægningsproblem (CVRP) og VRPTW kan
opn̊as ved at benytte delveje, s̊aledes at den svære del af problemer er berørt og flytning af
kompleksitet mellem master- og delproblem er muliggjort. Til slut er et eksempel p̊a hvorledes
resourcebegrænsede kortestevejproblemer kan blive benyttet i forbindelse med telekommu-
nikation blevet præsenteret.

Eksperimentelle resusultater er blevet rapporteret for VRPTW, CVRP, ESPPCC, ESP-
PRCog problemet med at finde en optimal rutning med Failure Independent Path Protection.

I kapital 3 og kapitel 4 er det blevet vist, hvordan snitplan af typen Chvátal-Gomory rank
1 kan blive anvendt p̊a en delkomponeringsmodel af VRPTW. I det første af disse kapitler

137



Chapter 9

blev det vist, hvordan en lille delmængde af disse snitplan kaldet subset-row uligheder kan
blive benyttet p̊a set-partitioning master-problemet, og hvordan deres duale omkostninger
bliver h̊andteret vha. ekstra ressourcer i delproblemet – et ESPPRC. Denne algoritme var
da den blev publiseret den mest succesfulde eksakte løsningsmetode for VRPTW. I det an-
det af kapitlerne er disse resultater blevet udvidet til at inkludere alle snitplan af typen
Chvátal-Gomory rank 1. Et lidt mere kompliceret dominanskriterie gjorde dog delproblemet
en smule vanskeligere at løse. Køretider kunne ikke forbedres sammenlignet med den første
fremgangsmåde, men for alle probleminstanser, der blev betragtet med succes, var det muligt
at lukke heltalsgabet fuldstændigt i rodknuden.

I kapitel 5 blev en Branch-and-Cut algoritme til løsning af ESPPCC introduceret. En
kompakt model af og lovlige uligheder til ESPPCC blev præsenteret, ligesom eksperimentelle
resultater p̊a testinstanser fra litteraturen og et nyt sæt svære instanser blev det. Kapi-
tel 6 præsenterede en ny dekomponeringsalgoritme til ruteplanlægningsproblemer baseret p̊a
delvejs-konceptet, hvor ruterne er fundet ved at kombinere mindre delruter. Kapitel 7 viste
med et eksempel fra den virkelige verden (optimal rutning med Failure Independent Path
Protection), hvordan resourcebegrænsede kortestevejproblemer er brugbare i anderledes sam-
menhænge.

138



Part IV

Other Contributions

139





Chapter 10

The Simultaneous Vehicle Schedul-

ing and Passenger Service Problem

Conditionally

Hanne L. Petersen
DTU Transport, Technical University of Denmark

Allan Larsen
DTU Transport, Technical University of Denmark

Oli B.G. Madsen
DTU Transport, Technical University of Denmark

Bjørn Petersen
DTU Transport, Technical University of Denmark

Stefan Røpke
DTU Transport, Technical University of Denmark

Abstract

Passengers using public transport systems often experience waiting times when trans-
ferring between two scheduled services. In this paper we propose a planning approach
which seeks to obtain a favourable trade-off between the two contrasting objectives pas-
senger service and operating cost by modifying the timetable. The planning approach
is referred to as the Simultaneous Vehicle Scheduling and Passenger Service Problem
(SVSPSP). The SVSPSP is modelled as an integer programming problem, and solved us-
ing a large neighborhood search (LNS) metaheuristic. The proposed framework is tested
on data inspired by the express-bus network in the Greater Copenhagen Area. The re-
sults are encouraging and indicate a potential decrease of passenger waiting times in the
network of 10–20%, with the vehicle scheduling costs remaining unaffected.

In revision.

141



Chapter 10

1 Introduction

In every larger public transport system massive amounts of time are wasted due to waiting
time when transferring between different parts of the journey. For the Greater Copenhagen
area it has been estimated that the time lost on an average weekday by passengers waiting for
connecting buses or trains approaches 65,000 hours (based on 400,000 daily transfers with an
average of 10 minutes transfer waiting time.1 Hence, generating timetables which optimise
for temporal correspondences has an enormous socio-economic potential. Clearly, this could
be achieved through an increase in the frequency of the trips offered in the timetable, however
this would require an unacceptable increase in operating costs.

The traditional sequential framework for planning of public transport has been excel-
lently described by Desaulniers and Hickman [8] and is sketched in Figure 1. Given the route
network, the frequencies are determined to ensure demand coverage and to comply with polit-
ically determined service levels, under practical constraints such as fleet size. The timetabling
process then determines the exact timings for all trips while respecting the previously deter-
mined frequencies/headways. Both of these first phases are concerned with maximising some
measure of passenger service, and are carried out by the public transport service provider,
who typically works by appointment by the local authorities. The timetabling phase may
take schedule synchronisation and transfer times into account.

O
pe

ra
to

r
pr

ov
id

er
S

er
vi

ce

Vehicle Scheduling

Timetabling

Frequency setting

Crew pairing

Crew rostering

Figure 1: Traditional sequential planning approach

Once the timetable has been established, the resource scheduling starts. During this phase
the first problem to be solved is the scheduling of the physical resources necessary to carry
out the trips in the timetable, i.e. the vehicles. The purpose of the vehicle scheduling is to be
able to execute the timetable at the lowest possible cost. The costs considered in this phase
include empty mileage performed by the vehicles, both in connection to the depot, and in the
form of deadheading, i.e. transport between the end point of one trip and the starting point
of another. Once the vehicle schedules have been established, the crew pairing and rostering
phases are carried out. The last three phases are all carried out by the public transport
operator, who is appointed by the service provider to operate a set of trips, and they all have
the purpose of operating the requested timetable at the lowest possible cost.

Today, efficient systems for generating near-optimal vehicle schedules exist within all

1cf. http://www.dtu.dk/centre/modelcenter/TU/Standard%20Tabeller/

142



The Simultaneous Vehicle Scheduling and Passenger Service Problem

modes of transport. However, these systems treat the timetable as fixed input, meaning
that potential savings in operating costs from moving a set of trips in the timetable are lost.
Only very limited research has been done on models that address the problem of minimising
the operating costs by modifying the timetable. Furthermore, research is scarce on models
that focus on minimisation of the waiting time during transfer.

In this paper we introduce the Simultaneous Vehicle Scheduling and Passenger Service
Problem (SVSPSP) which addresses the multiple objective planning problem of improving
timetables such that they remain economically satisfactory for the operator, and at the same
time offer high-quality service to the passengers by reducing the unproductive time spent on
waiting during transfers. Please note that whenever we refer to waiting time throughout this
paper we are solely referring to the waiting time associated with transfers, and not the waiting
time of passengers entering the system. The SVSPSP framework is sketched in Figure 2, and
integrates the planning processes of timetabling and vehicle scheduling.

SVSPSP

Vehicle Scheduling

Timetabling

Frequency setting

Crew pairing

Crew rostering

Figure 2: The role of the SVSPSP shown in relation to the traditional sequential planning
approach.

Its main input is the original timetable and estimates of passenger demand in the network.
The natural problem owner of the SVSPSP is the public transport service provider, as this is
the authorithy which on the one hand is committed to provide a high-quality timetable to the
customers (in terms of e.g. minimum waiting times) and on the other hand holds the respon-
sibility of ensuring that the offered timetable is feasible from an operating costs perspective.
By integration of the vehicle scheduling phase, which previously belonged to the operator,
the service provider can obtain a better negotiating position towards the operator, since the
operating costs have already been considered during the optimisation of the timetables.

The contributions of this paper are fourfold: 1) we formally introduce a new interesting
problem, motivated by a real-life case, 2) we make a realistic data set available, that can
be used for future studies, 3) we propose a heuristic solution method that is able to handle
data sets of realistic size, 4) we show that substantial reductions in passenger waiting time
are possible using the proposed methodology. The paper is organised as follows: Section 2
reviews the literature on the multiple depot vehicle scheduling problem as well as work on
minimising passenger transfer times. In section 3 we formulate the SVSPSP as an integer
programming model. Section 4 discusses how the proposed problem can be solved by the large
neighborhood search metaheuristic. Section 5 introduces the data set used in this study which
is based on the bus network of the Greater Copenhagen area, and in Section 6 we discuss

143



Chapter 10

the results obtained. Finally, we provide our concluding remarks and suggest directions for
further research in Section 7.

2 Literature review

Our approach for the integrated vehicle scheduling and timetabling problem is based on the
multiple depot vehicle scheduling problem (MDVSP). Desrosiers et al. [9] provide an excellent
introduction to the problem and survey the literature prior to 1995. A more recent, but short
literature survey is presented by Pepin et al. [23] who also presents an interesting comparison
of heuristic approaches for the problem. Section 4.1 in Desaulniers and Hickman [8] also
contains a recent survey. Some of the currently best exact methods for the MDVSP are
proposed by Hadjar et al. [12] and Löbel [20]. We are aware of twopapers that extend vehicle
scheduling problems to handle parts of the timetabling process. The paper by van den Heuvel
et al. [28] studies the integration of timetabling and multi depot vehicle scheduling with the
aim of reducing costs (reducing the number of vehicles) while ignoring passenger waiting times.
On the timetabling level the approach allows the trip starting times for each line to be shifted
in time to allow greater flexibility in the vehicle scheduling part. The paper presents integer
programming models as well as a local search algorithm that solves a network flow problem
in each local search iteration. Guihaire and Hao [11] also integrate vehicle scheduling and
timetable synchronisation in their optimisation problem. They consider several terms in their
objective: number of vehicles required, number and quality of transfer possibilities and the
so-called headway evenness. The second term aims at minimising passenger inconvenience.
The last term attempts to make arrivals of vehicles, serving a particular line, occur with a
regular frequency. The three terms are weighted together. In terms of the vehicle scheduling
problem, the paper considers a single depot setup while our approach handles the multiple
depot case. The problem studied in this paper is probably the one that resembles our problem
the most.

Several papers focus on optimising timetables in order to minimise passenger waiting
times, without explicitly considering the impact such changes have on the physical resource
requirements (e.g. more buses may be needed to carry out the modified plan). Examples of
such approaches are Jansen and Pedersen [13] who formulate the problem as a mathematical
model and propose simulated annealing and tabu search algorithms to solve the problem (see
also Pedersen [21]); Ceder et al. [5] who synchronise bus timetables by maximising the number
of times two buses arrive at the same time at any node in the network; Klemt and Stemme [15],
Bookbinder and Désilets [4] and Daduna and Voß [7] who synchronise timetables by solving
a quadratic semi-assignment problem. Worth mentioning is also the paper by Chakroborty
et al. [6], which studies timetable synchronisation and “optimal fleet size” using a genetic
algorithm heuristic. They do not study the vehicle scheduling aspect of the problem, instead
the term “optimal fleet size” refers to the fact that the number of departures on a specific
line is a variable, decided by the proposed model.

As explained in the introduction, SVSPSP integrates the timetabling and vehicle schedul-
ing phases. The integrated problem has not been widely studied in the literature but some
papers on the topic do exist. One approach for handling the integrated problem has been the
so-called periodic event scheduling problem (PESP). The PESP is mainly used for timetabling
but has been extended to handle some aspects of vehicle scheduling as well. The PESP model
was proposed by Serafini and Ukovich [26]. It is a general framework for modelling opti-

144



The Simultaneous Vehicle Scheduling and Passenger Service Problem

misation problems with a periodic nature. Liebchen and Möhring [18] show how the PESP
and extensions can be used to handle many aspects of railway timetabling. One of these is to
minimise the changeover time for passengers and another is the minimisation of the number of
vehicles needed to perform the timetable. The complexity of the vehicle minimisation depends
on whether trains are allowed to switch line when they reach their endpoint. Contrary to our
approach the paper does not model the situation where vehicles can perform deadheading in
order to switch terminal (this does not seem practical when the vehicles are trains running
on tracks, but can be useful for buses). The material in Liebchen and Möhring [18] builds on
the work of Liebchen and Peeters [19] which focuses on vehicle minimisation, but arrives at
a model with a quadratic objective function. Other recent works on the PESP and railway
timetabling include Liebchen and Möhring [17], Peeters [22], and Kroon et al. [16].

Wong et al. [29] studies theMass Transit Railway in Hong Kong that contains 6 train lines.
They minimise the overall passenger waiting time in a non-periodic fashion. The number of
vehicles needed to carry out the plan is determined in advance and is kept constant. In this
way it is ensured that the proposed timetable does not become too expensive to carry out,
while optimising customer satisfaction. The authors present a MIP model and solve it using
a heuristic that incorporates a standard MIP solver as an important component. Fleurent
et al. [10] describe an optimisation system and an interactive tool for minimising passenger
waiting time while keeping vehicle costs under control. The suggested approach is tested on
a case from the city of Montreal, Canada, and the results indicate that the passenger waiting
time can be improved while keeping the vehicle count constant. The paper provides little
detail about the optimisation algorithm used to obtain these results.

We can conclude that the work on integrating time tabling and vehicle scheduling is rather
limited and that Guihaire and Hao [11] is the paper that presents a problem that is most
similar to the SVSPSP. The SVSPSP model is, regarding some aspects, more ambitious than
the model studied by Guihaire and Hao [11] as it considers a multi-depot setting which is not
the case in the aforementioned paper.

3 The SVSPSP: modelling

In a classical multi-depot vehicle scheduling problem (MDVSP) one has to cover a set of trips
with a set of vehicles (based at several depots) while minimising costs. A trip has a start
and end location, as well as a departure and arrival time. In a bus scheduling setting a trip
corresponds to the movement from the start to the end of a bus line. A line is a collection
of trips that have the same start and end locations but different departure and arrival times.
A line also contains trips going in the opposite direction. The MDVSP can be modelled as
follows (see Desrosiers et al. [9]): let N = {1, . . . , n} denote the set of trips and K the set of
depots. With each depot k ∈ K we associate a graph Gk = (V k, Ak) where the set of nodes
is defined as V k = N ∪ {n + k} with n + k being the node representing the kth depot. The
set of arcs Ak is a subset of the set V k × V k, with all infeasible arcs removed. An arc is
infeasible if it forms an impossible connection between two trips; typically this is caused by
timing constraints. For each depot k ∈ K and each arc (i, j) ∈ Ak we define an arc cost ckij
and we are given an upper bound vk on the number of vehicles located at k. Using a binary
variable xkij for all k ∈ K, (i, j) ∈ Ak, having value 1 if and only if a vehicle from depot k

145



Chapter 10

travels from node i to j we can write an integer multi-commodity flow model as follows:

min
∑

k∈K

∑

(i,j)∈Ak

ckijx
k
ij (1)

subject to

∑

k∈K

∑

j∈V k

xkij = 1 i ∈ N (2)

∑

j∈N

xkn+k,j ≤ vk k ∈ K (3)

∑

i∈V k

xkij −
∑

i∈V k

xkji = 0 k ∈ K, j ∈ V k (4)

xkij ∈ {0, 1} k ∈ K, (i, j) ∈ Ak (5)

The objective (1) minimises the total cost. The arc costs ckij can be set such that the total
cost reflects a fixed cost per vehicle and deadheading costs. Constraints (2) ensure that all
trips are served, constraints (3) ensure that we do not use more than the available number of
vehicles and, constraints (4) are flow conservation constraints.

The SVSPSP generalises the MDVSP as follows: in the SVSPSP we group trips into
so called metatrips. The set of metatrips, Ω, forms a partitioning of the set N , that is,
∪M∈ΩM = N and ∀M1,M2 ∈ Ω,M1 6= M2 : M1 ∩ M2 = ∅. Furthermore, we relax the
condition that every trip must be covered. Instead we require that exactly one trip from
each metatrip must be covered. In the context of this paper, we assume that each metatrip
corresponds to a trip from the original timetable, and the (sub)trips belonging to the metatrip
represent copies of the original trip, with alternative departure times. Thus, the requirement
that each metatrip is covered corresponds to the MDVSP-requirement that each trip is covered
(2). The idea behind this, in relation to our goal of increasing passenger service, is that
selecting alternative departure times may reduce waiting times and thereby improve the
passenger service level.

We will now introduce some useful concepts that will be used in our treatment of the
SVSPSP. Trips in the SVSPSP model can be incompatible for various reasons, as we shall
see later. This is captured by a set Φ ⊆ 2N containing sets of mutually incompatible trips.
Thus, if φ ∈ Φ then any pair i, j ∈ φ is incompatible and cannot be used together in a feasible
solution. For the SVSPSP we maintain the definition of a line that is known from the MDVSP;
a line L is a sequence of stops to be visited in a given order. A line can be travelled in both
directions, and we use the term d-line (directed line) for a line in a particular direction. Each
metatrip, and the trips contained in it, belongs to exactly one d-line. Therefore we can view
a d-line L as a subset of the set of metatrips: L ⊆ Ω. For every bus line a number a stops are
defined. The stops are the locations where the bus stops to pick up and unload passengers.
Several bus lines may share one stop and a stop can provide connection to other modes of
timetabled transportation like trains or ferries. Any transfer of passengers takes place at a
stop. We are only interested in stops where transfers can take place, hence, when mentioning
stops in the rest of this paper we assume a stop with at least one transfer opportunity.

Figure 3 shows an example of trips and metatrips. The nodes {1, . . . , 12} represent trips,
and two metatrips {2, . . . , 6} and {7, . . . , 11} are shown. The time of day is shown along the
top of the figure. Trips 4 and 9, marked with grey, are the two original trips, from which the

146



The Simultaneous Vehicle Scheduling and Passenger Service Problem

metatrips are constructed. The remaining trips in each metatrip are constructed by creating
duplicates of the original trip, spread evenly in the available time interval. The nodes 1 and
12 belong to other metatrips, not illustrated in the figure. All trips shown in the figure belong
to the same d-line.

The usage of incompatible trips to impose passenger service is apparent: trips belonging
to the same d-line and departing within a short time interval should be incompatible, for
example trip 6 and 7 on Figure 3 could be incompatible because they depart within 4 minutes.
Similarly, two consecutive departures on a d-line should not be too far apart. Therefore it
would make sense to make trip 2 incompatible with trip 11. If departures at regular intervals
are required on a bus line for a specific period of the day or the entire day this could also be
modelled using incompatible trips. If we desire departures every 20 minutes in the example
on Figure 3 we must make trip 2 incompatible with trips 8, 9, 10, and 11 (by adding the set
{2, 8, 9, 10, 11} to Φ), trip 3 should be incompatible with trips 7, 9, 10, and 11, and so on.

metatrip 1 metatrip 2

54321 6 7 8 9 10 11 12
9.509.409.309.20

Figure 3: Example of trips and metatrips.

Using the notation from the MDVSP we can now present a mathematical model for a
simple version of the SVSPSP, denoted SVSPSP0.

min
∑

k∈K

∑

(i,j)∈Ak

ckijx
k
ij (6)

subject to
∑

i∈M

∑

k∈K

∑

j∈V k

xkij = 1 M ∈ Ω (7)

∑

i∈φ

∑

k∈K

∑

j∈V k

xkij ≤ 1 φ ∈ Φ (8)

∑

j∈N

xkn+k,j ≤ vk k ∈ K (9)

∑

i∈V k

xkij −
∑

i∈V k

xkji = 0 k ∈ K, j ∈ V k (10)

xkij ∈ {0, 1} k ∈ K, (i, j) ∈ Ak (11)

Constraints (9) and (10) are identical to (3) and (4) in the original MDVSP formulation.
Constraints (7) ensure that exactly one trip from each metatrip is selected and constraints
(8) ensure that no incompatible trips are selected at the same time.

In order to discuss how passenger service can be taken into account in the SVSPSP0 we
need to define exactly how we measure passenger service. The area we focus on in relation
to passenger service is waiting time during transfers. We first introduce the central concept

147



Chapter 10

transfer opportunity. A transfer opportunity is a triple (s,M,L). Here s is the stop where the
transfer takes place, M is a metatrip that stops at s, and L is a connecting line that exchanges
passengers with M at s. For each transfer opportunity we assume that an estimate Ds

ML of
the number of passengers disembarking metatrip M and transferring to line L at stop s, as
well as an estimate Es

ML of the number of passengers embarking metatrip M transferring from
line L at stop s are available. It is assumed that all passengers disembarking a metatrip to
transfer to line L take the earliest possible departure on line L and all passengers embarking
a metatrip M come from the latest possible arrival on line L. For the SVSPSP0, L is a line
external to the model, but we will later generalise it to include those lines that are rescheduled
by the model.

To improve passenger service we desire to minimise the total number of passenger minutes
wasted by waiting for a connection, at the same time as we want to minimise the cost of serving
all trips. This results in two goals that are weighted together in the cost coefficients of the
objective function. The SVSPSP0 model can accommodate a part of the waiting times that
we desire to include in the model, namely a penalty for waiting times related to lines that
are external to the model, such as already timetabled train departures: for each trip i in N
we find the transfer opportunities (s,M,L) of the metatrip M that i belongs to. As stated
above, L is an external line with fixed departures and arrivals, therefore we can a priori find
the arrival and departure on line L that are used by passengers embarking and disembarking
trip i at stop s and we can calculate the associated waiting times. The two waiting times are
multiplied by the passenger estimates Es

SM and Ds
SM and summed to give the total number

of minutes waited for the particular trip and transfer opportunity. By summing over all
the transfer opportunities that the trip is involved in we obtain the total number of waiting
minutes incurred by the trip. This number, weighted in a suitable way, is added to the cost
of all arcs leaving the node corresponding to the trip.

The SVSPSP0 model cannot take the transfer of passengers from bus to bus into account
if both buses are rescheduled by the model. We therefore introduce the model SVSPSP, that
generalises SVSPSP0 to accommodate this. The overall idea is to introduce two new sets of
binary variables ysij and zsij that indicate if transfers between trip i and j are taking place at
stop s. For each transfer opportunity (s,M,L) involving a d-line L which is timetabled by the
model we create a number of variables ysij where i ∈ M , j ∈ ∪M ′∈LM

′. Each variable indicates
if the transfer opportunity of passengers disembarking metatrip M to transfer to d-line L is
realised by transferring from trip i to j. Similarly, for the same transfer opportunity, we
create a number of variables zsij where j ∈ M , i ∈ ∪M ′∈LM

′. These variables indicate if the
transfer opportunity of passengers embarking M , coming from L is realised by transferring
from trip i to j. We assign a cost c̄sij > 0 for each ysij variable and a cost ĉsij > 0 for each zsij
variable. The cost is based on the time between arrival and departure on the two trips and
the number of passengers expected to take advantage of the transfer opportunity.

Consider the following example: the bus lines 200 and 300 both visit Lyngby Station.
Assume that a trip for line 200 northbound (200-N) has been chosen by the model such that
the bus arrives at Lyngby station at 9:29. A number of the passengers on board the bus
wish to disembark the bus to transfer to line 300 heading north (300-N). Their waiting time
depends on the departure time of the next 300-N, which is also decided by the model. Figure 4
shows this situation. The chosen trip for bus 200-N (trip a) is shown at the top of the figure
along with alternative 200-N arrivals and nine trips belonging to line 300-N are shown on the
bottom. Passengers from trip a cannot transfer to bus 300-N on the departure times marked
with grey circles: departure 4 is impossible because it departs before bus 200-N arrives, while

148



The Simultaneous Vehicle Scheduling and Passenger Service Problem

9.30 9.40 9.50

4 5 6 7 8 9 10 11 12

a b c d e f

Bus 300−N

Bus 200−N

Figure 4: Example of a bus-to-bus transfer.

departure 5 departs one minute later than trip a arrives and there is not enough time for the
transfer (passengers have to walk). The other departures are all feasible transfers. Note that
trips 7 to 11 constitute a metatrip, so exactly one of these trips must be selected. This means
that no passenger from trip a heading for line 300-N would transfer to trip 12 because an
earlier, feasible departure will exist in the plan. On the other hand, if trip 12 is selected by the
model and trip a is the latest selected bus from 200-N that allows a transfer to trip 12 then
embarking passengers on trip 12 arriving from 200-N would perform the transfer. Since both
embarking and disembarking passengers are considered, both y and z variables are necessary.
The y variables handle passengers disembarking a specific trip to the first possible trip on
the specified d-line. The z variables handle passengers embarking a specific trip from the last
possible trip on the specified d-line.

Let S be the set of all stops that are visited by more than one bus line. We introduce a
graph Ĝs = (V̂ s, Âs) for each stop s ∈ S. The set of vertices V̂ s is the set of all trips that
visit stop s and the set of arcs is defined as

Âs =
{

(i, j) : i, j ∈ V̂ s, passengers can transfer from trip i to trip j at stop s
}

.

For example, if s is Lyngby station as shown in Figure 4 we would have that

{(a, 6), (a, 7), (a, 8), (a, 9), (a, 10), (a, 11), (a, 12)} ⊂ Âs

but {(b, 1), (b, 2)} ∩ Âs = ∅. The variables ysij and zsij are defined for every s ∈ S and every

arc (i, j) ∈ Âs. We can use Figure 4 to show the meaning of the y variables. If, for example,
trips b and 7 are chosen and none of the trips {3, 4, 5, 6} are chosen then ysb,7 = 1 and ysb,j = 0
for j ∈ {3, 4, 5, 6, 8, 9, 10}. If both trip 3 and 7 were chosen then we would have ysb,3 = 1 and
ysb,7 = 0 because all passengers disembarking b, bound for 300-N, would transfer to trip 3.

For a trip i ∈ N and a stop s on its line we define t(i, s) to be the departure time of trip
i at stop s. For a trip i we define dl(i) to be the d-line that the trip belongs to. For a stop s
and an arc (i, j) ∈ Âs we define

π(i, j, s) = {j′ ∈ ∪M ′∈dl(j)M
′ : (i, j′) ∈ Âs, t(j′) < t(j)},

that is, π(i, j, s) is the set of trips j′ from the same d-line as j that are earlier than j but that
still are feasible transfer destinations from trip i. Similarly we define

σ(i, j, s) = {i′ ∈ ∪M ′∈dl(i)M
′ : (i′, j) ∈ Âs, t(i) < t(i′)},

which is the set of trips i′ from the same d-line as i that are later than i but where a transfer to
trip j still is feasible. We can now present an extended model that also handles the bus-to-bus
transfers:

min
∑

k∈K

∑

(i,j)∈Ak

ckijx
k
ij +

∑

s∈S

∑

(i,j)∈Âs

c̄sijy
s
ij +

∑

s∈S

∑

(i,j)∈Âs

ĉsijz
s
ij (12)

149



Chapter 10

subject to

∑

i∈M

∑

k∈K

∑

j∈V k

xkij = 1 M ∈ Ω (13)

∑

i∈φ

∑

k∈K

∑

j∈V k

xkij ≤ 1 φ ∈ Φ (14)

∑

j∈N

xkn+k,j ≤ vk k ∈ K (15)

∑

i∈V k

xkij −
∑

i∈V k

xkji = 0 k ∈ K, j ∈ V k (16)

∑

k∈K

∑

l∈V k

xkil +
∑

k∈K

∑

l∈V k

xkjl − 1

−
∑

j′∈π(i,j,s)

∑

k∈K

∑

l∈V k

xkj′l ≤ ysij s ∈ S, (i, j) ∈ Âs (17)

∑

k∈K

∑

l∈V k

xkil +
∑

k∈K

∑

l∈V k

xkjl − 1

−
∑

i′∈σ(i,j,s)

∑

k∈K

∑

l∈V k

xki′l ≤ zsij s ∈ S, (i, j) ∈ Âs (18)

xkij ∈ {0, 1} k ∈ K, (i, j) ∈ Ak (19)

ysij ∈ {0, 1} s ∈ S, (i, j) ∈ Âs (20)

zsij ∈ {0, 1} s ∈ S, (i, j) ∈ Âs (21)

Two changes have been performed compared to model SVSPSP0: a) two terms have been
added to the objective function (12) to model the cost of passengers waiting during transfers
between two buses that are both re-timetabled by the model, and b) inequalities (17) and
(18) have been added to ensure that the ysij and zsij variables are set correctly. For example,
ysij is set to 1 by (17) when both trip i and trip j are used (the first two sums on the left
hand side) and when none of the feasible transfer destinations earlier than j are in use (the
last sum on the left hand side). The constraints only enforce a lower bound on ysij but the
minimisation in the objective and assumption that c̄sij is positive ensure that the y variables
take the lowest possible value. Constraints (18) are similar to (17), but work on z rather than
y variables.

The mathematical model presented in (6)–(11) has been implemented in CPLEX, but
CPLEX was not able to solve instances with the dimensions considered in this paper. No
attempts have been made to solve the model presented in (12)–(21) with a general purpose
solver, since the number of variables and constraints used in the advanced model is even
larger than in the model presented in (6)–(11). However, by presenting the models here,
they have served as an instrument to give a precise definition of the problem to be studied.
Using techniques like reformulation or cut or column generation it might be possible to solve
realistically sized instances using the mathematical models — in particular, model (6)–(11)
lends itself to a column based solution approach. However, we have worked in a different
direction, and in the following section we shall present a metaheuristic for solving the problem.

150



The Simultaneous Vehicle Scheduling and Passenger Service Problem

4 Solution method

The solution method we propose for solving the SVSPSP is based on the large neighbor-
hood search (LNS) metaheuristic. The LNS was proposed by Shaw [27]. As many other
metaheuristics, the LNS is based on the idea of finding improving solutions in the neighbor-
hood of an existing solution. What sets the LNS apart from other metaheuristics is that the
neighborhood searched (or sampled) in the LNS is huge.

The term LNS is often confused with the term very large scale neighborhood search (VLSN)
defined in Ahuja et al. [1]. While the LNS is a heuristic framework, VLSN is the family of
heuristics that searches neighborhoods whose sizes grow exponentially as a function of the
problem size, or neighborhoods that simply are too large to be searched explicitly in practice,
according to Ahuja et al. [1]. The LNS is one example of a VLSN heuristic.

We are aware of one application of LNS to the MDVSP, this approach is described in Pepin
et al. [23]. That LNS implementation is more complex than ours as it uses column generation
and branch and bound to solve restricted instances of the MDVSP. The computational results
reported in Pepin et al. [23] show that the LNS is competitive against 4 other heuristics. LNS
has also been successful in solving the related vehicle routing problem with time windows.
See for example Bent and van Hentenryck [3] and Pisinger and Ropke [25].

4.1 Large neighborhood search

A LNS heuristic moves from the current solution to a new, hopefully better, solution by first
destroying the current solution and then repairing the destroyed solution. To illustrate this,
consider the traveling salesman problem (TSP). In the TSP we are given n cities and a cost
matrix that specifies the cost of traveling between each pair of cities. The goal of the TSP is
to construct a minimum cost cycle that visits all cities exactly once (see e.g. Applegate et al.
[2]). A destroy method for the TSP could be to remove 10% of the cities in the current tour
at random (shortcutting the tour where cities are removed). The repair method could insert
the removed cities again using a cheapest insertion principle (see e.g. Jünger et al. [14]).

The LNS heuristic is outlined on Algorithm 1. In the pseudo-code we use the symbols
x for the current solution, x∗ for the best solution observed during the search and x′ for a
temporary solution. The operator d(·) is the destroy method. When applied to a solution
x it returns a partially destroyed solution. The operator r(·) is the repair method. It can
be applied to a partially destroyed solution and returns a normal solution. The expression
r(d(x)) therefore returns a solution created by first destroying x and then rebuilding it.

The LNS heuristic takes an initial solution as input and makes it the current and best
known solutions in lines 1 and 2. Lines 4 to 10 form the main body of the heuristic. In line
4 the current solution is first destroyed and then repaired, resulting in a new solution x′. In
line 5 the new solution is evaluated to see if it should replace the current solution, this is done
using the function accept which is described in Section 4.2.3 below. In lines 8 to 10 the best
known solution is updated if necessary. Line 11 checks the stopping criterion which in our
implementation simply amounts to checking if tmax seconds have elapsed.

4.2 Large neighborhood search applied to the SVSPSP

This section describes how the LNS heuristic has been tailored to solve the SVSPSP. In
particular, we describe the implemented destroy and repair methods and the acceptance

151



Chapter 10

Algorithm 1 Large Neighborhood Search

1: input: a feasible solution x;
2: x∗ = x;
3: repeat
4: x′ = r(d(x));
5: if accept(x′, x) then
6: x = x′;
7: end if
8: if f(x′) < f(x∗) then
9: x∗ = x′;

10: end if
11: until stop criterion is met
12: return x∗

criterion.

4.2.1 Destroy methods

Destroy methods for the SVSPSP remove trips from the current solution. Every time a
destroy method is invoked the number of trips to remove is selected randomly in the interval
[5, 30]. Two simple destroy methods for the SVSPSP have been implemented. The first
method simply remove trips at random, which is a good method for diversifying the search.

The second method is based on the relatedness principle proposed by Shaw [27]. Here we
assign a relatedness measure R(i, j) to each pair of trips (i, j). A high relatedness measure
indicates that the two trips are highly related. The relatedness of two trips i and j are defined
as

R(i, j) = 30× 1
s(i)=s(j) + 30× 1

e(i)=e(j) + 20× 1
s(i)=e(j) + 20× 1

e(i)=s(j) − |t(i)− t(j)|

where s(i) and e(i) are the start and end locations of trip i respectively, t(i) is the start time
of trip i (start time in the current solution). The notation 1expr is used to represent the
indicator function which evaluates to one if expr evaluates to true and zero otherwise. The
measure defines two trips to be related if they start around the same time and if the share
start and/or end locations. The measure is used to remove trips as follows. An initial seed
trip is selected at random and added to a set of removed trips S. For each trip i still in the
solution we calculate the relatedness

v(i, S) = max
j∈S

{R(i, j)}

The trips still in the solution are sorted according a non-increasing v(i, S) in a sequence
T , a random number p in the interval [0, 1) is drawn and the trip at position ⌊|T |p5⌋ in T is
selected. This selection rule favours trips with high v(i, S) value. The selected trip is added
to the set of removed trips, and v(i, S) is recalculated after adding a trip to S. We continue
to add trips to S, until we have reached the target number of removed trips.

The two destroy methods are mixed in the LNS heuristic. Before removing a trip from
the solution it is decided which destroy method that should be used to select the trip. With
probability 0.15 the first method (random) is used and with probability 0.85 the second
method (relatedness) is used.

152



The Simultaneous Vehicle Scheduling and Passenger Service Problem

The trips that have been removed from the solution are still active in the sense that they
will be used in the trip incompatibility check defined by constraints (8) and (14). That is
when adding a trip to a solution in the repair step below, we check if it is compatible with
the trips in the solution and the trips removed in the previous destroy operation. A trip i
is made inactive when another trip, belonging to the same metatrip as i, is inserted into the
solution.

4.2.2 Repair methods

The repair method for the SVSPSP reinserts the trips that were removed from the solution
by the destroy method. The repair method uses a randomised greedy heuristic. For each
unassigned metatrip S the heuristic calculates an insertion cost f(S) given the current so-
lution. When inserting a metatrip S we have a choice of which trip i ∈ S that should be
inserted. With probability ρ we insert the same trip that was used in the solution before
destruction and with probability 1 − ρ we insert a random trip from S. The chosen trip
should be compatible with all active trips. Such a trip exists because we are sure that the
trip from the pre-destruction solution is compatible with all trips. The requirement ensures
that we never get to a situation where one or more metatrips cannot be inserted because of
the the compatibility constraints (8) and (14).

Given the choice of trip i, we define the cost f(S) as the cost of inserting trip i at the
best possible position in the current solution multiplied by a random factor that is meant to
diversify the insertion procedure. More precisely the cost is defined as:

f(S) =

{

minr∈R{c(i, r)} · (1 + rand(−δ, δ)) if minr∈R c(i, r) 6= ∞

c(i, ∅) otherwise

where c(i, r) is the cost of inserting trip i in route r at the best possible position, R is the set
of routes in the current solution, c(i, ∅) is the cost of serving the trip using a new vehicle from
the best possible depot, δ is a parameter and rand(−δ, δ) is a function that returns a random
number in the interval [−δ, δ]. The parameter δ controls the amount of randomisation applied
by the insertion procedure. The heuristic chooses to insert the metatrip S with lowest cost.
It does this by inserting the trip i that was used as a representative for S and inserts this at
its best possible position. This continues until all metatrips have been inserted. With to the
assumption that vk = |Ω| it is always possible to insert a metatrip — we will always be able
to serve it using a new vehicle.

4.2.3 Acceptance criterion

The acceptance criterion used in our implementation of the LNS heuristic is the one used in
simulated annealing metaheuristics: The function accept(x′, x) used in line 6 of Algorithm
1 accepts the new solution x′ if it is at least as good as the current solution x, that is,
f(x′) ≤ f(x). If f(x′) > f(x) then the solution is accepted with probability

e
f(x)−f(x

′
)

T .

The parameter T is called the temperature and controls the acceptance probability: a high
temperature makes it more likely that worse solutions are accepted. Normally the temperature
is reduced in every iteration using the formula T new = αT old where 0 < α < 1 is a parameter

153



Chapter 10

Algorithm 2 Heuristic for generating an initial solution

1: while there are non-served metatrips left do
2: Select a random station s with unserved metatrips;
3: Select earliest non-served metatrip S starting from s;
4: Start a new route r serving S. Use a vehicle from the depot nearest to s;
5: repeat
6: Let s′ be the station where route r is ending;
7: if r can be extended with a non-served metatrip starting in s′ then
8: Select earliest non-served metatrip S′ starting in s′ that can extend r. Add S′ to

r;
9: else

10: End route r by returning to the depot;
11: end if
12: until r has returned to the depot;
13: end while;

that is set relative to desired start and end temperatures and desired number of iterations.
Because we use elapsed time as stopping criterion we calculate the current temperature by
the formula

T (t) = Ts ·

(

Te

Ts

)
t

tmax

here t is the elapsed time since the start of the heuristic, Ts is the starting temperature and
Te is the end temperature. Because of the acceptance criterion the LNS heuristic can be seen
as a simulated annealing heuristic with a complex neighborhood definition.

4.2.4 Starting solution

A starting solution is necessary because the LNS heuristic improves an existing solution. It is
constructed using the greedy heuristic outlined in Algorithm 2. The generation heuristic does
not consider time shifting, instead it only considers insertion of the original trip from each
metatrip. Therefore, when writing earliest metatrip in Algorithm 2 we refer to the metatrip
whose original trip is the earliest. The heuristic constructs vehicle routes one at a time and
attempts to create routes where little time is wasted in between trips. Lines 2–12 deal with
the construction of a single route for a vehicle. Lines 2–4 select the first trip on the route and
the depot which should provide the vehicle for the route. Lines 5–12 add trips to the partial
route. The selection of which trip to add is based on the terminal where the partial route is
ending at the moment. The algorithm adds the first trip that leaves that terminal or closes
the route if the route cannot be extended with a trip starting in the current terminal.

5 Data

The data set that has been developed for the SVSPSP during the preparation of this paper
has been described in further detail in a technical report by Petersen et al. [24], and in this
section we will give a brief description of the background and the resulting data set. The
data set can be obtained from http://www.transport.dtu.dk/SVSPSP/.

154



The Simultaneous Vehicle Scheduling and Passenger Service Problem

The local train network in the Greater Copenhagen area roughly has the form of a fan
or the fingers of a hand, as shown in Figure 5. A network of express bus lines complements
the train lines across and in parallel, as can be seen in Figure 6. The data set that has been
developed for the SVSPSP is based on this structure, where the radial train lines are operated
on a fixed timetable, and the timetables for the bus lines (of which most are circular) are
adjusted according to this.

Figure 5: The local train network of Copenhagen

A data set for the SVSPSP consists of several parts: 1) a distance matrix, containing all
distances between depots and line end-points, 2) fixed time tables of all fixed-schedule train
connections, 3) number of transferring passengers for each transfer opportunity, 4) an initial
schedule used to determine the available set of trips, 5) costs of different activities, and other
parameters such as turnaround times, passenger transfer times, etc.

Among these elements the distances and fixed time tables are generally relatively easy to
obtain. Furthermore the initial schedule, in the form of the current bus schedule, is required
to provide information regarding frequencies and service level, which will be maintained by
the new solution. Given a suitable generation strategy, the set of potential trips can be
generated based on these time tables.The current schedule can also be used to generate an
initial feasible (VSP) solution for the heuristics.

The problem objectives of operating cost and passenger waiting time have been combined
by expressing both in monetary units. The various costs required for calculating the total
cost of a solution have been estimated for the data set, in particular the cost of passenger
waiting time has been estimated based on the recommended value of travel time by the Danish

155



Chapter 10

Figure 6: The S-bus network; trains are shown as thin lines, compare Figure 5

156



The Simultaneous Vehicle Scheduling and Passenger Service Problem

Ministry of Transport.
What then remains to be estimated is the number of passengers and their transfer patterns.

This transfer information will allow us to calculate the number of (dis)embarking passengers
using each available transfer opportunity, for any arrival or departure of a bus at a station.

For this project these data have been obtained by a two-stage process: First we estimated
the number of (dis)embarking passengers, as a function of the station, bus line and time of
day, and then we estimated the percentage of (dis)embarking passengers that sould perform
each possible transfer.

The number of (dis)embarking passengers at each station is calculated as ft · fl · fs · n
where ft is a time factor, fl is a line factor, fs is a station factor, and n is a random number
evenly distributed in the interval [32, 48]. The values of n is chosen to roughly reflect the
capacity of a vehicle, and the introduction of randomness increases the variation of data, to
make them more realistic.

The distribution of transferring passengers between available connections has been esti-
mated based on knowledge of the network, and considering the direction of trains (towards
the town centre or away from it). A random element has been added to provide a better
spread of the obtained values. Connections have been specified either for a particular train
line or as e.g. ”the first departure going into town”. For modelling purposes this could be
obtained by adding artificial train lines.

Metatrips are created from trips in the original timetable. Let Ti be the departure time of a
trip in the original timetable, belonging to a particular d-line L. We create an interval [T s

i , T
e
i ]

around Ti and distribute κ trips in this interval to form a metatrip. Assume that κ is an uneven
number. We express the start and end of the interval as follows T s

i = Ti−τ−i and T e
i = Ti+τ+i .

The symbols τ−i and τ+i are expressed in terms terms of the departure times Ti−1 and Ti+1 of

the previous and next, respectively, trip on L as follows: τ−i = ⌊Ti−Ti−1−1
2 ⌋, τ+i = ⌊Ti+1−Ti

2 ⌋.
This construction ensures that the intervals around the trips on each d-line are disjoint. The
set of departure times constructed are

{

Ti −
2j

κ
τ−i : j = 1 . . .

⌊κ

2

⌋

}

∪ {Ti} ∪

{

Ti +
2j

κ
τ+i : j = 1 . . .

⌊κ

2

⌋

}

with the time expressions rounded to the nearest integer to ensure that departures occur at
integer valued times. If the trips in the original timetable are close then we may end up with
fewer than κ departure times because some departures get mapped to the same integer due
to the round-off. In that case we only create as many trips as we have departure times for.
In our test we used κ = 5. Figure 7 shows an example of how the trips of a metatrip are
distributed.

9.309.15 9.45

30+2/5*7 30+4/5*730−2/5*730−4/5*7

Figure 7: Example of the distribution of trips in metatrips

The only incompatibilities used in this project are found by multiplying the current interval
between two trips by a factor to determine lower and upper bounds allowed for the same
interval. This factor has been set to 0.5 for the lower bound and 1.5 for the upper bound.

157



Chapter 10

Instances of three different sizes have been considered for this project. These instances
have been constructed by considering a meaningful subset of the actual operated bus routes,
i.e. a subset that in itself constitutes a realistic problem. This means that the routes selected
for the smaller subset have characteristics that may differ from the routes added in the larger
subsets. Thus the smaller problem consists of the most central lines, and the lines that are
added in the larger sets are more rural, and/or have fewer intersections with the train network.

The properties of the three different instances will be summarised below:

3 lines. 538 trips. All lines are circular lines with 5–6 intersections with the train network, but
only few interconnections between the buses. Many passengers. Subset of

5 lines. 792 trips. All lines are circular lines with 4–6 intersections with the train network, and
only few interconnections between the buses. Some lines are passenger intensive. Subset
of

8 lines. 1400 trips. Combination of circular and radial lines. The radial lines only have 2–3
connections to trains, but more connections to other buses. Most lines are passenger
intensive.

6 Computational experiments

To evaluate the quality and usefulness of the algorithm, we have performed a series of tests
to examine its behaviour with different instance sizes and settings, which will be presented
in this section. The tests have been performed on an Intel Pentium 4, 2.8 GHz, with 2GB
RAM, running Windows XP.

The current vehicle schedules used for the data set were not available, so these had to
be constructed initially. This has been done by using the implemented LNS as a regular
VSP solver, i.e. by not allowing any time shifts. The generated solutions have been used as
initial solutions when solving the SVSPSP, and also as reference solutions representing current
practive, when evaluating the quality of the obtained final solutions. As we know that the
actual current schedules are not created with dedicated software, this should produce reference
solutions that are not worse than the currently used solution. For each instance a running
time of 24 hours was allowed for the construction of the reference solution.

Table 1 shows the results from running the implemented LNS algorithm on instances
of different sizes with different running times. For each run we report the cost reduction
compared to the initial solution, the number of vehicles used, the reduction of empty mileage
costs (i.e. a negative value indicates that the empty cost has increased), the reduction of
total passenger waiting time, the percentage of trips that have been time shifted, the average
amount of time that each trip is shifted, and the percentage of trips that are regular. A
regular/memorable trip is a trip for which the gap to the preceding trip on the same line
is a multiple of 5. This makes the schedule easier to remember, and is thus an advantage
to the passengers. For the current schedule the percentage of regular trips is around 72%
for the largest instance, and 83–84% for the others. However, memorability has not been an
objective of the implemented algorithm.

The table shows that good results can be obtained, and that a considerable reduction
of passenger waiting time is possible. The reduced waiting times lead to an increase in the
amount of empty travel, however the total operating cost still shows improvement of around
3% for the smaller instances, and 1–2% for the 8 line instances.

158



The Simultaneous Vehicle Scheduling and Passenger Service Problem

3 lines

total avg.
cost veh. empty time shifts shift reg.

1h 2.9% 0.0% −14.2% 16.5% 74.2% 2.19 39.7%
6h 3.1% 0.0% −13.0% 17.4% 73.4% 2.22 43.2%
24h 3.3% 0.0% −8.9% 18.1% 73.8% 2.11 48.1%

5 lines

total avg.
cost veh. empty time shifts shift reg.

1h 2.8% 0.0% −10.1% 19.8% 77.0% 2.58 39.8%
6h 3.1% 0.0% −9.2% 21.8% 79.3% 2.68 43.4%
24h 3.2% 0.0% −7.8% 22.5% 78.2% 2.61 40.5%

8 lines

total avg.
cost veh. empty time shifts shift reg.

1h 1.1% 0.0% −7.8% 9.5% 64.2% 1.88 30.4%
6h 1.6% 0.0% −6.4% 13.3% 76.6% 2.38 31.4%
24h 2.0% 0.0% −7.1% 16.4% 76.4% 2.39 36.0%

Table 1: Solution improvements for different problem sizes

159



Chapter 10

Alternative small instances

As stated previously the different tested instances differ not only in size, but also in some
characteristics regarding the type of lines that are used. Thus the variation in cost and time
reduction obtained for the different instances may well depend just as much on the change
in these characteristics as on the actual size of the problems. The tests of Table 1 have been
repeated on two additional small instances that have been created with a mix of lines more
similar to those of the largest instance. These instances represent subproblems that would
most likely not be considered in real-life, but can hopefully demonstrate the behaviour on
smaller instances without being affected by the different characteristics of the problem. Each
instance consists of two circular lines (of which one is passenger intensive) and one radial line.
The results for these two instances can be found in Table 2, and indicate that it is difficult to
compare the properties of instance just by looking at simple properties of the included lines.
The results also indicate that the achievable cost improvement does indeed depend on the
choice of lines to include in the problem.

total avg.
cost veh. empty time shifts shift reg.

1h 1.3% 0.0% −7.2% 12.2% 73.2% 2.0 29.8%
6h 1.6% 0.0% −7.7% 14.7% 76.4% 2.1 31.4%

1h 2.9% 0.0% −8.6% 20.4% 79.4% 2.8 39.2%
6h 3.1% 0.0% −5.6% 21.3% 76.5% 2.8 45.0%

Table 2: Solution improvements for more “realistic” small instances

Random variation of the instances

The network structure and the existing time tables are fixed, so in order to produce a series
of different data sets/problem instances that still reflect the real world, the only adjustable
parameter has been the random element of the spread of the passengers over different available
connections. This has been done for the medium-sized instances (5 lines), using running times
of 1 and 6 hours, and the results can be found in Table 3.

total avg.
cost veh. empty time shifts shift reg.

1h 2.8% 0.0% −10.5% 19.7% 78.8% 2.7 37.3%
2.2% 0.0% −6.4% 15.4% 75.5% 2.5 39.3%
2.8% 0.0% −11.8% 20.1% 77.8% 2.7 34.5%
2.7% 0.0% −11.6% 19.7% 76.8% 2.7 39.6%

6h 3.2% 0.0% −6.2% 21.8% 76.4% 2.6 39.9%
2.6% 0.0% −4.8% 17.8% 77.1% 2.7 43.1%
3.1% 0.0% −9.0% 21.8% 78.3% 2.6 43.1%
3.2% 0.0% −5.4% 21.8% 76.4% 2.5 39.5%

Table 3: Solution results with modified transfer distributions

160



The Simultaneous Vehicle Scheduling and Passenger Service Problem

These results show that the actual distribution of the passengers to some extent influences
the size of the reductions that can be obtained, but also that the improvements are consistently
around 2.6% for the shorter running times, and around 3% for the 6 hour running times.

7 Conclusion

We have introduced a new problem that integrates the timetabling and vehicle scheduling
phases in public transportation planning. It does so by simultaneously considering resource
costs and passenger waiting time at transfers. The problem has been defined formally and a
metaheuristic based on the LNS principle has been designed and tested. The metaheuristic
has been tested on a data set based on a subset of the buses serving the Greater Copenhagen
area. The results obtained are encouraging: for the full data set we have observed that a
16% reduction of passenger transfer waiting times are possible. This reduction was possible
without using more buses to provide the service, but an increase in the amount of deadheading
was necessary. We consider the increase in deadheading negligible compared to the total cost
involved in operating a public transport system and when considering the increased passenger
service obtained.

A topic for future research is how to make the timetables produced by the heuristic easier
for the passengers to memorise. This could be achieved either by adding a term penalising
solutions with low memorability to the objective function or ensuring that blocks of subsequent
departures have fixed headway.

Acknowledgment

This project has been supported by a grant from The Danish Social Science Research Council.

References

[1] R. K. Ahuja, Ö. Ergun, J. B. Ergun, and A. P. Punnen. A survey of very large-scale
neighborhood search techniques. Discrete Applied Mathematics, 123:75–102, 2002.

[2] D.L. Applegate, R.E. Bixby, V. Chvátal, and W.J. Cook. The Traveling Salesman Prob-
lem: A Computational Study. Princeton University Press, 2006.

[3] R. Bent and P. van Hentenryck. A two-stage hybrid local search for the vehicle routing
problem with time windows. Transportation Science, 38(4):515–530, 2004.

[4] J. H. Bookbinder and A. Désilets. Transfer optimization in a transit network. Trans-
portation Science, 26(2):106–118, 1992.

[5] A. Ceder, B. Golany, and O. Tal. Creating bus timetables with maximal synchronization.
Transportation Research Part A, 35:913–928, 2001.

[6] P. Chakroborty, K. Deb, and R. K. Sharma. Optimal fleet size distribution and scheduling
of transit systems using genetic algorithms. Transportation Planning and Technology, 24
(3):209–225, 2001.

161



Chapter 10

[7] J. R. Daduna and S. Voß. Practical experiences in schedule synchronization. In J.R.
Daduna, I. Branco, and J.M.P. Paixão, editors, Computer-Aided Transit Scheduling:
Proceedings of the 6th International Workshop on Computer-aided Scheduling of Public
Transport, pages 39–55. Springer, 1995.

[8] G. Desaulniers and M. Hickman. Public transit. In G. Laporte and C. Barnhart, editors,
Transportation, Handbooks in Operations Research and Management Science, chapter 3,
pages 69–127. Elsevier, 2007.

[9] J. Desrosiers, Y. Dumas, M. M. Solomon, and F. Soumis. Time constrained routing
and scheduling. In M.O. Ball, T.L. Magnanti, C.L. Monma, and G.L. Nemhauser, edi-
tors, Network Routing, volume 8 of Handbooks in Operations Research and Management
Science, chapter 2, pages 35–140. Elsevier, 1995.

[10] C. Fleurent, R. Lessard, and L. Séguin. Transit timetable synchronization: Evaluation
and optimization. Technical report, GIRO, 75, rue de Port-Royal Est, Bureau 500,
Montreal (Quebec), 2007.

[11] V. Guihaire and J.-K. Hao. Transit network re-timetabling and vehicle scheduling. Com-
munications in Computer and Information Science, 14:135–144, 2008. Forthcoming.

[12] A. Hadjar, O. Marcotte, and F. Soumis. A branch-and-cut algorihtm for the multiple
depot scheduling problem. Operations Research, 54(1):130–149, 2006.

[13] L. N. Jansen and M. B. Pedersen. Minimering af skiftetider i køreplaner. Master’s thesis,
Centre for Traffic & Transport, Technical University of Denmark, March 2002. In Danish.

[14] M. Jünger, G. Reinelt, and G. Rinaldi. The traveling salesman problem. In M.O. Ball,
T.L. Magnanti, C.L. Monma, and G.L. Nemhauser, editors, Network routing, volume 8
of Handbooks in operations research and management science, pages 225–330. Elsevier,
1995.

[15] W.-D. Klemt and W. Stemme. Schedule synchronization for public transit networks. In
J.R. Daduna and A. Wren, editors, Computer-Aided Transit Scheduling, Proceedings of
the Fourth International Workshop on Computer-Aided Scheduling of Public Transport,
pages 327–335. Springer, 1988.

[16] L. Kroon, D. Huisman, and G. Maróti. Railway timetabling from an operations research
perspective. Technical Report EI2007-22, Econometric Institute, 2007.

[17] C. Liebchen and R. H. Möhring. A case study in periodic timetabling. Electronic Notes
in Theoretical Computer Science, 66(6):18–31, 2002.

[18] C. Liebchen and R. H. Möhring. The modeling power of the periodic event scheduling
problem: Railway timetables — and beyond. In F. Geraets, editor, Algorithmic Methods
for Railway Optimization, volume 4359 of Lecture Notes in Computer Science, pages
3–40. Springer, 2007.

[19] C. Liebchen and L. Peeters. Some practical aspects of periodic timetabling. In P. Chmoni,
R. Leisten, A. Martin, J. Minnemann, and H. Stadtler, editors, Operations Research 2001,
Heidelberg, 2002. Springer.

162



The Simultaneous Vehicle Scheduling and Passenger Service Problem

[20] A. Löbel. Solving large-scale multiple-depot vehicle scheduling problems. In N.H.M.
Wilson, editor, Computer-Aided Transit Scheduling, pages 193–220. Springer, Berlin,
1999.

[21] M. B. Pedersen. Minimizing passenger transfer times in public transport timetables.
Orbit, pages 13–20, 2003. Special ISMP issue of the newsletter of the Danish Operations
Research Society.

[22] L. W. P. Peeters. Cyclic Railway Timetable Optimization. PhD thesis, Erasmus Research
Institute of Management (ERIM), 2003.

[23] A.-S. Pepin, G. Desaulniers, A. Hertz, and D. Huisman. A comparison of five heuristics
for the multiple depot vehicle scheduling problem. Journal of Scheduling, 12(1):17–30,
2009.

[24] H. L. Petersen, A. Larsen, O. B. G. Madsen, and S. Ropke. A data set for the simulta-
neous vehicle scheduling and passenger service problem. Technical Report 2008-8, DTU
Transport, Technical University of Denmark, 2008.

[25] D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Computers
& Operations Research, 34(8):2403–2435, 2007.

[26] P. Serafini and W. Ukovich. A mathematical model for periodic scheduling problems.
SIAM Journal on Discrete Mathematics, 2(4):550–581, 1989.

[27] P. Shaw. Using constraint programming and local search methods to solve vehicle routing
problems. In CP-98 (Fourth International Conference on Principles and Practice of
Constraint Programming), volume 1520 of Lecture Notes in Computer Science, pages
417–431, 1998.

[28] A. P. R. van den Heuvel, J. M. van den Akker, and M. E. van Koten Niekerk. Integrating
timetabling and vehicle scheduling in public bus transportation. Technical Report UU-
CS-2008-003, Department of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands, February 2008.

[29] R.C.W. Wong, T.W.Y. Yuen, K.W. Fung, and J.M.Y. Leung. Optimizing timetable
synchronization for rail mass transit. Transportation Science, 42(1):57–69, 2008.

163



Chapter 10

164



Chapter 11

The Multi-Commodity k-splittable

Maximum Flow Problem

Mette Gamst
DTU Management Engineering, Technical University of Denmark

Bjørn Petersen
DTU Management Engineering, Technical University of Denmark

Abstract

The Multi-Commodity k-splittable Maximum Flow Problem consists of routing as
much flow as possible through a capacitated network such that each commodity uses at
most k paths and the capacities are satisfied. The problem has previously been solved
to optimality through branch-and-price. In this paper we propose two exact solution
methods both based on an alternative decomposition. The two methods differ in their
branching strategy. The first method, which branches on forbidden edge sequences, shows
some performance difficulty due to large search trees. The second method, which branches
on forbidden and forced edge sequences, demonstrates much better performance. The lat-
ter also outperforms a leading exact solution method from the literature. Furthermore, a
heuristic algorithm is presented. The heuristic is fast and yields good solution values.

Keywords: Multi-Commodity flow, k-splittable, Dantzig-Wolfe decomposition, branch-
and-price.

1 Introduction

The Multi-Commodity k-splittable Maximum Flow Problem (MCkMFP) consists of maxi-
mizing the amount of routed flow through a capacitated network such that each commodity
uses at most k paths and the capacities are satisfied. The MCkMFP appears in the trans-
portation sector when a number of commodities must be routed using only a limited number
of transportation units, and in telecommunication for limiting the number of used network
connections.

In revision.

165



Chapter 11

The Multi-Commodity k-splittable Flow Problem (MCkFP) was presented by Baier et al.
[1], who solved the Maximum Budget-Constrained Single- and Multi-Commodity k-splittab-
le Flow Problems using approximation algorithms. The authors proved that the Maximum
Single-Commodity k-splittable Flow Problem is NP-hard in the strong sense for directed
graphs. Finally, they noted that for k ≥ |E|, a k-splittable (s, t) flow problem degenerates to
an ordinary (s, t) flow problem.

Koch et al. [7] proved that the MCkMFP is NP-hard in the strong sense for directed as
well as undirected graphs, and showed that when P 6= NP , the best possible approximation
factor is 5

6 . Koch et al. [6] considered the MCkMFP as a two-stage problem, where the first
stage consists of the decision on the k paths (routing) and the second of the amount of flow
on the paths (packing). If k is a constant then it suffices to consider a polynomial number of
packing alternatives, which can be constructed in polynomial time. If k is part of the input,
they proposed an approximation algorithm having approximation factor (1− ǫ), ǫ > 0.

Truffot and Duhamel [8] used branch-and-price to solve the Single-Commodity k-splittable
Maximum Flow Problem (SCkMFP). A 3-index edge-path model was presented to which a
branch-and-price algorithm was applied. The pricing problem for the column generation is
a shortest path problem solvable in polynomial time. Truffot et al. [9] have applied their
3-index branch-and-price algorithm to the MCkMFP.

Gamst et al. [5] used branch-and-price to solve the Minimum Cost Multi-Commodity k-
splittable Flow Problem (MCMCkFP). They applied the algorithm of Truffot et al. [9] to
the MCMCkFP. Furthermore, they proposed a new branch-and-price algorithm based on a
2-index model. The latter showed very good performance and outperformed the existing
branch-and-price algorithm.

The MCkMFP can be represented by a directed graph G = (V,E), where V is the set of
vertices and E the set of edges. A positive capacity ue is associated with every edge e ∈ E.
Edge capacities are positive since any edge e ∈ E with non-positive capacity can be removed
from the graph. The set of commodities is denoted L and each commodity l ∈ L has a source
sl ∈ E and a destination tl ∈ E. The maximal number of routes each commodity may use is
denoted k.

In this paper three exact solution methods are applied to the MCkMFP and compared.
The 3-index branch-and-price algorithm (3BP) by Truffot et al. [9] is extended with a heuristic
proposed by Gamst et al. [5] to reach feasible solutions faster. The extended 3BP is compared
to two algorithms based on a 2-index branch-and-price approach applied to the MCkMFP by
Gamst et al. [5]. The two algorithms for the MCkMFP differ in their branching scheme. The
first algorithm (2BP) uses a branching strategy from the literature where certain subpaths
are forbidden, and the second algorithm (2BP’) uses a new branching strategy where the use
of certain paths is either forced or forbidden and where branch cuts are added to the master
problem.

The main contribution of this paper is to apply the 2BP algorithm to the MCkMFP and
especially to introduce the new branching scheme and the branch cuts of the 2BP’ algorithm.
Furthermore, a heuristic use of the 2BP and 2BP’ algorithms is presented, denoted 2HEUR.

The paper is organized as follows. First, we summarize and combine exact methods from
the literature on MCkMFP into an overall 3-index branch-and-price algorithm in Section 2.
The 2BP algorithm is presented in Section 3, which is followed by the 2BP’ algorithm in

166



The Multi-Commodity k-splittable Maximum Flow Problem

Section 4. All algorithms are tested and compared in Section 5. Section 6 concludes the
paper.

2 The 3-index branch-and-price algorithm (3BP)

Truffot et al. [9] solved the MCkMFP by applying Dantzig-Wolfe decomposition Dantzig
and Wolfe [4]. We denote their branch-and-price algorithm 3BP. The pricing problem finds
the h’th path of commodity l and the master problem merges paths into an overall feasible
solution. In the master problem, the variable xhlp ≥ 0 denotes the amount of flow on path p

for the h’th path of commodity l and the binary variable yhlp denotes whether or not path p
is used as the h’th path for commodity l. The 3BP problem is:

max
∑

l∈L

k
∑

h=1

∑

p∈P l

xhlp

s.t.
∑

l∈L

k
∑

h=1

∑

p∈P l

δpex
hl
p ≤ ue ∀e ∈ E (1)

xhlp − upy
hl
p ≤ 0 ∀l ∈ L, h ∈ {1, . . . , k} ,∀p ∈ P l (2)

∑

p∈P l

yhlp ≤ 1 ∀l ∈ L, h ∈ {1, . . . , k} (3)

xhlp ≥ 0 ∀l ∈ L, h ∈ {1, . . . , k} ,∀p ∈ P l

yhlp ∈ {0, 1} ∀l ∈ L, h ∈ {1, . . . , k} ,∀p ∈ P l

The objective function maximizes the total amount of routed flow. The set P l contains paths
p for commodity l. In capacity constraints (1), δpe indicates whether or not edge e is used
by path p. The constant up denotes the capacity constraint on path p, which is defined as
up = min{ue | e ∈ p}. Hence, constraints (2) force the decision variable yhlp to be set if there

is flow on the corresponding path xhlp . Constraints (3) ensure that at most one path is used
as the h’th path of a commodity l. The path index h ∈ {1, . . . , k} causes symmetry in the
solution space, hence a symmetry-breaking constraint is added to the formulation:

∑

p∈P l

xh+1l
p −

∑

p∈P l

xhlp ≤ 0 ∀h ∈ {1, . . . , k − 1},∀l ∈ L (4)

The constraint eliminates some symmetry, but does not prevent symmetric solutions where
paths carry the same amount of flow. The 3-index model is LP-relaxed by setting 0 ≤ yhlp ≤ 1

and then the model is simplified by substituting xhlp /up for yhlp , which is feasible according to
constraints (2) and (3) and to the fact that up > 0. Constraints (2) and the bounds on the
yhlp variables are removed from the formulation and constraints (3) are rewritten as:

∑

p∈P

xhlp
up

≤ 1 ∀l ∈ L, h ∈ {1, . . . , k} (5)

Gamst et al. [5] applied the 3BP algorithm to The Minimum Cost k-splittable Flow
Problem and argued that the path index h ∈ {1, . . . , k} still causes symmetry in the solution

167



Chapter 11

space as well as a large number of columns in the master problem. They improved the
3BP algorithm by including a heuristic, which merges certain fractional columns such that a
feasible solution was possibly reached. Specifically, one of the following two situations may
occur:

1. For a commodity, several identical paths are used but with different values of h

2. More than one path is used for a single value of h for a commodity

In the first case, the paths are merged into one single path. In the second case, each path is
assigned a unique value of h, if possible.

Adding this heuristic to the 3-index branch-and-price algorithm gives us the final 3BP
algorithm. We do not expect the heuristic to solve all symmetry problems caused by the path
index, hence a branch-and-price algorithm (2BP) without the path index for The Minimum
Cost k-splittable Flow Problem by Gamst et al. [5] is investigated. In the following sections
we show that the 2BP algorithm can be applied to the MCkMFP, and we present a branch-
and-price algorithm (2BP’) based on the same master problem as in the 2BP algorithm, but
with a different branching strategy.

3 The 2-index branch-and-price algorithm (2BP)

Applying Dantzig-Wolfe decomposition to the edge-based model without using the h-index
gives a pricing problem, which generates a path for each commodity, and a master problem,
which merges the paths into an overall feasible solution. Let xlp ≥ 0 denote the amount of

flow on path p for commodity l and let ylp ∈ {0, 1} denote whether or not path p is used by
commodity l. The master problem is:

max
∑

l∈L

∑

p∈P l

xlp

s.t.
∑

l∈L

∑

p∈P l

δpex
l
p ≤ ue ∀e ∈ E (6)

xlp − upy
l
p ≤ 0 ∀l ∈ L,∀p ∈ P l (7)

∑

p∈P l

ylp ≤ k ∀l ∈ L (8)

xlp ≥ 0 ∀l ∈ L,∀p ∈ P l

ylp ∈ {0, 1} ∀l ∈ L,∀p ∈ P l

The objective function maximizes the total amount of routed flow. Constraints (6) ensure
edge capacities are never violated and constraints (7) force the decision variables to take on
value 1, whenever the amount of flow on the corresponding path is positive. Constraints (8)
limit the number of used paths for commodity l to at most k.

By LP-relaxing the binary variables ylp to 0 ≤ ylp ≤ 1 the model is turned into an LP-

model. Setting ylp = xlp/up satisfies constraints (7) and (8) and simplifies the formulation
to only consisting of one type of variable. Constraints (7) are now redundant and can be

168



The Multi-Commodity k-splittable Maximum Flow Problem

removed from the formulation. The relaxed master problem becomes:

max
∑

l∈L

∑

p∈P l

xlp (9)

s.t.
∑

l∈L

∑

p∈P l

δpex
l
p ≤ ue ∀e ∈ E (10)

∑

p∈P l

xlp
up

≤ k ∀l ∈ L (11)

xlp ≥ 0 ∀l ∈ L,∀p ∈ P l (12)

3.1 Pricing problem

Let π ≥ 0 and λ ≥ 0 be the dual variables for constraints (10) and (11). The reduced cost
for a path p ∈ P l for a commodity l ∈ L is:

clP = 1−
∑

e∈E

δpeπe −
λl

up
(13)

The pricing problems generate columns with positive reduced cost for each commodity l.
Now, λl is a constant when l is fixed so finding a column with positive reduced cost (if any
exists) is equivalent to solving the shortest path problem:

∑

e∈E

δpeπe ≤ 1−
λl

up
, ∀l ∈ L, ∀p ∈ P l

The path capacity up is not known until the path has been generated. Hence, we set fixed
bounds on up. We know that the capacity can be set to at most |E| different values (one for
each different ue : e ∈ E), hence the pricing problems can be solved by considering at most
|E| shortest path problems. The pricing problems can now be defined as solving the shortest
path problem defined on costs π ≥ 0 for edges with ue ≥ up for each different ue : e ∈ E.
This can be done in polynomial time by using, e.g., Dijkstra’s algorithm.

3.2 Branching scheme – forbidding edge sequences

The branching scheme consists of forbidding edge sequences. Let the divergence vertex for a
commodity be defined as the first vertex with one incoming path and several outgoing paths.
If the number of paths emanating from the divergence vertex for some commodity l is greater
than k then branching can be applied. For each emanating path p we find the first edges of
p, which make p different from the remaining emanating paths. This is denoted the unique
edge sequence for p. Each unique edge sequence is forbidden in a branching child. If more
than k + 1 paths emanate from the divergence vertex, then we let some branching children
consist of more than one unique edge sequence such that the number of branching children
is always equal to k + 1. The reason for this is to reduce the width of the search tree. It is
legal to let a branching child forbid several unique edge sequences, because all combinations
of k paths from the emanating paths are available in at least one other branching child.

An illustration of the branching strategy is seen in Figure 1. A graph with four vertices
is given and a commodity with source s and destination t is to be routed using at most

169



Chapter 11

two paths. In the current solution three paths are used: p1 = {e1, e4, e5}, p2 = {e1, e3, e5},
and p3 = {e2, e3, e5}. Assume that the optimal solution consists of path p1 and p3. Now
k + 1 subpaths are found: {e1, e3}, {e1, e4} and {e2}. The optimal solution is found in the
branching child, which forbids the use of edge sequence {e1, e3}.

h h h hs t

e2

e1

e4

e3
e5

Figure 1: A graph used to illustrate the branching scheme. The graph consists of four vertices,
the source vertex is denoted s, and the destination vertex t. Edges are e1, e2, e3, e4, and e5.

The branching scheme changes the pricing problem. When solving the shortest path
problem we need to ensure that we do not use the forbidden edge sequences. The shortest
path problem with forbidden paths is a polynomial problem and can be solved by applying a
shortest path algorithm to an extended graph, see Villeneuve and Desaulniers [10].

4 A new 2-index branch-and-price algorithm (2BP’)

The 2BP’ algorithm only differs from the 2BP algorithm in the branching scheme. The master
problem (9)–(12) is the same and the reduced cost is given by (13).

4.1 Branching

This branching scheme resembles the branching strategy of Cook et al. [3] and is based on the
idea of forbidding or forcing the use of a certain path p′ for a fixed commodity l ∈ L. This
corresponds to setting ylp′ = 0 or ylp′ = 1, respectively, in the non-relaxed master problem. In
the remainder of this section a fixed commodity l ∈ L is assumed.

The effect of the branching scheme on the non-relaxed master problem, specifically con-
straint (8) is considered:

∑

p∈P

ylp ≤ k

In both the case that ylp′ = 0 or ylp′ = 1 the variable can be left out of the constraint. If

ylp′ = 1 then the constraint is rewritten as

∑

p∈P\{p′}

ylp ≤ k − 1

Now, the effect of the branching scheme on the relaxed master problem, specifically con-
straint (11) is considered:

∑

p∈P l

xlp
up

≤ k

170



The Multi-Commodity k-splittable Maximum Flow Problem

When path p′ is forbidden for commodity l then xlp′ = 0. When use of path p′ is forced then

we set xlp′ > 0 and constraint (11) is rewritten as

∑

p∈P l\{p′}

xlp
up

≤ k − 1 (14)

This is stronger than the original constraint when xlp′ < up′ , hence the bound of the branching
child is strengthened in this case.

The number of branching children varies according to the current fractional solution.
Assume that the current solution consists of k + α,α > 0 paths for commodity l. If a path
in the current solution carries as much flow as possible, i.e., xlp = up, then forcing the use of
path p has no effect because (14) is not violated.

Since the current fractional solution is a feasible solution to the relaxed master problem
constraints (11) are satisfied. Hence, at least α + 1 paths have xlp < up (otherwise the sum
∑

p∈P xlp/up would exceed k). An optimal solution may consist of paths not part of the
current fractional solution. Thus, we cannot generate α+1 branching children, where the use
of exactly one path is forced in each child. Rather, α+2 children should be generated: Each
of the first α + 1 branching children forces the use of exactly one path p with xlp < up, and
the last branching child forbids the use of all α+ 1 paths.

The first α + 1 children cause symmetry in the solution space; several solutions in one
branching child can also be found in the other children, especially when several of the α+ 1
paths are part of the solutions. The first α + 1 children are thus changed into forcing and

forbidding the use of certain paths. Consider the α+1 = 3 branching children b1, b2, and b3,
forcing the use of path p1, p2, and p3, respectively. Child b1 is unaltered and forces the use
of p1. Child b2 forces the use of p2 and forbids the use of p1. In this way, the solution using
p1 and p2 is only available in the subtree of b1. Similarly, child b3 forces the use of p3 and
forbids the use of p1 and p2.

In practice we would rather add a cut than rewrite constraints (11) when the use of a path
is forced. Recall inequality (14) when forcing the use of path p′. This inequality is denoted
the branch cut. Let ωbl ≥ 0 be the dual of branch cut b for commodity l. The resulting
reduced cost for path p ∈ P l for commodity l ∈ L is

clp = 1−
∑

e∈E

δepπe −
λl

up
−

∑

b∈B

δbpωbl

up
(15)

The extra dual cost ωbl is subtracted from the reduced costs for all new paths for commodity
l; this is similar to how λl is handled. Hence, the branch cut does not affect edge weights or
path properties in the graph of the pricing problem. The pricing problem must, however, be
able to avoid using forbidden paths as before.

5 Computational results

A computational evaluation is performed on a dual 2.66GHz IntelR© Xeon R© X5355 machine
with 16 GB of RAM. Note that CPU times in the following stem from using one core only.

We have tested three algorithms; the 3BP extended with a heuristic to reach feasible
solutions faster, the 2BP, and the 2BP’. We implemented all three algorithms using the

171



Chapter 11

Name |V | |E| |L|

Random5-35 5 35 1
Random10-45 10 45 1
Random15-60 15 60 1
Random20-140 20 140 1

tg10-2 12 40 1
tg20-2 22 80 1
tg40-1 42 154 1
tg40-5 42 154 1
tg80-1 82 322 1
tg100-2 102 400 1

Random10-40 10 40 3
Random11-42 11 42 11
Random20-80 20 80 20
Random22-56 22 56 22

Table 1: Sizes of test instances. First column denotes the instance name, then follows the
number of vertices, the number of edges, and finally the number of commodities.

framework of COIN [2] with ILOG CPLEX 10.2 as LP-solver. Computations concerning the
selection of branching candidates and branching children are handled by COIN.

The three solution methods are tested on benchmark instances from the literature Truffot
and Duhamel [8]: The Random instances are randomly generated and the tg instances are
generated by the Transit Grid generator1 using topologies from transportation networks. See
Table 1 for details.

Two different types of tests have been performed. First the three exact algorithms are
computationally evaluated on the proposed instances and results are compared. Then we
examine if the 3BP and either of the 2BP and 2BP’ algorithms give good heuristic solutions
by terminating each test run once the root node has been computed (when omitting branching
the 2BP and the 2BP’ algorithms are identical).

5.1 Optimal approach

The three algorithms are computationally evaluated on the proposed instances. Results for
the single-commodity Random instances are summarized in Table 2 and results for the single-
commodity tg instances are summarized in Table 3. The multi-commodity instances are all
of the Random type and results are summarized in Table 4.

In the tables the first column holds the name of the problem instance, the second column
holds the value of k and the third column holds the optimal value. Then follows the size and
depth of the search tree, the number of generated variables, the gap in percent between the
upper and lower bound, and the time in seconds spent on solving the instance for the 3BP,
the 2BP, and the 2BP’ algorithms, respectively. If a test run is marked with “-” then it has
run out of memory. If the gap is also marked with “-” then no lower bound was found. The
total number of times each algorithm has best performance, is found at the bottom of each
table. Also, for each instance the best performance is written in bold.

The 2BP algorithm performs much better than the 3BP algorithm for the Minimum Cost
MCkFP Gamst et al. [5]; however, this is generally not the case for the MCkMFP. Although

1http://www.informatik.uni-trier.de/~naeher/Professur/research/generators/maxflow/tg/index.

html

172



The Multi-Commodity k-splittable Maximum Flow Problem

3BP 2BP 2BP’

Problem k z* size depth vars gap time size depth vars gap time size depth vars gap time

Random5-35 1 66 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00
2 128 1 0 14 0.00% 0.00 1 0 7 0.00% 0.00 1 0 7 0.00% 0.00
3 182 1 0 27 0.00% 0.01 1 0 9 0.00% 0.00 1 0 9 0.00% 0.00
4 223 13 6 48 0.00% 0.01 1 0 12 0.00% 0.00 1 0 12 0.00% 0.00
5 262 19 9 60 0.00% 0.03 1 0 12 0.00% 0.00 1 0 12 0.00% 0.00
6 297 21 10 78 0.00% 0.03 1 0 14 0.00% 0.01 1 0 14 0.00% 0.00
7 326 67 12 98 0.00% 0.10 1 0 14 0.00% 0.00 1 0 14 0.00% 0.00
8 326 1 0 104 0.00% 0.00 1 0 11 0.00% 0.01 1 0 11 0.00% 0.00

Random10-45 1 73 1 0 6 0.00% 0.00 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00
2 142 5 2 15 0.00% 0.01 4 1 9 0.00% 0.01 8 2 9 0.00% 0.01
3 209 9 3 33 0.00% 0.02 21 3 15 0.00% 0.03 20 3 12 0.00% 0.02
4 260 45 17 68 0.00% 0.08 411 12 24 0.00% 0.56 34 4 20 0.00% 0.03
5 306 369 22 102 0.00% 0.80 23599 18 34 0.00% 44.96 40 4 20 0.00% 0.07
6 345 973 26 137 0.00% 2.90 ¿427099 ¿26 39 2.36% - 135 6 26 0.00% 0.22
7 381 4281 36 219 0.00% 16.55 ¿354551 ¿22 46 -% - 313 8 34 0.00% 0.64
8 413 22985 43 265 0.00% 102.51 ¿431299 ¿29 46 2.93% - 606 9 40 0.00% 1.31
9 429 ¿110199 ¿58 380 6.43% - ¿388228 ¿26 60 -% - 2507 11 46 0.00% 5.97

10 451 ¿104999 ¿57 448 5.74% - ¿456699 ¿41 74 6.57% - 2355 12 46 0.00% 5.91

Random15-60 1 86 1 0 5 0.00% 0.00 1 0 6 0.00% 0.00 1 0 6 0.00% 0.00
2 163 1 0 16 0.00% 0.00 1 0 8 0.00% 0.00 1 0 8 0.00% 0.00
3 221 9 3 34 0.00% 0.02 41 6 15 0.00% 0.06 12 2 12 0.00% 0.02
4 248 111 10 70 0.00% 0.32 ¿100454 ¿26 50 -% - 111 6 20 0.00% 0.22
5 268 557 18 101 0.00% 551.83 ¿176599 ¿29 52 2.86% - 322 7 29 0.00% 0.76
6 287 419 21 135 0.00% 1.59 ¿277801 ¿31 45 2.74% - 354 9 30 0.00% 0.79
7 295 19097 35 194 0.00% 72.91 ¿387565 ¿23 49 -% - 836 10 27 0.00% 1.74
8 301 ¿88799 ¿47 231 2.90% - ¿413343 ¿33 55 2.90% - 4995 11 30 0.00% 11.32
9 306 ¿153099 ¿51 229 1.29% - ¿547079 ¿28 48 -% - 2263 11 19 0.00% 4.42

Random20-140 1 81 1 0 4 0.00% 0.00 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00
2 158 1 0 14 0.00% 0.00 1 0 7 0.00% 0.00 1 0 7 0.00% 0.00
3 228 1 0 30 0.00% 0.02 1 0 11 0.00% 0.00 1 0 11 0.00% 0.00
4 253 9935 31 103 0.00% 75.25 ¿41444 ¿42 68 -% - 90 18 67 0.00% 1.04
5 274 ¿39999 ¿41 146 1.86% - ¿68299 ¿66 87 1.86% - 819 22 51 0.00% 12.65
6 294 ¿30199 ¿61 184 1.78% - ¿60299 ¿86 107 1.78% - ¿14106 ¿32 113 1.78% -
7 - ¿28999 ¿70 227 1.81% - ¿75894 ¿46 91 -% - ¿14299 ¿32 109 1.69% -
8 319 ¿30599 ¿80 267 1.91% - ¿94699 ¿101 120 1.91% - 4028 22 29 0.00% 52.95
9 325 ¿39599 ¿93 315 0.84% - ¿108990 ¿63 105 -% - 130 9 25 0.00% 0.32

10 327 2907 109 326 0.00% 19.15 ¿272685 ¿49 68 0.61% - 17 3 22 0.00% 0.02
11 327 1325 86 301 0.00% 8.75 49 3 22 0.00% 0.03 20 5 20 0.00% 0.03

Best 11 14 36

Table 2: Results from solving the single-commodity Random instances exactly.

173



Chapter 11

3BP 2BP 2BP’

Problemk z* size depth vars gap time size depth vars gap time size depth vars gap time

tg10-2 1 389 1 0 5 0.00% 0.00 1 0 4 0.00% 0.00 1 0 4 0.00% 0.00
2 557 215 13 26 0.00% 0.21 355 14 10 0.00% 0.21 41 5 11 0.00% 0.04
3 716 553 19 58 0.00% 0.70 39505 20 28 0.00% 32.49 53 5 15 0.00% 0.06
4 815 83 17 52 0.00% 0.10 6 1 8 0.00% 0.00 5 1 8 0.00% 0.00
5 815 1 0 40 0.00% 0.00 1 0 8 0.00% 0.00 1 0 8 0.00% 0.00

tg20-2 1 385 1 0 4 0.00% 0.00 1 0 4 0.00% 0.00 1 0 4 0.00% 0.00
2 643 1 0 10 0.00% 0.00 1 0 6 0.00% 0.00 1 0 6 0.00% 0.00
3 832 5 2 33 0.00% 0.04 1 0 10 0.00% 0.00 1 0 10 0.00% 0.00
4 853 1 0 40 0.00% 0.01 1 0 10 0.00% 0.00 1 0 10 0.00% 0.00

tg40-1 1 517 1 0 5 0.00% 0.00 1 0 5 0.00% 0.01 1 0 5 0.00% 0.00
2 750 5 2 16 0.00% 0.07 4 1 10 0.00% 0.02 10 3 12 0.00% 0.07
3 908 ¿9999 ¿40 96 2.61% - ¿83282 ¿61 94 -% - 231 11 21 0.00% 3.32
4 994 ¿7799 ¿57 143 1.00% - ¿82770 ¿45 64 -% - 893 18 33 0.00% 25.15
5 1004 15 7 65 0.00% 0.09 703 27 20 0.00% 1.41 11 2 18 0.00% 0.03
6 1004 1 0 96 0.00% 0.03 29 3 13 0.00% 0.02 43 6 13 0.00% 0.07

tg40-5 1 487 1 0 8 0.00% 0.01 1 0 6 0.00% 0.00 1 0 6 0.00% 0.00
2 828 ¿20599 ¿46 80 4.11% - ¿64248 ¿45 57 5.70% - 144 9 23 0.00% 1.49
3 1062 ¿17299 ¿59 139 0.28% - ¿77103 ¿44 65 -% - 276 8 22 0.00% 4.20
4 1078 181 47 68 0.00% 0.61 ¿148934 ¿22 50 -% - 1520 21 22 0.00% 26.53
5 1078 3 1 90 0.00% 0.03 61 4 16 0.00% 0.04 76 20 16 0.00% 1.72

tg80-1 1 549 1 0 7 0.00% 0.04 1 0 6 0.00% 0.02 1 0 6 0.00% 0.02
2 984 1591 29 80 0.00% 65.22 2308 22 25 0.00% 59.16 288 11 39 0.00% 8.72
3 1411 ¿2199 ¿36 162 3.85% - ¿51476 ¿49 107 -% - 1914 10 38 0.00% 110.38

tg100-2 1 530 1 0 7 0.00% 0.07 1 0 6 0.00% 0.03 1 0 6 0.00% 0.02
2 1007 3 1 16 0.00% 0.20 1 0 8 0.00% 0.04 1 0 8 0.00% 0.04
3 1407 ¿1099 ¿31 115 0.39% - ¿29087 ¿60 113 -% - 229 6 51 0.00% 29.14
4 1768 ¿1499 ¿72 234 1.51% - ¿56256 ¿40 167 -% - 2118 9 82 0.00% 284.41

Best 7 12 23

Table 3: Results from solving the tg instances exactly.

3BP 2BP 2BP’

Problem k z* size depth vars gap time size depth vars gap time size depth vars gap time

Random10-40 1 110 5 2 18 0.00% 0.02 5 2 15 0.00% 0.00 4 1 14 0.00% 0.01
2 194 1 0 26 0.00% 0.00 34 5 21 0.00% 0.04 4 1 18 0.00% 0.01
3 258 183 18 80 0.00% 0.39 213 12 24 0.00% 0.18 50 6 23 0.00% 0.06
4 293 695 36 129 0.00% 2.23 2956 16 41 0.00% 4.25 112 7 32 0.00% 0.20
5 309 1989 30 176 0.00% 7.91 ¿253716 ¿25 56 1.24% 1.06 561 12 39 0.00% 1.06
6 318 15905 36 253 0.00% 73.84 ¿610006 ¿24 59 1.35% - 1294 13 60 0.00% 2.63
7 321 ¿153199 ¿56 286 0.01% - ¿335959 ¿26 54 -% - 26182 18 47 0.00% 57.10
8 323 113 37 299 0.00% 0.52 2008 14 37 0.00% 1.23 2051 15 36 0.00% 2.43
9 323 333 49 318 0.00% 1.38 11 1 32 0.00% 0.01 18 5 32 0.00% 0.02

Random11-42 1 291 5 2 29 0.00% 0.02 7 3 28 0.00% 0.01 7 2 27 0.00% 0.02
2 343 1 0 50 0.00% 0.01 7 2 27 0.00% 0.01 6 1 27 0.00% 0.01
3 344 1 0 75 0.00% 0.00 1 0 26 0.00% 0.00 1 0 26 0.00% 0.00
4 344 1 0 100 0.00% 0.00 1 0 26 0.00% 0.00 1 0 26 0.00% 0.00

Random20-80 1 347 7 3 55 0.00% 0.06 3 1 51 0.00% 0.02 7 2 53 0.00% 0.04
2 553 3 1 100 0.00% 0.03 4 1 50 0.00% 0.02 4 1 51 0.00% 0.01
3 584 1063 24 188 0.00% 6.14 57 7 59 0.00% 0.16 1020 16 62 0.00% 3.45
4 601 5599 33 277 0.00% 40.05 1041 10 60 0.00% 2.02 ¿81550 ¿548 601 2.01% -
5 617 13291 44 340 0.00% 117.96 4363 14 66 0.00% 7.35 49695 34 67 0.00% 198.61
6 621 ¿48999 ¿40 380 0.01% - 3998 11 63 0.00% 6.42 32552 29 58 0.00% 100.08
7 626 413 37 412 0.00% 3.48 17 2 57 0.00% 0.02 116 14 57 0.00% 0.22
8 626 1 0 440 0.00% 0.03 1 0 57 0.00% 0.01 1 0 57 0.00% 0.01

Random22-56 1 365 9 3 52 0.00% 0.02 7 3 42 0.00% 0.02 7 2 44 0.00% 0.02
2 389 11 4 81 0.00% 0.02 10 3 42 0.00% 0.02 9 3 42 0.00% 0.01
3 407 1 0 108 0.00% 0.01 1 0 41 0.00% 0.01 1 0 41 0.00% 0.01
4 407 1 0 144 0.00% 0.01 1 0 41 0.00% 0.00 1 0 41 0.00% 0.00

Best 7 17 14

Table 4: Results from solving the multi-commodity instances exactly.

174



The Multi-Commodity k-splittable Maximum Flow Problem

the number of times the algorithm has best performance is larger for the 2BP, the 3BP
algorithm is capable of solving more instances. The change of objective function has a great
impact on the problem; the algorithms always try to push as much flow through the network
as possible, thus potentially exploiting the somewhat weakly formulated bound on the number
of used paths. The formulation has less impact on the minimum cost problem because it may
not always be beneficial to increase the number of used paths. The 2BP algorithm suffers
from large search trees because of the existence of potentially many solutions using more
than k paths per commodity and because the branching scheme allows much symmetry in the
branching children. The 2BP algorithm, however, performs somewhat better than the 3BP
for the multi-commodity Random instances with respect to running times.

The 2BP’ algorithm generally performs much better than 3BP algorithm. Exceptions
are tg40-5, k = 4 and Random20-80, k = 5, which the 2BP’ algorithm spends more time
on solving. Furthermore, 2BP’ is unable find an optimal solution for Random20-80, k = 4.
For the far majority of test instances, however, the 2BP’ algorithm is capable of finding an
optimal solution in little time, even when the 3BP algorithm shows great difficulty. The
2BP’ algorithm generally also generates smaller gaps for instances, which are not solved to
optimality. Reasons are that the search tree sizes are generally smaller for the 2BP’, the
number of variables in the master problem is smaller, and much symmetry is eliminated
because of the lacking h-indices.

The 2BP’ algorithm generally also performs much better than the 2BP algorithm. Ex-
ceptions are Random20-80, k = 4, 5, and 6 where the 2BP has overall best performance. The
reason for the generally superior performance of the 2BP’ algorithm is that the branching
scheme gives better bounds in the branching children: forcing the use of a path is much
stronger than forbidding a path. Also forbidding the use of all paths with positive flow is
stronger than forbidding a subset of the paths.

All three algorithms suffer from the same weakness in the formulation, specifically the
bounding of the number of used paths per commodity: constraints (3) for the 3BP and (11)
for the 2BP and the 2BP’ algorithms. Because the objective is to maximize the total amount of
flow, the algorithms are very likely to exceed k paths per commodity whenever the mentioned
constraints are not tight. The constraints will rarely be tight, especially when several paths
share the same edges and the corresponding xlp/up then can become much smaller than one.
The 2BP’ reduces this problem to some extend with the branching cut (14).

5.2 Heuristic approach

The three exact algorithms presented can be used as heuristics by only computing the root
node and then returning the best feasible solution. The approach of only computing the root
node does not guarantee a polynomial running time, since an exponential number of columns
potentially needs to be added in the root. In practice, however, we expect low running times.

The heuristic usage of the 3BP algorithm is denoted 3HEUR. Because no branching occurs
the heuristic usage of the 2BP and the 2BP’ algorithms is identical and is denoted 2HEUR.
Truffot and Duhamel [8] argue that the 3-index and 2-index formulations are equivalent, also
after LP-relaxation and elimination of the binary variables. Even though the formulations
give the same bounds, we may not reach the same feasible solutions in the root node. Hence
we investigate the performance of 3HEUR and 2HEUR empirically.

The 2HEUR may give infeasible solutions where more than k paths are used for each

175



Chapter 11

commodity. In this case we try to move the flow between the paths in order to find a
feasible solution using at most k paths for each commodity. For each commodity the approach
investigates all paths in the current fractional solution and greedily assigns flow to the path
having the highest capacity. The steps of the approach are:

1: for (each commodity) do
2: Sort all the paths in the current fractional solution according to decreasing capacity
3: for (each path in the sorted list, until flow is assigned to k paths) do
4: Assign as much flow as possible to the path
5: Subtract the assigned flow from the capacity of each edge on the path
6: end for
7: end for

Including this flow-moving approach in 2HEUR gives the final heuristic denoted 2HEUR’.
It is noted that including the flow-moving approach in the exact 2BP and 2BP’ approaches
does not improve performance; see the tables at http://www.diku.dk/~gamst/heuristic_
results.pdf for documentation.

All three heuristics 3HEUR, 2HEUR, and 2HEUR’ are evaluated on the previously pro-
posed instances. Test results are summarized in tables 5, 6, and 7.

The first column of each table holds the name of the problem instance, the second column
holds the value of k, and the third column holds the optimal value. Then, follows for each
of the algorithms 3HEUR, 2HEUR, and 2HEUR’; the number of iterations, the gap between
the heuristic and the optimal value, and the time in seconds spent on solving the instance.
An entry marked with “-” indicates that no feasible solution was found. The average number
of iterations, gap, and time usage are given at the bottom of each table.

The results show that the 3HEUR algorithm often gives poor heuristic solutions with gaps
of up to 94%. For three multi-commodity Random instances the 3BP algorithm is even unable
to find a feasible solution in the root node. The 2HEUR algorithm generally finds much
better solution values than the 3HEUR algorithm. The 2HEUR’, however, shows superior
performance by solving the majority of the instances to optimality and with the largest gap
of those not solved being 20%. All heuristics have very low running times and terminate in
less than a second.

176



The Multi-Commodity k-splittable Maximum Flow Problem

3HEUR 2HEUR 2HEUR’

Problem k z* iter. gap time iter. gap time iter. gap time

Random5-35 1 66 5 0.00 0.00 3 0.00 0.00 3 0.00 0.01
2 128 7 0.00 0.00 5 0.00 0.00 5 0.00 0.00
3 182 8 0.00 0.00 7 0.00 0.00 7 0.00 0.00
4 223 12 16.60 0.00 10 0.00 0.00 10 0.00 0.00
5 262 12 54.96 0.00 10 0.00 0.00 10 0.00 0.00
6 297 13 80.37 0.00 12 0.00 0.00 12 0.00 0.00
7 326 14 54.29 0.00 12 0.00 0.00 12 0.00 0.00
8 326 13 0.00 0.01 11 0.00 0.00 11 0.00 0.00

Random10-45 1 73 6 0.00 0.00 4 0.00 0.00 4 0.00 0.00
2 142 7 12.68 0.00 6 12.68 0.00 6 0.00 0.00
3 209 10 22.00 0.01 10 15.31 0.00 10 0.00 0.00
4 260 13 65.38 0.01 13 18.08 0.00 13 0.00 0.00
5 306 15 75.82 0.01 17 46.73 0.00 17 0.00 0.00
6 345 17 73.91 0.02 19 43.48 0.00 19 0.00 0.00
7 381 23 76.38 0.02 21 47.77 0.00 21 8.40 0.01
8 413 24 78.21 0.02 23 48.18 0.00 23 6.78 0.01
9 429 30 79.02 0.04 30 37.06 0.00 30 1.40 0.00

10 451 35 80.04 0.05 38 36.59 0.01 38 0.00 0.01

Random15-60 1 86 5 0.00 0.00 6 0.00 0.00 6 0.00 0.00
2 163 8 0.00 0.01 8 0.00 0.00 8 0.00 0.00
3 221 10 55.24 0.01 11 85.52 0.00 11 16.74 0.00
4 248 13 87.50 0.01 18 56.04 0.01 18 10.01 0.00
5 268 16 57.49 0.02 20 51.49 0.00 20 5.97 0.00
6 287 18 93.38 0.02 22 50.52 0.01 22 6.62 0.00
7 295 20 85.05 0.02 23 46.44 0.01 23 13.90 0.00
8 301 19 59.47 0.01 21 46.84 0.00 21 17.94 0.00
9 306 18 60.13 0.01 18 39.87 0.00 18 19.93 0.00

Random20-140 1 81 4 0.00 0.00 4 0.00 0.00 4 0.00 0.00
2 158 7 0.00 0.02 6 0.00 0.00 6 0.00 0.00
3 228 10 0.00 0.02 10 0.00 0.00 10 0.00 0.00
4 253 12 82.48 0.03 13 0.00 0.00 13 0.00 0.01
5 274 16 84.69 0.04 16 1.46 0.01 16 0.00 0.01
6 294 18 84.69 0.04 24 69.05 0.01 24 3.40 0.01
9 325 22 86.15 0.04 24 44.92 0.01 24 0.31 0.01

10 327 21 86.24 0.01 19 3.67 0.00 19 3.67 0.00
11 327 20 86.24 0.01 19 0.61 0.00 19 0.61 0.00

Sum 14 49.40 0.01 15 22.29 ¡0.01 15 3.21 ¡0.01

Table 5: Results from solving the single-commodity Random instances heuristically, where
each algorithm terminates after having evaluated the root node only.

3HEUR 2HEUR 2HEUR’

Problem k z* iter. gap time iter. gap time iter. gap time

tg10-2 1 389 5 0.00 0.00 4 0.00 0.00 4 0.00 0.00
2 557 6 0.00 0.00 6 0.00 0.00 6 0.00 0.00
3 716 9 0.00 0.00 10 15.22 0.00 10 0.00 0.00
4 815 8 0.00 0.00 8 15.83 0.01 8 0.00 0.00
5 815 8 0.00 0.00 8 0.00 0.00 8 0.00 0.00

tg20-2 1 385 4 0.00 0.00 4 0.00 0.00 4 0.00 0.00
2 643 5 0.00 0.00 6 0.00 0.00 6 0.00 0.00
3 832 11 18.03 0.00 10 0.01 0.00 10 0.00 0.01
4 853 10 0.00 0.01 10 0.00 0.00 10 0.00 0.00

tg40-1 1 517 5 0.00 0.01 5 0.00 0.01 5 0.00 0.01
2 750 7 72.13 0.01 9 61.33 0.01 9 0.00 0.01

tg40-5 1 487 8 0.00 0.00 6 0.00 0.00 6 0.00 0.01

tg80-1 1 549 7 0.00 0.04 6 0.00 0.02 6 0.00 0.02
2 984 11 52.74 0.14 14 14.63 0.06 14 0.00 0.06

tg100-2 1 530 7 0.00 0.07 6 0.00 0.02 6 0.00 0.02
2 1007 8 28.10 0.15 8 0.00 0.04 8 0.00 0.03

Sum 7 10.69 0.03 8 6.69 0.01 8 0.00 0.01

Table 6: Results from solving the tg instances heuristically, where each algorithm terminates
after having evaluated the root node only.

177



Chapter 11

3HEUR 2HEUR 2HEUR’

Problem k z* iter. gap time iter. gap time iter. gap time

Random10-40 1 110 6 31.82 0.00 5 20.00 0.01 5 17.27 0.00
2 194 6 0.00 0.00 9 60.82 0.00 9 0.00 0.00
3 258 11 80.62 0.01 11 69.38 0.00 11 6.59 0.00
4 293 14 66.21 0.02 15 36.52 0.01 15 7.17 0.01
5 309 16 67.96 0.02 19 34.95 0.00 19 8.41 0.01
6 318 21 68.89 0.03 25 33.02 0.00 25 5.97 0.01
7 321 17 84.42 0.02 21 24.61 0.00 21 1.56 0.01
8 323 21 84.52 0.01 20 22.29 0.00 20 4.34 0.00
9 323 20 84.52 0.01 21 9.29 0.00 21 0.00 0.00

Random11-42 1 291 6 6.19 0.01 6 6.19 0.00 6 0.00 0.01
2 343 4 0.00 0.00 5 19.53 0.00 5 4.08 0.00
3 344 4 0.00 0.00 5 0.00 0.01 5 0.00 0.00
4 344 4 0.00 0.00 5 0.00 0.00 5 0.00 0.00

Random20-80 1 347 6 25.36 0.01 6 16.14 0.01 6 0.00 0.01
2 553 7 35.80 0.02 7 15.91 0.01 7 0.00 0.01
3 584 9 - 0.02 9 7.53 0.00 9 0.00 0.01
4 601 12 - 0.03 12 7.65 0.01 12 0.00 0.01
5 617 14 - 0.04 16 4.05 0.02 16 2.27 0.00
6 621 12 58.29 0.03 14 0.64 0.01 14 0.00 0.01
7 626 12 58.63 0.03 14 0.96 0.01 14 0.80 0.01
8 626 12 0.00 0.03 14 0.00 0.01 14 0.00 0.01

Random22-56 1 365 6 0.00 0.01 5 0.00 0.00 5 0.00 0.00
2 389 6 1.54 0.00 5 1.54 0.00 5 0.00 0.00
3 407 6 0.00 0.01 5 0.00 0.00 5 0.00 0.01
4 407 6 0.00 0.00 5 0.00 0.01 5 0.00 0.01

Sum∗ 9 34.31 0.01 11 15.64 ¡0.01 11 2.34 ¡0.01

Table 7: Results from solving the multi-commodity Random instances heuristically, where
each algorithm terminates after having evaluated the root node only. ∗) sum is only over the
instances where all heuristics found a feasible solution.

6 Conclusion

Two exact solution methods for the MCkMFP problem have been introduced. They are both
based on Dantzig-Wolfe decomposition, where the master problem is a 2-index formulation
merging paths for commodities into an overall solution. The two methods differ in their
branching schemes: the first method forbids subpaths (2BP), while the second forces or
forbids the use of certain paths (2BP’). The latter also adds branching cuts to the master
problem.

The 2BP and 2BP’ algorithms have been implemented and compared with a leading exact
algorithm from the literature denoted 3BP. Results showed that the 2BP’ algorithm performs
significantly better than the 2BP and the 3BP algorithms both with respect to the number of
solved instances and with respect to the time usage. The main reason is that using the 2BP’
algorithm gives smaller search trees, reduces the number of variables in the master problem,
and eliminates some of the symmetry in the solution space.

Terminating the computations after having evaluated the root node transforms the 3BP
and the 2BP/2BP’ algorithms into heuristics denoted 3HEUR and 2HEUR, respectively.
Because no branching occurs in this heuristic use, the 2BP and the 2BP’ algorithms become
identical. Test results for this approach showed that the 3HEUR does not perform well,
with the majority of the solution values having gaps of up to 94%. The 2HEUR algorithm,
however, showed very promising performance when including a flow-moving approach, which
transforms some fractional solutions into feasible solutions. In most cases optimal solutions
were found and the average solution gaps never exceeded 4%. Both heuristics terminate in
less than a second for all tested instances.

All algorithms suffer from weak formulations for bounding the number of used paths per
commodity. We believe that future work should concentrate on tightening these constraints.

178



The Multi-Commodity k-splittable Maximum Flow Problem

This could be done by somehow reformulating the problem or by adding cuts. We believe
that the focus should be on cuts violated in the edge-based model or the original master
problem. Future work could also concentrate on finding better branching strategies for the
2-index formulation in order to further reduce the size of the search tree.

Acknowledgement
We would like to thank GlobalConnect A/S for their support of this work.

References

[1] G. Baier, E. Köhler, and M. Skutella. On the k-splittable flow problem. In 10th Annual

European Symposium on Algorithms, pages 101–113, 2002.

[2] COIN. http://www.coin-or.org/Doxygen/Bcp/hierarchy.html, 2007. URL http:

//www.coin-or.org/Doxygen/Bcp/hierarchy.html.

[3] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. Combinatorial

optimization. John Wiley & Sons, Inc, 1998.

[4] G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations

Research, 8:101–111, 1960.

[5] M. Gamst, P. N. Jensen, D. Pisinger, and C. E. M. Plum. Two- and three-index formu-
lations of the minimum cost multicommodity. European Journal of Operations Research

(EJOR), 202(1):82–89, 2010.

[6] R. Koch, M. Skutella, and I. Spenke. Approximation and complexity of k-splittable flows.
In Approximation and Online Algorithms, Third International Workshop, WAOA, pages
244–257, 2005.

[7] R. Koch, M. Skutella, and I. Spenke. Maximum k-splittable s, t -flows. Theory of

Computing Systems, 43(1):1432–4350, 2008.

[8] J. Truffot and C. Duhamel. A branch and price algorithm for the k-splittable maximum
flow problem. Discrete Optimization, 5(3):629–646, 2008.

[9] J. Truffot, C. Duhamel, and P. Mahey. Using branch-and-price to solve multicommod-
ity k-splittable flow problems. In Proceedings of International Network Optimization

Conference (INOC), 2005.

[10] D. Villeneuve and G. Desaulniers. The shortest path problem with forbidden paths.
European Journal of Operational Research, 165(1):97–107, 2005.

179



Chapter 11

180



Chapter 12

Partial Path Column Generation for

the Elementary Shortest Path Prob-

lem with Resource Constraints

Mads Jepsen
DTU Management Engineering, Technical University of Denmark

Bjørn Petersen
DTU Management Engineering, Technical University of Denmark

Abstract

This paper introduces a decomposition of the Elementary Shortest Path Problem with
Resource Constraints (ESPPRC), where the path is composed of smaller sub paths. We
show computationals result by comparing different approaches for the decomposition and
compare the best of these with existing algorithms. We show that the algorithm for many
instances outperforms a bidirectional labeling algorithm.

Keywords: Elementary Shortest Path With Resource Constraints, Column Generation,
Dantzig-Wolfe, Vehicle Routing Problem

1 Introduction

A formal definition of the ESPPRC is as follows: Given a directed G(V,A) with node set
V = {1, .., |V |}, arc set A = V × V , a set of resources R each with a global upper bound
W r : r ∈ R. Let cij be the cost for arc (i, j) ∈ A and wr

ij be the consumption of resource
r ∈ R when traversing arc (i, j) ∈ A. A path p is feasible if the arcs traversed on the path
A(p) satisfies

∑

(i,j)∈A(p) w
r
ij ≤ W r for all r ∈ R. The objective is to find a feasible path p

with minimum cost
∑

(i,j)∈A(P ) cij from a origin node o ∈ V to a destination node d ∈ V .
When negative cycles are allowed in G the ESPPRC can be shown to be NP-hard by

reduction from the longest path problem, Dror [5]. Beasley and Christofides [2] gave a math-
ematical formulation of the problem where each node is considered a resource. Feillet et al.

Extended abstract, INOC 2009.

181



Chapter 12

[6] introduced a labeling algorithm. Righini and Salani [9] proposed a bi-directional labeling
and a Branch-and-Bound algorithm. Baldacci et al. [1] computed lower bounds on paths costs
and used these to speed up a bi-directional labeling algorithm.

The main application of the ESPPRC is as a pricing problem when solving the Vehicle
Routing Problem through Branch-Cut-and-Price. Chabrier [3] and Jepsen et al. [8] have
shown this successfully for the Vehicle Routing Problem with Time Windows (VRPTW) and
Baldacci et al. [1] recently for the Capacitated Vehicle Routing Problem (CVRP).

Labeling algorithms has so far been used very successfully for ESPPRC problems especially
when time windows are present. However, for problem instances where the time windows are
very large the state space becomes huge and labeling algorithms are no longer desirable.

Motivated by the bi-directional labeling algorithm by Righini and Salani [9] and the
fact that Branch-and-Cut has been used quite successfully to solve the ESPPRC when time
window like restrictions are not included (see Jepsen et al. [7]), we propose a Danzig-Wolfe
decomposition approach based on a model where small sub paths called partial paths are
concatenated to form the solution. Since each of the sub paths are elementary the SR-
inequalities for VRPTW introduced by Jepsen et al. [8] can be used to improve the lower
bound. Furthermore, valid inequalities for the ESPPRC can be used.

2 Bounded partial paths

The idea behind the following mathematical model and decomposition is that any feasible
path p can be seen as a sequence of K = {1, . . . , |K|} partial paths pov1 , pv1v2 , . . . , pvk−1d,
where pij is a partial path from node i to node j. Each of the |K| partial paths can be seen as
a path through the original graph G. This leads to an alternative formulation of the ESPPRC
where G is replicated |K| times and arcs are added between the adjacent layers.

Let Lr be the upper bound of resource r ∈ R on each partial path and let

wr
max = max

(i,j)∈A
wr
ij

be the maximal resource consumption of r on a single arc. For a fixed number of partial paths
|K| the following relation ensures that all solutions can be obtained:

Lr ≥

⌈

W r

|K|

⌉

+ wr
max − 1

Let δ+(S) = {(i, j) ∈ A : i ∈ S} denote the set of outgoing arcs of node set S and let
δ−(S) = {(i, j) ∈ A : j ∈ S} denote the set of ingoing arcs of S. For notational purposes let
δ(i) be short for δ({i}) for i ∈ V . The binary variable xijk indicates if arc (i, j) ∈ A is used
in the k’th layer. The binary variable sik indicates if a partial path starts in node i ∈ V in
layer k ∈ K and the binary variable tik indicates if a partial path ends in node i ∈ V in layer

182



Partial Path Column Generation for the Elementary Shortest Path Problem with...

k. The mathematical model for ESPPRC can now be formulated as:

min
∑

k∈K

∑

(i,j)∈A

cijxijk (1)

s.t.
∑

(o,j)∈δ+(o)

xoj1 = 1 (2)

∑

(i,d)∈δ−(d)

xid|K| = 1 (3)

∑

k∈K

∑

(i,j)∈A

xijk ≤ 1 v ∈ V \ {o, d} (4)

∑

k∈K

∑

(i,j)∈A

wr
ijxijk ≤ W r r ∈ R (5)

∑

k∈K

∑

(i,j)∈δ+(S)

xijk ≥
∑

k∈K

∑

(i,j)∈δ+(s)

xijk S ⊆ V, s ∈ S (6)

∑

i∈V

sik = 1 k ∈ K (7)

ti,(k−1 mod |K|) = sik i ∈ V, k ∈ K (8)

sik +
∑

(j,i)∈δ−(i)

xjik = tik +
∑

(i,j)∈δ+(i)

xijk i ∈ V, k ∈ K (9)

∑

(i,j)∈δ+(S)

xijk ≥
∑

(i,j)∈δ+(s)

xijk k ∈ K,S ⊆ V, s ∈ S (10)

∑

(i,j)∈A

xijk ≤ Lbound k ∈ K (11)

xijk ∈ {0, 1} (i, j) ∈ A, k ∈ K (12)

tik, sik ∈ {0, 1} i ∈ V, k ∈ K (13)

The objective (1) is to minimize the total cost of the path. Constraints (2), (3), and (4)
ensure that no node is visited more than once and that the path starts at o and ends at
d. Constraints (5) are the resource bounds and constraints (6) are the generalized subtour
constraints (GSEC) which prevent cycles in a solution. Constraints (7) to (11) ensure that the
partial paths are elementary, connected, and do not violate the reduced resource. bound ∈ R
is the resource chosen as the bounding resource.

In the following we will make a Danzig-Wolfe reformulation of the mathematical model,
where constraints (9) to (11) form K identical sub problems. Each subproblem consists of
finding a shortest path p between two arbitrary nodes in the graph. Let αp

ij = 1 iff path p
uses arc (i, j), let βp

i indicate if p starts in node i, let γpi indicate iff p ends in node i, let λp

indicate if partial path p is used, and let cp be the cost of using path p. The master problem
then becomes:

183



Chapter 12

min
∑

p∈P

cpλp (14)

s.t.
∑

p∈P

∑

(o,j)∈δ+(o)

αp
ojλp = 1 (15)

∑

p∈P

∑

(i,d)∈δ−(d)

αp
idλp = 1 (16)

∑

p∈P

∑

(i,j)∈A

αp
ijλp ≤ 1 v ∈ V \ {o, d} (17)

∑

p∈P

∑

(i,j)∈δ+(S)

αp
ijλp ≥

∑

p∈P

∑

(i,j)∈δ+(s)

αp
ijλp S ⊆ V, s ∈ S (18)

∑

p∈P

∑

(i,j)∈A

wr
ijα

p
ijλp ≤ W r r ∈ R (19)

∑

p∈P

λp = |K| (20)

∑

p∈P

γpi λp =
∑

p∈P

βp
i λp i ∈ V (21)

sik ∈ {0, 1} i ∈ V, k ∈ K (22)

λp ∈ {0, 1} p ∈ P (23)

With the exception of constraint (20) the constraints follow directly from a standard Dantzig-
Wolfe reformulation. Constraint (20) substitutes the |K| constraints (7) and states that we
must choose |K| columns corresponding to one from each layer. The master model may be
too large to solve, therefore delayed column generation is used.

Let π be the duals of constraints (15), (16), and (17), let ν be the duals of constrainta
(18), let σ be the duals of constraints (19), and let ρ be the duals of (21). Using standard
Linear Programming theory the arc cost is set to:

ĉij = cij − πi −
∑

r∈R

wr
ijσr −

∑

s∈S,S⊆V :(i,j)∈δ+(S)

νs +
∑

s∈S,S⊆V :(i,j)∈δ+(s)

νs.

Let xij be a binary variable that indicates if arc (i, j) ∈ A is used, the binary variable si
indicates if the path starts in node i ∈ V and the binary variable ti indicates if the path ends
in node i ∈ V . The mathematical model for the pricing problem then becomes:

184



Partial Path Column Generation for the Elementary Shortest Path Problem with...

min
∑

(i,j)∈A

ĉijxij +
∑

i∈V

ρisi −
∑

i∈V

ρiti (24)

∑

i∈V

si = 1 (25)

∑

i∈V

ti = 1 (26)

si +
∑

(j,i)∈δ−(i)

xji = ti +
∑

(i,j)∈δ+(i)

xij i ∈ V (27)

∑

(i,j)∈δ+(S)

xij ≥
∑

(i,j)∈δ+(s)

xij S ⊆ V, s ∈ S (28)

∑

(i,j)∈A

xij ≤ Lbound (29)

xij ∈ {0, 1} (i, j) ∈ A (30)

si, ti ∈ {0, 1} i ∈ V (31)

A column has negative reduced cost if it is less than the dual variable of constraint (20).
To solve the pricing problem we reformulate it as an ESPPRC. This is done by substituting

the variables si and ti for i ∈ V with arcs from a super source node s̄ and arcs to a super
target t̄ node. The new arcs are defined by arc set Ā = {(s̄, v) : v ∈ V } ∪ {(v, t̄) : v ∈ V }.
The pricing problem then becomes solving an ESPPRC with a single resource in the graph
Ḡ(V ∪ s̄ ∪ t̄, A ∪ Ā) where the cost of the new arcs are given by

c̄ij =







ĉij ∀(i, j) ∈ A
ρj (s̄, j) ∈ Ā
−ρi (i, t̄) ∈ Ā

The lower bound can be improved using valid inequalities for the ESPPRC polytope and valid
inequalities for the master model such as the SR-inequalities by Jepsen et al. [8].

3 Implementation

The bidirectional labeling algorithm of Righini and Salani [9] have been implemented for
solving the pricing problem. The Branch-Cut-And-Price algorithm is implemented in the
BCP framwork from COIN [4]. CLP is used as LP solver and the GSECs are separate by
solving a minimum cut problem, see Wolsey [10] for details. The SR-inequalities are separated
using the algorithm proposed by Jepsen et al. [8], either the first or the last node on a partial
path is not considered part of the SR-cut. Branching is done on a single arc or all arcs out of
a node and is added as a cut in the master model. The constraints in the original space are:

∑

k∈K

xijk = 0 ∨
∑

k∈K

xijk = 1 (i, j) ∈ A (32)

∑

k∈K

∑

(i,j)∈δ+(i)

xijk = 0 ∨
∑

k∈K

∑

(i,j)∈δ+(i)

xijk = 1 i ∈ V (33)

185



Chapter 12

The decomposed version of the branches are:
∑

p∈P

αp
ijλp = 0 ∨

∑

p∈P

αp
ijλp = 1 (i, j) ∈ A (34)

∑

p∈P

∑

(i,j)∈δ+(i)

αp
ijλp = 0 ∨

∑

p∈P

∑

(i,j)∈δ+(i)

αp
ijλp = 1 i ∈ V (35)

4 Computational Results

Based on a column generation algorithm for CVRP, some instances for the ESPPRC were gen-
erated based on CVRP instances from www.branchandcut.org. Tests have been performed
on instances with 20-30 nodes to find a good value of L (the upper bound of the bounding
resource). Based on these results setting for larger instances have been chosen.

For the instances generated the partial path have been bounded using both length and
capacity. When using length it was chosen to restrict the upper limit to 6. For the capacity
the path was split in pieces of at most a tenth of the total capacity. SR-inequalities were
included.

We have chosen to show the result for a single instance which was representative for
the instances we benchmarked on. Furthermore, the instance has the characteristics we are
targeting to solve. The instance has 30 nodes, the maximal feasible path length is 23, and
the capacity limit is 4500.

In Table 1 different settings for capacity and length have been compared. L is the maximal
value of the bounding resource on the partial path. RB is the root bound and T is the time
without SR-inequalities. RBSR and TSR is the root bound and time when SR-inequalities are
included. All times are in seconds.

Instance Bounded on L RB T RBSR TSR

E-n30-k3-20 Capacity 2125 -192350 311.895 -192350 386.072
E-n30-k3-20 Capacity 1700 -192350 228.958 -192350 203.585
E-n30-k3-20 Capacity 1300 -192320 49.579 -192320 143.685
E-n30-k3-20 Capacity 1193 -192350 31.810 -192350 128.412
E-n30-k3-20 Capacity 1113 -192350 23.653 -192350 120.776
E-n30-k3-20 Capacity 1000 -192350 39.098 -192350 171.571
E-n30-k3-20 Capacity 900 -192350 20.173 -192350 118.271
E-n30-k3-20 Length 3 -192350 20.361 -192350 19.893
E-n30-k3-20 Length 4 -192350 44.407 -192350 50.455
E-n30-k3-20 Length 5 -192350 134.080 -192350 99.106
E-n30-k3-20 Length 6 -192350 255.236 -192350 269.989

Table 1: Comparing different schemes

From the result in Table 1 it is clear that the longer the path the poorer the algorithm
performs. The main reason for this is that no matter how long the path becomes there is
simply no gain in the quality of the relaxation. The value of the root bound is almost the same
as the one for Branch-and-Cut, which is −192352.787. When including the SR-inequalities
only a few of the settings result in a improvement of the running time.

In Table 2 we have shown the solution times for the partial path algorithm using length
and capacity. Tlen is the running time when length was used and Tcap is the running time

186



Partial Path Column Generation for the Elementary Shortest Path Problem with...

when capacity was used. The values are compared to the time of the bi-directional labeling
algorithm (Tlabel) and the Branch-and-Cut algorithm (TBAC) by Jepsen et al. [7]. Again, all
times are in seconds.

Instance TBAC Tlabel Tlen Tcap

E-n30-k3-20 0.44 > 1800 19.893 20.173
B-n31-k5-17 2.07 0.22 124.492 24.178
A-n32-k5-120 0.51 0.28 32.714 7.892
A-n33-k5-31 0.45 0.01 121.440 14.477
B-n34-k5-17 2.21 72.79 290.022 32.554
B-n45-k6-54 4.63 90.3 286.978 109.011
P-n45-k5-150 0.58 0.71 19.753 15.457
P-n50-k8-19 0.94 > 1800 188.008 25.350
E-n51-k5-29 2.46 > 1800 277.645 287.746

Table 2: Characteristics of the benchmark instances

The main conclusion when comparing the results in Table 2 is that the Branch-and-Cut
algorithm outperforms the other algorithms. The second observation is that the partial path
algorithm is able to solve all instances within 30 minutes, labeling is only able to solve 6
out of 9. It is also worth noting that it is considerable better to bound using capacity in
almost all cases compared to bounding using length. Finally, we conclude that the partial
path algorithms can not compete with the Branch-and-Cut algorithm.

5 Conclusion and future research

In this paper we have introduced an alternative formulation of ESPPRC and shown how it
can be solved using the Danzig-Wolfe decomposition principle. We have shown that an early
prototype is better than a standard labeling algorithm, but we have not been able to show that
the obtained bound is better than a Branch-and-Cut algorithm. Therefore, an open problems
which has arisen during this research is if there exists an instance where the bound obtained
by the partial path algorithm results in a better bound than that of an Branch-and-Cut
algorithm.

References

[1] R. Baldacci, N. Christofides, and A. Mingozzi. An exact algorithm for the vehicle routing
problem based on the set partitioning formulation with additional cuts. Mathematical

Programming, 115(2):351–385, 2008. doi: 10.1007/s10107-007-0178-5.

[2] J.E. Beasley and N. Christofides. An algorithm for the resource constrained shortest
path problem. Networks, 19:379–394, 1989. doi: 10.1002/net.3230190402.

[3] A. Chabrier. Vehicle routing problem with elementary shortest path based column gen-
eration. Computers & Operations Research, 33(10):2972–2990, 2006. doi: 10.1016/j.cor.
2005.02.029.

187



Chapter 12

[4] COIN. COIN — COmputational INfrastructure for Operations Research, 2005.
http://www.coin-or.org.

[5] M. Dror. Note on the complexity of the shortest path models for column generation in
VRPTW. Operations Research, 42(5):977–979, 1994. doi: 10.1287/opre.42.5.977.

[6] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm for the ele-
mentary shortest path problem with resource constraints: Application to some vehicle
routing problems. Networks, 44(3):216–229, 2004. doi: 10.1002/net.v44:3.

[7] M. Jepsen, B. Petersen, and S. Spoorendonk. A branch-and-cut algorithm for the el-
ementary shortest path problem with a capacity constraint. Technical Report 08/01,
DIKU Department of Computer Science, University of Copenhagen, Denmark, 2008.

[8] M. Jepsen, B. Petersen, S. Spoorendonk, and D. Pisinger. Subset-row inequalities applied
to the vehicle-routing problem with time windows. Operations Research, 56(2):497–511,
2008. doi: 10.1287/opre.1070.0449.

[9] G. Righini and M. Salani. Symmetry helps: bounded bi-directional dynamic program-
ming for the elementary shortest path problem with resource constraints. Discrete Op-

timization, 3(3):255–273, 2006. doi: 10.1016/j.disopt.2006.05.007.

[10] L. A. Wolsey. Integer Programming. John Wiley & Sons, Inc., 1998.

188



Chapter 13

Partial Path Column Generation for

the Vehicle Routing Problem with

Time Windows

Mads Jepsen
DTU Management Engineering, Technical University of Denmark

Bjørn Petersen
DTU Management Engineering, Technical University of Denmark

Abstract

This paper presents a column generation algorithm for the Vehicle Routing Problem
with Time Windows (VRPTW). Traditionally, column generation models of the VRPTW
have consisted of a Set Partitioning master problem with each column representing a
route, i.e., a resource feasible path starting and ending at the depot. Elementary routes
(no customer visited more than once) have shown superior results on difficult instances
(less restrictive capacity and time windows). However, the pricing problems do not scale
well when the number of feasible routes increases, i.e., when a route may contain a large
number of customers. We suggest to relax that ‘each column is a route’ into ‘each column
is a part of the giant tour’; a so-called partial path, i.e., not necessarily starting and end-
ing in the depot. This way, the length of the partial path can be bounded and a better
control of the size of the solution space for the pricing problem can be obtained.

Keywords: Vehicle Routing Problem, Column Genexration, Elementary Shortest Path
Problem with Resource Constraints

1 The Vehicle Routing Problem with Time Windows

The VRPTW can formally be stated as: Given a graph G(V,A) with nodes V and arcs A, a
set R of resources (R = {load, time}) where each resource r ∈ R has a lower bound ari and an
upper bound bri for all i ∈ V and a positive consumption τ rij when using arc (i, j) ∈ A, find a

Extended abstract, INOC 2009.

189



Chapter 13

set of routes starting and ending at the depot node 0 ∈ V satisfying all resource limits, such
that the cost is minimized and all customers C = V \ {0} are visited.

2-index formulation of the VRPTW In the following let cij be the cost of arc (i, j) ∈ A,
xij be the binary variable indicating the use of arc (i, j) ∈ A, and T r

ij be the consumption of
resource r ∈ R at the beginning of arc (i, j) ∈ A. Let δ+(i) and δ−(i) be the set of outgoing
respectively ingoing arcs of node i ∈ V . The mathematical model of VRPTW adapted from
Bard et al. [2] and Ascheuer et al. [1] is

min
∑

(i,j)∈A

cijxij (1)

s.t.
∑

(i,j)∈δ+(i)

xij = 1 ∀i ∈ C (2)

∑

(j,i)∈δ−(i)

xji =
∑

(i,j)∈δ+(i)

xij ∀i ∈ V (3)

∑

(j,i)∈δ−(i)

(T r
ji + τ rjixji) ≤

∑

(i,j)∈δ+(i)

T r
ij ∀r ∈ R, ∀i ∈ C (4)

aixij ≤ T r
ij ≤ bixij ∀r ∈ R, ∀(i, j) ∈ A (5)

T r
ij ≥ 0 ∀r ∈ R, ∀(i, j) ∈ A (6)

xij ∈ {0, 1} ∀(i, j) ∈ A (7)

The objective (1) sums up the cost of the used arcs. Constraints (2) ensure that each customer
is visited exactly once, and (3) are the flow conservation constraints. Constraints (4) and (5)
ensure the resource windows are satisfied. assumed that the bounds on the depot are always
satisfied, since these can be reflected on the neighbouring nodes bounds. Note, no sub-tours
can be present since only one time stamp per arc exists and the travel times are positive.

2 Bounded partial paths

A solution to the VRPTW: v0 → c1
1
→ . . . → c1k1 → v0, v0 → c2

1
→ . . . → c2k2 → v0, . . . , v0 →

cn
1
→ . . . → cnkn → v0 can be represented by the giant-tour representation of Christofides and

Eilon [3]:

v0 → c11 → . . . → c1k1 → v0 → c21 → . . . → c2k2 → v0 . . . → v0 → cn1 → . . . → cnkn → v0

which is one long path visiting all customers. The consumption of resources is reset each time
the depot node is encountered.

The idea is to partition the problem so that the solution space of each part is smaller
than the original problem. This is done by splitting the giant-tour into smaller segments by
imposing an upper limit on some resource, e.g., bounding the path length in the number of
nodes. In the following the number of visited customers is considered the bounding resource,
i.e., the number of visits to the non-depot node set C. Each segment represents a partial
path of the giant-tour. With a fixed number of customers on each partial path, say L, a
fixed number of partial paths, say K, is needed to ensure that all customers are visited, i.e.,

190



Partial Path Column Generation for the Vehicle Routing Problem with Time Windows

L ·K ≥ |C|. The partial paths can start and end in any node in V and can visit the depot
several times. An example of a partial path is

c1 → c2 → v0 → c3 → v0 → c4

Consider the graph G′(V ′, A′) consisting of a set of layers K = {1, . . . , |K|}, each one
representing G for a partial path. Let Gk be the sub graph of G′ representing layer k with
node set V k = {(i, k) : i ∈ V } for all k ∈ K and arc set Ak = {(i, j, k) : (i, j) ∈ A} for
all k ∈ K. Let A∗ = {(i, i, k) : (i, k) ∈ V k ∧ (i, k + 1) ∈ V k+1 ∧ k ∈ K} be the set of
interconnecting arcs, i.e., the arcs connecting a layer k with the layer above k namely layer
k + 1 for all k ∈ K and all nodes i ∈ V (layer |K| + 1 is defined to be layer 1 ∈ K and
layer 0 is defined to be layer |K| ∈ K). Let V ′ =

⋃

k∈K V k and let A′ =
⋃

k∈K Ak ∪ A∗. An
illustration of G′ can be seen on Figure 1. Note, that arc (i, i, k) does not exist in Ak and
that arc (i, j, k) with i 6= j does exist in A∗, so all arcs (i, j, k) ∈ A′ can be uniquely indexed.
With the length of a path defined as the number of customers on it, the problem is now to
find partial paths of length at most L in |K| layers with L · |K| ≥ |C| > L · (|K| − 1), so that
each partial path p ending in node i ∈ V is met by another partial path p′ starting in i. All
partial paths are combined while not visiting any customers more than once and satisfying
all resource windows. A customer c ∈ C is considered to be on a partial path p if c is visited
on p and is not the end node of p.

Layer: 1

v0

c1 c2

c3

2

v0

c1 c2

c3

. . .

. . .

|K|

v0

c1 c2

c3

Figure 1: Illustration of G′ with |C| = 3, |K| = 3, and |L| = 1. Edges (full-drawn) represent
two arcs; one in each direction. Dashed lines are the interconnecting arcs A∗.

Let L be the upper bound on the length of each partial path, and let |C| be the length of
the combined path (the giant-tour). Now, exactly |K| = ⌈|C|/L⌉ partial paths are needed to
make the combined path, since L ⌈|C|/L⌉ ≥ |C| > L (⌈|C|/L⌉ − 1). Note that given a |K|, L
can be reduced to L = ⌈|C|/|K|⌉.

191



Chapter 13

3-index formulation of the VRPTW Let xkij be the variable indicating the use of arc
(i, j, k) ∈ A′. Problem (1)–(7) is rewritten:

min
∑

k∈K

∑

(i,j)∈A

cijx
k
ij (8)

s.t.

∑

k∈K

∑

(i,j)∈δ+(i)

xkij = 1 ∀i ∈ C (9)

∑

(i,j)∈δ+(i)

xkij ≤ 1 ∀k ∈ K, ∀i ∈ C (10)

∑

k∈K



xk−1

ii +
∑

(j,i)∈δ−(i)

xkji



 =
∑

k∈K



xkii +
∑

(i,j)∈δ+(i)

xkij



 ∀i ∈ V (11)

xk−1

ii +
∑

(j,i)∈δ−(i)

xkji = xkii +
∑

(i,j)∈δ+(i)

xkij ∀k ∈ K, ∀i ∈ V (12)

∑

k∈K

∑

i∈V

xkii = K (13)

∑

i∈C

∑

(i,j)∈A

xkij ≤ L ∀k ∈ K (14)

∑

k∈K

∑

(j,i)∈δ−(i)

(

T rk
ji + τ rjix

k
ji

)

≤
∑

k∈K

∑

(i,j)∈δ+(i)

T rk
ij ∀r ∈ R, ∀i ∈ C (15)

∑

(j,i)∈δ−(i)

(

T rk
ji + τ rjix

k
ji

)

≤
∑

(i,j)∈δ+(i)

T rk
ij ∀r ∈ R, ∀k ∈ K, ∀i ∈ C (16)

ai
∑

k∈K

xkij ≤
∑

k∈K

T rk
ij ≤ bi

∑

k∈K

xkij ∀r ∈ R, ∀(i, j) ∈ A (17)

aix
k
ij ≤ T rk

ij ≤ bix
k
ij ∀r ∈ R, ∀k ∈ K, ∀(i, j) ∈ A (18)

xkij ∈ {0, 1} ∀k ∈ K, ∀(i, j) ∈ A (19)

T rk
ij ≥ 0 ∀r ∈ R, ∀k ∈ K, ∀(i, j) ∈ A (20)

The objective (8) sums up the cost of the used edges. Constraints (9) ensure that all cus-
tomers are visited exactly once, while the redundant constraints (10) ensure that no customer
is visited more than once. Constraints (11) maintain flow conservation between the original
nodes V , and can be rewritten as

∑

k∈K

∑

(j,i)∈δ−(i)

xkji =
∑

k∈K

∑

(i,j)∈δ+(i)

xkij ∀i ∈ V

since
∑

k∈K xk−1

ii =
∑

k∈K xkii. Constraints (12) maintain flow conservation within a layer.
Constraint (13) ensures that K partial paths are selected and constraints (14) that the length
of the partial path in each layer is at most L. Constraints (15) connect the resource variables
on a global level and constraints (16) connect the resource variables within each single layer,
note that since there is no (15) and (16) for the depot it is not constrained by resources.
Constraints (17) globally enforce the resource windows and the redundant constraints (18)
enforce the resource windows within each layer.

192



Partial Path Column Generation for the Vehicle Routing Problem with Time Windows

3 Dantzig-Wolfe decomposition

The 3-index formulation of the VRPTW (8)–(20) is Dantzig-Wolfe decomposed whereby a
master and a pricing problem is obtained.

Master problem: Let λp be the variable indicating the use of partial path p. Using
Dantzig-Wolfe decomposition where the constraints (9), (11), (13), (15), and (17) are kept in
the master problem the following master problem is obtained:

min
∑

p∈P

cpλp (21)

s.t.

∑

p∈P

∑

(i,j)∈δ+(i)

αp
ijλp = 1 ∀i ∈ C (22)

∑

p∈P :ep=i

λp =
∑

p∈P :sp=i

λp ∀i ∈ V (23)

∑

p∈P

λp = K (24)

∑

(j,i)∈δ−(i)



T r
ji +

∑

p∈P

τ rjiα
p
jiλp



 ≤
∑

(i,j)∈δ+(i)

T r
ij ∀r ∈ R, ∀i ∈ C (25)

ai
∑

p∈P

αp
ijλp ≤ T r

ij ≤ bi
∑

p∈P

αp
ijλp ∀r ∈ R, ∀(i, j) ∈ A (26)

T r
ij ≥ 0 ∀r ∈ R, ∀(i, j) ∈ A (27)

λp ∈ {0, 1} ∀p ∈ P (28)

Where αp
ij is the number of times arc (i, j) ∈ A is used on path p ∈ P and sp and ep indicates

the start and the end node respectively of partial path p ∈ P . Constraints (22) ensure that
each customer is visited exactly once. Constraints (23) link the partial paths together by flow
conservation. Constraint (24) is the convexity constraint ensuring that K partial paths are
selected. Constraints (25) and (26) enforce the resource windows.

Pricing problem: The |K| pricing problems corresponding to the master problem (21)–
(28) contains constraints (10), (12), (14), (16), and (18) and can be formulated as a single
ESPPRC where the depot is allowed to be visited more than once. Let s and e be a super
source and a super target node respectively. Arcs (s, i) and (i, e) for all i ∈ V are added to

193



Chapter 13

G.

min
∑

(i,j)∈A

cijxij (29)

s.t.
∑

(s,i)∈δ+(s)

xsi = 1 (30)

∑

(i,e)∈δ−(e)

xie = 1 (31)

∑

(i,j)∈A

xij ≤ 1 ∀i ∈ C (32)

∑

(j,i)∈δ−(i)

xji =
∑

(i,j)∈δ+(i)

xij ∀i ∈ V (33)

∑

i∈C

∑

(i,j)∈A

xij ≤ L (34)

∑

(j,i)∈δ−(i)

(T r
ji + τ rjixji) ≤

∑

(i,j)∈δ+(i)

T r
ij ∀r ∈ R, ∀i ∈ C (35)

aixij ≤ T r
ij ≤ bixij ∀r ∈ R, ∀(i, j) ∈ A (36)

xij ∈ {0, 1} ∀(i, j) ∈ A (37)

The objective (29) minimizes the reduced cost of a column. Constraints (30) and (31) ensure
that the path starts in s respectively ends in e. Constraints (32) dictates that no node is
visited more than once, thereby ensuring elementarity, and constraints (33) conserve the flow.
Constraints (35) and (36) ensure the resource windows are satisfied for all customers. Note,
since the depot is missing in (35) each time a path leaves the depot a resource is only restricted
by its lower limit ar

0
for all r ∈ R.

Let π (πi ≥ 0 : ∀i ∈ C) be the duals of (22), let π0 = 0, let µ be the duals of (23), let
β ≤ 0 be the dual of (24), let ν (ν ≤ 0 : ∀i ∈ C) be the duals of (25), let ν0 = 0, and let
ω ≤ 0 and ω ≥ 0 be the dual of (26). The cost of the arcs in this ESPPRC are then given as:

cij = −β +







cij − πi − τijνj − aiωi + biωi ∀(i, j) ∈ A \ (δ+(s) ∪ δ−(e))
µj ∀(s, j) ∈ δ+(s)
µi ∀(i, e) ∈ δ−(e)

and the pricing problem becomes finding the shortest path from s to e.

Solving the pricing problem: The ESPPRCs can be solved by a labeling algorithm. For
details regarding labeling algorithms we refer to Desaulniers et al. [4], Irnich [5], Irnich and
Desaulniers [6], and Righini and Salani [9].

Branching: Integrality can be obtained by branching on the original variables, which can
be accomplished by cuts in the master problem (see Vanderbeck [10]), e.g., let Xij be the set
of partial paths that utilize arc (i, j) then the branch rule xij = 0 ∨ xij = 1 can be expressed
by:

∑

p∈Xij

λp = 0 ∨
∑

p∈Xij

λp = 1.

194



Partial Path Column Generation for the Vehicle Routing Problem with Time Windows

Bounds: The following theorem justifies the approach presented in this paper.

Theorem 1. Let zlp be an LP-relaxed solution to (1)–(7) and let zpp be an LP-relaxed
solution to (21)–(28) then Zlp ≤ Zpp for all instances of the VRPTW and Zlp < Zpp for some
instances of the VRPTW.

Proof. Zlp ≤ Zpp since all solutions to (21)–(28) map to solutions to (1)–(7). An instance
with Zlp < Zpp is obtained with four customers each with a demand of resource r of half the
global maximum br of r, the distance from the customers to the depot larger than the distance
between the customers, and L = 4. The solution to (21)–(28) would use the expensive edges
four times, whereas the solution to (1)–(7) only would use them twice.

4 Conclusion

A new decomposition model of the VRPTW has been presented with ESPPRCs as the pricing
problems. The model facilitates control of the running time of the pricing problems. Due
to the aggregation of the model, LP relaxed bounds of (21)–(28) are better than the direct
model (1)–(7). Since (21)–(28) is a relaxation of the traditional Dantzig-Wolfe decomposition
model with elementary routes as columns, the LP relaxed bounds may be weaker yielding a
larger branch-and-bound tree. The difference in bound quality can be decreased with the use
of special purpose cutting planes, which this paper does not leave room for. Furthermore,
effective cuts such as Subset Row-inequalities by Jepsen et al. [7] and Chvátal-Gomory Rank-1
cuts (see Petersen et al. [8]) can be applied to the Set Partition master problem to strengthen
the bound. Future experimental results will conclude on the effectiveness of this approach.

References

[1] N. Ascheuer, M. Fischetti, and M. GrÃ¶tschel. Solving the asymmetric travelling sales-
man problem with time windows by branch-and-cut. Mathematical Programming, 90(3):
475–506, 2001. doi: 10.1007/PL00011432.

[2] J. F. Bard, G. Kontoravdis, and G. Yu. A branch-and-cut procedure for the vehicle
routing problem with time windows. Transportation Science, 36(2):250–269, May 2002.
doi: http://dx.doi.org/10.1287/trsc.36.2.250.565.

[3] N. Christofides and S. Eilon. An algorithm for the vehicle-dispatching problem. Opera-

tional Research Quarterly, 20(3):309–318, Sep 1969.

[4] G. Desaulniers, J. Desrosiers, J. Ioachim, I. M. Solomon, F. Soumis, and D. Villeneuve. A
unified framework for deterministic time constrained vehicle routing and crew scheduling
problems. In T. G. Crainic and G. Laporte, editors, Fleet Management and Logistics,
pages 57–93. Kluwer, 1998.

[5] S. Irnich. Resource extension functions: Properties, inversion, and generalization to
segments. OR Spectrum, 30(1):113–148, 2008. doi: 10.1007/s00291-007-0083-6.

[6] S. Irnich and G. Desaulniers. Shortest path problems with resource constraints. In
G. Desaulniers, Jacques Desrosiers, and M.M. Solomon, editors, Column Generation,
chapter 2, pages 33–65. Springer, 2005. doi: 10.1007/0-387-25486-2\ 2.

195



Chapter 13

[7] M. Jepsen, B. Petersen, and S. Spoorendonk. A branch-and-cut algorithm for the el-
ementary shortest path problem with a capacity constraint. Technical Report 08/01,
DIKU Department of Computer Science, University of Copenhagen, Denmark, 2008.

[8] B. Petersen, D. Pisinger, and S. Spoorendonk. Chvátal-Gomory rank-1 cuts used
in a Dantzig-Wolfe decomposition of the vehicle routing problem with time win-
dows. In B. Golden, R. Raghavan, and E. Wasil, editors, The Vehicle Routing

Problem: Latest Advances and New Challenges, pages 397–420. Springer, 2008. doi:
10.1007/978-0-387-77778-8 18.

[9] G. Righini and M. Salani. Symmetry helps: bounded bi-directional dynamic program-
ming for the elementary shortest path problem with resource constraints. Discrete Op-

timization, 3(3):255–273, 2006. doi: 10.1016/j.disopt.2006.05.007.

[10] F. Vanderbeck. On Dantzig-Wolfe decomposition in integer programming and ways to
perform branching in a branch-and-price algorithm. Operation Research, 48(1):111–128,
2000. doi: 10.1287/opre.48.1.111.12453.

196



Chapter 14

The Vehicle Routing Problem

Solved by Bounding and Enumer-

ation of Partial Paths

Mads Jepsen
DTU Management Engineering, Technical University of Denmark

Bjørn Petersen
DTU Management Engineering, Technical University of Denmark

1 Introduction

The Capacitated Vehicle Routing Problem (CVRP) can be described as follows: A set of
customers, each with a demand, needs to be serviced by a number of vehicles all starting
and ending at a central depot. Each customer must be visited exactly once and the capacity
of the vehicles may not be exceeded. The objective is to service all customers traveling the
least possible distance. In this abstract we consider a homogeneous fleet, i.e., all vehicles are
identical. The Vehicle Routing Problem with Time Windows (VRPTW) extends the CVRP
by imposing that each customer must be visited within a given time window. The intersection
of the CVRP and the VRPTW will in the following be referred to as the VRP.

The standard Dantzig-Wolfe decomposition of the arc flow formulation of the VRP is to
split the problem into a master problem (a Set Partitioning Problem) and a pricing problem
(an Elementary Shortest Path Problem with Resource Constraints (ESPPRC), where capac-
ity (and time) are the constrained resources). A restricted master problem can be solved
with delayed column generation and embedded in a branch-and-bound algorithm to ensure
integrality. Applying cutting planes either in the master or the pricing problem leads to a
Branch-and-Cut-and-Price algorithm (BCP). Kohl et al. [6] implemented a successful BCP
algorithm for the VRPTW by applying sub-tour elimination constraints and two-path cuts,
Cook and Rich [2] generalized the two-path cuts to the k-path cuts, and Fukasawa et al. [3]

Extended abstract, Tristan 2010.

197



Chapter 14

applied a range of valid inequalities for the CVRP based on the branch and cut algorithm
of Lysgaard et al. [7]. Common for these BCP algorithms is that all applied cuts are valid
inequalities for the VRPTW respectively the CVRP with regard to the original arc flow for-
mulation, and have a structure which makes it possible to handle values of the dual variables
in the pricing problem without increasing the complexity of the problem. The BCP algorithm
was extended to include valid inequalities for the master problem by applying the subset row
(SR) inequalities to the Set Partitioning master problem in Jepsen et al. [5] and later by
applying Chvátal-Gomory Rank-1 (CG1) inequalities in Petersen et al. [8]. Baldacci et al.
[1] use an approach where columns with potentially negative reduced cost are enumerated
after initial upper and lower bounds are found, this sometimes leads to memory issues with
difficult instances. After enumeration a general MIP solver is called. Recently, Jepsen and
Petersen [4] presented an new decomposition model based on bounded partial paths, where
the solution space of the pricing problem is limited by bounding some resource.

We propose to combine the latter two strategies, i.e., enumeration of columns with po-
tentially negative reduced with the columns being bounded partial paths. The main ideas of
Baldacci et al. [1] would be utilised until the enumeration step where the partial path columns
would be used instead of the much larger set of elementary routes, thus hopefully solving the
memory issues notied in Baldacci et al. [1]. The gap between the lower (LB) and the upper
bound (UB) of the master problem obtained with the elementary routes can be maintained
by bounding LB.

2 Mathematical Model

The VRP can formally be stated as: Given a graph G(V,A) with nodes V and arcs A, a set R
of resources R = {load (and time)} where each resource r ∈ R has a lower bound ari and an
upper bound bri for all i ∈ V and a positive consumption τ rij when using arc (i, j) ∈ A : i ∈ C,
find a set of routes starting and ending at the depot node 0 ∈ V satisfying all resource limits,
such that the cost is minimized and all customers C = V \ {0} are visited. The load resource
is present for both the CVRP and the VRPTW and ensures that the capacity of the vehicle is
not violated when satisfying the demand of the customers. The time resource is only present
for the VRPTW and ensures that the customers are serviced during a predifined time window.

In the following let cp be the cost of partial path p ∈ P , λp be the binary variable
indicating the use of p, and T r

ij (the resource stamp) be the consumption of resource r ∈ R
at the beginning of arc (i, j) ∈ A. Let δ+(i) and δ−(i) be the set of outgoing respectively
ingoing arcs of node i ∈ V . Finally, let LB be a given lower bound. The master problem:

min
∑

p∈P

cpλp (1)

s.t.
∑

p∈P

cpλp ≥ LB (2)

∑

p∈P

∑

(i,j)∈δ+(i)

αp
ijλp = 1 ∀i ∈ C (3)

∑

p∈P :ep=i

λp =
∑

p∈P :sp=i

λp ∀i ∈ V (4)

198



The Vehicle Routing Problem Solved by Bounding and Enumeration of Partial Paths

∑

p∈P

λp = K (5)

∑

(j,i)∈δ−(i)



T r
ji +

∑

p∈P

τ rjiα
p
jiλp



 ≤
∑

(i,j)∈δ+(i)

T r
ij ∀r ∈ R, ∀i ∈ C (6)

ai
∑

p∈P

αp
ijλp ≤ T r

ij ≤ bi
∑

p∈P

αp
ijλp ∀r ∈ R, ∀(i, j) ∈ A (7)

T r
ij ≥ 0 ∀r ∈ R, ∀(i, j) ∈ A (8)

λp ∈ {0, 1} ∀p ∈ P (9)

Where αp
ij indicates the use arc (i, j) ∈ A is used on path p ∈ P and sp and ep indicate

the start respectively the end node of partial path p ∈ P . Constraints (3) ensure that each
customer is visited exactly once. Constraints (4) link the partial paths together by flow
conservation. Constraint (5) is the convexity constraint ensuring that K partial paths are
selected. Constraints (6) and (7) enforce the resource windows.

3 Algorithmic Overview

The algorithm is inspired by the one of Baldacci et al. [1]. Heuristics can be applied where
ever being beneficial. The algortithm is divided into the follwoing steps:

i By the use of column generation with columns being elementary routes and all advan-
tageous cuts being utilized (e.g., (SR)), find an initial good quality LB and initial good
quality UB.

ii Solve the LP-relaxed master problem (1)–(9) with the LB from i.

iii Due to the bounds (9) each column in P cannot be in a solution more than once, hence,
any partial path p ∈ P in an optimal solution must satisfy: c̄p ≤ UB − LB, where c̄p is
the reduced cost of column p in the last iteration of ii. Enumerate all these.

iv Apply all the columns from iii to the master problem, add the cuts of Section 4, and give
the problem to a general MIP-solver.

4 Tightening Bounds

Constraints (6) and (7) can be tightened by:

∑

p∈P :ep=i

(ap + τp)λp ≤
∑

(i,j)∈δ+(i)

Tij ∀i ∈ C (10)

∑

p∈P,sp=i

apλp ≤
∑

(i,j)∈δ+(i)

Tij ≤
∑

p∈P,sp=i

bpλp ∀i ∈ V (11)

where ap, bp, and τp are bounds on the partial path p and due to integrality on p can yield
tighter bounds. Lower bound ap for p is defined as the latest possible departure time from
the start-node s without changing the earliest possible arrival time at the end-node e. Upper
bound bp for p is defined as the latest possible departure time from s while p still being feasible.

199



Chapter 14

Travel time τp is defined as the time spend on p, i.e., traversing edges and waiting for windows
to open. It is noted that τp is always constant given ap and bp as defined above no matter
which departure time t : ap ≤ t ≤ bp, since the traversal times of edges are constant and a
difference in waiting time would yield a conflict with the definition of ap. As a consequence
of this, ap = bp if there is waiting time on p, and if ap 6= bp then no waiting time occurs on p.

Even though the influence on the reduced cost with these constraints can be handled in
the pricing problem, experience points to it being cumbersome to implement and having a
negatively influencing on the running time of the pricing problem. In the context of enumer-
ation the dual cost of these constraints do not have to be handled since they are added after
the enumeration procedure, thus obtaining the smaller solution space for “free”.

References

[1] R. Baldacci, N. Christofides, and A. Mingozzi. An exact algorithm for the vehicle routing
problem based on the set partitioning formulation with additional cuts. Mathematical

Programming, 115(2):351–385, 2008. doi: 10.1007/s10107-007-0178-5.

[2] W. Cook and J. L. Rich. A parallel cutting plane algorithm for the vehicle routing problem
with time windows. Technical Report TR99-04, Computational and Applied Mathematics,
Rice University, Houston, Texas, USA, 1999.

[3] R. Fukasawa, H. Longo, J. Lysgaard, M. Poggi de AragÃ£o, M. Reis, E. Uchoa, and R.F.
Werneck. Robust branch-and-cut-and-price for the capacitated vehicle routing problem.
Mathematical Programming, 106(3):491–511, 2006. doi: 10.1007/s10107-005-0644-x.

[4] M. Jepsen and B. Petersen. Partial path column generation for the vehicle routing prob-
lem. Technical report, DTU Management Engineering, Technical University of Denmark,
Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark, 2009.

[5] M. Jepsen, B. Petersen, S. Spoorendonk, and D. Pisinger. Subset-row inequalities applied
to the vehicle-routing problem with time windows. Operations Research, 56(2):497–511,
2008. doi: 10.1287/opre.1070.0449.

[6] N. Kohl, J. Desrosiers, O. B. G. Madsen, M. M. Solomon, and F. Soumis. 2-path cuts for
the vehicle routing problem with time windows. Transportation Science, 33(1):101–116,
1999. doi: 10.1287/trsc.33.1.101.

[7] J. Lysgaard, A. N. Letchford, and R. W. Eglese. A new branch-and-cut algorithm for
the capacitated vehicle problem. Mathematical Programming, 100(2):423–445, 2004. doi:
10.1007/s10107-003-0481-8.

[8] B. Petersen, D. Pisinger, and S. Spoorendonk. Chvátal-Gomory rank-1 cuts used in
a Dantzig-Wolfe decomposition of the vehicle routing problem with time windows. In
B. Golden, R. Raghavan, and E. Wasil, editors, The Vehicle Routing Problem: Lat-

est Advances and New Challenges, pages 397–420. Springer, 2008. doi: 10.1007/
978-0-387-77778-8 18.

200



Chapter 15

A solution approach to the

ROADEF/EURO 2010 challenge

based on Benders Decomposition

Richard Lusby

DTU Management Engineering, Technical University of Denmark

Laurent F. Muller

DTU Management Engineering, Technical University of Denmark

Bjørn Petersen

DTU Management Engineering, Technical University of Denmark

Abstract

Since 1999 the French Operations Research Society, Recherche Opérationnelle et d’Aide
à la Décision (ROADEF), has organized the so-called ROADEF challenges, an interna-
tional operations research contest in which participants must solve an industrial opti-
mization problem. In 2010 it was jointly organized for the first time with the European
Operational Research Society (EURO) and was run in collaboration with Electricité de
France (EDF), one of the largest utility companies in the world, and required contestants
to solve a large scale energy management problem with varied constraints. The challenge
focused on the nuclear power plants, which need to be regularly shut down for refueling
and maintenance, and asked contestants to schedule these outages such that the expected
cost of meeting the power demand in a number of potential scenarios was minimized.

We present a Benders decomposition based framework for solving the problem. Be-
cause of the nature of the problem, not all constraints can be modeled satisfactory as
linear constraints and the approach is therefor divided into two stages: in the first stage
Benders feasibility and optimality cuts are added based on the linear programming relax-
ation of the Benders Master problem, and in the second stage feasible integer solutions
are enumerated and procedure is applied to each solution in an attempt to make them
satisfy the constraints not part of the mixed integer program. A number of experiments
are performed on the available benchmark instances. These experiments show that the

Technical report.

201



Chapter 15

approach is competitive on the smaller instances, but not for the larger ones. We believe
the exact approach gives insight into the problem, and additionally makes it possible
to find lower bounds on the problem, which is typically not the case for the competing
heuristics.

Keywords: Benders decomposition, power scheduling

1 Introduction

Every two years1 since 1999 the French Operations Research Society, Recherche Opérationnelle
et d’Aide à la Décision (ROADEF), has organized the so-called ROADEF challenge, an in-
ternational operations research contest in which participants must solve an industrial opti-
mization problem. Given the success of previous contests, this year it was jointly organized
for the first time with the European Operational Research Society (EURO) and known as the
ROADEF/EURO 2010 challenge. The competition was run in collaboration with Electricité
de France (EDF), one of the largest utility companies in the world, and required contestants
to solve a large scale energy management problem with varied constraints.

EDF’s power generation facilities in France stand for a total of 98.8 GW of installed
capacity, most of which is produced using thermal, and in particular nuclear, power plants.
In 2008 thermal power plants accounted for 90% of its total electricity production of which
86% was delivered by nuclear power plants. This year’s challenge focused on the nuclear
power plants, since these need to be regularly shut down for refueling and maintenance,
and asked contestants to schedule these outages in such a way that the various constraints
regarding safety, maintenance, logistics, and plant operation were satisfied, while minimizing
the expected cost of meeting the power demand in a number of potential scenarios. The
problem thus consisted of the following two dependent subproblems

1. Determine a schedule of nuclear power plant outages. This entails determining when
the nuclear power plants should be taken offline and how much fuel should be reloaded
at each. An outage lasts for some predefined (plant specific) period of time during
which the nuclear power plant cannot be used for power generation. The coupling of an
outage followed by a production period (until the next outage) for a nuclear power plant
is termed a cycle and it is not uncommon to have to schedule up to six cycles for each
nuclear power plant. In determining an outage schedule one must obey several safety
requirements as well as observe restrictions arising from the limited resources available
to perform the fuel reloading.

2. Given an outage schedule, determine a production plan for each of the online power
plants, i.e. the quantity of electricity to produce in each time step, for each possible
demand scenario. The power plants are divided into two categories termed Type 1
and Type 2, respectively. Type 2 power plants refer to the nuclear power plants and
must be reloaded with fuel, while Type 1 power plants represents thermal power plants,
which can be supplied with fuel continuously, such as coal, gas, and oil powered plants.
Several technical constraints govern the possible levels of power production at each
power plant. Due to the stochastic nature of power markets, one is required to consider
multiple demand scenarios.

1Except for 2009-2010.

202



A solution approach to the ROADEF/EURO 2010 challenge based on...

The concepts of cycles, outages, and production plans for three power plants are illustrated
in Figure 1. The gray area indicates the time steps during which the plants are offline.

Figure 1: Outages, Cycles, Production Plans

One important aspect of this years problem was its size: There were approximately one
hundred power plants and scenarios, and the planning horizon was in the order of years, with
a granularity down to hours. Which means that a solution alone can contain in the order of
108 variables.

The remaining of the paper is organized as follows: Section 2 gives an overview of the
problem constraints, Section 3 presents a mixed integer programming (MIP) model for (parts
of) the problem, Section 4 gives a general outline of the proposed procedure and presents
the Benders decomposed model, Section 5 describes how the problem size can be reduced,
Section 6 describes a number of additional constraints that are added to the model in an
attempt to reduce the number of infeasible subproblems, Section 7 describes a procedure for
taking a solution, which does not satisfy all the constraints, and making it do so, Section 8
presents the computational results, and finally we conclude in Section 9.

2 Overview of problem constraints

Table 1 give a brief overview of the different constraints of the problem. Because of space
considerations, we do not include a full description of the constraints, but instead refer the
reader to Porcheron et al. [8]. We first introduce a number of sets, constants, which will also
be used when stating the mathematical model in Section 3, and some additional sets and
variables, which will only be used to describe the constraints in this section.

Sets

• I: Set of type 2 plants.

• J : Set of type 1 plants.

• T : Set of time steps.

• W : Set of weeks.

203



Chapter 15

• S: Set of scenarios.

• Ki: Set of cycles for each plant i ∈ I.

Constants

• Lik: Length in weeks of the outage for cycle k ∈ Ki at plant i ∈ I.

• Rik: Minimum reload amount for plant i ∈ I in cycle k ∈ Ki.

• Rik: Maximum reload amount for plant i ∈ I in cycle k ∈ Ki.

• Pmax
it : Maximum production for plant i ∈ I at time step t ∈ T

• Ft: Conversion factor between power and fuel in time step t ∈ T .

• Dts: Required power in time step t ∈ T of scenario s ∈ S.

• Bik: Fuel stock level at which shutdown curve must begin in cycle k at plant i ∈ I.

• Qik: Proportion of fuel that can be kept during reload in cycle k at plant i ∈ I,
Q̃ik := Qik−1

Qik
.

• Smax
ik : Maximum permitted fuel after reload in cycle k at plant i ∈ I, Mi := maxk S

max
i,k .

• Amax
ik : Maximum permitted fuel prior to reload in cycle k at plant i ∈ I.

• P itk: Maximum production capacity in cycle k for plant i ∈ I at time step t ∈ T .

• P jts: Maximum production capacity for plant j ∈ J at time step t ∈ T in scenario
s ∈ S.

• P jts: Minimum production capacity for plant j ∈ J at time step t ∈ T in scenario
s ∈ S.

• Xi: Starting stock of plant i ∈ I

• TO
ik : First possible outage week for cycle k ∈ Ki for i ∈ I.

• TA
ik : Last possible outage week for cycle k ∈ Ki for i ∈ I.

Constraint-specific variables and sets

• ha(i, k) : the first week of the outage of cycle k ∈ Ki of plant i ∈ I.

• p(j, t, s) : production of plant j ∈ J during the time step t ∈ T of scenario s ∈ S.

• p(i, t, s) : production of plant i ∈ I during the time step t ∈ T of scenario s ∈ S.

• r(i, k) : reload performed during the outage of cycle k ∈ Ki of plant i ∈ I.

• x(i, t, s) : stock of fuel of plant i ∈ I at time step t ∈ T for scenario s ∈ S.

• ec(i, k) : set of time steps composing the production campaign of cycle k ∈ Ki of plant
i ∈ I.

• ea(i, k) : set of weeks composing the outage of cycle k ∈ Ki of plant i ∈ I.

204



A solution approach to the ROADEF/EURO 2010 challenge based on...

Table 1: Overview of the constraints of the problem

Name Description

CT1 Constraints coupling load and production: during every time step t ∈ T of every
scenario s ∈ S, the sum of production of Type 1 and Type 2 power plants has to
be equal to the demand:

∑

i∈I

pits +
∑

j∈J

pjts = Dts, ∀(t, s)

CT2 Bound on production: During every time step t ∈ T of every scenario s ∈ S,
production of plant j ∈ J has to be between minimum and maximum bounds:

P jts ≤ pjts ≤ P jts, ∀(j, t, s)

CT3 Offline power: During every time step t ∈ T of every scenario s ∈ S where plant
i ∈ I is on outage, its production is equal to zero:

t ∈ ea(i, k) ⇒ p(i, t, s) = 0, ∀(i, t, s)

CT4 Minimum power: During every time step t ∈ T of every scenario s ∈ S where
plant i ∈ I is online, its production is positive or equal to zero:

0 ≤ p(i, t, s), ∀(i, t)

CT5 Maximum power before activation of imposition of power profile constraint (see
CT6): During every scenario s ∈ S and every time step t ∈ T of the production
campaign of cycle k ∈ Ki, if the current fuel stock of plant i ∈ I is greater than
or equal to Bik, the production level has to be equal or less than its maximum
bound:

t ∈ ec(i, k) ∧ x(i, t, s) ≥ Bik ⇒ p(i, t, s) ≤ P it, ∀(i, t, s)

CT6 Maximum power after activation of imposition of power level constraint: During
every scenario s ∈ S and every time step t ∈ T of the production campaign of
cycle k ∈ Ki, if the current fuel stock of plant i ∈ I is inferior to Bik, production
has to follow the power profile Pik : R → [0; 1] with a tolerance ǫ, where Pik is a
piecewise linear function of the stock level:

t ∈ ec(i, k) ∧ x(i, t, s) ≤ Bik ⇒ p(i, t, s) ≈ Pik(x(i, t, s)), ∀(i, t, k, s)

205



Chapter 15

Table 1: Continued – Overview of the constraints of the prob-
lem

Name Description

CT7 Bounds on refueling: The reload performed during cycle k ∈ Ki of plant i ∈ I has
to be inside its minimum and maximum bounds:

Rik ≤ r(i, k) ≤ Rik, ∀(i, k)

CT8 Initial fuel stock:
x(i, 0, s) = Xi, ∀(i, s)

CT9 Fuel stock variation during a production campaign:

t ∈ ec(i, k) ⇒ x(i, t+ 1, s) = x(i, t, s)− p(i, t, s) · Ft, ∀(t, i, k, s)

CT10 Fuel stock variation during an outage: In the process of refueling a Type 2 power
plant at time t ∈ T , a certain amount of unspent fuel has to be removed to make
the addition of new fuel possible:

x(i, t+ 1, s) = Q̃ik · (x(i, t, s) −Bi,k−1) + r(i, k) +Bik, ∀(i, k, s)

CT11 Bounds on fuel stock at the instant, t ∈ T , of outage and after refueling:

x(i, t, s) ≤ Amax
ik , x(i, t+ 1, s) ≤ Smax

ik , ∀(i, k, s)

CT12 Constraint on maximum modulation over a cycle: Every modulation of the power
output of a Type 2 power plant leads to a certain amount of wear of the equip-
ment involved. Therefore frequent power modulations at Type 2 power plants are
undesirable:

∑

t∈{t′∈ec(i,k):x(i,t′,s)≥Bik}

(P it − p(i, t, s)) · Ft ≤ Mmax
ik ,∀(i, k, s)

206



A solution approach to the ROADEF/EURO 2010 challenge based on...

Table 1: Continued – Overview of the constraints of the prob-
lem

Name Description

CT13 Constraint on the date of outage at the earliest and the latest: Outage of cycle
k ∈ Ki of plant i ∈ Ki has to start during a given interval:

TO
ik ≤ h(i, k) ≤ TA

ik , ∀(i, k),

ha(i, k + 1) ≥ ha(i, k) + Lik, ∀(i, k)

If no CT13 constraint is present, then scheduling the corresponding cycle is op-
tional, but the cycle must still be scheduled in order for any subsequent cycle
k′ > k to be scheduled.

CT14 Constraints on the minimum spacing/maximum overlapping between outages:
Outages of a set Am have to be spaced by at least Sm weeks, with m = 1, . . .M14:

ha(i, k)−ha(i′, k′)−Li′k′ ≥ Sm∨ha(i′, k′)−ha(ik)−Lik ≥ Sm, ∀(i, k), (i′, k′) ∈ Am

CT15 Minimum spacing/maximum overlapping between outages during a specific period:
Outages of a set Am that intersect an interval [Am;Bm] have to be spaced by at
least or can overlap by at most Sm weeks, with m = 1, . . .M15:

Am − Lik + 1 ≤ ha(i, k) ≤ Bm ∧Am − Li′k′ + 1 ≤ ha(i′, k′) ≤ Bm

⇒ ha(i, k) − ha(i′, k′)− Li′k′ ≥ Sm ∨ ha(i′, k′)− ha(ik) − Lik ≥ Sm,

∀(i, k), (i′, k′) ∈ Am

CT16 Minimum spacing constraint between decoupling dates: Dates of decoupling of
outages of a set Am have to be spaced by at least Sm weeks, with m = 1, . . .M16:

|ha(i, k) − ha(i′, k′)| ≥ Sm, ∀(i, k), (i′, k′) ∈ Am

CT17 Minimum spacing constraints between dates of coupling: Coupling dates of outages
of a set Am have to be spaced by at least Sm weeks, with m = 1,M17:

|ha(i, k) + Lik − ha(i′, k′)− Li′k′ | ≥ Sm, ∀(i, k), (i′, k′) ∈ Am

207



Chapter 15

Table 1: Continued – Overview of the constraints of the prob-
lem

Name Description

CT18 Minimum spacing constraints between coupling and decoupling dates: Dates of
coupling and decoupling of outages of a set Am have to be spaced by at least Sm

weeks, with m = 1, . . .M18:

|ha(i, k) + Lik − ha(i′, k′)| ≥ Sm, ∀(i, k), (i′, k′) ∈ Am

CT19 Resource constraints: Use of resources on a given set of outages Am is subject to
constraints due to their limited availability, with Aikm, and Bikm indicating the
start and the length of the resource usage period with m = 1, . . .M19:

∑

(i,k)∈Am

δ(t, i, k) ≤ Qm, ∀w,

where δ(t, i, k) = 1 ⇐⇒ t ∈ [ha(i, k) +Aikm;ha(i, k) +Aikm +Bikm]

CT20 Constraint on the maximum number of overlapping outages during a given week:
At most Nm(w) outages of Am(w) can overlap during the weekw ∈ W , with
m = 1, . . .M20:

∑

(i,k)∈Am

δ(t, i, k) ≤ Nm(w), ∀w,

where δ(t, i, k) = 1 ⇐⇒ t ∈ [ha(i, k);ha(i, k) + Lik].

CT21 Constraint on the offline power capacity of a set of power plants during a time
period: For a given period, [Am;Bm] the power capacity of the set of plants Am

that are on outage has to be inferior to a maximum bound, Imax
m , with m =

1, . . . ,M21:
∑

i∈Cm

∑

w∈[Am;Bm]∩ec(i,k)

∑

t∈w

P it ≤ Imax
m

3 Model

As the approach to solving the problem will be based on applying mixed integer programming
(MIP) we now give a MIP model of the problem. Before stating the model we introduce some
additional sets, constants, and variables.

Sets

• W o
ik: Set of allowed outage weeks for cycle k ∈ Ki of plant i ∈ I.

• W p
ik: Set of weeks where cycle k ∈ Ki of plant i ∈ I could be in a production campaign.

208



A solution approach to the ROADEF/EURO 2010 challenge based on...

• T p
ik: Set of time steps where cycle k ∈ Ki of plant i ∈ I could be in a production

campaign.

• Ki(w): Set of cycles for plant i ∈ I which could be in a production campaign at in week
w.

• w(t): Week containing time step t

• wt: Set of time steps in week w

• M21: Set of CT21 constraints

• Cm: Set of type 2 power plants associated with m ∈ M21

Constants

• cjt: Cost of producing a unit of power at plant j ∈ J in time step t ∈ T .

• ci,|T |+1: Price of remaining fuel (time step |T |+1) at plant i ∈ I.

Variables

• yiwk: Binary variable indicating if cycle k for plant i begins in week w ∈ W o
ik

• rik: The amount of fuel reloaded in cycle k for plant i

• xbiks: Stock at the beginning of cycle k for plant i ∈ I in scenario s ∈ S.

• xeiks: Stock at end of cycle k for plant i ∈ I in scenario s ∈ S.

• xfis: Final stock for plant i ∈ I in scenario s ∈ S.

• pitks: Amount of power produced at plant i ∈ I in cycle k at time step t ∈ T in scenario
s ∈ S.

• pjts: Amount of power produced at plant j ∈ J in time step t ∈ T in scenario s ∈ S.

•

ρ(i, w, k) :=







1−
∑

w′≤w yi,w′,k+1, k = 0
∑

w′≤w−Lik
yi,w′,k, k = K

∑

w′≤w−Lik
yi,w′,k −

∑

w′≤w yi,w′,k+1, otherwise

Note that ρ(i, w, k) is not a variable, but is included for ease of exposition. The following
relation holds ρ(i, w, k) = 1 ⇐⇒ cycle (i, k) is in a production campaign in week w.

209



Chapter 15

Model

min
∑

i∈I

∑

k∈K

cikrik +
1

|S|

∑

s∈S

(
∑

t∈T

∑

j∈J

cjtsFtpjts −
∑

i∈I

ci,|T |+1x
f
is) (1)

s.t. rik ≥ Rik ·
∑

w∈Wik

yiwk ∀i ∈ I,∀k ∈ Ki (2)

rik ≤ Rik ·
∑

w∈Wik

yiwk ∀i ∈ I,∀k ∈ Ki (3)

∑

w∈Wik

yiwk ≥
∑

w∈Wi,k+1

yi,w,k+1 ∀i ∈ I,∀k ∈ Ki (4)

∑

i∈Cm

∑

k∈Ki

∑

w∈ITm

w
∑

w′=w−Lik+1

yiw′k ·

t(w+1)−1
∑

t=t(w)

P
max
it ≤ I

max
m ∀m ∈ M21,∀w ∈ W (5)

∑

(iwk)∈H

yiwk ≤ KH ∀H ∈ H (6)

x
e
iks = x

b
iks −

∑

t∈T

pitks · Ft ∀i ∈ I,∀k ∈ Ki,∀s ∈ S (7)

x
b
iks = rik +Bik

∑

w∈Wo
ik

yiwk + Q̃ik



x
e
i,k−1,s −Bi,k−1

∑

w∈Wo
ik

yiwk



 ∀i ∈ I,∀k ∈ Ki,∀s ∈ S (8)

x
e
iks ≤ A

max
i,k+1 +



1−
∑

w∈Wo
ik

yi,w,k+1





(

M
1

i − A
max
i,k+1

)

∀i ∈ I,∀k ∈ Ki,∀s ∈ S (9)

x
b
iks ≤ S

max
ik +



1−
∑

w∈Wo
ik

yiwk



 (Mi − S
max
ik ) ∀i ∈ I,∀k ∈ Ki,∀s ∈ S (10)

x
f
is ≤

∑

k′>k

∑

w∈Wo
ik

yiwk′Mi + x
e
iks ∀i ∈ I,∀k ∈ Ki,∀s ∈ S (11)

pitks ≤ P it · ρ(i,w(t), k) ∀i ∈ I,∀k ∈ Ki,∀t ∈ T
p
ik,∀s (12)

P jts ≤ pjts ≤ P jts ∀j ∈ J,∀t ∈ T,∀s ∈ S (13)
∑

i∈I

∑

k∈Ki(w(t))

pitks +
∑

j∈J

pjts = Dts ∀t ∈ T,∀s ∈ S (14)

yiwk ∈ {0, 1} ∀i ∈ I,∀k ∈ Ki,∀w ∈ W
o
ik (15)

All variables other than yiwk are continuous and non-negative. The objective (1) minimizes
the sum of cost of the reloading pattern in addition to the sum of the production costs for each
scenario and the profit for any remaining fuel for a scenario. Constraints (2) and (3) ensure
the reloaded amount in any cycle is always within the possible reloading bounds. Constraints
(4) ensure that if a cycle for a plant is set, then all preceding cycles must be set. Constraints
(5) model CT21, and all other CT13-C20 constraints are modelled in the form of (6). These
typically have a right hand side of one (i.e. give pairwise conflicts), but in some cases can
exceed this (in the case of CT19 and CT20). Constraints (7) ensure stock level consistency
between the starting stock level of a cycle and its end stock level (taking into account any
production), while constraints (8) reflect the requirement that some fuel is lost as a plant goes
through a reload. The CT11 constraints are enforced by constraints (9) and constraints (10)
respectively, and (11) ensures the stock at the end of the last cycle is the plant’s final stock
level. Maximum and minimum production required by the respective plants are enforced by
(12) and (13). Constraints (14) ensure all demand in each time step is met.

210



A solution approach to the ROADEF/EURO 2010 challenge based on...

4 Methodology

In this section we present a Benders Decomposition based framework to solve the compact
formulation (1)-(15). We begin by providing a short introduction to Benders in general
before describing the Benders reformulation of (1)-(15). Once the necessary models have
been introduced, we discuss, in detail, the components of the algorithm developed to solve
this reformulation.

4.1 Benders Decomposition

Benders Decomposition is a well-known technique for solving large scale mixed integer pro-
gramming (MIP) problems that have a special block structure [see 1]. It is commonly found
in stochastic applications where one is required to make a so-called first stage decision and
then, upon the realization of some random event, solve a second problem that ameliorates the
first stage decision. This is often the case in the power industry, where the demand is highly
stochastic. Recent applications of Benders in the power industry include [see 3, 9, 2, 10].
However, it has also been applied in a variety of other areas including telecommunication
network design [see 7], staff scheduling [see 5], aircraft routing and crew planning [see 6], and
uncapacitated hub location [see 4].

The Benders approach decomposes the original problem into a mixed integer master prob-
lem and one or more independent, linear subproblems. Consider the following formulation as
an example.

µ = min cTx+ fTy

s.t. Ax = b (16)

Bx+Dy = d (17)

x ∈ X ⊆ R
p, y ∈ Y ⊆ R

q,

where x and y are vectors of decision variables with dimension p and q, X and Y are polyhe-
drons, A, B, andD are matrices, and c, f , b, and d are vectors (all with approriate dimensions).
The first set of constraints, (16) restrict the values of x, while the second set, (17) restrict
the values of both x and y. With Benders Decomposition this problem is decomposed into
the following two smaller problems, P1 and P2.

P1 : min cTx+ z(x)

s.t. Ax = b

x ∈ X

P2 : z(x) = min fTy

s.t. Dy = d− Bx (18)

y ∈ Y

Observe that P1 is an optimization problem in terms of the x variables only, where z(x)
is the objective function value of P2 given the solution to P1. If one assumes that P2 is not
unbounded, then one can also calculate z(x) by solving it’s dual formulation. If u denotes
the vector of dual variables associated with constraints (18), then the dual formulation of P2
can be stated as:

211



Chapter 15

D2: max uT (d− Bx)

s.t. DTu ≤ f

The feasible region of this optimization problem is completely independent of the values
of x, which only affect the objective function. Assuming that the feasible region of D2 is not
empty, then exactly one of two cases will occur when solving D2 for a given solution x̂ ∈ X .
Either D2 is unbounded from above, or D2 has a finite optimal solution. In the first case
there must exist an extreme ray rj such that rTj (d − Bx̂) > 0, while in the second case there

must exist an extreme point uj of the feasible region such that z(x̂) = uTj (d − Bx̂). If we
denote the set of all extreme rays of D2 as R and the set of all extreme points of D2 as U ,
then D2 can be restated as follows.

D2* min z

s.t. (ri)
T (d− Bx) ≤ 0 ∀ri ∈ R (19)

(ui)
T (d− Bx) ≤ z ∀ui ∈ U (20)

(21)

P2 now consists of the single variable z. The first set of constraints, (19), restricts the set of
solutions to P1 to those which are also feasible for P2 (termed feasiblity cuts), while the second
set, (20), restrict the set of solutions to P1 to those that minimize the objective function value
of P2 (termed optimality cuts). Hence, the original problem can be restated as:

RMP: min cTx+ z

s.t. Ax = b

(ri)
T (d− Bx) ≤ 0 ∀ri ∈ R

(ui)
T (d− Bx) ≤ z ∀ui ∈ U

x ∈ X

Since there can be an exponential number of constraints of the form (19) and (20), it is
impractical to generate them all and include them initially. The so-called Restricted Master
Problem (RMP) starts with a subset of these and dynamically identifies violated ones as
needed. Thus it is an iterative process where at any iteration a candidate solution (x∗, z∗)
is found. The subproblem is then solved to calculate z(x∗). If z(x∗) = z∗, the algorithm
terminates, otherwise a violated feasibility or optimality cut exists. One adds the respective
cut to the RMP and iterates again. In what follows we provide the Benders reformulation of
(1)-(15).

4.2 Benders Reformulation

For the problem under consideration one can observe that once the reload dates and reload
amounts have been fixed, one can independently solve each scenario and find the cheapest
way of supplying the respective power demand power of each. That is, the problem naturally

212



A solution approach to the ROADEF/EURO 2010 challenge based on...

decomposes into n independent subproblems, where n is the number of different possible
scenarios. Thus, the role of the master problem in this context is to identify good out-
age/reloading schedule. We model this as a MIP since it contains binary decision variables,
which govern reload dates, and continuous variables that reflect the corresponding reload
amounts. The Benders RMP (without the addition of any feasibility and optimality cuts) can
be stated as follows.

Master problem

min
∑

i∈I

∑

k∈K

cikrik +
1

|S|

∑

s∈S

θs (22)

s.t. rik ≥ Rik ·
∑

w∈Wik

yiwk ∀i ∈ I, ∀k ∈ Ki (23)

rik ≤ Rik ·
∑

w∈Wik

yiwk ∀i ∈ I, ∀k ∈ Ki (24)

∑

w∈Wik

yiwk ≥
∑

w∈Wi,k+1

yi,w,k+1 ∀i ∈ I, ∀k ∈ Ki (25)

∑

i∈Cm

∑

k∈Ki

∑

w∈ITm

w
∑

w′=w−Lik+1

yiw′k ·

t(w+1)−1
∑

t=t(w)

Pmax
it ≤ Imax

m ∀m ∈ M21, ∀w ∈ W (26)

∑

(iwk)∈H

yiwk ≤ KH ∀H ∈ H (27)

rik ≥ 0 ∀i ∈ I, ∀k ∈ Ki (28)

yiwk ∈ {0, 1} ∀i ∈ I, ∀k ∈ Ki, ∀w ∈ W o
ik, (29)

Associated with each scenario s ∈ S is a decision variable θs that reflects the cost of
supplying the power demanded in scenario. The constraints are as described in Section 3. In
addition to the constraints described here a number of additional constraints are added to the
master problem, which will be described in Section 6. Given a candidate solution (r, y, θ) to
this problem one can solve s power production subproblems to separate any violated feasibility
and optimality cuts. The structure of the subproblems that must be solved is given below

213



Chapter 15

Subproblem

min
∑

t∈T

∑

j∈J

cj,tFtpj,t −
∑

i∈I

ci,|T |+1x
f
i (30)

s.t. xe
iks = x

b
iks −

∑

t∈T

pitks · Ft ∀i ∈ I,∀k ∈ Ki,∀s ∈ S (31)

x
b
iks = rik +Bik

∑

w∈Wo
ik

yiwk + Q̃ik



x
e
i,k−1,s −Bi,k−1

∑

w∈Wo
ik

yiwk



 ∀i ∈ I,∀k ∈ Ki,∀s ∈ S (32)

x
e
iks ≤ A

max
i,k+1 +



1−
∑

w∈Wo
ik

yi,w,k+1





(

M
1

i − A
max
i,k+1

)

∀i ∈ I,∀k ∈ Ki,∀s ∈ S (33)

x
b
iks ≤ S

max
ik +



1−
∑

w∈Wo
ik

yiwk



 (Mi − S
max
ik ) ∀i ∈ I,∀k ∈ Ki,∀s ∈ S (34)

x
f
is ≤

∑

k′>k

∑

w∈Wo
ik

yiwk′Mi + x
e
iks ∀i ∈ I,∀k ∈ Ki,∀s ∈ S (35)

pitks ≤ P it · ρ(i, w(t), k) ∀i ∈ I, k ∈ Ki, t ∈ T
p

ik,∀s (36)

Pjts ≤ pjts ≤ P jts ∀j ∈ J,∀t ∈ T,∀s ∈ S (37)
∑

i∈I

∑

k∈Ki(w(t))

pitks +
∑

j∈J

pjts = Dts ∀t ∈ T,∀s ∈ S (38)

Again each constraint is as described in section 3. Each subproblem is modelled as a
linear program (LP) and determines how much each power plant should produce in each time
step so that the demand in each time step for the given scenario is satisfied, and the various
constraints regarding fuel stock levels are respected In addition to this one must respect
several production level bounds at each power plant. Two such constraints, CT6 and CT12,
are two complicated to include in the LP formulation. The first states that once the fuel stock
level at a given nuclear power plant falls below a certain threshold production must follow a
piecewise linear decreasing function, while the second tries to ensure a high utilization of the
nuclear power plants by stipulating that the average deviation of the production cannot be
more than a certain tolerance from the maximum possible production level (however, only
prior to the aforementioned threshold). As a result, such constraints are not enforced when
solving a given subproblem, but rather in a post-processing step that attempts to repair the
subproblem solution. This is described in Section 7.1.

In a typical Benders Decomposition fashion, optimality cuts are separated using solutions
to each of the subproblems and are added to the master problem to direct it towards more
promising outage/reloading schedules. In order to minimize the need for feasibility cuts to
the master problem, constraints are preemptively added to the master problem and try to
enforce CT11. These constraints also partly enforce CT6 and are discussed in Section 6.

4.3 Solution Approach

In this section we provide an overview of the algorithm we propose for solving the Benders
reformulation. Here we simply provide a sketch of the approach, more detailed discussions on
certain components of the algorithm are provided in the subsequent sections. The algorithm
can be separated into three distinct phases, and we discus each in turn.

214



A solution approach to the ROADEF/EURO 2010 challenge based on...

Stage 0 In Stage 0 the master problem is solved to integrality without the addition of any
optimality cuts. This is done in order obtain a solution that is supposedly easy to repair so
that at least one complete solution is obtained. We do not expect this solution to be of high
quality, but it is expected to be easy to find. Prior to building the MIP in Stage 0, extensive
preprocessing is used to remove redundant variables from the model. This preprocessing step
is described in Section 5.1.

Stage 1 In this stage, the root node of the relaxed master problem is solved. The relaxed
master problem is obtained by removing the integral restrictions on the yiwk variables. Solving
the root node is an iterative procedure between the master problem and the subproblems,
where the subproblems are used to separate any violated feasibility and optimality cuts given
a solution to the master problem. Note that we do not solve all subproblems per Benders
iteration since this would simply take too long. A round robin approach is adopted in which
only one subproblem is solved per Benders iteration. Since even solving a single instance of the
subproblem can be quite time consuming, an aggregated version is used (see Section 5.2). In
the aggregated subproblem, the time step is considered to be weeks as opposed to days or even
hours. When no optimality cut has a magnitude of violation greater than some prespecified
epsilon, or some predetermined time limit is reached, this stage terminates. Cplex 12.1 is
used to solve both the master and the subproblems.

Stage 2 In the final stage of the algorithm the master problem is solved to integrality
without the addition of anymore optimality cuts using a standard standard branch-and-bound
technique. Cplex’s populate routine is used to collect integeral solutions found in the branch-
and-bound tree. Once a certain number of integer solutions have been found, all subproblems
are solved to obtain a complete solution. However, the complete solution may violate CT6
and CT12. To remedy this, the solution to each subproblem is repaired so that CT6 and CT12
are satisfied. The routine to do this is described in Section 7.1. Once a complete solution
satisfying all constraints has been found, a 2-opt heuristic is used to improve its quality. This
is detailed in Section 7.2. The best found solution is retained. Stage 2 continues until either
all integer solutions from the branch and bound tree are enumerated, or a prespecified time
limit is reached. The pseudo code for the complete methodology is given in Algorithm 1.

5 Reducing the problem size

As the problems may contain a huge number of variables, it is an advantage both with respect
to computational time and memory consumption to reduce the problem size. In the following
we describe two such reduction procedures.

5.1 Preprocessing

For the master problem employed, there is a yiwk variable, for each possible week w the outage
of cycle k for plant i can occur. Because many of the constraints (CT13-CT21) concern these
outage dates, many of them are infeasible, and removing them in a preprocessing step will
reduce the size of the master problem. In the following we present a simple, yet effective
preprocessing procedure.

215



Chapter 15

Algorithm 1 Core Methodology

Preprocess problem instance
Solve master MIP without any optimality/feasibility cuts
repeat

Solve relaxed master problem
Solve next aggregated subproblem
Separate violated optimality/feasibility cut and append

until No violated optimality/feasibility cuts exist or time limit exceeded
Convert to MIP and run branch-and-bound
repeat

Populate integral solution pool with a certain number of solutions
for s ∈ S do

Solve subproblem associated with scenario s
Repair subproblem solution
Run 2-opt heuristic to improve solution quality

end for

if A feasible solution is found for each subproblem then

Update best known solution if total cost is better than that of the current best solution
end if

until All integer solutions have been enumerated or time limit exceeded

Let G = (V,E) be a graph, where each node v ∈ V corresponds to the outage date, wv

of some cycle, kv, of plant iv. There is an edge (u, v) ∈ E, if there is a conflict between the
two corresponding outage dates, i.e., it is infeasible for cycle ku to start its outage in week wu

while cycle kv starts its outage in week wv. How the conflicts are derived is explained later.
For a set S ⊆ V let N(S) = {v ∈ V \S : ∀u ∈ S : ∃(u, v) ∈ E}, i.e., the set of nodes incident
to all nodes in S. Now if S ⊆ V is a set of nodes, for which it is known that at least one of
the corresponding outage dates must be chosen in any solution, then the set N(S) may be
removed from the graph, as the corresponding outage dates can never be used. As it is known
from the input data that some of the cycles must be scheduled, the set of nodes corresponding
to the outage dates of these cycles can be used to perform the above described elimination.

Conflicts between outage dates are derived as follows:

1. All outage dates of the same cycle are in conflict.

2. Assume that the outage of cycle k of plant i occurs in week w, then the outage of any
following cycle of the same plant must occur after week w + Lik − 1 (see constraint
CT13). This can be represented as conflicts between the individual outage dates.

3. Similarly assume that the outage of cycle k of plant i occurs in week w. Because of
constraint CT11 the stock must be below Amax

i,k+1
before the outage of the next cycle

can occur, and be below Smax
i,k+1

after the reload. Let LB be a lower bound on the stock
at the beginning of cycle k, and let UB(w0, w1) be an upper bound on the production
capacity from week w0 to week w1 for plant i. A lower bound on the stock at any time
after w, may then be calculated as LBS(w1) = LB − UB(w,w1). The outage of cycle
k + 1 must occur after

wmin = argmin{w1 : LBS(w1) ≤ Amax
i,k+1 ∧ LBS(w1) ≤ f(Smax

i,k+1, Ri,k+1)}},

216



A solution approach to the ROADEF/EURO 2010 challenge based on...

where f(x, r) returns the stock after a reload of r given end stock x, as specified by
CT10. We set LB = Rik, and UB(w0, w1) is calculated by assuming a production of
P it as long as the stock is above Bik, and then following the shutdown curve. Again
this can be represented as conflicts between the individual outage dates.

4. Constraints CT14-CT18 can be represented as conflicts between individual outage dates.

5. (Optional) The previous methods are exact in the sense that only outage dates which
are infeasible are removed. These methods derive a large number of conflicts, and as
a consequence a large number of outage dates may be removed. Even so, for some
less tightly constrained instances (see section 8 on computational results) this may not
reduce the size of the problems enough and we thus include a heuristic for deriving
conflicts. The working assumption for this heuristic is that it is not optimal to have a
plant type 2 without stock for too long before the next reload occurs. Assume that the
outage of cycle k of plant i occurs in week w. Let UB be an upper bound on the stock
at the beginning of cycle k, and let LB(w0, w1) be a lower bound on the stock which
must be consumed from week w0 to week w1. Note that this lower bound is not zero
because of constraint CT12. Let

wmax = (1 + α) argmin{w1 : UB − LB(w,w1) ≤ 0},

where α ≥ 0. We add conflicts between w and all outage dates w′ > w of the following
cycle k + 1 for the same plant. The value α controls how long we allow a plant to lay
idle in the worst case. As UB we use Smax

ik , and LB(w0, w1) is calculated by assuming
a production of zero until CT12 is violated, then production at P it as long as the stock
is above Bik, and then following the shutdown curve.

In addition to the above conflicts we remove certain outage date as follows: Let k be a
cycle that does not necessarily have to be scheduled. Let w = TA + Lik be the latest
point in time the production campaign of cycle k can start, let wmax be defined as
above. We remove all outage dates w′ > w for the following cycle k + 1. This may
remove additional outage dates.

Additional conflicts can be deduced by the calculation described in point 3 above if the
Amax

ik , Smax
ik , or Rmax

ik values can be tightened. For any i ∈ I and k ∈ Ki the values may be
tightened as follows:

Amax
ik :=min{Amax

ik , f̃(Smax
ik , Rik})

Smax
ik :=min{Smax

ik , f(Amax
ik , Rik)}

Rik :=min{Rik, f̂(0, S
max)}

where f(x, r) is as earlier, f̃(y, r) gives the end stock which result in stock y after a reload of
r as specified by CT10, and f̂(x, y) gives the reload which results in stock y given end stock
x, as specified by CT10.

All conflicts of the conflict graph are added to the mater problem as clique constraints,
which thus include the constraints CT13–CT18, and only CT19 and CT20 are included using
the form (27). The complete preprocessing algorithm is sketched in Algorithm 2.

217



Chapter 15

Algorithm 2 Preprocessing of outage dates

Tighten Amax and Smax values.
Construct conflict graph G.
repeat

for all i ∈ I do

for all cycles, k, of i which must be scheduled do

Eliminate vertices of G.
end for

end for

until No vertices could be eliminated

5.2 Aggregation

Unlike the preprocessing technique described in Section 5.1, which attempts to remove as
many redundant variables as possible from the master problem, the aggregation technique
focuses on the subproblem and reduces the size of this problem by aggregating the individual
time step production variables into variables that determine the weekly production level for
each power plant (both type 1 and type 2). Since the time discretization of the master
problem is weekly, one does not need the production levels for each individual time step
(which can be as short as 4 hours) when solving the subproblem in the cutting phase of
our methodology. This simple aggregation approach can dramatically reduce the size of the
subproblem; the number of production variables can be reduced by a factor 42 at best. This
primarily allows faster Benders iterations to be performed; however, it can also be used to
determine the likelihood of finding a feasible solution to the subproblem. If the aggregated
version is infeasible, then the disaggregated version will also be infeasible. The reverse,
however, is not true. In Section 8 we assess the impact of using the aggregated version in the
repair phase of the algorithm. Next, we formalize how both the aggregation and the necessary
disaggregation are performed.

Minimal changes are required to model (30)-(38) in order to obtain the aggregated version.
In introducing the weekly production variables piwks and pjws, one is required to update the
minimum and maximum production levels for each power plant, i.e. (36) and (37), the demand
constraints, i.e. (38), and the production cost for each plant of type 2 to reflect the weekly
structure. That is, (36), (37), and (38) become

piwks ≤ ρ(i, w, k) ·
∑

t∈wt

P it ∀(i, k, w ∈ W p
ik, s) (39)

∑

t∈wt

P jt ≤ pjws ≤
∑

t∈wt

P jts ∀(j, w, s) (40)

∑

i∈I

∑

k∈Ki(w)

piwks +
∑

j∈J

pjws ≥ Dws, ∀(w, s) (41)

where Dws =
∑

t∈wt
Dts. The cost of each piwks variable is assumed to be the average cost of

production for the aggregated time intervals, and we assume that the number of time steps
per week is constant.

In order to provide a feasible solution to the subproblem, any aggregated solution must be
disaggregated (if this is possible). This routine works in a similar way to the repair heuristic

218



A solution approach to the ROADEF/EURO 2010 challenge based on...

described in Section 7.1. In an aggregated solution one has the weekly production levels of
each plant which must be disaggregated into time step production levels in such a way that
the demand of each time step is satisfied. Since each type 1 plant has a certain minimum
production level in each time step, the procedure begins by first identifying the type 1 plant
contribution to the demand in each of the time steps. The respective time step demands
are then reduced accordingly. Next, the type 2 power plants are considered in order and
an attempt is made to disaggregate their weekly production levels in each of their scheduled
cycles. In this disaggregation step one proceeds by assigning the plant’s maximum production
level in each of the time steps, or the remaining demand for that time step, whichever is the
smaller. If disaggregation fails (i.e. the assigned weekly production level for the plant cannot
be met), an attempt is made to identify a time step (or as many as required) within the week
for which there is unmet demand and for which the plant is currently not producing. If this
cannot consume the surplus fuel, one repeats this process but looks across the weeks in the
cycle. Finally, an attempt is made to push the remaining fuel to the subsequent cycle as long
as CT11 is satisfied. If CT11 is violated, disaggregation is deemed not possible, although there
is no guarantee that it is actually not possible. Once disaggregation has been successfully
performed for each type 2 power plant, any unmet demand in any time step is satisfied by
the cheapest type 1 power plant.

Algorithm 3 Disaggregation Algorithm

Require: A feasible solution to an aggregated subproblem
for all j ∈ J do

for all t ∈ T do

Reduce the demand in time step t by the minimum required production level for plant
j.

end for

end for

for all i ∈ I do

for all cycles k of i that must be scheduled do

for all weeks w of k do

Disaggregate weekly production level
if Surplus power remains then

Try to consume the surplus fuel in the given week. If this is not possible, try to
consume the fuel in the given cycle. If the remaining fuel still cannot be used, try
to move it to the subsequent cycle. If a CT11 violation occurs, disaggregation is
deemed impossible.

end if

end for

end for

end for

6 Feasibility

The following so-called stock-bounding constraints are added to the master problem in order
to decrease the number of infeasible subproblems due to the CT11 constraints. One can
think of these constraints as adding an artificial stock variable to the master problem, which

219



Chapter 15

must satisfy these constraints given an upper bound on production. In addition a number
of constraints, not described here because of space consideration, are added which makes the
complete solution less likely not to be repairable because of CT6, by bounding the amount of
fuel which can be consumed between time periods when satisfying the shutdown curve.

Stock Bounding

• xb
ik: lower bound on stock at the beginning of cycle (i, k).

• xe
ik: lower bound on stock at the end of cycle (i, k).

xe
ik ≥ xb

ik −
∑

t∈T
p

ik

P it ·Dt · ρ(i, w(t), k) ∀(i, k) (42)

xb
ik = rik +BOik

∑

w∈Wik

yiwk +
Qik − 1

Qik

(

xe
i,k−1

−BOi,k−1

∑

w∈Wik

yiwk

)

∀(i, k) (43)

xe
ik ≤ Amax

i,k+1
+

(

1−
∑

w∈Wik

yi,w,k+1

)

(

M1

i −Amax
i,k+1

)

∀(i, k) (44)

xb
ik ≤ Smax

ik +

(

1−
∑

w∈Wik

yiwk

)

(

M1

i − Smax
ik

)

∀(i, k) (45)

Similar to in the subproblem, constraints (42) ensure stock level consistency between the starting
stock level of a cycle and its end stock level assuming maximal production in all time steps, while
constraints (43) reflect the requirement that some fuel is lost as a plant goes through a reload. The
Amax bounds and Smax bounds are enforced by constraints (44) and constraints (45) respectively.

6.1 Stock Cuts

The Stock Cuts are introduced to enforce some of the structure of the shutdown curve on the stock
bound variables xb

ik, x
e
ik : i ∈ I, k ∈ K defined above. The cuts are divided into three sets described in

the following:

Cut-SI

xb
ik−

∑

w′>w

yi,w′,k+1

(

UB1

ik(w,w
′) +Amax

i,k+1

)

≤

(

1−
∑

w′>w

yi,w′,k+1

)

Smax
ik +(1− yiwk)S

max
ik ∀(i, w, k)

(46)

where UB1

ik(w,w
′) := max production from w to w′ assuming Smax

ik at time w with no intermediate
refueling. UB1

ik(w,w
′) is bounded from above by Smax

ik .

There are three parts to these cuts:

• yiwk = 0: This means that for plant i, week w is not the date of outtage for cycle k. In this case
the cut evaluates to xb

ik ≤ Smax
ik + ρ with ρ being some positive number. This does not bound

xb
ik further than the allready existing bound of Smax

ik .

• yiwk = 1 and
∑

w′>w yi,w′,k+1 = 0: This means that for plant i, week w is the date of outtage

for cycle k and for cycle k+1 there is no outtage. In this case the cut evaluates to xb
ik ≤ Smax

ik ,
which does not bound xb

ik further.

220



A solution approach to the ROADEF/EURO 2010 challenge based on...

• yiwk = 1 and yi,w′,k+1 = 1 for some w′ > w: This means that for plant i, week w is the date of
outtage for cycle k and for the following cycle k+ 1 week w′ is the date of outtage. In this case
the cut evaluates to xb

ik −UB1

ik(w,w
′) ≤ Amax

i,k+1
, which ensures that the begin stock xb

ik of cycle
k is small enough for the maximum permitted fuel prior to reload in cycle k+ 1 is not violated,
assuming maximum production in cycle k and no interactions from other plants j ∈ I : i 6= j.

Special case. For k = 0:

XI −
∑

w′>w

yi,w′,k+1

(

UB1

ik(w,w
′) +Amax

i,k+1

)

≤

(

1−
∑

w′>w

yi,w′,k+1

)

XI ∀(i, 0, 0) (47)

Similar to above several cases exist:

•
∑

w′>w yi,w′,k+1 = 0: Evaluates to XI ≤ XI, which requires no further comments.

• yi,w′,k+1 = 1 for some w′ > w: Evaluetes to XI − UB1

ik(w,w
′) ≤ Amax

i,k+1
. By following the

argumentation above, this can be shown to be valid.

Cut-SII

Rik −
∑

w′>w

yi,w′,k+1UB2

ik(w,w
′) ≤ xe

ik +

(

1−
∑

w′>w

yi,w′,k+1

)

Rik + (1− yiwk)Rik ∀(i, w, k) (48)

where UB2

ik(w,w
′) := max production from w to w′ assuming Ri,k at time w.

As for Cut-SI there are three parts to these cuts:

• yiwk = 0: In this case the cut evaluates to 0 ≤ xe
ik + ρ with ρ being some positive number. This

does not bound xb
ik further than the allready existing bound of 0.

• yiwk = 1 and
∑

w′>w yi,w′,k+1 = 0: In this case the cut evaluates to 0 ≤ xe
ik, which does not

bound xb
ik further.

• yiwk = 1 and yi,w′,k+1 = 1 for some w′ > w: In this case the cut evaluates to Rik−UB2

ik(w,w
′) ≤

xe
ik, which ensures that the begin stock xb

ik is large enough compared to the minimum fuel reload,
assuming maximum production in cycle k and no interactions from other plants j ∈ I : i 6= j.

Special case. For k = 0:

XI −
∑

w′>w

yi,w′,k+1UB2

ik(w,w
′) ≤ xe

ik +

(

1−
∑

w′>w

yi,w′,k+1

)

XI ∀(i, 0, 0) (49)

Similar to above several cases exist:

•
∑

w′>w yi,w′,k+1 = 0: Evaluates to 0 ≤ xe
ik, which requires no further comments.

• yi,w′,k+1 = 1 for some w′ > w: Evaluetes to XI − UB2

ik(w,w
′) ≤ xe

ik. By following the
argumentation above, this can be shown to be valid.

Cut-SIII

xb
ik−UB1

ik(w,w
′) ≤ xe

ik+(2− yiwk − yi,w′,k+1)S
max
ik ∀i ∈ I, ∀k ∈ K, ∀w ∈ Wik, ∀w

′ ∈ Wi,k+1, w < w′

(50)

where UB1

ik(w,w
′) is defined as before.

There are two parts to these cuts:

221



Chapter 15

• yiwk + yi,w′,k+1 ≤ 1: In this case the cut evaluates to xb
ik ≤ xe

ik + ρ with ρ being some positive
number, since UB1

ik(w,w
′) ≤ Smax

ik . This is clearly dominated by the constraint xb
ik ≤ xe

ik.

• yiwk = 1 and yi,w′,k+1 = 1: In this case the cut evaluates to xb
ik − UB1

ik(w,w
′) ≤ xe

ik, which
ensures that the end lower bound on stock xe

ik compared to the start lower bound on stock is
not smaller than what can be explained by a maximum production in the cycle.

7 Postprocessing

The role of the postprocessing stage is to try to convert a solution, in the following also referred to
as the reference solution, which does not satisfy the CT6 and CT12 constraints into one that does.
This process is divided in two stages: in the first stage, called the repair stage, the production levels
and reload amounts are altered in an attempt to satisfy CT6, and CT12, without violating any other
constraints. If the solution could not be repaired, it is discarded. In the second stage, called the
postoptimization stage, the production levels are shuffled between plants in an attempt to reduce the
cost of the solution. The two stages are now described in further details.

7.1 Repair

The input to this stage is a solution that satisfies all constraints except perhaps CT6, and CT12, i.e.,
the production curve may not follow the shutdown curve it should, or the maximum modulation is
exceeded. The assumption is that the structure of the reference solution is good, and by making small
adjustments, it is possible to make it satisfy these two additional constraints without changing the
cost too much. Thus we want alterations to be as local as possible and since changes in start and
end stock of a cycle propagates to the remaining cycles, the changes in these should be as small as
possible. Satisfying CT6 means reducing production levels in some places, while satisfying CT12 means
increasing production in some places. Changing the production levels from the reference solution,
means that the stock levels passed from one cycle to the next will change from the reference solution.
One observes that these changes in stocks can be kept small if a decrease of production in one time
step of a cycle can be absorbed by an increase in production in another place of the cycle (see Figure 2
for an example). Changes in production within a cycle could also be absorbed by a change of the
amount of fuel reloaded, but this is at odds with the principle of locality, as all scenarios are affected
and previous repaired scenarios would thus have to be repaired again.

We now describe the consequences on the remaining constraints, when the production levels are
changed: Lowering the production will raise the end stock of the cycle, which may lead to CT11
becoming violated, either for that or a later cycle. Raising production will lower the end stock, which
may lead to shortage of fuel in later cycles, where demand can no longer be met.

The repair procedure is divided in two stages: In stage 1 only Type 2 plants are considered, and
the production curves of these are adjusted so that they satisfy all constraints except perhaps the
demand constraints. Then in stage 2, the production of Type 1 plants are adjusted such that demand
is covered. If any of the stages fail, the entire reference solution is discarded. We now describe these
two stages in detail.

Stage 1 For each plant i ∈ I, each cycle k ∈ Ki is treated one at a time, starting with the earliest.
Each time a cycle is repaired one of two cases may happen:

1. No change in the stock levels at the start or end occurred. This means all changes of production
levels within the cycle, was absorbed by increasing of decreasing production somewhere else
within that cycle.

2. Given the repaired production levels, the end stock would be increased by δ. In this case the
algorithm has two possibilities: either backtrack and try to have δ less stock at the beginning,
i.e., consume δ more earlier, or push the stock excess to the next cycle. The algorithm first
backtracks, and if this is not possible pushes the stock to the next cycle.

222



A solution approach to the ROADEF/EURO 2010 challenge based on...

Figure 2: Example of repairing a cycle, such that the shutdown curve is respected by shuffling
production to an earlier part of the cycle, such that the end stock remains the same. The
upper black line is the max production capacity, the upper red dashed line is the production
levels before repair, the upper blue line is the repaired shutdown curve, the upper full red line
is the production levels unaltered by the repair. The lower red line is the stock levels in the
reference solution, while the lower blue line is the stock levels assuming the shutdown curve
is followed backwards from the end stock. δ is the extra stock that must be consumed earlier
in the cycle for the end stock to remain the same. The gray area represents the increase in
production in order to consume the extra stock.

The repair algorithm is sketched in Algorithm 4, where xb
ik and xe

ik is the stock at the beginning
and end of the cycle respectively, tbik and teik is the beginning and end respectively of the production
campaign of that cycle, and δik ∈ R is the amount of stock to clear, either from a backtrack from a
later cycle, or from an earlier cycle.

Stage 2 This stage is quite simple. For each t ∈ T it is checked whether demand is either over-
supplied or under-supplied. If demand is oversupplied the production of the most expensive Type 1
plants are reduced, if demand is under-supplied the production of the least expensive Type 1 plants
are raised. It may happen that demand can not be meet because of the bounds on the production
of plant Type 1. If so production is attempted shuffled within each cycle in a manner similar to the
produce described in the next section. If demand can not be meet, the reference solution is discarded.

7.2 Postoptimization

The input to this stage is a solution that satisfies all constraints, and the role of the postoptimization
is to try and reduce the cost of the solution by performing alterations, which do not lead to any new
constraint violations but reduces the overall cost. As performing alterations which result in changes to
the end stock of a cycle propagates, calculating the consequence of such alterations can be cumbersome,
and we thus restrict our attention to alterations, where this is not the case.

One such alteration is the following: Let t1 and t2 be two points in time lying before the start
of the shutdown curve within the same cycle for some i ∈ I, let j1, j2 ∈ J be two plants such that
cj1t1 < cj2t2 , and let δ = min{P it2 − pit2 , pit1 , P j1t1 − pj1,t1 , pj2,t2 − P j2t2

}, where p is the current
production level. Then updating pit1 := pit1 − δ, pit2 := pit2 + δ, pj1t1 := pj1t1 + δ, pit2 := pit2 − δ,
results in an improved cost while satisfying all constraints and not altering the end stock, nor the
shutdowncurve of the cycle in question. The postoptimization heuristic is sketched in Algorithm 5.

223



Chapter 15

Algorithm 4 Repair algorithm for a single cycle

Require: A plant i ∈ I and cycle k ∈ Ki

if is backtrack then

xeik := max{0, xeik − δik}.
else

xsik := xeik + δik.
end if

Calculate shutdown curve backwards from xeik. Let tB and xB be the resulting time step
and stock right before entering this shutdown curve, and let xtB be the current stock at
time tB.
Set δ := xB − xtB .
Raise production by δ (if possible) in the time interval [tik; tB ]. Let δ be what is left.
if δ = 0 then

Check if CT12 is violated, if so augment production. This may change the point of the
shutdown curve and the end stock. Let x be the (new) end stock.
δi,k+1 := x− xeik
Set is backtrack := false.
Set xeik := x.
Proceed with next cycle.

else

Since all production is at the upper bound, CT12 is satisfied.
if k = 0 then

Set can backtrack := false

end if

if can backtrack then

Set δi,k−1 := δ
Backtrack to previous cycle.

else

Set δi,k+1 := δ.
Set xeik := xeik + δ.
Proceed with next cycle.

end if

end if

8 Computational results

In this section we present the computational experiments performed. The challenge instances are
divided in three groups: data0–data5 are the initial instances used for the qualification phase, data6–
data10 are the instances made public after the qualification phase, finally data11–data15 are the
instances used for the final ranking of the competitors. These instances were not made available until
after the end of the challenge. As only data instances data0–data10 were available, we restrict the
experiments to these 11 instances, and consider only all the instances for the final computational
results. For some experiments we further restrict our attention to a representative sample: data1,
data5, data7, data8, and data10.

Table 2 lists the characteristics of the instance, where |T | is the number of time steps, |W | is the
number of weeks, |K| is the number of cycles, |S| is the number of scenarios, |J | is the number of
plants of type 1, |I| is the number of plants of type 2, and 13–21 are the number of corresponding
CTXX constraints.

224



A solution approach to the ROADEF/EURO 2010 challenge based on...

Algorithm 5 Postoptimization heuristic

Require: A solution satisfying all constraints.
for all i ∈ I do

for all cycles, k, of i do
for some number of iterations do

Select at random some t1, t2 lying within k and before the start of a shutdown curve.
Select at random some j1, j2 ∈ J such that cj1t1 < cj2t2 .
δ = min{P it2 − pit2 , pit1 , P j1t1 − pj1,t1 , pj2,t2 − P j2t2},
Update pit1 := pit1 − δ, pit2 := pit2 + δ, pj1t1 := pj1t1 + δ, pit2 := pit2 − δ

end for

end for

end for

Table 2: Characteristics of the problem instances

Name |T | |W | |K| |S| |J | |I| 13 14 15 16 17 18 19 20 21

data0 623 89 2 2 1 2 4 1 0 0 0 0 0 0 0

data1 1750 250 6 10 11 10 46 7 0 1 3 0 1 1 1

data2 1750 250 6 20 21 18 84 13 0 1 3 0 1 1 1

data3 1750 250 6 20 21 18 80 10 2 1 3 2 1 1 1

data4 1750 250 6 30 31 30 122 19 0 1 3 0 1 1 1

data5 1750 250 6 30 31 28 120 18 0 1 3 0 1 1 3

data6 5817 277 6 50 25 50 222 33 40 1 3 0 1 50 5

data7 5565 265 6 50 27 48 192 31 35 1 3 0 1 50 5

data8 5817 277 6 121 19 56 114 37 45 1 3 0 1 50 5

data9 5817 277 6 121 19 56 114 37 45 1 3 0 1 50 5

data10 5565 265 6 121 19 56 235 37 45 1 3 0 1 50 5

data11 5817 277 6 50 25 50 239 33 40 1 3 0 1 50 5

data12 5523 263 6 50 27 48 207 31 35 1 3 0 1 50 5

data13 5817 277 6 121 19 56 260 37 45 1 3 0 1 50 5

data14 5817 277 6 121 19 56 256 37 45 1 3 0 1 50 5

data15 5523 263 6 121 19 56 245 37 45 1 3 0 1 50 5

Setup The computational experiments were performed on a machine with 2 Intel(R) Xeon(R) CPU
X5550 @ 2.67GHz (16 cores in total), with 24 GB of RAM, and running Ubuntu 10.4. The version of
CPLEX used is 12.1.

Preprocessing We here examine the effect of the preprocessing described in Section 5.1. Table 3
shows the results: It gives the total number of possible outage dates before preprocessing (Total), and

225



Chapter 15

the percentage of these removed by the preprocessing (Rem.). As can be seen the preprocessing is
very effective removing 80%− 90% of the possible outage dates for all instances except the very small
instance data0, and data8 and data9. For the two latter the number of variables is around twice as large
as the larges of the other instances, and less variables are removed (around 63% and 68% respectively).
The reason can be gleamed from Table 2: data8 and data9 has much fewer CT13 constraints, i.e., few
cycles must be scheduled which means the problem is less constrained and eliminating outage dates
is harder.

Table 3: Number of variables removed by preprocessing

Name Total Rem. Name Total Rem.

data0 36 28.78% data6 24683 85.65%

data1 3920 87.53% data7 35817 80.61%

data2 7941 88.47% data8 69481 68.03%

data3 8207 89.83% data9 69136 62.70%

data4 17514 89.41% data10 30061 85.43%

data5 15415 82.13%

Heuristic preprocessing As we saw earlier the preprocessing is very effective, but it is still lacks
on certain large instances (data8 and data9), where few cycles has to be scheduled. For this reason the
heuristic conflict detector described as point 5 in Section 5.1 is included. As described there the value
of α controls the aggressiveness of the heuristic (lower values means more conflicts). We here examine
the effect of including the heuristic preprocessing. The value of α is fixed to 0.05 (for smaller values
some instances were infeasible). Table 4 shows the percentage of variables removed (Rem.) and the
final solution (Sol.), without the heuristic (No Heur.), and with the heuristic (Heur.) given 3600
seconds respectively. For this experiment the stock constraints were added as described for Run 6 in
Table 6, aggregation was enabled and postoptimization was disabled. As can be seen, the effect on the
final solution quality is minor for data1–data3, for data4–data5 the solution is improved, while it is
worsened for data6, data7, and data10, finally we are now able to solve data8, which was not possible
earlier.

Aggregation Next we examine the effect of aggregation on the solution quality. To that effect
the algorithm is run for 3600 seconds with aggregation enabled and disabled for stage 2 (aggregation
is always performed for stage 1). Table 5 shows the results, where Vars. is the number of variables
in the subproblem, Cons. is the number of constraints in the subproblem, and Sol. is the final
solution. For this experiment the stock constraints were added as described for Run 7 in Table 6,
heuristic conflicts were included with α = 0.05 and postoptimization was disabled. As can be seen the
aggregation results in a big reduction in the number of variables and constraints of the subproblem.
For data8, and data10 no solution is found without the use of aggregation.

Stock constraints We here examine the effect of including the constraints described in Section 6,
in an attempt to ensure the feasibility of the subproblem. One can choose to include either all
the constraints, or only a subset, and to included them only in stage 2 or in both stages. Nine
runs are performed, with the settings described in Table 6. The results can be seen in Table 7.
For this experiment heuristic conflicts were included with α = 0.05, aggregation was enabled and
postoptimization was disabled. As can be seen only Run 7 and Run 10 completes for all the tested
instances. Run 10 achieves the best average results.

226



A solution approach to the ROADEF/EURO 2010 challenge based on...

Table 4: Effect of using heuristic preprocessing for different values of α

No Heur. Heur.

Name Rem. Sol. Rem. Sol.

data0 28.78% 8.7371e12 28.78% 8.7371e12

data1 87.53% 1.6990e11 87.63% 1.6971e11

data2 88.47% 1.4654e11 88.64% 1.4672e11

data3 89.83% 1.5537e11 89.92% 1.5578e11

data4 89.41% 1.1342e11 89.64% 1.1309e11

data5 82.13% 1.3272e11 83.28% 1.3153e11

data6 85.65% 9.0945e10 85.72% 9.2508e10

data7 80.61% 1.2307e11 80.68% 1.3663e11

data8 68.03% – 77.15% 3.2392e12

data9 62.70% – 74.13% –

data10 85.43% 1.5303e11 85.44% 1.7455e11

Table 5: Effect on final solution of aggregating versus not aggregating in stage 2

Enabled Disabled

Name Vars. Cons. Sol. Vars. Cons. Sol.

data1 5514 8693 1.6971e11 37692 58871 1.6968e11

data5 16696 25199 1.3147e11 114346 170849 1.3100e11

data7 25898 34181 1.3663e11 529438 686121 1.3412e11

data8 41762 48309 3.2392e12 860182 977529 –

data10 23150 29457 1.7455e11 469330 581637 –

Postoptimization We here examine the effect of the postoptimization procedure described in
Section 7.2. For each of the 11 instances three runs are performed, with the number of iterations
respectively set to 50, 000, 150, 000, and 300, 000. The results can be seen in Table 8. For this
experiment the stock constraints were added as described for Run 10 in Table 6, heuristic conflicts
were included with α = 0.05. The reason for the factor 10 increase in solution quality for data8 over
previous results, is a newer version of the code, where the conflict graph more effectively is added as
cliques. Due to time constraints the previous tests could not be rerun. As can be seen there is a clear
correlation between the number of postoptimization iterations and the final solution quality.

Time We finally examine the solution quality as a function of total time given to the algorithm. Each
of the 16 instance is run for respectively 3600 seconds, and 10800 seconds. The results can be seen in Ta-
ble 9, and Table 10 respectively, where the number in parenthesis is the deviation from the best known

227



Chapter 15

Table 6: Description of the different settings used for the stock constraint runs

Run Description

1 No stock constraints included

2 Stock constraints (42)–(45) included in stage 1.

3 Stock constraints (42)–(45), SI and SII included in stage
1.

4 All stock constraints included in stage 1.

5 Stock constraints (42)–(45) included in stage 2.

6 Stock constraints (42)–(45), SI and SII included in stage
2.

7 All stock constraints included in stage 2.

8 Stock constraints (42)–(45) included in stage 1, SI and
SII included in stage 2.

9 Stock constraints (42)–(45) included in stage 1, remain-
ing included in stage 2.

10 Stock constraints (42)–(45), SI and SII included in stage
1, remaining included in stage 2.

solutions reported on the ROADEF/EURO 2010 challenge website (http://challenge.roadef.org/2010).
For the challenge a maximum time of 1800 seconds was allowed for the first 6 instances, and 3600
seconds for the remaining 10. Each table gives the following information: the number of optimality
cuts added (#Cuts), the number of solutions found in stage 2(#Sols), the number of solutions found
in stage 2 that were repairable (#Rep), the solution value (Sol.), the percentage deviation from the
best known solution (#Dev), and the average deviation for the two test sets of five instances (#Avg).

As can be seen from the tables, the solution approach performs satisfactorily on instances zero to
five. These were the test instances used in the qualification phase of the contest and are less complicated
than the second and third set of instances (data6 to data10, and data11 to data15). For the latter
sets, the algorithm runs into difficulty due to the large number of binary variables, particularly for
data8 and data9 which are far from the best known solutions, and for data13 which is not solved at
all. Furthermore, formulating and solving the subproblem as an LP and repairing its solution so that
it satisfies CT6 and CT12 appears to be an expensive process, despite the aggregation.

For the the smaller instances, many of the solutions are repairable, while for the larger instances,
there is a lot more variation. It is suprising that for two of the instances where the algorithm performs
poorly (data8 and data13), there is a large number of solutions found but only a single one is repairable
in one case, while none in the other. Generally it appears that for the larger instances, either the
solutions to the Master problem can not be adjusted such that they satisfy CT6 and CT12, or the
repair algorithm does a poor job.

Doubling the amount of time (Table 10) does not significantly change the results and only data1,
data5, and data6 are improved. The trend of finding many solutions which are non-repairable remain
the same.

228



A solution approach to the ROADEF/EURO 2010 challenge based on...

Table 7: Effect of including stock constraints. See Table 6 for a description of each run.

Name Run 1 Run 2 Run 3 Run 4 Run 5

data 1 1.6986e11 1.6987e11 1.6981e11 1.6986e11 1.6973e11

data 5 – 1.2656e11 1.2593e11 1.2707e11 1.3163e11

data 7 – 1.3535e11 1.0514e11 1.2517e11 1.3363e11

data 8 – – – 2.8047e12 –

data10 – 1.3055e11 1.3785e11 1.3667e11 1.1532e11

Avg. – – – –

Name Run 6 Run 7 Run 8 Run 9 Run 10

data 1 1.6972e11 1.6972e11 1.6987e11 1.6979e11 1.6977e11

data 5 1.3039e11 1.3148e11 1.2656e11 1.2654e11 1.2593e11

data 7 1.3392e11 1.3663e11 1.4035e11 1.3373e11 1.0563e11

data 8 – 3.2393e12 – – 2.1963e12

data10 1.5162e11 1.7455e11 1.4273e11 1.6093e11 1.3864e11

Avg. – 7.7034e11 – – 5.4725e11

Table 8: Effect of postoptimization procedure. The number of iterations for the runs are
respectively 50, 000, 150, 000, and 300, 000

Name Run 1 Run 2 Run 3

data1 1.69711e11 1.69710e11 1.69709e11

data5 1.26452e11 1.26453e11 1.26451e11

data7 1.10602e11 1.09518e11 1.09013e11

data8 2.88400e11 2.79264e11 2.75348e11

data10 1.30261e11 1.28788e11 1.28443e11

9 Conclusion

In conclusion, we have developed a Benders Decomposition approach to solve the large scale energy
management problem posed for the ROADEF/EURO 2010 challenge. The approach includes a MIP
model of the problem along with additional constraints for ensuring feasibility of the subproblems, a
very effective preprocessing and aggregation scheme, which reduces the size of the problem significantly,
and an algorithm for repairing a solution which only satisfies a subset of the constraints.

On the first set of instances the approach is competitive, while on the the second two set of instances
it is not. This is mainly due to the size of the problems, and the time allotted. On the second set of
instances and 5 blind instances we placed 14th out of 19 teams in the final of the competition. One
of the few optimal methods proposed, it was unable to compete with the heuristics given only 3600

229



Chapter 15

Table 9: Results for different problem instances given 3600 seconds

Name #Cuts #Sols. #Rep. Sol. Dev. Avg.

data0 5 2517 2517 8.7372e12 0.0709%

data1 6 352 312 1.6971e11 0.1008%

data2 17 82 82 1.4629e11 0.1639%

data3 14 86 86 1.5475e11 0.2050%

data4 23 36 35 1.1206e11 0.4157%

data5 21 38 37 1.2645e11 0.4997% 0.2427 %

data6 14 12 12 9.0113e10 8.0173%

data7 5 121 1 1.0901e11 34.2953%

data8 3 1486 2 2.7535e11 236.0938%

data9 9 7 3 3.5103e12 4193.8891%

data10 37 7 5 1.2844e11 62.3461% 906.9283 %

data11 61 447 11 8.8464e10 14.0143%

data12 20 12 12 8.8135e10 15.2850%

data13 16 1017 0 – –%

data14 10 8 4 1.0092e11 32.4820%

data15 46 35 2 1.5758e11 109.8220% 42.9008%

seconds of computing time. The sophisticated approach can, however, provide information as to the
quality of solutions through the lower bound information which can be obtained at each iteration of
the Benders algorithm aswell as insights into the structire on the problem.

230



A solution approach to the ROADEF/EURO 2010 challenge based on...

Table 10: Results for different problem instances given 10800 seconds

Name #Cuts #Sols. #Rep. Sol. Dev. Avg.

data0 5 2517 2517 8.7372e12 0.0709%

data1 6 872 583 1.6971e11 0.1007%

data2 17 153 153 1.4629e11 0.1639%

data3 14 165 165 1.5475e11 0.2050%

data4 23 73 72 1.1206e11 0.4156%

data5 21 76 74 1.2643e11 0.4842% 0.2401 %

data6 14 23 23 8.9659e10 7.4733%

data7 5 481 22 1.0901e11 34.2953%

data8 3 4292 2 2.7535e11 236.0938%

data9 9 12 10 3.5103e12 4193.8891%

data10 37 10 9 1.2844e11 62.3461% 906.8179 %

data11 61 458 22 8.8464e10 14.0143%

data12 20 25 25 8.8135e10 15.2850%

data13 16 2187 0 – –%

data14 10 118 8 1.0092e11 32.4820%

data15 46 126 2 1.5758e11 109.8220% 42.9008%

References

[1] Jacques F. Benders. Partitioning procedures for solving mixed variables programming problems.
Numerische Mathematik, 4:238 – 252, 1962.

[2] Jordi Cabero, Mariano J. Ventosa, Santiago Cerisola, and Álvaro Báıllo. Modeling risk manage-
ment in oligopolistic electricity markets: A benders decomposition approach. IEEE Transactions
on power systems, 25(1):263 – 271, 2010.

[3] Salvador Perez Canto. Application of benders decomposition to power plant preventive mainte-
nance scheduling. European Journal of Operational Research, 184:759 – 777, 2008.

[4] Ivan Contreras, Jean-François Cordeau, and Gilbert Laporte. Benders decomposition for large
scale uncapacitated hub location. Technical Report CIRRELT-2010-26, Interuniversity research
centre on enterprise networks, logistics, and transportation, 2010.

[5] Olivier Guyon, P Lemaire, Eric Pinson, and David Rivreau. Cut generation for an integrated
employee timetabling and production scheduling problem. European Journal of Operational Re-
search, 201:557 – 567, 2010.

[6] Anne Mercier, Jean-François Cordeau, and François Soumis. A computational study of benders
decomposition for the integrated aircraft routing and crew scheduling problem. Computers and
Operations Research, 32:1451 – 1476, 2005.

231



Chapter 15

[7] Joe Naoum-Sawaya and Samir Elhedhli. A nested benders decomposition approach for telecom-
munication network planning. Naval Research Logistics, 57:519 – 539, 2010.

[8] Marc Porcheron, AgnÃ¨s Gorge, Olivier Juan, Tomas Simovic, and Guillaume Dereu. Chal-
lenge roadef/euro 2010 : A large-scale energy management problem with varied constraints.
http://challenge.roadef.org/2010/sujetEDFv22.pdf, 2009.

[9] T. N. Santos and A. L. Diniz. Feasibility and optimality cuts for the multi-stage benders decom-
position approach: Application to the network constrained hydrothermal scheduling. In Power
& Energy Society General Meeting, 2009. PES ’09. IEEE, 2009.

[10] Lei Wu and Mohammad Shahidehpour. Accelerating the benders decomposition for network-
constrained unit commitment problems. Energy Systems, 1:339 – 376, 2010.

232



DTU Management Engineering

Department of Management Engineering

Technical University of Denmark

Produktionstorvet

Building 424

DK-2800 Kongens Lyngby

Denmark

Tel.	+ 45 45 25 48 00

Fax	 +45 45 93 34 35

www.man.dtu.dk

This thesis presents how to parallelize a shortest path labeling algorithm. It is shown how to handle 
Chvátal-Gomory rank-1 cuts in a column generation context. A Branch-and-Cut algorithm is given 
for the Elementary Shortest Paths Problem with Capacity Constraint. A reformulation of the Vehicle 
Routing Problem based on partial paths is presented. Finally, a practical application of finding shor-
test paths in the telecommunication industry is shown.


	BjørnPetersen_phd_afhandling.pdf
	Ph.d.-omslag9

