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as mathematical optimization problems, integrality constraints are commonly 
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same time, it is known that semidefinite programming is very suitable for obtaining 
strong relaxations of combinatorial optimization problems. In this dissertation, 
we study the interplay between semidefinite programming and integrality, where 
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Notation

Sets

S ∪ T union of S and T

S � T disjoint union of S and T

S ∩ T intersection of S and T

S ⊆ T S is a subset of T

S � T S ⊆ T , but S 	= T

|S| cardinality of S

δS indicator function of S, i.e., δS(x) = 0 if x ∈ S and δS(x) =∞ otherwise

[n] set of integers {1, . . . , n}
R set of real numbers

Q set of rational numbers

Z set of integer numbers

R+ the set of nonnegative real numbers (similar definitions for Q+ and Z+)

Rn the subspace of n-dimensional vectors of real numbers (similar definitions for

Qn and Zn)

Rn×m the subspace of n×m matrices of real numbers (similar definitions for Qn×m

and Zn×m)

P(S) power set of S, i.e., collection of all subsets of S

Sn subspace of n× n symmetric matrices

Sn
+ cone of n× n positive semidefinite matrices, i.e., {X ∈ Sn : X � 0}
Sn
++ cone of n× n positive definite matrices, i.e., {X ∈ Sn : X � 0}
Nn

+ cone of n× n symmetric nonnegative matrices, i.e., Sn ∩ Rn×n
+

DNNn
+ cone of n× n doubly nonnegative matrices, i.e., Sn

+ ∩Nn
+

CPn
+ cone of n× n completely positive matrices, i.e., {X ∈ Sn : X = BB�, B ≥

0}
K∗ dual cone of cone K
NS(x) normal cone of a set S at point x

conv(S) convex hull of elements in S

cone(S) conical hull of elements in S

dim(P ) dimension of a convex set P

int(S) interior of a set S

ri(S) relative interior of a set S

clCG(S) elementary closure of closed convex set S

Πn set of n× n permutation matrices
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Linear algebra

In or I n× n identity matrix or identity matrix of fitting size

Jn or J n× n matrix of ones of matrix of ones of fitting size

1n or 1 n× 1 column vector of ones or vector of ones of fitting size

0n or 0 n× 1 zero vector or zero vector of fitting size

ei ith column of identity matrix

S binary indicator vector of set S, where entry i is one if i ∈ S and zero otherwise

Eij matrix eie
�
j

Mi,: ith row of matrix M as a row vector

M:,i ith column of matrix M as a column vector

M [S] principal submatrix of M induced by indices in S

Col(M) column space of matrix M

Nul(M) null space of matrix M

W⊥ orthogonal complement of linear subspace W
Span{S} linear subspace spanned by the elements in the set S

M ⊕N direct sum of M and N

M ⊗N Kronecker product of M and N

M ◦ N Hadamard product of M and N

supp(x) support of vector x, i.e., the set of indices of nonzero elements in x

tr(M) trace of square matrix M

diag(·) operator Sn → Rn that maps square matrix M to a vector containing the

diagonal elements of M

Diag(·) adjoint operator of Diag(·)
vec(·) operator Rm×n → Rmn that maps a matrix to a vector by concatenation of

its columns

svec(·) operator Sn → R
1
2
(n2+n) that maps a matrix to a vector containing the

columnwise concatenation of its upper-triangular elements with weight two

on the off-diagonal elements and weight one on the diagonal elements

triu(·) operator Sn → R
1
2
(n2+n) that maps a matrix to a vector containing the

columnwise concatenation of its upper-triangular elements

Semidefinite programming

〈M,N〉 trace inner product of matrices M and N , i.e., tr(M�N)

||M ||F Frobenius inner product of M , i.e.,
√

tr(M�M)

M � 0 M is positive semidefinite

M � N shorthand for M −N � 0

M � 0 M is positive definite

M � 0 M is positive semidefinite, but M 	= 0

Graph theory

G = (V,E) undirected graph

G = (N,A) directed graph

LG or L Laplacian or weighted Laplacian matrix of G, where G is omitted if the graph

follows from the context

B(G) bipartite representation of a directed graph G
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Notation xix

δ+(i, A′) set of arcs in A′ ⊆ A leaving node i in directed graph

δ−(i, A′) set of arcs in A′ ⊆ A entering node i in directed graph

δ+(i) set of arcs leaving node i in directed graph, i.e., shorthand for δ+(i, A)

δ−(i) set of arcs entering node i in directed graph, i.e., shorthand for δ−(i, A)

δ+(S, T ) set of arcs leaving S and entering T in directed graph

δ−(S, T ) set of arcs leaving T and entering S in directed graph

δ+(S) set of arcs leaving S and entering A \ S in directed graph, i.e., shorthand for

δ+(S,A \ S)
δ−(S) set of arcs leaving A \ S and entering S in directed graph, i.e., shorthand for

δ−(S,A \ S)
e+ starting node of arc e in directed graph

e− ending node of arc e in directed graph

Cn cycle graph on n vertices

Kn complete graph on n vertices

Kn,m complete bipartite graph or biclique graph on vertex sets of sizes n and m

Tn spanning tree on n vertices

Gn,m lattice graph on n×m vertices

Group theory

idG or id identity element of group G

Sym(S) symmetric group of finite set S

Sn symmetric group of [n], i.e., Sym([n])

D2n dihedral group of order 2n, i.e., symmetries of the n-gon

τ(S) image of set S ⊆ [n] under permutation τ ∈ Sn, i.e., {τ(s) : s ∈ S}
τ−1(S) preimage of set S ⊆ [n] under permutation τ ∈ Sn, i.e., {τ−1(s) : s ∈ S}
Sn(S) setwise stabilizer of S under group action of Sn, i.e., {τ ∈ Sn : τ(S) = S}
x ◦ g image of right group action of g on x

g ◦ x image of left group action of g on x

Stab(x) stabilizer of x ∈ X under (left) action of group G, i.e., {g ∈ G : g ◦ x = x}
Orb(x) orbit of x ∈ X under (left) action of group G, i.e., {g ◦ x : g ∈ G} ⊆ X

X/G quotient of X under G, i.e., set of all orbits of X under the (left) action of G

Xg set of fixed points of X under (left) action of g, i.e., {x ∈ X : g ◦ x = x}
C(H) centralizer subgroup of subset H of group G, i.e., {g ∈ G : gh = hg ∀h ∈ H}
Z(G) center of a group G, i.e., {g ∈ G : gh = hg ∀h ∈ G}, i.e., centralizer of G

Number theory

gcd(c) greatest common divisor of the entries in integer vector c ∈ Zn

�·� floor operator that maps a number to the largest integer smaller than its value

�·� ceil operator that maps a number to the smallest integer larger than its value

{±1} the set {+1,−1}
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1
Introduction

1.1 Background

Given the optimized society we live in nowadays, the need for analytical methods for optimal

decision-making has become indispensable. One of the most powerful tools in solving complex

decision-making problems is mathematical optimization. Mathematical optimization is the

subfield of mathematics concerned with finding the optimal values of decision variables such

that an objective function is optimized under the presence of a set of constraints. Many

real-life problems can be tackled using mathematical optimization, and hence it has played

a groundbreaking role in many areas, including engineering, logistics and finance. The first

modern literature on mathematical optimization finds its roots dating back to World War

II and appeared on linear optimization problems, where both the objective function and the

constraint functions are linear in terms of the decision variables. Since then, many other

types of problems have been studied in the literature.

An important distinction within the field of mathematical optimization is that between

continuous and discrete optimization problems. Whereas a continuous variable is allowed to

take any value within a certain range, discrete variables may only take distinct countable

values. Both variable types arise naturally in applications, e.g., temperature in physical

models is measured as a continuous quantity, while the choice whether or not to open a

warehouse in a supply chain model is best reflected by a discrete decision variable. This

distinction has a great impact on the design of solution methods. Algorithms designed to

solve purely continuous problems often rely on the use of first- or higher-order derivatives,

whereas for discrete problems, these notions do not exist or are not directly applicable.

Solution techniques for discrete problems, however, more than once exploit approaches from

continuous optimization, resulting in both areas being highly entangled.

In this work we focus on combinatorial optimization problems, which deal with the op-

timization over a finite set of solutions. Combinatorial optimization problems are inherently

discrete in nature. Most of these can be modeled as optimization problems over the set of

integers, leading to so-called integer programs. Integer programming is a well-established

1
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subfield of mathematical optimization, for which many solution approaches have been sug-

gested. Fundamental techniques, such as the use of cutting planes and branching strategies,

acquired a key role in most state-of-the-art optimization solvers.

Another subfield of mathematical optimization is semidefinite programming. Semidefinite

programming deals with the optimization of a linear function over the cone of positive

semidefinite matrices under the presence of affine constraints. Capturing linear programming

as its subclass, semidefinite programming can be seen as the natural extension of linear

programming, allowing for a richer source of theory and applications. At the same time,

SDPs can be solved in polynomial time up to any fixed precision under some rather mild

conditions, e.g., via interior-point methods [11, 290]. This combination between generality

and efficiency makes semidefinite programming a fruitful research area that has drawn much

attention in recent years. In particular, semidefinite programs have proven themselves useful

in their ability to provide strong relaxations for hard combinatorial optimization problems.

In this thesis, we study the interplay between integer and semidefinite programming. A

particular focus is put on SDP models derived from combinatorial optimization problems.

Some of these problems play a primary role throughout this work.

1.2 Integer programming

In this section we briefly consider some characteristics of general integer programming prob-

lems and recap some of the established solution strategies. We restrict ourselves to the

concepts that make their appearance in this thesis. Lacking fundamental approaches such as

the Dantzig-Wolfe approach and the branch-and-price method, this chapter should therefore

not be regarded as a comprehensive introduction to integer programming methods.

1.2.1 The (mixed)-integer program

Integer programming deals with mathematical optimization problems where the variables are

restricted to be integer-valued. If only a part of the variables is integer-valued and the other

variables are continuous, we refer to the problem as a mixed-integer programming problem.

Besides the integrality restriction, an integer program (IP) or mixed-integer program (MIP)

can embrace any type of structure in the objective or constraint functions. A general MIP

can be cast as follows:

min f(x)

s.t. x ∈ F

xi ∈ Z ∀i ∈ J ,

(1.1)

where x ∈ Rn is a n-dimensional decision vector, f : Rn → R is the objective function, F

is a closed set in Rn and J ⊆ [n] contains the indices of the integer variables in the model.

We further assume that the function f is continuous and that the lower and upper bounds

on the variables, if any, are included in the set F .

There exist many subclasses of mixed-integer programs. In its most general form, when f

is nonlinear and the set F has no particular structure, we refer to (1.1) as a mixed-integer

nonlinear program (MINLP). When F is a convex set and f is a convex function, the prob-

lem (1.1) is known as a convex mixed-integer nonlinear program (CMINLP) [51]. This does

not imply that the CMINLP itself is convex, which is obviously not the case due to the

integer variables, but the problem obtained after relaxing the integrality constraints is a
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convex programming problem. Although convex programming is generally hard, i.e., there

exist classes of convex programs that are still NP-hard, several important subclasses of

convex programming can be solved efficiently up to any given precision [54]. A notable

characterization of this dichomoty is given by the polynomial equivalence between the op-

timization problem and the separation problem of convex programs established by Grötschel

et al. [183] (under some conditions). When the set F in a CMINLP is conic representable,

i.e., all nonlinearities in F arise from the membership of the variables in a convex cone, we

sometimes refer to it as a conic mixed-integer nonlinear program. Examples include the

mixed-integer second-order cone program (MISOCP), see e.g., [107], and the mixed-integer

semidefinite program (MISDP), see e.g., [156].

When the objective function f is linear and the set F is a polyhedron, (1.1) boils down

to a mixed-integer linear program (MILP). Among all subclasses of integer programming

described above, MILPs have undoubtly received most attention in the literature, pioneered

by the early work of Gomory [179]. This has led to an enormous progress in the ability to

solve MILPs to optimality. Many general-purpose software packages, such as Gurobi [189],

CPLEX [220] and Mosek [284], are able to solve large-scale MILPs containing thousands

of variables and constraints. Many excellent textbooks have been written on solution ap-

proaches and applications of MILPs, see e.g., Conforti et al. [81] and Schrijver [330]. MILPs

are particularly useful in the formulation of combinatorial optimization problems. These

problems aim to find an optimal solution among a finite set of (combinatorial) objects,

e.g., paths in a network or schedules in an assignment problem. Many of these problems

are NP-hard, implying that mixed-integer linear programming and mixed-integer nonlinear

programming are NP-hard as well.

Other optimization problems that are extensively studied in the literature are the pro-

grams of the form (1.1) where the function f is quadratic, i.e., of the form f(x) = x�Qx+

c�x + d for some Q ∈ Sn(:= {X ∈ Rn×n : X = X�}), c ∈ Rn and d ∈ R. When F is a

polyhedron, the resulting program is denoted as a quadratic program (QP). When the set F

is of the form

F = {x ∈ Rn : gi(x) ≤ 0 ∀i ∈ [k]} ,

where gi : Rn → R, i ∈ [k], are quadratic functions, we refer to it as a quadratically

constrained quadratic program (QCQP). Such problems are in general NP-hard. If the

functions f, g1, . . . , gk are convex, however, we can solve a QCQP as a semidefinite program.

In many practical applications, the integer variables are required to be in {0, 1} (or {±1}).
Such problems are denoted as binary programming problems. Of main importance in this

thesis is the binary quadratic program, which is considered in more detail in Section 1.4.

For the remaining part of this section, we assume (1.1) to be a convex integer nonlinear

program with a linear objective function. That is, we consider a program of the form

min c�x

s.t. x ∈ F

xi ∈ Z ∀i ∈ [n],

(1.2)

where c ∈ Rn and F ⊆ Rn is a closed convex set. The majority of the problems considered

in this thesis are of this form. Observe that the linearity of the objective function in a

convex integer nonlinear program is nonrestrictive. Namely, if f is convex in (1.1), we can

embed the program into Rn+1 by adding the variable t and the constraint f(x) − t ≤ 0,
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where we minimize the linear function f ′(x, t) = t. We consider (1.2) to be purely integer to

keep the representation simple. All concepts described in the next subsections can be easily

generalized to the mixed-integer case. Finally, we assume that (1.2) is feasible and that the

minimum to (1.2) and its continuous relaxation after dropping the constraints xi ∈ Z, i ∈ [n],

are attained.

1.2.2 Integer hull and integer polyhedra

Let us denote the feasible set of (1.2) by

P := {x ∈ Zn : x ∈ F} .

Since the objective function of (1.2) is linear, optimizing over P is equivalent to optimizing

over its convex hull. The convex hull of the integer points in F is also called the integer hull

FI of F , i.e.,

FI := conv(P ).

In case an explicit description of FI is known and optimizing over it is tractable, this can be

exploited in practical algorithms to solve the integer problem.

One research stream in integer programming concerns the identification of facet-defining

inequalities of FI . Most effort in this direction is made in the case of integer linear problems.

If F is a rational polyhedron, it follows from Meyer’s theorem [280] that FI is again a

polyhedron. A polyhedron whose vertices are all integer is called an integer polyhedron.

Obviously, if F is an integer polyhedron, it must be equal to its integer hull. There exist

several well-known sufficient conditions for a polyhedron to be integer, among which total

unimodularity is a fundamental one.

Definition 1.1. A matrix A ∈ Rm×n is called totally unimodular if any square submatrix

of A has determinant 0, 1 or −1.

A totally unimodular matrix A by definition has entries in {0,±1}. The following propos-

ition provides a characterization of totally unimodular matrices related to integer polyhedra.

Proposition 1.2 ([209]). A matrix A ∈ Zm×n is totally unimodular if and only if the

polyhedron {x ∈ Rn : Ax ≤ b, x ≥ 0} is integral for every b ∈ Zm.

An implication of Proposition 1.2 is that if A is totally unimodular and b ∈ Zm, the

polyhedron {x ∈ Rn : Ax ≤ b} is also integer, i.e., the nonnegativity of x can be relaxed

while keeping the integrality property. The perfect matching polytope in bipartite graphs is

an example of a polytope that has a totally unimodular constraint matrix [210], and hence

is integer. Therefore, the perfect matching problem in bipartite graphs can be solved as a

linear programming problem.

Another common sufficient condition for the detection of integer polyhedra is total dual

integrality [121].

Definition 1.3. Let A ∈ Qm×n, b ∈ Qm. A system Ax ≤ b is called totally dual integral

(TDI) if for each c ∈ Zn, the dual of minimizing c�x over Ax ≤ b, i.e., max{b�y : y ≤
0, A�y = c} has an integer optimum solution y, if it has an optimal solution.
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The following result states that total dual integrality implies that the polyhedron induced

by Ax ≤ b is integer if the vector b has integer entries.

Proposition 1.4 ([121]). If Ax ≤ b is totally dual integral and b ∈ Zm, then {x ∈ Rn :

Ax ≤ b} is an integer polyhedron.

It has to be noted that TDI is an algebraic property rather than a geometric one. In fact,

it is well-known that any rational polyhedron has a totally dual integral representation [171].

Moreover, it is also shown in [171] that each integer polyhedron has a totally dual integral

representation Ax ≤ b with b integer.

Proposition 1.2 and 1.4 can be combined to show the following result on the relationship

between total unimodularity and total dual integrality.

Proposition 1.5 ([209]). A matrix A ∈ Zm×n is totally unimodular if and only if the linear

system Ax ≤ b, x ≥ 0 is totally dual integral for each integral vector b ∈ Zm.

There is a wealth of literature on integer polyhedra and, more general, on polyhedral

combinatorics, see e.g., the textbook by Schrijver [331] and the references therein.

Integer hulls in nonlinear convex sets have received much less attention in the literature.

When the set F is unbounded, it is not even known whether the convex hull of the integer

points in F can be described by a polyhedron. Sufficient conditions for this property are

studied in [97]. Other results in this direction can be found in, e.g., [27, 65, 288].

1.2.3 The cutting-plane method

One of the most central tools in integer programming is the use of so-called cutting planes.

These cutting planes can be used to cut off noninteger points from the geometric object that

we are optimizing over.

In a natural first attempt to solve (1.2), one would drop the integrality constraints entirely

and minimize c�x with respect to x ∈ F . As indicated in Section 1.2.1, we assume this

minimum to be attained. Let x∗ denote an optimal solution of this relaxed problem, and

assume that x∗ is an extreme point of F . In case x∗ has integer entries, the point x∗ is also

feasible to (1.2) and must therefore be optimal. If not, it follows from x∗ being an extreme

point of F , that x∗ /∈ FI . Now, our goal is to find an inequality that all integer solutions

in (1.2) satisfy, but x∗ does not. Whenever FI is closed, we know that such an inequality

exists due to the separating hyperplane theorem. Suppose we are in possession of an efficient

separation routine that provides us a cut separating x∗ from FI . By adding this cut to the

constraint set of F and solve c�x over this renewed feasible set, we obtain a tighter relaxation

of (1.2). This procedure is now repeated until x∗ is integer. This approach is known as a

cutting-plane method, for which a generic framework is given in Algorithm 1.1.

Algorithm 1.1 Generic cutting-plane method

1: Initialize F = F .
2: Solve min{c�x : x ∈ F} and let x∗ denote an extreme point of F that is optimal to this problem.
3: If x∗ is integer, Stop. Otherwise, find an inequality that separates x∗ from the integer solutions in (1.2)

and add this inequality to the constraint set of F . Return to Step 2.

It depends on the problem how the continuous problem in step 2 of Algorithm 1.1 is

solved, e.g., by interior-point methods [11, 290] or the simplex method [92].

The cutting-plane algorithm requires a separation routine that for each point x∗ de-

termines an inequality separating x∗ from the integer hull FI . Based on the polynomial
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equivalence between separation and optimization [183], we cannot always expect an effi-

cient separation routine to exist. Different strategies have been proposed in the literature,

including general-purpose cuts and problem-specific cuts.

General-purpose cutting planes are inequalities that can be constructed from the input

data and can be applied to a wide variety of problems. A famous class of linear cutting

planes for integer programs are the Chvátal-Gomory cuts [77, 179]. Suppose that c�x ≤ d is

an inequality that is valid for F , i.e., F ⊆ {x ∈ Rn : c�x ≤ d}, with c having integer entries

such that gcd(c) = 1. In that case, we know that c�x ∈ Z for all integer points x ∈ F . If d

is noninteger, we can strengthen the cut by rounding down d to the nearest integer. This

leads to the cut

c�x ≤ �d�,

which is known as a Chvátal-Gomory cutting plane. By construction, c�x ≤ �d� contains

all integer points in F , while it might cut off some fractional points in F . Gomory [179] was

the first to apply these types of cutting planes in a framework for solving MILPs, and since

then similar approaches have been applied to a wide variety of other problem classes, see

e.g., [68, 88, 89, 98, 359].

Complementary to these general-purpose cuts, many cutting-plane methods rely on the

use of inequalities that follow from the structure of the underlying problem. An in-depth

analysis of the structure of FI often leads to deeper cuts than general-purpose separation

routines can provide. In the case of MILPs, much research has been performed on identifying

facet-defining inequalities of the integer hull FI of certain problems. For example, an explicit

polyhedral description on the perfect 2-matching polytope is derived by Edmonds [120] and

succesfully exploited in a cutting-plane framework in [182].

Observe that the cuts that can be used in Algorithm 1.1 are not limited to linear cuts.

Nonlinear cuts that have been considered in integer nonlinear programming include conic

cuts [24] and quadratic cuts [68].

Remark 1.6. Instead of requiring that x∗ is an extreme point and checking whether x∗ is

integer in Algorithm 1.1, we can also allow the optimal solution x∗ to be not necessarily an

extreme point of F and check whether x∗ ∈ FI in step 3 of Algorithm 1.1.

1.2.4 Branch-and-bound

Branch-and-bound (B&B) is an approach in which the integer problem is divided into smaller

subproblems, where a bounding procedure is used to prevent an exhaustive search on the

entire search space to be performed. There exist many different implementations of the

branch-and-bound method, see the survey of [283]. Here we present a generic branch-and-

bound framework for integer problems of the form (1.2). For a more detailed description of

the branch-and-bound method, we refer to the textbooks [372, 373].

Let UB denote an upper bound on (1.2), either derived by some heuristic method, or by

simply setting UB = ∞. Let L denote a collection of feasible sets (i.e., subsets of F ), each

corresponding to a subproblem defined over that feasible region. Initially, we set L = {F}.
Now, we iteratively take a set F i from L and solve the program min{c�x : x ∈ F i}. Let x∗

be an optimal solution to this program, which we assume to be an extreme point of F i.

Obviously, LB(F i) := c�x∗ provides a lower bound on the optimal objective value of all

integer points in F i. If LB(F i) > UB, it follows that the optimal solution to (1.2) is not

found in F i, hence we disregard this subproblem. Otherwise, two scenarios are possible.
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If x∗ is integer, then it is feasible for (1.2). We remove F i from L, and, in case x∗ is the best

solution found so far, we update UB and let xbest := x∗. If x∗ is fractional, we divide F i

further into multiple subproblems. More precisely, we define k sets F i
1 , . . . , F

i
k ⊆ F i which

are pairwise disjoint such that each integer point in F i is in exactly one of these sets. Now,

we remove F i from L, while we add to L the sets F i
1 , . . . , F

i
k. We repeat the procedure

until L is empty. An optimal solution to (1.2) is guaranteed to be found, since each integer

solution in F is either considered in one of the subproblems, or disregarded by a certificate

for nonoptimality. In order to speed up the B&B procedure, primal heuristics are often

implemented throughout the search, in order to obtain better upper bounds. Algorithm 1.2

shows a generic framework of the B&B approach for integer problems.

Algorithm 1.2 Generic branch-and-bound method

1: Obtain upper bound UB and initial feasible solution xbest to the problem. Initialize collection of
feasible regions L = {F}.

2: while L is nonempty do
3: Choose F i from L and remove it from L.
4: Solve min{c�x : x ∈ F i} and let x∗ denote an extreme point of F i that is optimal to this problem.

5: Compute the lower bound LB(F i) := c�x∗.

6: if LB(F i) > UB then
7: Disregard the subproblem and continue to next iteration of while-loop.
8: else
9: if x∗ is an integer solution then
10: Update UB and xbest if LB(F i) < UB.
11: else
12: Divide F i into k pairwise disjoint subsets F i

1 , . . . , F
i
k with k ≥ 2, such that each integer

point in F i is in exactly one set F i
1 , . . . , F

i
k.

13: L ← L ∪ {F i
1 , . . . , F

i
k}.

14: end if
15: end if
16: (Optional:) Run a primal heuristic on F i to possibly improve UB and xbest.
17: end while

Many important implementation details are left out of Algorithm 1.2. Of major import-

ance is the way to partition a subproblem. A common approach is to partition on a fractional

entry in x∗. In other words, if x∗
i /∈ Z, we split F i into

F i
1 := F i ∩ {x ∈ Rn : xi ≤ �x∗

i �} and F i
2 := F i ∩ {x ∈ Rn : xi ≥ �x∗

i �}. (1.3)

It remains to decide on which entry i to branch when x∗ has more than one fractional entry.

Another decision choice concerns the order in which the sets in L need to be considered.

Similar to what is pointed out in Remark 1.6, instead of requiring that the optimal

solution x∗ is an extreme point of F i, we can relax that condition and check whether xi ∈ F i
I

rather than checking integrality.

1.2.5 Branch-and-cut

The branch-and-cut (B&C) approach can be seen as an extension of branch-and-bound, see

e.g., [372, 373]. A typical branch-and-bound implementation starts from the relaxation F

in the root node of the branching tree and is only altered by the addition of the partition

cuts of the form (1.3). A B&C algorithm considers strengthenings of the relaxations in the

subproblems by the utilization of cutting planes. Suppose a parent node in the branching

tree is described by the feasible set F i. Now, let F i
1 = F i ∩ {x ∈ Rn : xi ≤ �x∗

i �} be one of

its child nodes. In the B&B algorithm, one of the future iterations regards the minimization
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8 Integrality and cutting planes in SDP approaches for CO

of c�x over F i
1 . In a B&C algorithm, however, we perform an additional step and try to

tighten the set F i
1 by the addition of cutting planes that are valid for (F i

1)I (but which might

not be valid for all integer solutions in F ). These cuts are transferred from parent to child

nodes in the branching tree, thus augmenting the relaxations of all child subproblems. A

strictly better lower bound is obtained when the added cutting plane(s) cut(s) off all the

optimal solutions to min{c�x : x ∈ F i
1}, provided that these are noninteger. By adding

deep cutting planes, B&C algorithms potentially show an accelerated performance compared

to B&B algorithms. Cuts that are added can be problem-specific or obtained from a generic

separation routine.

A particular implementation of branch-and-cut relies on the use of so-called lazy con-

straints. These are inequalities that belong to the original problem formulation (1.2), but are

only enforced as additional cuts during the solution process. Let us consider the following

reformulation of (1.2):

min c�x

s.t. x ∈ F := F0 ∩ {x ∈ Rn : gj(x) ≤ 0 ∀j ∈ [k]}
xi ∈ Z ∀i ∈ [n].

(1.4)

Suppose that the inequalities gj(x) ≤ 0, i ∈ [k], considerably complexify the optimization

over F , e.g., because of their advanced structure or because there are very many of them. In

that case, it might be advantageous to first ignore them in a branch-and-cut algorithm. Once

an integer solution x∗ is found that is feasible for F0, we check whether gj(x
∗) ≤ 0 does hold

for all j ∈ [k]. If so, the solution is in fact feasible for the entire problem (1.4). If not, we

have identified a j∗ such that gj∗(x
∗) > 0. Hence, we now add gj∗(x) ≤ 0 to the constraint

sets of all the child subproblems that will follow. Whenever no more violated lazy constraints

can be found and all subproblems have been considered, optimality is guaranteed.

Algorithm 1.3 shows a generic branch-and-cut method incorporating lazy constraints.

The additional check of the lazy constraints is done in a so-called callback procedure, which

is an independent subroutine that can be called during the search.

Algorithm 1.3 Generic branch-and-cut method with lazy constraints
1: Initialize F = F0.
2: B&C procedure: Start or continue the branch-and-cut algorithm for solving

min
{
c�x : x ∈ F ∩ Zn

}
incorporating the callback function below at each node in the branching

tree.

Callback procedure:
3: if an integer point x∗ ∈ F is found then
4: if there exists j∗ ∈ [k] with gj∗ (x

∗) > 0 then
5: Add gj∗ (x) ≤ 0 to the constraint set defining F .
6: else
7: Use x∗ to possibly update UB and cut off other subproblems in the branching tree.
8: end if
9: end if
10: Return to Step 2

1.2.6 Lagrangian relaxation

Branch-and-bound and branch-and-cut methods rely on the use of relaxations in the subprob-

lems. Instead of using the relaxation F of P obtained by dropping all integrality constraints,
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we here present an approach to obtain possibly tighter relaxations for integer problems

based on Lagrangian duality theory. Lagrangian approaches in integer programming were

first applied by Held and Karp [197, 198], see also [140] and the references therein.

Although the addition of integrality constraints to the set F increases the complexity

of solving (1.2), in some situations the integrality constraints are tractable with respect to

some of the constraints in F . More precisely, suppose A : Rn → Rm is an operator (not

necessarily linear) and b ∈ Rm such that we can rewrite the set F as follows:

F := F0 ∩ {x ∈ Rn : A(x) ≤ b} .

Moreover, let P0 denote the set of integer points in F0, i.e.,

P0 := {x ∈ Zn : x ∈ F0} .

We assume that optimization over the set P0 is tractable, e.g., because there is an available

explicit description of the integer hull of F0. However, adding the inequalities A(x) ≤ b to

the constraint set of P0 makes the problem difficult to solve. We therefore dualize these

constraints, by introducing a vector λ ∈ Rm
+ of dual or Lagrange multipliers. This yields

g(λ) := min c�x+ λ�(A(x)− b)

s.t. x ∈ P0.

For an optimal solution x∗ to (1.2), we have c�x∗ ≥ c�x∗ + λ�(A(x∗) − b) ≥ g(λ) for

all λ ∈ Rm
+ . Therefore, the function g(λ) provides a lower bound on the optimal value of (1.2)

for all feasible dual multipliers. The Lagrangian dual problem is obtained by maximizing

this lower bound:

zLD := sup g(λ)

s.t. λ ≥ 0.

Weak duality holds by construction, i.e., we have zLD ≤ zIP , where zIP denotes the op-

timum to (1.2). In general, strong duality between (1.2) and its Lagrangian dual prob-

lem does not hold. For many problem classes, it can be shown that the Lagrangian dual

provides a tighter relaxation than the standard continuous relaxation (i.e., optimizing over

the set F ). For example, in the case of integer linear programs, it is known that when

F \ (conv(P0) ∩ {x ∈ Rn : A(x) ≤ b}) is nonempty, then there exist objective functions c�x

such that zLD is strictly stronger than the standard LP relaxation, see [169]. This leads to

successful implementations when incorporated in a branching setting, see e.g., [140].

Since the evaluation of g(λ) might be time-consuming, typical methods to solve the Lag-

rangian dual problem involve decomposition approaches, e.g., subgradient algorithms [190],

the Dantzig-Wolfe approach [250] and cutting-plane methods [268]. Most literature in this

direction focuses on mixed-integer linear problems. For these problems, it can be shown

that zLD is the solution to another linear programming problem with a large number of

constraints, see [169].

1.3 Semidefinite programming

An introduction to the field of semidefinite programming (SDP) is provided in this section.

Starting from basic results on positive semidefinite matrices, we present the semidefinite
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10 Integrality and cutting planes in SDP approaches for CO

program in its standard primal and dual form and consider the facial geometry of the cone of

positive semidefinite matrices. We finalize the section by considering two first-order methods

for solving semidefinite programs.

1.3.1 Positive semidefinite matrices

Let us recap the basic theory on positive semidefinite matrices. All of the results in this

section are classical and can be found in many textbooks on matrix theory, e.g., the book

by Horn and Johnson [213].

Let Sn be the vector space of symmetric matrices of order n. A fundamental property of

symmetric matrices is that a symmetric matrix possesses a set of n eigenvectors that form

an orthonormal basis of Rn. This result is known as spectral decomposition.

Proposition 1.7 (Spectral decomposition). A real symmetric matrix X ∈ Sn can be de-

composed as:

X =
n∑

i=1

λiuiu
�
i ,

where λ1, . . . , λn ∈ R are the eigenvalues of X and u1, . . . , un ∈ Rn are the corresponding

eigenvectors. These eigenvectors form an orthonormal basis of Rn. In matrix notation, we

have X = PDP� where D is a diagonal matrix that contains the eigenvalues of X on the

diagonal and P is an orthogonal matrix with columns ui.

A matrix X ∈ Sn is positive semidefinite (PSD) if

v�Xv ≥ 0 for all v ∈ Rn,

which is denoted by X � 0. A matrix X ∈ Sn is positive definite if

v�Xv > 0 for all v ∈ Rn\{0n},

which is denoted by X � 0. Using this notation, we write X � Y (resp. X � Y ) if X−Y � 0

(resp. X − Y � 0).

It is well-known that we have various equivalent statements for a matrix X to be positive

semidefinite.

Proposition 1.8. The following are equivalent:

(i) A matrix X ∈ Sn is positive semidefinite;

(ii) All eigenvalues of X are nonnegative, i.e., X =
∑n

i=1 λiuiu
�
i with λi ≥ 0 for all i ∈ [n];

(iii) All principal minors of X are nonnegative;

(iv) There exist vectors v1, . . . , vn ∈ Rk for some positive integer k such that Xij = v�i vj
for all i, j ∈ [n], called the Gram representation of X.

The second criterion can be extended to the positive definite case. That is, we haveX � 0

if and only if all the eigenvalues of X are strictly positive.

We let Sn
+ denote the set of all positive semidefinite matrices of order n, i.e.,

Sn
+ := {X ∈ Sn : X � 0}.
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This set is a closed convex cone, which is known as the positive semidefinite cone, or PSD

cone in short. Similarly, the set Sn
++ consists of all positive definite matrices. The PSD cone

is full-dimensional in Sn and its relative interior equals Sn
++.

A useful property of positive semidefinite matrices is the Schur complement lemma.

Lemma 1.9 (Schur complement lemma). Let the matrix X ∈ Sn be defined as

X =

(
A B

B� C

)
,

where A ∈ Sp, C ∈ Sn−p and B ∈ Rp×(n−p). If A is nonsingular, then X � 0 if and only

if A � 0 and C −B�A−1B � 0.

Moreover, we state the following well-known property regarding the kernel of positive

semidefinite matrices.

Proposition 1.10. Let X ∈ Sn
+ and v ∈ Rn. Then v�Xv = 0 if and only if Xv = 0.

For any square matrix X ∈ Rn×n, the trace is defined as the sum of the diagonal

entries of X, i.e., tr(X) :=
∑n

i=1 Xii. It is well-known that tr(XY ) = tr(Y X) holds for

any X,Y ∈ Rn×n. Moreover, if X has eigenvalues λ1, . . . , λn, then tr(X) =
∑n

i=1 λi. The

trace can be used to define an inner product on Rn×m, called the trace inner product. For

any two matrices X,Y ∈ Rn×m the trace inner product is defined as 〈X,Y 〉 := tr(X�Y ) =∑n
i=1

∑m
j=1 XijYij . The following proposition states a well-known property regarding the

trace inner product of two positive semidefinite matrices.

Proposition 1.11. Let X,Y ∈ Sn
+. Then, 〈X,Y 〉 ≥ 0. Moreover, 〈X,Y 〉 = 0 if and only

if XY = 0.

There exist several important subsets of Sn
+. A matrix X which is PSD and entrywise

nonnegative is called doubly nonnegative (DNN). The cone of all doubly nonnegative matrices

of order n is denoted by

DNNn
+ := Sn

+ ∩Nn
+ ,

where Nn
+ is the cone of entrywise nonnegative matrices of order n. A PSD matrix of the

form X = BB� with B ≥ 0 is called completely positive. The cone of completely positive

matrices of order n is denoted by

CPn
+ :=

{
X ∈ Sn : X = BB�, B ≥ 0

}
.

1.3.2 The semidefinite program

In this section we provide a brief introduction to the field of semidefinite programming. Many

textbooks on this topic have been written, see e.g., Anjos and Lasserre [15] and Ben-Tal and

Nemirovski [40].

A standard semidefinite program (SDP) in primal form is an optimization problem in

which we minimize a linear function (with respect to the trace inner product) over the cone of

positive semidefinite matrices under the presence of affine constraints. Let C,A1, . . . , Am ∈ Sn
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12 Integrality and cutting planes in SDP approaches for CO

and b ∈ Rm, then the standard semidefinite primal problem equals:

p∗ = inf
X∈Sn

〈C,X〉

s.t. 〈Ai, X〉 = bi for all i ∈ [m],

X � 0.

(1.5)

The feasible set of (1.5) is the intersection of the PSD cone with an affine subspace, which

is known as a spectrahedron. Note that we write infimum instead of minimum, since

the optimal value of a semidefinite problem might not be attained. In general, we can

have p∗ ∈ R ∪ {±∞}, where p∗ = ∞ if (1.5) is infeasible and p∗ = −∞ if it is unbounded.

The standard dual formulation of the SDP (1.5) equals:

d∗ = sup
y∈Rm

b�y

s.t. C −
m∑
i=1

Aiyi � 0.
(1.6)

Again, we can have d∗ ∈ R ∪ {±∞}, where d∗ = −∞ if (1.6) is infeasible and d∗ = ∞ if it

is unbounded.

We can show that we always have d∗ ≤ p∗, which is denoted by weak duality.

Proposition 1.12 (Weak duality). Let X ∈ Sn be feasible for (1.5) and y ∈ Rm be feasible

for (1.6). Then b�y ≤ 〈C,X〉. In particular, we have d∗ ≤ p∗.

The difference p∗ − d∗ is called the duality gap between (1.5) and (1.6). When d∗ = p∗,

we say that strong duality holds. Strong duality can be verified by an optimality condition

which is called complementary slackness.

Proposition 1.13 (Complementary slackness). Let X ∈ Sn be feasible for (1.5) and y ∈ Rm

be feasible for (1.6). Then, d∗ = p∗ if

X

(
C −

m∑
i=1

Aiyi

)
= 0. (1.7)

Conversely, if d∗ = p∗ and the optima to (1.5) and (1.6) are attained by X and y, respectively,

then X and y satisfy (1.7).

Unlike linear programming, strong duality does not always hold in semidefinite program-

ming. Conditions under which strong duality holds are in the literature known as constraint

qualifications [227]. Among the most commonly used constraint qualifications in convex

programming is Slater’s condition.

Definition 1.14 (Slater’s condition). The primal SDP (1.5) satisfies Slater’s condition if

there exists a matrix X that is feasible for (1.5) with X � 0. Similarly, the dual SDP (1.6)

satisfies Slater’s condition if there exists a feasible solution y ∈ Rm with C −
∑m

i=1 Aiyi � 0.

An SDP satisfying Slater’s condition is called Slater feasible or strictly feasible. Strict

feasibility is a sufficient condition for strong duality, as the following result states.

Proposition 1.15 (Strong Duality). Let p∗ and d∗ be as defined in (1.5) and (1.6), respect-

ively. Then:
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If the primal problem (1.5) is bounded from below (p∗ > −∞) and strictly feasible, then

strong duality holds. Moreover, the dual problem (1.6) attains its supremum.

If the dual problem (1.6) is bounded from above (d∗ < ∞) and strictly feasible, then

strong duality holds. Moreover, the primal problem (1.5) attains its infimum.

If strict feasiblity does not hold for an SDP, facial reduction can be applied to obtain

an equivalent strictly feasible SDP. Facial reduction is a method proposed by Borwein and

Wolkowicz [52] that projects the feasible region of an SDP (in the form (1.5)) to the minimal

face of Sn
+ that contains it. More prerequisites on the facial geometry of the cone of positive

semidefinite matrices is provided in Section 1.3.3.

Since the outcome of an SDP can be irrational even if all data matrices are rational-

valued, one cannot hope for a polynomial time algorithm that solves it exactly. However,

given that Slater’s condition holds for both the primal and its dual SDP, it is known that

semidefinite programs can be solved up to any given precision in polynomial time by interior-

point methods [11, 290]. We refer here to polynomial time in terms of the number of

arithmetic operations, i.e., with respect to the real model of computation.

Semidefinite programs have proven themselves useful in providing strong relaxations for

many combinatorial optimization problems. The standard approach to provide such a semi-

definite programming relaxation is introduced in Lovász and Schrijver [259] and Shor [336].

1.3.3 Facial geometry of the PSD cone

At several occasions throughout this thesis, we apply facial reduction in order to make a

semidefinite program strictly feasible. In this subsection we review some basic definitions

and results regarding the faces of general convex cones and, in particular, the PSD cone. For

a more in-depth overview on this matter, we refer the reader to [108].

Let K be a convex cone in a vector space accompanied by an inner product mapping 〈·, ·〉.
A convex cone F ⊆ K is called a face of K if the following holds:

x, y ∈ K with x+ y ∈ F =⇒ x, y ∈ F.

It follows from this definition that K and ∅ are faces of K. We call a face F of K proper if

F is not equal to K or ∅. Every proper face of K is disjoint from ri(K), the relative interior

of K. It is easy to verify that the intersection of two faces of K is again a face of K. This

justifies the following definition.

Definition 1.16. The minimal face of a convex cone K containing a set S ⊆ K is the

intersection of all faces of K containing S and is denoted by face(S,K).

Besides the general definition of a face of a cone, it is in some cases possible to provide

a dual description of a face. From the dual cone

K∗ := {x : 〈x, y〉 ≥ 0 for all y ∈ K}

of K, one can verify that the set v⊥ ∩ K is a face of K for every v ∈ K∗, where v⊥ denotes

the orthogonal complement of v. A face of this type is called an exposed face.

Definition 1.17. A set F = v⊥ ∩ K with v ∈ K∗ is called an exposed face of K. The

element v is called an exposing vector of F .
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In general not all faces of a convex cone are exposed. However, one can show that any

point in the relative boundary of a convex cone is contained in some proper exposed face. A

convex cone K is called facially exposed if all faces of K are exposed.

Let us now consider the case K = Sn
+. It is well-known that the PSD cone is self-dual,

i.e., (Sn
+)

∗ = Sn
+. It can be shown that the faces of Sn

+ correspond to linear subspaces of Rn,

see e.g., [32].

Proposition 1.18 ([32]). Let R be a linear subspace of Rn. Then, the set

FR = {X ∈ Sn
+ : Col(X) ⊆ R} (1.8)

is a face of Sn
+. Conversely, any face of Sn

+ can be written in this way for some linear

subspace R of Rn.

Since Col(X)⊥ = Nul(X) for all X ∈ Sn
+, we can equivalently write

FR = {X ∈ Sn
+ : Nul(X) ⊇ R⊥}. (1.9)

Moreover, it can be shown that for all X in the relative interior of FR we have Col(X) = R
and Nul(X) = R⊥. A useful fact is that for any matrix W ∈ Rn×k with Col(W ) = R, we

have

FR = WSk
+W

�,

see e.g., [32, 108]. This relation implies that FR is isomorphic to the PSD cone of order k.

Combining this with Proposition 1.18, it follows that all faces of Sn
+ are isomorphic to a PSD

cone, i.e., the PSD cone is self-replicating.

Finally, it is known that the PSD cone is facially exposed, i.e., every face of Sn
+ is exposed,

as stated by the following proposition.

Proposition 1.19 ([298]). All faces FR of Sn
+ are exposed. That is, FR = (UU�)⊥ ∩ Sn

+

where U is such that Nul(U) = R.

Proposition 1.19 implies that if a matrix UU� exposes a face of Sn
+, then this face can

be written as WSk
+W

�, where the columns of W ∈ Rn×k form a basis for Nul(U).

1.3.4 The Douglas-Rachford splitting method and the alternating direc-
tion method of multipliers

Interior-point methods (IPMs) are currently seen as the state-of-the-art in solving SDPs

and are incorporated in several commercial solvers. It is known, however, that IPMs can

only handle SDPs of moderate sizes, due to the large requirement of computation time and

memory when the number of variables and constraints increase. Thus, aiming at solving

large-scale SDPs in practice, there is a desire for alternative methods that are consider-

ably cheaper in computation. In this section we consider two first-order methods to solve

SDPs, namely the Douglas-Rachford splitting method (PRSM) and the alternating direction

method of multipliers (ADMM), which are known to be equivalent under certain conditions.

We consider the SDP in standard primal form (1.5). By capturing the affine constraints
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into a polyhedral set Y, the program can be reformulated as

inf
X∈Sn

〈C,X〉

s.t. X ∈ Y := {X ∈ Sn : 〈Ai, X〉 = bi for all i ∈ [m]}
X � 0.

(1.10)

By using indicator functions, we can further rewrite (1.10) as an unconstrained program. For

a given set S, let δS denote an indicator function such that δS(x) = 0 if x ∈ S and δS(x) =∞
otherwise. Now, let us define the closed, proper and convex functions f : Sn → R ∪ {∞}
and g : Sn → R ∪ {∞} as

f(X) := 〈C,X〉+ δY(X) and g(X) := δSn
+
(X),

respectively. Then, the program (1.10) is equivalent to

inf
X∈Sn

f(X) + g(X). (1.11)

Many applications of practical interest can be cast as the minimization of the sum of two con-

vex functions, e.g., problems in distributed optimization, compressed sensing and statistical

learning, see [177] and the references therein. Consequently, a large number of algorithms

for problems of this form have been proposed, among which the Douglas-Rachford splitting

method (DRSM). The DRSM is originally proposed in [106] and, starting from the seminal

work of Lions and Mercier [255], inspired a widespread related literature. We consider here

its application to solve (1.11).

Let β > 0 be a positive penality parameter, then the DRSM applied to (1.11) starts from

a matrix W 0 ∈ Sn and iteratively updates:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Y p+1 := prox 1

β
f (W

p),

Xp+1 := prox 1
β
g(2Y

p+1 −W p),

W p+1 := W p +Xp+1 − Y p+1,

(DRSM)

where proxh : Sn → Sn denotes the proximal mapping of a function h : Sn → Sn, i.e.,

proxh(Z) := arg min
X∈Sn

h(X) +
1

2
||X − Z||2F .

Equivalences between the DRSM and other methods have been studied over the past decades.

It has been shown that the DRSM applied to the problem of minimizing the sum of two

convex functions and its Fenchel dual problem provide identical sequences under certain

conditions [116]. Moreover, the DRSM is well-known to be closely related to the ADMM,

e.g., through equivalence of the DRSM applied to a problem with the ADMM applied to its

Fenchel dual problem, see [35, 118, 119, 149]. Below we demonstrate how the DRSM update

scheme can be rewritten to an equivalent scheme, resulting in the ADMM. The construction

we follow is based on [300].

Suppose we perform the algorithm (DRSM), where in each iteration p ≥ 0, we addition-

ally construct Sp+1 := β(Y p+1 −W p). Exploiting the last line W p+1 = W p +Xp+1 − Y p+1

from the Douglas-Rachford scheme, it follows that W p+1 = Xp+1 − 1
β
Sp+1 for all integers

p ≥ 0. Assume moreover that X0 and S0 are initialized such that W 0 = X0 − 1
β
S0. Then,
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16 Integrality and cutting planes in SDP approaches for CO

for all integers p ≥ 0, we can rewrite the steps in (DRSM) as follows:

Y p+1 = prox 1
β
f (W

p) = prox 1
β
f (X

p − 1

β
Sp)

= arg min
Y ∈Sn

f(Y ) +
β

2
||Y −Xp +

1

β
Sp||2F

= arg min
Y ∈Sn

f(Y ) + 〈Sp, Y −Xp〉+ β

2
||Y −Xp||2F

Sp+1 = β(Y p+1 −W p) = β(Y p+1 −Xp +
1

β
Sp)

= Sp + β(Y p+1 −Xp)

Xp+1 = prox 1
β
g(2Y

p+1 −W p) = prox 1
β
g(Y

p+1 +
1

β
Sp+1)

= arg min
X∈Sn

g(X) +
β

2
||X − Y p+1 − 1

β
Sp+1||2F

= arg min
X∈Sn

g(X) + 〈Sp+1, Y p+1 −X〉+ β

2
||Y p+1 −X||2F ,

where the W -update in the last line of (DRSM) is performed implicitly via the S-update.

Without interfering with the result of the algorithm, we can shift the X-update to the next

iteration. More precisely, we define Zp+1 := Xp and obtain the equivalent update scheme

Zp+1 = arg min
Z∈Sn

g(Z) + 〈Sp, Y p − Z〉+ β

2
||Y p − Z||2F

Y p+1 = arg min
Y ∈Sn

f(Y ) + 〈Sp, Y − Zp+1〉+ β

2
||Y − Zp+1||2F

Sp+1 = Sp + β(Y p+1 − Zp+1),

for all p ≥ 0, with the exception that Z1 is initialized by X0 and the algorithm is started

from the first Y -update. Below we formalize the equivalence between the latter scheme

and (DRSM), see Theorem 1.20.

The latter scheme in fact equals the update scheme of the ADMM applied to (1.11). The

ADMM starts from viewing (1.11) as the constrained program infY,Z{f(Y )+g(Z) : Y = Z}.
Let S ∈ Sn denote the Lagrange multiplier with respect to Y − Z = 0 and consider the

augmented Lagrangian function of this problem with penalty parameter β > 0:

Lβ(Z, Y, S) := f(Y ) + g(Z) + 〈S, Y − Z〉+ β

2
||Y − Z||2F . (1.12)

Now, the ADMM alternatingly minimizes Lβ with respect to one of the primal variables,

while keeping the other fixed, after which the dual multiplier is updated via a stepsize update.

Starting from a given Y 0 and S0, the ADMM update scheme is as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Zp+1 := arg min

Z∈Sn
Lβ(Z, Y p, Sp),

Y p+1 := arg min
Y ∈Sn

Lβ(Z
p+1, Y, Sp),

Sp+1 := Sp + β(Y p+1 − Zp+1).

(ADMM)

Based on the structure of the functions f and g, the Z- and Y -subproblem involve a projection
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onto the sets Sn
+ and Y, respectively.

The following theorem formalizes the equivalence between the DRSM and the ADMM

as presented above, see also [300].

Theorem 1.20 ([300]). The sequence ((Zp+1, Y p+1, Sp+1))p≥1 generated by (ADMM)

starting from Y 0 and S0 is identical to the sequence ((X̄p, Ȳ p+1, β(Ȳ p+1 − W̄ p)))p≥1 ob-

tained from (DRSM) starting from W̄ 0 := Z1 − 1
β
S0.

Observe that the sequences considered in Theorem 1.20 are identical for p ≥ 1. For ease

of notation, we exclude the boundary case p = 0 from the statement, since X̄0 is not formally

defined in (DRSM).

Based on the equivalence between the DRSM and the ADMM, convergence results

for the ADMM follow from similar results for the DRSM. It is known that if the func-

tions f and g are closed, proper and convex functions and the Douglas-Rachford operator

F (W ) := W +prox 1
β
g(2prox 1

β
f (W )−W )−prox 1

β
f (W ) has at least one fixed point, then the

sequence (Ȳ p)p≥0 obtained from (DRSM) converges to a minimizer of (1.11), see e.g., [300].

Under certain conditions, the convergence rate of the DRSM, and thus the ADMM, is known

to be linear. The linear convergence rate of the DRSM was first studied by [255], and since

then, linear convergence has been proven in various settings, see [173] and the references

therein. Linear convergence rates of the ADMM are also established without exploiting the

equivalence to the DRSM, see e.g., [212, 378].

Besides the DRSM, the ADMM has also strongly connections to other methods, like

dual decomposition and the method of multipliers. Dual decomposition is a distributed

version of the dual ascent method, which relies on the nonaugmented Lagrangian function,

i.e., (1.12) with β = 0, to solve (1.11). Although this distributed optimization technique is

attractive, the conditions under which convergence is established are rather strong. To bring

robustness to the dual ascent method, augmented Lagrangian methods are considered. Due

to the addition of the final term in (1.12), the augmented Lagrangian is strictly convex for

all β > 0. Consequently, the dual function ψβ(s) := infZ,Y Lβ(Z, Y, S) is differentiable under

rather mild conditions. Iteratively minimizing the augmented Lagrangian with respect to Z

and Y (jointly) and performing a dual update step is known as the method of multipliers.

The method of multipliers converges under far more general conditions than dual ascent. Its

drawback, however, is that due to the additional penality term in (1.12), we can no longer

decompose the minimization of the augmented Lagrangian with respect to Z and Y into

multiple subproblems. The ADMM combines the ideas behind dual decomposition and the

method of multipliers. It can be seen as a variation of the method of multipliers, where the

joint minimization of Lβ with respect to Z and Y is replaced by a single Gauss-Seidel-type

iterate [178]. For a more detailed analysis of the connections between these methods, see

e.g., [53].

Several extensions and generalizations of (ADMM) have been studied. When the dual up-

date is performed twice per iteration, i.e., also between solving the Z- and the Y -subproblem,

we obtain the symmetric ADMM, which is known to be equivalent to the Peaceman-Rachford

splitting method (PRSM), see e.g., [195]. To speed up convergence, the final step of (ADMM)

is often replaced by Sp+1 := Sp+γ ·β(Y p+1−Zp+1) where γ is a positive stepsize parameter,

leading to the accelerated ADMM or the ADMM with larger stepsize [141].

Solving large-scale semidefinite programs by augmented Lagrangian methods or its vari-

ations has been investigated in several works, see [61, 308, 323, 350, 363, 382]. This has led

to the ADMM and the DRSM being applied to solve SDPs of different flavours, see e.g.,

[195, 196, 216, 218, 275, 278, 292, 308, 339, 365, 382].
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1.4 Binary quadratic programs

The problems that are considered in this thesis belong to a specific class of integer program-

ming problems, namely the binary quadratic programs. In this section we consider these

programs in more detail and introduce some of the problems that will play a major role in

this thesis.

A binary quadratic program (BQP) is characterized by a quadratic objective function

and affine constraints, where the variables are restricted to be binary, i.e., having entries

in {0, 1}. Let Q ∈ Sn, A ∈ Rm×n and b ∈ Rm be given. The BQP is given by the following

mathematical optimization problem:

min x�Qx

s.t. x ∈ P = {x ∈ {0, 1}n : Ax ≤ b} .
(1.13)

Due to the binarity of the model, we have x�Qx+ c�x+ d = x�(Q+ diag(c))x+ d for any

quadratic form, hence the objective function as given in (1.13) is nonrestrictive. As (1.13)

contains binary linear programs as a special case, BQPs are NP-hard. Consequently, solving
problems of the form (1.13) is practically challenging, asking for advanced solution strategies.

Many combinatorial optimization problems can be modeled as (1.13), e.g., the quadratic

assignment problem, the stable set problem and the graph coloring problem. As returning

examples throughout this thesis, we consider the quadratic traveling salesman problem, the

quadratic cycle cover problem and the graph partition problem. We describe these problems

in more detail throughout the next subsections. After that, in Section 1.4.4, we consider the

linearization problem associated with a BQP.

1.4.1 The quadratic traveling salesman problem

Let G = (N,A) be a directed simple graph on n := |N | nodes and m := |A| arcs. A

Hamiltonian cycle or tour in G is a (directed) cycle that visits each node exactly once.

Suppose we are given a cost matrix Q = (qef ) ∈ Rm×m that has its support on adjacent

arcs. That is, qef = 0 if arc f is not a successor of arc e in G, i.e., f /∈ δ+(e−). The

quadratic traveling salesman problem (QTSP) asks for a Hamiltonian cycle in G such that

the total quadratic cost among the successive arcs used in the tour is minimized. This

version, where we only consider interaction costs among adjacent arcs, is sometimes referred

to as the adjacent-only QTSP in the literature, see also [133, 134, 135, 224, 326]. The QTSP

as introduced above where G is directed and Q not necessarily symmetric is also called the

asymmetric QTSP in the literature. When G is undirected and Q symmetric, the problem

is referred to as the symmetric QTSP, see Appendix A.4. In this thesis, where we mostly

consider the asymmetric version of the problem, we simply use the abbreviation QTSP when

the asymmetric version is meant. The linear counterpart of the QTSP, where we aim to find a

Hamiltonian cycle inG that minimizes the total linear arc costs, is known as the (asymmetric)

traveling salesman problem (TSP) and is among the most studied combinatorial optimization

problems in the literature.

A Hamiltonian cycle in G can be characterized by a vector x ∈ {0, 1}m, where xe = 1 if

arc e is used in the tour and xe = 0 otherwise. Let PQTSP denote the set of characteristic

vectors of Hamiltonian cycles in G. Now, the QTSP can be modeled as

min x�Qx s.t. x ∈ PQTSP. (1.14)
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The set PQTSP can be written as

PQTSP :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩x ∈ {0, 1}m :

∑
e∈δ+(i)

xe =
∑

e∈δ−(i)

xe = 1 ∀i ∈ N

∑
e∈δ+(S)

xe ≥ 1 ∀ ∅ 	= S � N

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (1.15)

The first set of constraints are the so-called degree constraints, which manage that each node

in N has in- and out-degree equal to one. The second set of constraints prevent a solution x

to consist of multiple subtours, by requiring that for any subset S ⊆ N with 1 ≤ |S| ≤ n−1,

there must be at least one arc leaving S. Indeed, if x induces a closed subtour on a subset S

of the nodes, such an arc would not exist, preventing x to be included in PQTSP. These

constraints are known as the cut-set constraints and are originally proposed for the TSP

by Dantzig et al. [91]. The authors of [91] show that these are equivalent to the so-called

subtour elimination constraints∑
e={i,j}
i,j∈S

xe ≤ |S| − 1 ∀ ∅ 	= S � N. (1.16)

Since the set PQTSP does not depend on the quadratic nature of the problem, it is equal to

the solution set of the (asymmetric) TSP. There exist many alternative formulations of the

feasible set of the TSP, among which the ones by Dantzig et al. [91], Miller et al. [281] and

Gavish and Graves [168] are the most well-known. For a comprehensive overview of formu-

lations and solution approaches for the TSP, we refer the reader to book by Davendra [94].

The QTSP has been introduced by Jäger and Molitor [224], motivated by an import-

ant application in bioinformatics [135, 224]. Besides, the QTSP has also applications in

telecommunication, precision farming, transportation, energy distribution networks and ro-

botics, see e.g., [6, 127, 370]. The QTSP is shown to be NP-hard in the strong sense by a

straightforward reduction from the asymmetric TSP [224], and is among one of the hardest

combinatorial optimization problems to solve in practice.

Several special cases of the QTSP have been considered. When the nodes in G are

embedded in Euclidean space and the quadratic costs among two arcs is proportional to the

induced turning angle, we call the problem the angular-metric TSP [6]. When the costs are

a linear combination between the turning angles and Euclidean distances, we refer to the

problem as the angular-distance-metric TSP. Another version of the problem follows from the

reload cost model in graph optimization problems [370]. In this model, we assume the arcs

in G to be colored using some finite set L of colors and r : L× L→ R is a given reload cost

function. Now, the quadratic costs among two successive arcs e and f is denoted by r(s, t),

where s and t are the colors of e and f , respectively. The motivation behind this structure is

that a cost is incurred whenever the underlying type of an arc changes, e.g., when the means

of transportation along an arc changes in a cargo network. The QTSP under the reload cost

structure is denoted as the minimum reload cost TSP. Besides transportation networks, the

reload cost model has also applications in energy and telecommunication networks [12, 370].

Several other combinatorial optimization problems including these reload costs have been

investigated, see e.g., [12, 151, 160, 180, 370]. The QTSP is also related to the class of

covering tour problems with turn costs as considered in Arkin et al. [19]. Covering tour

problems play an important role in, e.g., manufacturing, automatic inspection and spray

painting operations. For a detailed overview of these problems and their applications, we
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refer the reader to [127].

Several solution approaches for the QTSP or its related problems have been considered.

Jäger and Molitor [224] consider two exact methods for solving the asymmetric QTSP: an

integer programming formulation and a branch-and-bound method to enumerate over the

set of tours. This work is extended by Fischer et al. [135, 136, 138], who compare three

exact algorithms for the asymmetric version of the problem, namely a branch-and-bound

algorithm, a branch-and-cut algorithm and an approach based on a reduction to the asym-

metric TSP. The authors of [276] propose a different branch-and-cut algorithm for the QTSP,

which exploits Chvátal-Gomory type cuts. These cuts follow from an integer semidefinite

programming formulation of the problem that is based on algebraic connectivity, see also

Chapter 5 in this thesis. Aichholzer et al. [7] consider exact solution approaches for the

symmetric QTSP and the related angular-metric TSP. The polyhedral structure of a linear-

ized formulation of the asymmetric QTSP is studied by Fischer [134], where several classes

of facet-defining inequalities are introduced and analyzed. The same approach has been

followed for the symmetric QTSP by Fischer and Helmberg [137], see also [133]. Rostami et

al. [326] provide several lower bounding procedures for the asymmetric QTSP, including a

column generation approach and a bound based on the reformulation-linearization technique

followed by a Lagrangian relaxation. The linearization problem for the QTSP is studied by

Punnen et al. [311]. Finally, several heuristic methods are considered in the literature. Ag-

garwal et al. [6] derive an O(log n) approximation algorithm for the angular-metric TSP. The

first heuristics for the QTSP are proposed by [135, 224] and are based on similar approaches

for the linear TSP. Woods and Punnen [374] provide different classes of neighbourhoods

for the QTSP and related problems. Staněk et al. [347] discuss several heuristics for the

QTSP in the plane, which are based on geometric arguments or auxiliary integer linear pro-

grams. Finally, Zhang et al. [379] adopt a deep reinforcement learning approach to tackle

the angular-metric and the angular-distance-metric TSP.

1.4.2 The quadratic cycle cover problem

Given a directed graph G = (N,A) and a cost matrix Q = (qef ) ∈ Rm×m with the same

characteristics as described in Section 1.4.1, the quadratic cycle cover problem (QCCP)

aims to find a set of node-disjoint cycles covering all the nodes in G, such that the total

quadratic cost among the used successive arcs is minimized. The QCCP is closely related

to the QTSP. Indeed, instead of finding one closed tour in G, we allow for the existence

of multiple subtours which together visit all the nodes. In a similar fashion as described

in Section 1.4.1, we distinguish between the symmetric and asymmetric QCCP. The linear

version of the problem is called the cycle cover problem (CCP) and aims to find a minimal

cycle cover under linear arc costs. The CCP is well-known to be solvable in polynomial time

due to its equivalence with the bipartite perfect matching problem.

Let x ∈ {0, 1}m denote the characteristic vector of a cycle cover in G such that xe = 1

if arc e is used in the cycle cover and xe = 0 otherwise. Let PQCCP denote the set of

characteristic vectors of cycle covers in G. Then, the QCCP can be modeled as

min x�Qx s.t. x ∈ PQCCP. (1.17)
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The set PQCCP can be written as

PQCCP :=

⎧⎨⎩x ∈ {0, 1}m :
∑

e∈δ+(i)

xe =
∑

e∈δ−(i)

xe = 1 ∀i ∈ N

⎫⎬⎭ , (1.18)

which can be obtained from PQTSP by dropping the cut-set or subtour elimination con-

straints. A cycle cover in a directed graph is also called a directed 2-factor. Notice that the

convex hull of the elements in PQCCP is easy to describe, since the underlying constraint

matrix is totally unimodular. The corresponding integer polytope is denoted by the direc-

ted 2-factor polytope. This polytope is equivalent to the perfect matching polytope of a

related bipartite graph B(G), the so-called bipartite representation of G, as shown by [275],

see also Section 3.4.2 of this thesis. The perfect matching polytope of bipartite graphs is

well-understood, see e.g., [48, 331].

The QCCP is known to be NP-hard in the strong sense [138, 274] and is mainly stud-

ied due to its close connection with the QTSP. Solving the QCCP is often regarded as a

subproblem in order to obtain lower bounds for the QTSP.

Similar to the case of the QTSP, several special cases with respect to the objective func-

tion of the QCCP are considered. In the angular-metric CCP the quadratic costs represent

the turning angle induced by two successive arcs. This problem has applications in robotics

and is also shown to be NP-hard [6]. Galbiati et al. [152] introduce another special case of

the QCCP: the minimum reload cost cycle cover problem (MinRC3). The MinRC3 problem

asks for a minimum cycle cover in an arc-colored graph under the reload cost model discussed

in Section 1.4.1. The MinRC3 problem is proven to be NP-hard in the strong sense [152].

A detailed overview of the MinRC3 problem and its applications can be found in [63].

Several papers have been written about solution methods for the QCCP or its related

problems. Jäger and Molitor [224] introduce the QCCP in order to use the QCCP bounds as

lower bounds in a branch-and-bound algorithm for the QTSP. Galbiati et al. [152] consider

various integer programming formulations for the MinRC3 problem. One of these formula-

tions is exploited in a column generation framework to compute lower bounds for the problem.

Several LP-based lower bounds for the problem are considered in [274], among which lower

bounds exploiting the linearization problem of the QCCP, see Section 1.4.4 and Chapter 2

of this thesis. Lower and upper bounds based on semidefinite programming are proposed

in [275], see also Chapter 3 of this work. Fischer [133] derives polyhedral properties for a

linearized formulation of the QCCP by proving that several inequalities are facet-defining.

Büyükçolak et al. [63] study the MinRC3 problem on complete undirected graphs with a

so-called equitable or nearly equitable 2-edge coloring. These are edge-colorings containing

only two colors, where the number of edges adjacent to a vertex that are colored by each of

the classes differs by no more than one (respectively two) for each vertex in G. A polyno-

mial time algorithm that constructs a monochromatic cycle cover is derived for these types

of graphs (except for some special cases). Finally, several heuristics for the QCCP have been

considered. Aggarwal et al. [6] provide a O(log n)-approximation algorithm for the angular-

metric CCP. The QCCP in combination with a rounding procedure is applied by Staněk et

al. [347] to construct heuristics for the QTSP. Galbiati et al. [152] construct upper bounds

for the MinRC3 problem by a local search algorithm based on 2-exchange and 3-exchange

neighbourhoods.
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1.4.3 The graph partition problem

Let G = (V,E) be an undirected graph with vertex set V and edge set E, where n := |V |.
Also, let w : E → R be a weight function and let k be an integer with 2 ≤ k ≤ n − 1. The

goal of the graph partition problem (GPP) is to find a partition of the vertex set V into k

disjoint sets, i.e., V = S1 ∪ · · ·∪Sk, where S1, . . . , Sk have specified sizes m1 ≥ . . . ≥ mk ≥ 1

with
∑k

j=1 mj = n, such that the total weight of edges having endpoints in different sets is

minimized.

Several special cases of the GPP are known: In case m1 = · · · = mk = n
k
, the resulting

GPP is known as the k-equipartition problem (k-EP). If k = 2, we refer to the problem as

the graph bisection problem (GBP). In case k = 2 and m1 = m2, the problem is called the

equicut problem (ECP).

In order to model the problem, let P ∈ {0, 1}n×k denote a partition matrix such that

Pij :=

{
1 if i ∈ Sj ,

0 otherwise,
for all i ∈ [n], j ∈ [k].

Moreover, define x ∈ {0, 1}nk by x := vec(P ), i.e., the concatenation of the characteristic

vectors of the sets Sj , j ∈ [k]. Let W = (wij) ∈ Sn denote the weight matrix of G,

where wij = w({i, j}) if {i, j} ∈ E and wij = 0 otherwise. Since P�
:,jWP:,� equals the total

weight of edges having one endpoint in Sj and one endpoint in S�, the total weight of edges

joining different sets of the partition equals

1

2

∑
j∈[k]

∑
�∈[k]
� �=j

P�
:,jWP:,� =

1

2
x� ((Jk − Ik)⊗W )x.

Let PGPP denote the set of all characteristic vectors x of partitions of G that satisfy the

cardinality constraints imposed by m1, . . . ,mk. Then, the GPP can be modeled as

min
1

2
x� ((Jk − Ik)⊗W ) x s.t. x ∈ PGPP. (1.19)

Using matrix notation, the set PGPP can be written as

PGPP :=

{
x ∈ {0, 1}kn :

(
Ik ⊗ 1�

n

1�
k ⊗ In

)
x =

(
m

1n

)}
, (1.20)

where m := [m1 . . . mk]
� denotes the column vector of set cardinalities. Indeed, the first

row of the block system in (1.20) manages that the sum of elements in each set Sj equals mj .

The other block row manages that each vertex in V is assigned to exactly one set Sj . One

easily verifies that the constraint matrix in (1.20) is totally unimodular, implying that the

convex hull of the elements in PGPP is an integer polytope. This polytope we denote by

the k-partition polytope and is a special case of the transportation polytope, see e.g., [111].

We below present a different formulation of the GPP that we frequently use in this

dissertation. The total weight of the partition equals the sum of all edge weights minus the

total weight of edges that have both endpoints in the same set. Hence, the objective function

can also be written as
1

2
tr

(
W (Jn − PP�)

)
=

1

2
tr(LPP�),

where L := Diag(W1n) −W denotes the weighted Laplacian matrix of G. Now, the GPP
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can be formulated as the following binary quadratic optimization problem:

min
1

2

〈
L,PP�

〉
s.t. P1k = 1n

P�1n = m

Pij ∈ {0, 1} ∀i ∈ [n], j ∈ [k].

(1.21)

Clearly, the constraints on P manage that P is a partition matrix, where each set has

cardinality mj .

The GPP is proven to be NP-hard by Garey et al. [165]. It has attracted the attention

of many researchers due to its wide applicability, e.g., in clustering problems, floor planning,

VLSI design, parallel computing, data mining, air traffic, image processing, image segment-

ation, quantum circuit design, see e.g., the book by Bichot and Siarry [47]. For an overview

of recent advances in graph partition problems, we refer the reader to [59].

We present below a brief summary of solution approaches for the GPP or its variants

that are based on semidefinite programming. Donath and Hoffman [104] derive an eigenvalue

bound for the GPP, which is later improved by Rendl and Wolkowicz [321]. Wolkowicz and

Zhao [371] derive SDP relaxations for the GPP including matrix variables of order nk + 1.

Sotirov [343] derives another more compact SDP relaxation for the GPP that includes matrix

variables of order n.

For the special case of the k-EP, Karisch and Rendl [231], among others, show that

the bounds introduced in [104] and [321] can be obtained as the solution of a semidefinite

program. Moreover, Karisch and Rendl present several SDP relaxations for the k-EP that

dominate the bounds from [104, 321]. One of the SDP relaxations in [231] includes additional

polyhedral cuts and currently provides the strongest known SDP bound for the k-EP. This

relaxation is further investigated for the special case where G is a highly symmetric graph

by Van Dam and Sotirov [90]. De Klerk et al. [233] utilize the model of the k-EP as a

quadratic assignment problem in order to obtain an alternative relaxation for the k-EP,

which is thereafter reduced by exploiting symmetries.

For the special case of the GBP, two equivalent SDP relaxations with matrix variables of

order n are derived in [232, 343]. Sotirov [344] derives yet another SDP relaxation of order n

that dominates the ones presented in [232, 343]. It turns out that the latter relaxation is

equivalent to the general GPP relaxation from [371].

Although the SDP relaxations with additional cutting planes turn out to be strong for

both the k-EP [231] and the GBP, state-of-the-art interior-point methods have difficulties

solving these relaxations. An alternative solution method based on a first-order method in

a cutting-plane framework is considered in [278], see also Chapter 4 in this thesis.

Several of the above-mentioned SDP bounds are exploited in exact methods for solving

the GPP, the k-EP or the GBP. Karish et al. [232] develop a branch-and-bound algorithm for

the GBP based on SDP bounds with polyhedral constraints. Alternatively, Hager et al. [193]

propose a branch-and-bound algorithm for the GBP that exploits continuous quadratic pro-

gramming formulations of the problem. It is reported in [193] that the use of SDP bounds

leads to the best performance of this algorithm. Armbruster et al. [21] consider a branch-and-

cut framework on large and sparse GBP instances, using either linear or SDP relaxations.

Numerical results suggest the superiority of the semidefinite programming approach.
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1.4.4 The linearization problem of binary quadratic programs

Let us reconsider the general binary quadratic program of (1.13). If there exists a vec-

tor p ∈ Rn such that we have

x�Qx = p�x for every x ∈ P ,

then we say that the binary quadratic program is linearizable. If such a vector p exists, we

call p a linearization vector of Q for the given BQP. By abuse of terminology, we also say

that the matrix Q is linearizable for the given optimization problem. If (1.13) is linearizable,

this implies that we can equivalently solve the following binary linear program:

min p�x

s.t. x ∈ P = {x ∈ {0, 1}n : Ax ≤ b} .
(1.22)

Indeed, the obtained binary linear program (1.22) can be easier to solve than (1.13), e.g., due

to the set conv(P ) having an explicit polyhedral description, or due to the fact that (1.22)

is a well-known problem for which an efficient combinatorial algorithm exists.

The linearization problem of a BQP asks whether the cost matrix Q is linearizable and,

if so, to provide a linearization vector p.

Recently, the study of linearization problems has become an active field of research for

many combinatorial optimization problems. Kabadi and Punnen [229, 309] study the linear-

ization problem of the quadratic assignment problem (QAP) and provide several polynomial

time algorithms that solve it. More specifically, Kabadi and Punnen [229] (resp. Punnen and

Kabadi [309]) present an O(n4) (resp. O(n2)) algorithm for the general (resp.Koopmans-

Beckmann) QAP linearization problem, where n is the size of the problem. Adams and

Waddell [5] and Cela et al. [70] consider linearizable special cases of the QAP. The linear-

ization problem of the bilinear assignment problem is considered by Ćustić et al. [85]. The

linearization problem of the quadratic minimum spanning tree problem and the quadratic

traveling salesman problem are studied by Ćustić and Punnen [84] and Punnen et al. [311],

respectively. The linearization problem of the quadratic shortest path problem (QSPP) is

considered by Hu and Sotirov [215], who develop a polynomial time algorithm that solves the

linearization problem on directed grid graphs. The same authors also derive a polynomial

time algorithm for the linearization problem of the QSPP on directed acyclic graphs in [217].

The linearization problem of the quadratic cycle cover problem is studied in [274], see also

Chapter 2 in this thesis.

Applications of the linearization problem of BQPs are also considered in the literature.

Punnen et al. [310] study equivalent representations of quadratic combinatorial optimization

problems and exploit the corresponding linearization problem to derive such representa-

tions. The linearization problem of general BQPs is studied in [217], where a new lower

bounding scheme exploiting the linearization problem is introduced. It is shown that the

resulting linearization-based bounds include several well-known families of bounds, includ-

ing the generalized Gilmore-Lawler type bound and bounds resulting from the first level

reformulation-linearization technique (RLT-1). Linearization-based bounds for the quad-

ratic cycle cover problem that only rely on sufficient conditions of linearizability are studied

in [274], see Chapter 2 of this thesis.
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1.5 Outline of the thesis

In this dissertation, we focus on the concepts of integrality and cutting planes in semidefinite

programs: two notions that have acquired a fundamental role in (integer) linear programming

theory. For semidefinite programs, however, these concepts are not yet studied to the same

extent and thus numerous aspects within this domain are still to be analyzed. This thesis

contributes to the understanding of these notions in the framework of SDPs, where we

specifically focus on several well-known classes of combinatorial optimization problems.

The contribution of this thesis can be divided into four research themes: cutting planes

in SDPs, integrality in SDPs, the QCCP/QTSP and their applications and the GPP and its

applications. Below we briefly motivate these four themes and their connection.

Regarding the first research theme, we investigate the versatile role of cutting planes

in (integer) semidefinite programming. We investigate several general classes of cutting

planes for integer semidefinite programs and study how these can be used in a branch-

and-cut framework. In particular, we perform an in-depth study on the theoretical and

practical properties of the Chvátal-Gomory cuts for integer SDPs. We also investigate how

cutting planes can be used in (continuous) SDPs. It is well-known that polyhedral cuts can

significantly strengthen the SDP relaxations of hard combinatorial problems. The current

state-of-the-art SDP solvers, however, have difficulties solving models involving lots of cutting

planes. As an alternative, we introduce an advanced SDP-based cutting-plane method that

is suitable for the addition of polyhedral cuts. This approach is based on a combination of

the ADMM and an iterative projection technique, and can handle the addition of a large

number of cutting planes.

The second research theme gathers around integrality in SDPs. Mixed-integer semi-

definite programming has become an active field of study very recently, mainly driven by

the realization that several problems model naturally as a mixed-integer SDP (MISDP), see

e.g., [71, 376]. Using a combination of generic and problem-specific approaches, we show that

in fact a large number of problems allow for a formulation in terms of a MISDP, including

well-known combinatorial optimization problems. We focus on some theoretical notions re-

garding MISDPs, such as total dual integrality, the Chvátal-Gomory closure and Lagrangian

duality theory. Besides, we improve on an existing branch-and-cut algorithm for MISDPs

by the incorporation of MISDP-based cutting planes.

The study on the QCCP, the QTSP and their applications form the third and largest

research theme. Both problems make a recurring appearance throughout this work, of-

ten serving as the main examples to which the above-mentioned results are applied. This

leads to several novel approaches for tackling these difficult problems. On top of these ap-

proaches, we also investigate other solution methods that are treated in separate chapters

of this thesis. First, we introduce several LP-based bounding approaches for the QCCP,

including several linearization-based bounds that follow from a study on the linearization

problem of the QCCP. Also, various novel LP- and SDP-based upper bounding techniques

for the QCCP are introduced, such as randomized rounding methods and a reinforcement

learning approach. Finally, we consider an application of a variation of the QTSP, namely

the generalized traveling salesman problem (GTSP). Given a partitioning of the nodes of a

graph into clusters, the GTSP asks for an optimal closed cycle that visits at least one node

from each cluster. An interesting application of this setting can be found in quantum circuit

design. The final part of this thesis is fully dedicated to this application.

The fourth research theme covers the GPP and its application. It is well-known that
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SDP bounds for the GPP and its variants can be substantially improved by the addition

of polyhedral cuts. As mentioned earlier, we propose a new ADMM-based cutting-plane

algorithm to solve such SDPs. We study this algorithm in detail for several types of graph

partition problems. Moreover, we show that the GPP and its variants allow for several

different MISDP formulations.

The remaining contents of this thesis are divided into six self-contained chapters. The

contributions of these chapters to the above-mentioned four research themes are depicted in

Figure 1.1. Below we briefly outline the main contributions per chapter.

Chapter 2: The quadratic cycle cover problem: special cases and efficient
bounds

In this chapter we study the linearization problem of the QCCP and its related lower bounds.

First, we provide an alternative proof for the NP-hardness of the QCCP. Then, we derive

various sufficient conditions for the cost matrix to be linearizable and use these conditions

to compute strong and efficient lower bounds. We also show how to use a sufficient con-

dition for linearizability within an iterative bounding procedure. The introduced family of

linearization-based bounds contains the classical Gilmore-Lawler type bound. When taking

both quality and efficiency into account, the best among here introduced bounds outperform

existing lower bounds.

Chapter 3: SDP-based bounds for the quadratic cycle cover problem via
cutting-plane augmented Lagrangian methods and reinforcement learning

In this chapter we derive several SDP relaxations for the QCCP and use facial reduction to

make these strictly feasible. To solve our relaxations, we propose a generic algorithm that

incorporates an augmented Lagrangian method into a cutting-plane framework by utilizing

Dykstra’s projection algorithm. Our algorithm is suitable for solving SDP relaxations with

a large number of polyhedral cuts. Computational results show that our SDP bounds and

our efficient cutting-plane algorithm outperform other QCCP bounding approaches from

the literature. Finally, we provide several SDP-based upper bounding techniques, among

which a sequential Q-learning method that exploits a solution of our SDP relaxation within

a reinforcement learning environment.

Chapter 2

Chapter 3

Chapter 5

Chapter 4

Chapter 6

Chapter 7

QCCP/QTSP and applications

Cutting planes in SDPs

Integrality in SDPs

GPP and applications

Figure 1.1: Color chart of distribution of four research themes over the different chapters.
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Chapter 4: Partitioning through projections: strong SDP bounds for large
graph partition problems

In this chapter we investigate the quality of doubly nonnegative relaxations, strengthened

by additional polyhedral cuts for the GPP, in particular for the special cases of the GBP and

the k-EP, see Section 1.4.3. After reducing the size of the relaxations by facial reduction,

we solve them by the SDP-based cutting-plane approach introduced in Chapter 3. Our

computational study shows the power of doubly nonnegative relaxations with additional

cutting planes for the GPP on large benchmark instances. The improvements compared to

the standard SDP bounds, i.e., without the use of additional cutting planes, are significant.

Chapter 5: The Chvátal-Gomory procedure for integer SDPs with applic-
ations in combinatorial optimization

In this chapter we study the class of Chvátal-Gomory (CG) cutting planes for integer SDPs

and the closure obtained from taking the intersection of all such cuts. This closure is related

to the notion of total dual integrality in SDPs. We derive several conditions under which

a linear matrix inequality is totally dual integral. On the practical side, we show how to

exploit (strengthened) CG cuts in a branch-and-cut framework for integer SDPs. Different

from existing algorithms in the literature, the separation routine in our approach exploits

both the PSD and the integrality constraints. In the second part of the chapter we present a

comprehensive application of our approach to the QTSP. Based on the algebraic connectivity

of the directed Hamiltonian cycle, two integer SDPs that model the QTSP are introduced.

We show that the CG cuts resulting from these formulations contain several well-known

families of cutting planes. Numerical results illustrate the practical strength of the CG cuts

in our branch-and-cut algorithm.

Chapter 6: On integrality in semidefinite programming for combinatorial
optimization

In this chapter we show that a wide variety of combinatorial optimization problems can

be modeled as a mixed-integer SDP. Based on a comprehensive study on discrete positive

semidefinite matrices, we follow a generic approach to derive mixed-integer semidefinite pro-

gramming (MISDP) formulations for binary quadratically constrained quadratic programs

and binary quadratic matrix programs. Applying a problem-specific approach, we derive

more compact MISDP formulations for several problems, such as the GPP. We also show

that several structured problems allow for novel compact MISDP formulations through the

notion of algebraic connectivity. On the applied side, we show how these MISDP models

can be exploited to obtain strong bounds for the corresponding problems via Lagrangian

duality. By introducing a MISDP-based projected subgradient algorithm, we show that the

resulting Lagrangian dual bounds for the max-cut problem are substantially stronger than

the standard SDP bound.

Chapter 7: Exploiting symmetries in optimal quantum circuit design

In this chapter we consider a problem in quantum circuit design that is related to the

generalized traveling salesman problem (GTSP). A physical limitation in quantum circuit

design is the fact that gates in a quantum system can only act on qubits that are physically

adjacent in the architecture. To overcome this problem, SWAP gates need to be inserted
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in the circuit to make the circuit physically realizable. The nearest neighbour compliance

problem (NNCP) asks for an optimal embedding of qubits in a given architecture such that

the total number of SWAP gates to be inserted is minimized. Matsuo and Yamashita [269]

show that this problem reduces to a large-scale shortest path problem on a sequence of

Cayley graphs. If we add to the model the constraint that the final embedding should match

the embedding at the start, the problem reduces to a GTSP. In this chapter, however, we

only study the NNCP without this restriction.

The goal of this chapter is to reduce the shortest path formulation by exploiting the

group symmetry of the graph underlying the formulation. This leads to a symmetry-reduced

NNCP algorithm that involves solving a generalized network flow problem. As a byproduct

of our approach, we show that the NNCP is polynomial time solvable for several classes of

highly symmetric quantum architectures. Numerical tests on several architectures indicate

that the reductions in the number of variables and constraints on average is at least 90%.

For particular architectures, NNCP instances up to 100 qubits and more than 1000 quantum

gates can be solved. These results are far beyond the computational capacity when solving

the instances without the exploitation of symmetries.
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1.6 Contributions to the literature

This thesis is based on the following seven research papers:

Chapter 2 F. de Meijer and R. Sotirov ([274]). The quadratic cycle cover problem:

Special cases and efficient bounds. Journal of Combinatorial Optimization,

39:1096–1128, 2020.

Chapter 3 F. de Meijer and R. Sotirov ([275]). SDP-based bounds for the quadratic

cycle cover problem via cutting-plane augmented Lagrangian methods and

reinforcement learning. INFORMS Journal on Computing, 33:1262–1276,

2021. (Rewarded a Meritorious Paper Award by INFORMS Journal on

Computing)

Chapter 4 F. de Meijer, R. Sotirov, A. Wiegele and S. Zhao ([278]). Partitioning

through projections: Strong SDP bounds for large graph partition problems.

Computers & Operations Research, 151:106088, 2023.

Chapter 5 F. de Meijer and R. Sotirov ([276]). The Chvátal-Gomory procedure for in-

teger SDPs with applications in combinatorial optimization. In third review

round for publication in Mathematical Programming, 2023.

Chapter 6 F. de Meijer and R. Sotirov ([277]). On integrality in semidefinite program-

ming for discrete optimization. In second review round for publication in

SIAM Journal on Optimization, 2023.

F. de Meijer and R. Sotirov. On improving semidefinite programming

bounds via integer Lagrangian duality. Working paper, 2023.

Chapter 7 F. de Meijer, D. Gijswijt and R. Sotirov ([272]). Exploiting symmetries in

optimal quantum circuit design. Working paper, 2023.
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2
The quadratic cycle cover problem: special cases and

efficient bounds

Chapter summary

The quadratic cycle cover problem is the problem of finding a set of node-disjoint
cycles visiting all the nodes such that the total sum of interaction costs between
consecutive arcs is minimized. In this chapter we study the linearization problem of
the quadratic cycle cover problem and related lower bounds.

In particular, we derive various sufficient conditions for the cost matrix to be
linearizable, and use these conditions to compute bounds. We also show how to use a
sufficient condition for linearizability within an iterative bounding procedure. In each
step, our algorithm computes the best equivalent representation of the cost matrix
and its optimal linearizable matrix with respect to the given sufficient condition
for linearizability. Further, we show that the classical Gilmore-Lawler type bound
belongs to the family of linearization-based bounds, and therefore apply the above-
mentioned iterative reformulation technique. We also prove that the linearization
vectors resulting from this iterative approach satisfy the constant value property.

The best among here introduced bounds outperform existing lower bounds when
taking both quality and efficiency into account.

31
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2.1 Introduction

A disjoint cycle cover in a directed graph is a set of node-disjoint cycles such that every node

belongs to exactly one cycle. The quadratic cycle cover problem (QCCP) is the problem of

finding a disjoint cycle cover in a graph such that the total sum of interaction costs between

consecutive arcs is minimized. Since we assume that all cycle covers in this chapter are

disjoint, we use the term cycle cover to denote this concept throughout this chapter. The

QCCP is proven to be NP-hard [138]. The corresponding linear problem is called the cycle

cover problem (CCP), in which one wants to find a minimum cycle cover with respect to

linear arc costs. It is well-known that the CCP is solvable in polynomial time.

The QCCP is closely related to the quadratic traveling salesman problem (QTSP) which

is introduced in [224]. The QTSP is the problem of finding a Hamiltonian cycle in a graph

minimizing a quadratic cost function. It has applications in bioinformatics, robotics and

telecommunication [135]. When we remove the subtour elimination constraints, the QTSP

boils down to the QCCP. Therefore, the QCCP is often used to provide lower bounds for the

QTSP [135, 224, 347]. For this reason, the quadratic cycle cover problem is an interesting

optimization problem that has received more attention in the past few years.

In the literature several special cases with respect to the objective function of the QCCP

are considered. For an overview of these special cases, see Section 1.4.2. We also refer to

Section 1.4.2 for an overview of solution methods for the QCCP that are proposed in the

literature.

We focus here on the linearization problem of the QCCP and its applications. An instance

of the quadratic cycle cover problem is called linearizable if there exists an instance of the

linear cycle cover problem such that the associated costs for both problems are equal for all

feasible cycle covers. The linearization problem of the quadratic cycle cover problem asks

whether a given instance of the QCCP is linearizable. To the best of our knowledge, we are

the first to address the linearization problem of the QCCP. For a literature overview on the

linearization problem of other binary quadratic problems, we refer the reader to Section 1.4.2.

2.1.1 Main results and outline

In this chapter, we first provide a compact proof for the QCCP being strongly NP-hard
and not approximable within any constant factor unless P = NP. Then, we consider the

linearization problem of the QCCP and derive various sufficient conditions for an instance

of the QCCP to be linearizable. In particular, we provide three different types of weak sum

conditions on the data matrix for which the corresponding instance can be solved in poly-

nomial time. Further, we present a general framework in which each sufficient condition for

linearizability can be used to construct a lower bound on the optimal objective value. Each

of these bounds can be computed by solving a linear programming problem, as long as the set

of linearizable matrices is a polyhedron. These types of bounds are called linearization-based

bounds (LBB) and were recently introduced in [217] for general binary quadratic problems.

However, our LBBs exploit sufficient conditions for linearizability suited for the QCCP.

Furthermore, we show how to use a sufficient condition for linearizability within an iter-

ative bounding procedure. In each iteration, we search for the best equivalent representation

of the objective and its optimal linearizable matrix that satisfies a particular sufficient con-

dition for linearizability. We refer to the resulting bound as the reformulation-based bound

(RBB). Our iterative bounding procedure can be seen as a generalization of similar iterative

procedures, see e.g., [66, 324, 325].
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Finally, we consider the classical Gilmore-Lawler (GL) type bound [172, 246]. First, we

show that the GL type bound for the QCCP can be obtained by solving a single linear pro-

gramming problem instead of solving m (integer) subproblems, where m equals the number

of arcs in the graph. Then, we prove that the GL type bound belongs to the family of

linearization-based bounds by providing the appropriate sufficient condition. We implement

our iterative bounding procedure to compute the RBB using the GL type bound. In the

literature, iterative approaches for various problems that are based on the GL type bounds

use dual variables to obtain bounds, and do not search for equivalent reformulations that

provide the best bound in each iteration. By construction, our approach outperforms others

in terms of strength of the bound. Another interesting result is that the linearization vec-

tors resulting from this iterative procedure satisfy the constant value property–yet another

important property for linearizability.

Our numerical results show that the introduced bounding approaches are efficient and

provide strong bounds compared to several methods from the literature. In particular, our

most prominent bound can be computed within 60 seconds for instances up to 15 000 arcs.

Interestingly, the GL type bound that is known to be one of the computationally cheapest

bounds for quadratic optimization problems cannot be computed on such large instances

within a time span of 1800 seconds.

This chapter is organized as follows. In Section 2.2, we formally introduce the QCCP and

prove its NP-hardness. In Section 2.3, the linearization problem of the QCCP is introduced

and several sufficient conditions for linearizability are derived. The general framework for the

computation of the linearization-based bounds is discussed in Section 2.4. These bounds are

used in Section 2.5 to construct an iterative bounding procedure for each sufficient condition.

In Section 2.6, we consider the classical GL type bound and prove that it belongs to the

family of linearization-based bounds. We also show how the iterative procedure for this

linearization-based bound boils down to the computation of the strongest GL type bound

in each step. In Section 2.7, we briefly discuss several other bounds from the literature.

Numerical results are given in Section 2.8.

2.2 The quadratic cycle cover problem

An instance I of the QCCP is specified by the pair I = (G,Q), where G = (N,A) is a

directed graph with n vertices and m arcs and Q = (qef ) ∈ Rm×m
+ is a cost matrix. The

entries in Q are such that qef = 0 if f is not a successor of e. In other words, the quadratic

cost of two arcs e and f can be nonzero only if the starting node of f equals the ending node

of e. In case we also consider linear arc costs p : A→ R+, we can put these arc costs on the

diagonal of the cost matrix Q.

Now, let x ∈ {0, 1}m be a characteristic vector of a cycle cover, where xe = 1 if arc e

belongs to the cycle cover, and 0 otherwise. Then, the QCCP can be formulated as

OPT(Q) := min x�Qx s.t. x ∈ P, (2.1)

where P denotes the set consisting of all disjoint cycle covers in G, i.e.,

P :=

⎧⎨⎩x ∈ {0, 1}m :
∑

e∈δ+(i)

xe =
∑

e∈δ−(i)

xe = 1 ∀i ∈ N

⎫⎬⎭ . (2.2)
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The set (2.2) equals the set of directed 2-factors in G. For the existence of such a directed 2-

factor in a directed graph, see e.g., Chiba and Yamashita [74].

Since 1�x = n for all x ∈ P , the assumptions that Q ≥ 0 and p ≥ 0 are nonrestrictive.

Indeed, we can always add to Q or p a positive multiple of J or 1, respectively, and solve an

equivalent problem with a nonnegative cost structure. For that reason, we assume without

loss of generality that Q ≥ 0 and p ≥ 0 throughout this chapter.

The quadratic cycle cover problem is NP-hard [138]. Also, the related angular-metric

CCP and the MinRC3 problem are shown to be NP-hard [6] and strongly NP-hard [152],

respectively. We now provide an alternative reduction that establishes strong NP-hardness
which is based on a reduction from the quadratic assignment problem. We consider the

Koopmans-Beckmann form of the QAP introduced in [238] with nonnegative cost structure.

Let F and L be a set of n facilities and n locations, respectively, w : F × F → R+ a weight

function and d : L× L→ R+ a distance function. Without loss of generality, we assume

that dii = wii = 0 for all i ∈ [n]. Then, we search for a bijection π : F → L such that∑n
i=1

∑n
j=1 dπ(i)π(j)wij is minimized. The QAP is NP-hard in the strong sense and not

approximable within any constant factor [327].

Theorem 2.1. The QCCP is NP-hard in the strong sense and cannot be approximated

within a constant factor unless P = NP.

Proof. Let I be an instance of the QAP, i.e., we have F = {1, . . . , n}, L = {1′, . . . , n′}
with |L| = |F | = n, functions w : F ×F → R+ and d : L×L→ R+ and a positive integer K.

We create an instance I′ of the QCCP that is equivalent to the QAP-instance I.
For the reduction we create a directed graph G = (N,A) that consists of cells. A

cell belongs to a single facility and consists of n nodes, each of them corresponding to an

assignment to one of the n locations. These nodes are specified by the pairs (i j′) where i ∈ F

and j′ ∈ L. For each facility i ∈ F , we define a set of n − 1 identical cells, which we call

a group. The nodes corresponding to the same assignment within a group are placed on a

directed cycle, where the arcs are oriented from cell i to cell i + 1 for i = 1, . . . , n − 2, and

from cell n−1 to cell 1. In this way, we obtain n cycles per group, which we call inner cycles.

We set the interaction cost between each of the successive arcs within a group to zero for all

groups. In Figure 2.1 the group corresponding to facility 1 is given. In a similar fashion we

construct groups corresponding to the remaining facilities.

...

(1 1′)

(1 2′)

(1 n′)

...

(1 1′)

(1 2′)

(1 n′)

. . . ...

(1 1′)

(1 2′)

(1 n′)

cell 1

{

cell 2

{

cell n− 1

{

Figure 2.1: Group consisting of n− 1 cells corresponding to facility 1.

We now specify the connections between the groups. For each group, each of its n − 1
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cells is connected to exactly one cell from the n − 1 other groups. Hence, each cell of a

group is connected to a different group, resulting in
(
n
2

)
connections. Connecting the cells

of two groups is done by introducing a connection node and a relink node. Starting from

the first group, we draw an arc from every node of one of its cells to the connection node.

Successively, we draw an arc from the connection node to all the nodes of one of the cells

of the second group. The same is done for the relink node, now in the reverse direction.

Figure 2.2 depicts an overview of the connection between the last cell of group i and the

first cell of group j. We denote the cycles between the groups by outer cycles. In Figure 2.2

solid arcs are used for the outer cycles, while the inner cycles are drawn using dashed arcs.

A similar connection via connection and relink nodes exists for all other pairs of groups.

Observe that any arc in G either belongs to an inner cycle or to several outer cycles. The

quadratic cost of a pair of successive arcs (e, f) where e belongs to an inner cycle and f to

an outer cycle or vice versa, is set to ∞. It remains to specify the interaction cost between

successive arcs on an outer cycle. We only specify the quadratic cost between the arcs

entering and leaving the connection node, other costs are set to zero.

Let i and j be two distinct groups associated with facility i and j, respectively. Let a

node in group i be given by (i k′) with k′ ∈ L. Similarly, a node in group j is given by (j l′)

with l′ ∈ L. Let eik′ denote the arc between (i k′) and the connection node and let fjl′

denote the arc between the connection node and (j l′). Then the quadratic cost between eik′

and fjl′ is defined as follows:

qeik′ ,fjl′ :=

{
dk′l′wij + dl′k′wji if k′ 	= l′

∞ otherwise.

We repeat this construction for any two connected cells. Figure 2.3 gives a simplified overview

of G for n = 4. The circles in the center denote the connections between the cells, where

the connection and relink nodes are drawn using the symbols ‘•’ and ‘∗’, respectively. The

graph G has n2(n− 1) + 2
(
n
2

)
= O(n3) nodes and n2(n− 1) + 4n

(
n
2

)
= O(n3) arcs.

It remains to show that there exists a cycle cover in I′ with cost at most K if and only

if there exists a feasible assignment in I with cost at most K.

First, we verify that a cycle cover with finite cost inG corresponds to a feasible assignment

of facilities and locations. Note that the connection and relink nodes must be covered by

an outer cycle, since any other cycle would induce a cost of ∞. Besides the connection

and relink nodes, this cycle contains two nodes that each correspond to an assignment of a

different facility. Moreover, these facilities must be assigned to different locations, otherwise

this implies an infinite cost. The nodes in a cell that are not covered by an outer cycle must

...
...

...

...

group i group j
connection node

relink node

...
...

...

...

Figure 2.2: Connection between two cells of group i and j.
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cell 1

cell 2

cell 3

cell 1

cell 2

cell 3

cell 1 cell 2 cell 3

cell 1 cell 2 cell 3

group 1

group 2

group 3

group 4

Figure 2.3: Simplified overview of G for n = 4.

be covered by an inner cycle. Consequently, nodes on these inner cycles cannot belong to

an outer cycle. Therefore, for each group exactly one location is selected to be on an outer

cycle, i.e., each facility is assigned to some unique location. We conclude that a cycle cover

with finite cost corresponds to a feasible assignment and vice versa.

Observe that the objective value of a feasible assignment in the QAP instance equals

the total cost of the corresponding cycle cover in the QCCP instance. Namely, the lat-

ter cost equals the sum of quadratic costs incurred at the
(
n
2

)
connection nodes. If facil-

ity i (resp. j) where i 	= j is assigned to location k′ (resp. l′) where k′ 	= l′, then this cost

equals dk′l′wij + dl′k′wji. Taking the sum over all connections, the total cost of the cycle

cover equals
∑n

i=1

∑n
j=1 dπ(i)π(j)wij where π : F → L is the bijection corresponding to the

assignment.

Since the QAP is strongly NP-hard and the numbers defined in the reduction are polyno-

mially bounded (infinite costs can be replaced by an appropriate value which is polynomially

bounded in the largest number and the size of I), we conclude that the QCCP is strongly

NP-hard.
Moreover, as the QAP cannot be approximated within any constant factor [327] and the

reduction above is clearly gap preserving, the result follows.

2.3 The QCCP linearization problem

In this section, we formally introduce the linearization problem of the QCCP and derive

various sufficient conditions for an instance of the QCCP to be linearizable. Several of these

conditions are used later on to construct lower bounds for the optimal value of the QCCP.
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Let us consider the (linear) cycle cover problem. Given a cost vector p, the CCP is the

problem of finding a cycle cover of minimum linear cost. It can be written as follows:

min
x∈{0,1}m

{
p�x : x ∈ P

}
, (2.3)

where P is given in (2.2). Since the constraint set of P is totally unimodular, it follows that

the CCP is solvable in polynomial time. We call an instance I = (G,Q) of the QCCP linear-

izable if there exists a cost vector p ∈ Rm such that x�Qx = p�x for all cycle covers x ∈ P .

If such a vector p exists, we call p a linearization vector of Q for the QCCP.

The QCCP linearization problem can be stated as follows: Given an instance I = (G,Q)

of the QCCP, verify whether it is linearizable and, if yes, compute a linearization vector p

of Q.

In the remaining part of this section we provide sufficient conditions for the cost matrix Q

to be linearizable. The first type of sufficient conditions for linearizability are related to the

constant value property (CVP) for cost vectors or cost matrices. The definition associated

with the CCP is stated below.

Definition 2.2. A cost vector p satisfies the constant value property if p�x = p�x̄ for all

cycle covers x, x̄ ∈ P .

A similar definition holds for the quadratic version of the problem.

Definition 2.3. A cost matrix Q satisfies the constant value property if x�Qx = x̄�Qx̄ for

all cycle covers x, x̄ ∈ P .

When Q satisfies the constant value property then Q is linearizable, as stated by the

following lemma.

Lemma 2.4. Assume that Q satisfies the constant value property, i.e., x�Qx = ξ where ξ ∈ R
for all x ∈ P , then Q is linearizable with cost vector p defined as pe = ξ/n for all e ∈ A.

Proof. Follows immediately from the fact that any x ∈ P has n nonzero elements.

A more restricted version of the CVP is obtained when the interaction cost of a single

arc with its successor or predecessor is constant for all cycle covers x ∈ P . We refer to these

properties as the row and column constant value property, respectively, see [311]. In the

following definition, e+ and e− denote the starting and ending node of arc e, respectively.

Definition 2.5. A cost matrix Q satisfies the row CVP if there exists some b ∈ Rm such that

for all arcs e ∈ A we have qef = qeg = be for all f, g ∈ δ+(e−) and qef = 0 otherwise. A cost

matrix Q satisfies the column CVP if there exists some c ∈ Rm such that for all arcs e ∈ A

we have qfe = qge = ce for all f, g ∈ δ−(e+) and qfe = 0 otherwise.

It is not hard to verify that an instance of the QCCP is linearizable if the cost matrix Q

satisfies the row or column CVP.

Proposition 2.6. If Q satisfies the row CVP or the column CVP, then Q is linearizable.

Proof. We prove the case when Q satisfies the row CVP. Assume that b ∈ Rm is such that

for all arcs e ∈ A, qef = qeg = be for all f, g ∈ δ+(e−) and qef = 0 otherwise. Since qef = 0

when e and f are not successors, we know that x�Qx =
∑

e∈A

∑
f∈δ+(e−) qefxexf . We have∑

e∈A

∑
f∈δ+(e−)

qefxexf =
∑
e∈A

xebe
∑

f∈δ+(e−)

xf =
∑
e∈A

xebe = b�x.
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The proof for the column CVP is similar.

A matrix Q ∈ Rm×m is called a sum matrix if there exist b, c ∈ Rm such that qef = be+cf
for all e, f . A weak sum matrix is a matrix for which this property holds except for the

entries on the diagonal, i.e., qef = be + cf for all e 	= f . The weak sum property is used as

a condition for linearizability for several quadratic problems, see e.g., [215] and [311]. Since

in this chapter we only incur a cost when two arcs are successive, we use a different form of

the weak sum condition in which we only put a restriction on successive arcs. We call this

condition the incident weak sum property.

Definition 2.7. A matrix Q is called incident weak sum if there exist vectors b, c ∈ Rm

such that qef = be + cf for all e ∈ A, f ∈ δ+(e−) and qef = 0 otherwise. If such vectors b

and c exist, these vectors are called supporting vectors of Q.

If the cost matrix Q is an incident weak sum matrix, then Q is linearizable as stated by

the following proposition.

Proposition 2.8. Let Q be an incident weak sum matrix with supporting vectors b, c ∈ Rm.

Then, Q is linearizable with cost vector p = b+ c.

Proof. We show that for all x ∈ P we have x�Qx = p�x where p = b + c. Note that we

have x�Qx =
∑

e∈A

∑
f∈δ+(e−) qefxexf , since qef = 0 for all arcs that are not successors.

Now, ∑
e∈A

∑
f∈δ+(e−)

qefxexf =
∑
e∈A

∑
f∈δ+(e−)

(be + cf )xexf

=
∑
e∈A

bexe

∑
f∈δ+(e−)

xf +
∑
f∈A

cfxf

∑
e∈δ−(f+)

xe

=
∑
e∈A

bexe +
∑
f∈A

cfxf =
∑
e∈A

pexe.

Here we use that
∑

f∈δ+(e−) xf =
∑

e∈δ−(f+) xe = 1, by the structure of x.

From Proposition 2.8 it follows that the incident weak sum property is a sufficient con-

dition for Q to be linearizable. By including linear arc costs, this result remains valid, since

we only increase the entries on the diagonal of Q.

Moreover, note that when Q satisfies the row or column CVP, then Q is an incident weak

sum matrix. Next, we provide a special type of instance for which the cost matrix is not by

definition linearizable, but for which we can still obtain its optimal value by solving a linear

cycle cover problem.

Definition 2.9. A matrix Q ∈ Rm×m is called a symmetric product matrix if Q = aa� for

some vector a ∈ Rm.

Equivalently, we can say that Q is a symmetric product matrix if it is a symmetric positive

semidefinite matrix of rank one. An instance defined on such a cost matrix that is moreover

nonnegative can be solved in polynomial time, as stated by the following proposition.

Proposition 2.10. Let I = (G,Q) be a QCCP instance where Q is a nonnegative symmetric

product matrix. Then, I can be solved in polynomial time.



623138-L-sub01-bw-deMeijer623138-L-sub01-bw-deMeijer623138-L-sub01-bw-deMeijer623138-L-sub01-bw-deMeijer
Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023 PDF page: 59PDF page: 59PDF page: 59PDF page: 59

Chapter 2. The QCCP: special cases and efficient bounds 39

Proof. If Q is a nonnegative symmetric product matrix, then there exists a nonnegative

vector a ∈ Rm
+ such that Q = aa�. Then, x�Qx = x�aa�x = (a�x)�(a�x) = (a�x)2

for all x ∈ P . Minimizing x�Qx over all x ∈ P is then equivalent to minimizing a�x over

all x ∈ P .

The conditions given in Definition 2.5 and 2.7 are such that Q satisfies qef = 0 when f is

not a successor of e. Below we derive two sufficient conditions for linearizability where Q can

have nonzero interaction cost between nonconsecutive arcs. Although these cost matrices do

not meet the assumptions of the QCCP, we can still use them to derive strong bounds for

the objective value of the original problem. This is addressed in Section 2.4.

Punnen et al. [311] introduce a generalized version of the weak sum property for the

QTSP. Their approach can be applied to the QCCP. However, since Punnen et al. [311]

prove the condition to hold for complete graphs, we provide a proof for general digraphs.

First, we define some new terminology. Instead of writing qef for e, f ∈ A we can also

write qij,kl with (i, j), (k, l) ∈ A. Let N+
i denote the set of nodes j for which there exists

an arc (i, j) ∈ A, i.e., N+
i := {j ∈ N : (i, j) ∈ A}. Similarly, let N−

i be the set of nodes j

for which an arc (j, i) ∈ A exists, i.e., N−
i := {j ∈ N : (j, i) ∈ A}. Now, we introduce the

notion of a generalized weak sum matrix.

Definition 2.11. Q is called a generalized weak sum matrix if there exist B,C ∈ Rm×n

andD,T ∈ Rn×m such that qij,kl = bij,k+cij,l+di,kl+tj,kl for all i, j, k, l with (i, j), (k, l) ∈ A.

If such B,C,D and T exist, these matrices are called supporting matrices of Q.

Now we can prove the following proposition.

Proposition 2.12. Let Q be a generalized weak sum matrix supported by B,C ∈ Rm×n

and D,T ∈ Rn×m. Then, Q is linearizable with cost vector p given by pij =
∑n

k=1 bij,k +∑n
k=1 cij,k +

∑n
k=1 dk,ij +

∑n
k=1 tk,ij .

Proof. Let b̄ij :=
∑n

k=1 bij,k, c̄ij :=
∑n

k=1 cij,k, d̄ij :=
∑n

k=1 dk,ij , t̄ij :=
∑n

k=1 tk,ij and pij =

b̄ij + c̄ij + d̄ij + t̄ij for all (i, j) ∈ A. Then, for x ∈ P ,

x�Qx =
∑
i∈N

∑
j∈N+

i

∑
k∈N

∑
l∈N+

k

qij,klxijxkl

=
∑
i∈N

∑
j∈N+

i

∑
k∈N

∑
l∈N+

k

bij,kxijxkl +
∑
i∈N

∑
j∈N+

i

∑
l∈N

∑
k∈N−

l

cij,lxijxkl

+
∑
k∈N

∑
l∈N+

k

∑
i∈N

∑
j∈N+

i

di,klxijxkl +
∑
k∈N

∑
l∈N+

k

∑
j∈N

∑
i∈N−

j

tj,klxijxkl

=
∑
i∈N

∑
j∈N+

i

xij

∑
k∈N

bij,k
∑

l∈N+
k

xkl +
∑
i∈N

∑
j∈N+

i

xij

∑
l∈N

cij,l
∑

k∈N−
l

xkl

+
∑
k∈N

∑
l∈N+

k

xkl

∑
i∈N

di,kl
∑

j∈N+
i

xij +
∑
k∈N

∑
l∈N+

k

xkl

∑
j∈N

tj,kl
∑

i∈N−
j

xij

=
∑
i∈N

∑
j∈N+

i

(b̄ij + c̄ij + d̄ij + t̄ij)xij =
∑
i∈N

∑
j∈N+

i

pijxij ,

where we use the fact that
∑

l∈N+
k
xkl =

∑
k∈N−

l
xkl =

∑
j∈N+

i
xij =

∑
i∈N−

j
xij = 1 since x

is a cycle cover.
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Note that an incident weak sum matrix can be seen as a special case of a generalized

weak sum matrix. That is, for all (i, j) ∈ A we set bij,j = bij and bij,k = 0 for all k 	= j

and for all (k, l) ∈ A we set tk,kl = tkl and tj,kl = 0 for all j 	= k. Moreover, let C and D

be zero matrices. Then, qij,jl = bij,j + cij,l + di,jl + tj,jl = bij + tjl for all (i, j), (j, l) ∈ A

and qij,kl = 0 otherwise.

When Q is a generalized weak sum matrix, we need 4mn parameters to describe Q. This

number can be reduced by considering a more restricted version of a generalized weak sum

matrix.

Definition 2.13. A matrix Q is called a restricted generalized weak sum matrix if there

exist C ∈ Rm×n, D ∈ Rn×m and b, t ∈ Rm such that qij,jl = bij + cij,l+di,jl+ tjl for all i, j, l

with (i, j), (j, l) ∈ A and qij,kl = cij,l + di,kl otherwise. If such C,D and b, t exist, these are

called supporting matrices and vectors, respectively.

We can show that restricted generalized weak sum matrices are linearizable.

Proposition 2.14. If Q is a restricted generalized weak sum matrix with supporting matrices

C,D and supporting vectors b, t, then Q is linearizable with vector p given by pij = bij +∑n
k=1 cij,k +

∑n
k=1 dk,ij + tij .

Proof. Define B ∈ Rm×n and T ∈ Rn×m as follows:

Bij,k =

{
bij if k = j,

0 otherwise,
for all (i, j) ∈ A, k ∈ N,

Tk,ij =

{
tij if k = i,

0 otherwise,
for all (i, j) ∈ A, k ∈ N.

Now the matrices B,C,D and T are such that they satisfy the conditions of Proposition 2.12.

This implies that Q is linearizable with vector p′ given by p′ij =
∑n

k=1 bij,k +
∑n

k=1 cij,k +∑n
k=1 dk,ij +

∑n
k=1 tk,ij . Since

∑n
k=1 bij,k = bij and

∑n
k=1 tk,ij = tij it follows that Q is

linearizable with vector p := bij +
∑n

k=1 bij,k +
∑n

k=1 dk,ij + tij .

2.4 Linearization-based bounds for the QCCP

In this section we show how the sufficient conditions for linearizability can be used to derive

bounds for the optimal value of the QCCP. The construction of these bounds is provided

in Section 2.4.1. Section 2.4.2 shows some preliminary numerical results of these bounding

procedures.

2.4.1 Construction of linearization-based bounds

When an instance of the QCCP is linearizable, we can solve the problem in polynomial

time by solving the corresponding linear cycle cover problem. When a cost matrix Q is not

linearizable, we can still use the sufficient conditions for linearizability to find lower bounds

for the optimal value of the problem. This approach is introduced by Hu and Sotirov [217]

for general binary quadratic problems. We here use tailor-made sufficient conditions for the

QCCP, which lead to efficient lower bounds as we show later in the numerical results.

Before we proceed, let us recall the linear cycle cover problem. We introduce the mat-

rix U ∈ Rn×m with Ui,e = 1 if node i is the starting node of arc e and 0 otherwise. Similarly,
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we define V ∈ Rn×m with Vi,e = 1 if node i is the ending node of arc e and 0 otherwise.

Since the matrix [U� V �]� is totally unimodular, the optimal value of the CCP using cost

vector p equals

OPT (p) := min
x∈Rm

⎧⎨⎩p�x :

⎡⎣U
V

⎤⎦x = 12n , x ≥ 0

⎫⎬⎭ (2.4)

= max
y∈R2n

{
1�
2ny :

[
U� V �

]
y ≤ p

}
, (2.5)

where 12n ∈ R2n equals the vector of ones. Note that (2.3) and (2.4) are equivalent optim-

ization problems. The corresponding dual problem is given in (2.5).

When Q is linearizable with linearization vector p, we can find the optimal value of

the QCCP by computing OPT (p) using (2.4) or (2.5). If Q is not linearizable, we can

search for a linearizable matrix Q̂ that is as close as possible to Q. To guarantee that Q̂ is

indeed linearizable, it should satisfy one of the sufficient conditions for linearizability derived

in Section 2.3. We define the sets Si(Q), for i ∈ [3], consisting of cost matrices Q̂ such

that Q̂ is linearizable w.r.t. a sufficient condition for linearizability and Q− Q̂ is elementwise

nonnegative. We have

S1(Q) :=
{
Q̂ ∈ Rm×m : Q̂ is an incident weak sum matrix and Q− Q̂ ≥ 0

}
,

S2(Q) :=
{
Q̂ ∈ Rm×m : Q̂ is a restricted generalized weak sum matrix and

Q− Q̂ ≥ 0
}
,

S3(Q) :=
{
Q̂ ∈ Rm×m : Q̂ is a generalized weak sum matrix and Q− Q̂ ≥ 0

}
.

Remark 2.15. We do not consider the sets of cost matrices Q satisfying the row or column

CVP, since these are special types of incident weak sum matrices. These type of matrices

are contained in S1.

The set Si(Q) can be seen as the set of all the linearizable cost matrices of a specific type

that are suitable for obtaining lower bounds for the optimal value of the problem. For this

purpose, we define for i ∈ [3] the set τi(Q) of cost vectors p̂ ∈ Rm as

τi(Q) :=
{
p̂ ∈ Rm : there exists a Q̂ ∈ Si(Q) such that p̂�x = x�Q̂x for all x ∈ P

}
.

It is clear that for all i and all p̂ ∈ τi(Q) we have

OPT (Q) = min
x∈P

{
x�Qx

}
≥ min

x∈P

{
x�Q̂x

}
= min

x∈P

{
p̂�x

}
= OPT (p̂).

So, indeed, OPT (p̂) is a lower bound for the optimal objective value of the QCCP for

all p̂ ∈ τi(Q) and i ∈ [3]. By maximizing over all cost vectors in τi(Q), we obtain the

strongest linearization-based bound with respect to the set Si(Q), which we denote by viLBB ,

see also [217]:

viLBB := max
p̂∈τi(Q)

{OPT (p̂)} = max
y∈R2n

p̂∈Rm

{
1�
2ny :

[
U� V �

]
y ≤ p̂, p̂ ∈ τi(Q)

}
. (2.6)
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The corresponding bounding approaches are denoted by LBB1, LBB2 and LBB3, respect-

ively.

Remark 2.16. Recall that the matrices in S2(Q) and S3(Q) can have nonzero interaction

cost for nonconsecutive arcs, so they do not satisfy the assumptions on the cost matrix of the

QCCP. Nevertheless, they can still be used to derive lower bounds for the original problem

based on the above-mentioned construction. Also, we do not explicitly require that Q̂ ≥ 0

and p̂ ≥ 0 in the sets Si(Q) and τi(Q), respectively. However, by the assumption Q ≥ 0, it

follows that the zero matrix is in Si(Q) for all i ∈ [3]. Since we maximize over all linearization

vectors in (2.6), the optimal linearization vector p∗ will be such that (p∗)�x ≥ 0 for all x ∈ P .

As a result, the bounds viLBB , i ∈ [3], are nonnegative under the assumption that Q ≥ 0.

As long as the set τi(Q) is a polyhedron, the corresponding bound viLBB can be calculated

by solving the linear programming problem (2.6). The sets τi(Q) for i ∈ [3] are indeed

nonempty polyhedra, since they can be described by a finite number of linear equalities and

inequalities. These polyhedral descriptions are provided in Table 2.1.

Set
Type of

cost matrix
(In)equalities which describe the set

τ1(Q)

Incident

weak sum

matrix

be + cf ≤ qef

p̂e = be + ce

b, c ∈ Rm

∀e ∈ A, f ∈ δ+(e−)

∀e ∈ A

τ2(Q)

Restricted

generalized

weak sum

matrix

bij + cij,l + di,jl + tjl ≤ qij,jl

cij,l + di,kl ≤ qij,kl

p̂ij = bij +
∑n

k=1 cij,k +
∑n

k=1 dk,ij + tij

b, t ∈ Rm, C ∈ Rm×n, D ∈ Rn×m

∀(i, j), (j, l) ∈ A

∀(i, j), (k, l) ∈ A, j �= k

∀(i, j) ∈ A

τ3(Q)

Generalized

weak sum

matrix

bij,k + cij,l + di,kl + tj,kl ≤ qij,kl

p̂ij =
∑n

k=1 bij,k +
∑n

k=1 cij,k

+
∑n

k=1 dk,ij +
∑n

k=1 tk,ij

B,C ∈ Rm×n, D, T ∈ Rn×m

∀(i, j), (k, l) ∈ A

∀(i, j) ∈ A

Table 2.1: Polyhedral descriptions of the sets τ1(Q), τ2(Q) and τ3(Q).

By construction, we have τ1(Q) ⊆ τ2(Q) ⊆ τ3(Q) for all cost matrices Q. Consequently,

we can establish the following result about the quality of the corresponding linearization-

based bounds.

Theorem 2.17. For all instances of the QCCP, we have v1LBB ≤ v2LBB ≤ v3LBB.

Proof. Follows from construction.

Let y, p̂ and Q̂ be optimal to (2.6) and suppose x∗ is an optimal solution to the linear

cycle cover problem minx∈P {p̂�x}. Then,

OPT (Q) = min
x∈P

{
x�Qx

}
≤ (x∗)�Qx∗ = (x∗)�Q̂x∗ + (x∗)�(Q− Q̂)x∗

= p̂�x∗ + (x∗)�(Q− Q̂)x∗ = viLBB + (x∗)�(Q− Q̂)x∗.

Thus, (x∗)�(Q− Q̂)x∗ provides an upper bound on the gap between the linearization-based

bound and the optimal value of the QCCP.
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Hu and Sotirov [217] argue that the linearization-based bounds can be improved by

extending the sets τi(Q) using a skew-symmetric matrix M . That is, since each skew-

symmetric matrix is linearizable, a matrix Q̂ is linearizable if and only if Q̂+M is linearizable

for all M with M +M� = 0. Using this, the set τ1(Q) can be extended to:

τskew
1 (Q) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩p̂ ∈ Rm :

be + cf +Mef ≤ qef , ∀e ∈ A, f ∈ δ+(e−)

p̂e = be + ce, ∀e ∈ A

Mef = 0, ∀e ∈ A, f /∈ δ+(e−)

b, c ∈ Rm, M ∈ Rm×m, M +M� = 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (2.7)

Note that in τskew
1 (Q) we only include skew-symmetric matrices whose support corresponds

to the pairs of successive arcs in G, since adding dense skew-symmetric matrices would

increase computational complexity. Since τ1(Q) ⊆ τskew
1 (Q), it follows that we can obtain a

stronger bound by maximizing over τskew
1 (Q), see Section 2.8. The same extension can be

applied to any set τi(Q).

2.4.2 Preliminary results

In order to check the quality of the bounds derived above, we perform a preliminary numerical

study. We create instances according to the G(n, p) Erdős-Rényi model [125]. Here n equals

the number of nodes and p equals the probability that an arc is included. We create instances

for various values of n and p. The interaction cost between any two successive arcs is drawn

uniformly at random as an integer from {1, . . . , 100}. In Table 2.2 we present the bounds

v1LBB , v
2
LBB and v3LBB and their computation times in seconds. Recall that these bounds are

computed by solving (2.6) using the polyhedral descriptions of Table 2.1, where we use the

solver CPLEX 12.6. Moreover, the column OPT denotes the optimum value of the QCCP

instance computed by the mixed-integer quadratic programming solver of CPLEX 12.6 (after

convexifying the objective function). Of course, this value can only be obtained for small

graphs. Experiments are performed using a PC with an Intel(R) Core(TM) i5-6500 CPU,

3.20 GHz and 8 GB memory. The maximum computation time is set to 3600 seconds and

we put ‘n.a.’ in the table when this maximum is reached before a solution is obtained.

By construction, the optimal solution has always an integer objective value. Therefore,

we round up all bounds to the nearest integer. The results of Table 2.2 show that the

linearization-based bounds LBB1, LBB2 and LBB3 do not differ significantly, especially

for the larger instances. At the same time, the computation times differ significantly. It

turns out that LBB1 is most efficient. Therefore, this bound can be preferred when taking

both quality and efficiency into account.

2.5 Reformulated LBB approach

In this section we discuss how a reformulation of the cost matrix can be used to obtain a

nondecreasing sequence of lower bounds that are based on the linearization-based bound. It

is important to note that one can construct such a bounding procedure using any sufficient

condition for linearizability, not only the ones discussed in Section 2.4.

Suppose we are given a sufficient condition for linearizability. Let S(Q) and τ(Q) be as in

Section 2.4, but now for a general sufficient condition. That is, S(Q) is the set consisting of all

linearizable cost matrices Q̂ of this type with Q̂ ≤ Q and τ(Q) consists of the corresponding
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LBB1 LBB2 LBB3

p n m OPT bound time bound time bound time

0.1 20 44 923 923 0.047 923 0.264 923 0.051

25 76 1039 971 0.005 971 0.477 999 1.227

30 100 1082 1066 0.013 1066 0.899 1082 0.787

0.3 15 61 485 478 0.010 478 0.635 485 0.714

20 118 438 377 0.031 384 1.265 390 77.21

25 172 382 291 0.050 295 2.531 295 869.0

0.5 15 116 226 215 0.034 215 1.407 215 90.39

20 177 255 189 0.059 190 12.05 190 2105

25 306 n.a. 172 0.516 173 353.6 n.a. 3600

0.7 15 149 173 127 0.017 128 0.986 128 580.5

20 263 n.a. 116 0.094 116 7.778 n.a. 3600

25 396 n.a. 129 0.194 129 18.26 n.a. 3600

Table 2.2: Bounds and computation times in seconds of linearization-based bounds on Erdős-
Rényi instances.

linearization vectors. Moreover, we assume that the set τ(Q) is a polyhedral set and that

0 ∈ τ(Q) whenever Q ≥ 0. This latter assumption is reasonable, since Q ≥ 0 implies that

the zero matrix is a valid linearizable underapproximator of Q, see also Remark 2.16. Let

Q0 be the initial cost matrix. If Q̂0 ∈ S(Q0), we know there exists some p1 ∈ τ(Q0) such

that x�Q̂0x = p�1 x for all x ∈ P . This leads to the following reformulation of the objective

function:

x�Q0x = x�Q̂0x+ x�(Q0 − Q̂0)x = p�1 x+ x�(Q0 − Q̂0)x (2.8)

for all cycle covers x ∈ P . By letting Q1 := Q0 − Q̂0 be the residual matrix, we ob-

tain x�Q0x = p�1 x+ x�Q1x for all x ∈ P , where Q1 ≥ 0 by construction. The vector p1 is

taken to be the largest linearization vector of Q0 (see (2.6)), resulting in the linearization-

based bound vLBB .

Now we can proceed in a similar way by considering the linearization problem of the

residual cost matrix Q1. We search for the optimal Q̂1 ∈ S(Q1) and corresponding lineariz-

ation vector p2 ∈ τ(Q1) according to (2.6). Let Q2 = Q1 − Q̂1 be the new residual matrix.

Then the objective function can be reformulated as x�Q0x = (p1 + p2)
�x+ x�Q2x, where

p�2 x = x�Q̂1x. Since 0 ∈ τ(Q1) due to Q1 ≥ 0, it follows that the optimal linearization

vector p2 satisfies p�2 x ≥ 0 for all x ∈ P . This implies that obtaining the linearization-based

bound with respect to p1 + p2 provides a possibly stronger bound than with respect to p1.

This procedure can be repeated to obtain a sequence of non-decreasing bounds.

Unfortunately, we cannot expect to find a vector p2 for which this bound has strictly

improved. Due to the polyhedrality of τ(Q0), we can show that p1 + p2 ∈ τ(Q0), which

would imply that p1 is not the optimal solution to (2.6). Thus, applying this procedure

iteratively, the resulting sequence of bounds remains constant after the first iteration. To

overcome this issue, we need to reformulate the residual cost matrix in each step.

In the literature, various iterative bounding procedures are proposed [62, 310, 324, 325].

In this chapter we introduce a new approach that is different in two ways. First, the existing

bounding procedures are mainly based on the classical Gilmore-Lawler type bound. Our

approach is based on general sufficient conditions for linearizability and we can show that the
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Gilmore-Lawler type bounding procedure is a special case of this approach, see Section 2.6.

Second, the existing bounding procedures mostly use a fixed reformulation of the cost matrix

in each iteration. However, using a fixed reformulation is in general not the best one can do.

Here, we search for the reformulation of the cost matrix that results in the strongest bound

in the next iteration. For this purpose, we define the notion of an equivalent representation

of a matrix, see e.g., [310].

Definition 2.18. Let (G,Q) be an instance of the QCCP. Then, (G,W ) is an equivalent

representation of (G,Q) if x�Qx = x�Wx for all x ∈ P .

If there is no confusion about the graph G under consideration, we say that W is an

equivalent representation of Q. It is easy to verify that a matrix W = (wef ) ∈ Rm×m is an

equivalent representation of Q if for all e, f ∈ A we have wef+wfe = qef+qfe. Here, we focus

on a specific type of equivalent representation, which we call an η-equivalent representation

of Q.

Definition 2.19. Given η ∈ [0, 1], an equivalent representation Qη := ηQ+(1− η)Q� of Q

is called an η-equivalent representation.

It follows that if W and Q are equivalent representations, then a linearization of W is

also a linearization of Q and vice versa.

Instead of considering the linearization problem of the residual matrixQ1, we can consider

the linearization problem ofQη
1 for some η ∈ [0, 1]. SinceQη

1 has a different structure thanQ1,

it is in general possible to find a linearizable matrix Q̂1 ∈ S(Qη
1) and a corresponding

linearization vector that result in a strictly stronger bound.

As already mentioned above, many approaches in the literature are based on taking a

fixed value for η, e.g., η = 1
2
which corresponds to the case of symmetrizing. This does not

give the best bound in general. Instead, we search for η ∈ [0, 1] that results in the strongest

bound in each iteration. Suppose we are in step k of the algorithm in which we consider the

linearization problem of the residual matrix Qk−1. Then the optimal equivalent represent-

ation of Qk−1 and its corresponding vector pk ∈ τ(Qη
k−1) can be computed simultaneously

by solving the following problem:

rk := max
y∈R2n

pk∈Rm

η∈[0,1]

{
1�
2ny :

[
U� V �

]
y ≤ pk, pk ∈ τ(Qη

k−1)
}
, (2.9)

which equals the additional amount of quadratic cost that can be linearized in iteration k.

Note that if the set τ(Qk−1) is a polyhedron, then τ(Qη
k−1) is also a polyhedron and the

corresponding problem (2.9) can be solved in polynomial time. For the sufficient conditions

mentioned in Section 2.4 this is indeed the case.

Finally, we provide a new bounding procedure that is based on iteratively finding the best

η-equivalent representation of the residual cost matrix and its optimal linearizable matrix.

Starting with Q0 = Q, the goal is to find the best linearizable matrix Q̂k−1 of an equivalent

representation of the residual matrix Qk−1 and its corresponding linearization vector pk. We

let p0 = 0 and iteratively update dk = dk−1 + pk, which equals the total linearization vector

of an approximation of Q. In each iteration we compute rk by (2.9), which is by construction

nonnegative due to 0 ∈ τ(Qη
k) for all k. The final bound is given by the sum of all rk’s,

which we call the reformulation-based bound. The procedure is given in Algorithm 2.1.
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Algorithm 2.1 LBB Reformulation algorithm

1: Q0 = Q, d0 = 0, k = 1, r0 = ∞
2: while rk−1 > 0 do
3: Compute rk, pk and η using (2.9).

4: Construct the linearizable matrix Q̂k−1 using the optimal solution of (2.9). � See Remark 2.20

5: Qk ← ηQk−1 + (1 − η)Q�
k−1 − Q̂k−1

6: dk ← dk−1 + pk

7: k ← k + 1
8: end while
9: vRBB =

∑k−1
i=1 ri

10: return dk, vRBB

Remark 2.20. Note that steps 3 and 4 of Algorithm 1 depend on the specific sufficient

condition for linearizability. For instance, for the incident weak sum condition we construct

in step 4 the linearizable matrix Q̂k−1 = ((q̂k−1)ef ) in the following way (q̂k−1)ef := be+cf for

all e ∈ A, f ∈ δ+(e−) and (q̂k−1)ef := 0 otherwise, where b, c ∈ Rm are obtained from (2.9).

Hu and Sotirov [217] show that in the case that the linearizable matrix Q̂ is of the

form Q̂ = [U� V �]Y +Diag(z) for some Y ∈ R2n×m and z ∈ Rm, the bound vRBB is

dominated by the solution of the first level RLT relaxation introduced by Adams and Sher-

ali [3, 4]. Here RLT stands for reformulation-linearization technique. In [217] it is moreover

shown that the first level RLT bound, denoted by vRLT1, can be obtained by searching for

the optimal linearizable matrix Q̂ of the form Q̂ = [U� V �]Y +M +Diag(z) where M is a

skew-symmetric matrix.

Our preliminary numerical results show that the above algorithm does not improve sig-

nificantly the LBB1 bound. However, in the next section we show that our approach out-

performs known iterative approaches related to the Gilmore-Lawler type bounds.

2.6 The Gilmore-Lawler type bound

In this section we consider the classical Gilmore-Lawler type bound. The GL procedure is a

well-known approach to construct lower bounds for quadratic 0-1 optimization problems, see

e.g., [172, 246, 324, 325]. We provide a compact formulation of the GL type bound that can

be used to compute the bound by a single LP-problem, instead of solving m subproblems.

Moreover, we show that this bound in fact belongs to the family of linearization-based

bounds. Therefore, based on the results of Section 2.5, we provide a bounding procedure

that computes the best GL type bound in each step of the algorithm. We conclude this

section by testing this new bounding procedure on some preliminary test instances.

2.6.1 The classical GL type bound

In the objective function of the QCCP, see (2.1), we have the quadratic term xexf for each

two arcs e, f ∈ A placed in succession on a cycle. To get rid of this quadratic term, for

each given arc e ∈ A potentially in the solution, we consider the cycle cover containing e

with minimum interaction cost with e. We denote this minimum contribution of arc e to a

solution by ze. In particular, for all e ∈ A we have

(Pe) ze := min {Qe,:x : x ∈ P, xe = 1} ,

where Qe,: denotes the eth row of the cost matrix Q. The feasible set of (Pe) equals the set

of all node-disjoint cycle covers containing arc e. If this set is empty, then we set ze equal
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to 0 since arc e cannot contribute to a cycle cover.

Let z ∈ Rm be the vector consisting of the elements ze for all e ∈ A. Then, the classical

GL type bound is obtained by solving the following CCP:

vGL := min
{
z�x : x ∈ P

}
.(GL)

Note that the constraint matrices of (Pe) and (GL) are totally unimodular. For this reason,

we can drop the integrality constraints and solve (GL) and (Pe) for all e ∈ A as linear

programming problems.

Besides computing the GL type bound by solving (GL) and (Pe) for all e ∈ A, we

can also obtain its value by solving an integer linear programming (ILP) problem. The

problem (GLILP ) is defined as follows:

(GLILP ) min
∑
e∈A

∑
f∈A

qefyef

s.t.
∑

f∈δ+(i)

yef =
∑

f∈δ−(i)

yef = xe ∀i ∈ N, ∀e ∈ A (2.10)

yee = xe ∀e ∈ A (2.11)

yef ∈ {0, 1}, x ∈ P ∀e, f ∈ A. (2.12)

It follows from the constraints that if xe = 1, then ye,: := [ye1 . . . yem] is the characteristic

vector of the cheapest cycle cover containing arc e and if xe = 0, then ye,: equals the zero

vector.

Let (CGLILP ) be the continuous relaxation of (GLILP ). In this continuous relaxation

we can omit the upper bounds on xe and yef for all e, f ∈ A, since these are implied by the

other constraints and the nonnegativity of x and y. We can compute the GL type bound by

solving (CGLILP ) as stated by the following theorem. This theorem is based on a similar

result for the quadratic minimum spanning tree problem, see [325].

Theorem 2.21. The optimal value of (CGLILP ) equals vGL.

Proof. Let λe,i and αe,i be the dual variables corresponding to constraints (2.10), i.e. λe,i

corresponds to
∑

f∈δ+(i) yef = xe and αe,i corresponds to
∑

f∈δ−(i) yef = xe. Similarly,

let μi and γi be the dual variables corresponding to the first and second equalities of con-

straints (2.2), and θe the dual variable corresponding to constraints (2.11). The dual problem

of (CGLILP ) is as follows:

(DCGLILP ) max
∑
i∈N

μi +
∑
i∈N

γi

s.t. λe,f+ + αe,f− ≤ qef ∀e, f ∈ A, f 	= e (2.13)

λe,e+ + αe,e− + θe ≤ qee ∀e ∈ A (2.14)

−
∑
i∈N

λe,i −
∑
i∈N

αe,i + γe− + μe+ − θe ≤ 0 ∀e ∈ A. (2.15)

The constraints (2.15) can be rewritten as γe− + μe+ ≤
∑

i∈N λe,i +
∑

i∈N αe,i + θe for

all e ∈ A. In order to maximize the objective function of (DCGLILP ), we maximize the right-

hand side of this inequality subject to constraints (2.13)–(2.14). This gives for each e ∈ A

https://i.e.xn--e-jmb/
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the following subproblem:

z′e := max

{∑
i∈N

λe,i +
∑
i∈N

αe,i + θe : (2.13), (2.14)

}
.(DCPe)

For each fixed e ∈ A the subproblem given above equals the dual of the continuous relaxation

of (Pe). By strong duality we know z′e = ze for all e ∈ A. Substitution of this term into

constraint (2.15) gives a rewritten formulation for (DCGLILP ):

max

{∑
i∈N

μi +
∑
i∈N

γi : μe+ + γe− ≤ ze ∀e ∈ A

}
.

This problem equals the dual of the continuous relaxation of (GL). Because of strong duality,

it follows that the optimal objective value of (CGLILP ) equals vGL.

We can show that the Gilmore-Lawler type bound for the QCCP in fact belongs to the

family of linearization-based bounds introduced in Section 2.4. That is, we can obtain vGL

by searching for a linearizable cost matrix Q̂ of a specific type that is as close as possible

to Q. The required linearizability condition on Q̂ is given below, and it differs from the

sufficient conditions presented in Section 2.3.

Proposition 2.22. If there exists B,C ∈ Rm×n and t ∈ Rm such that qef = Be,f+ +Ce,f−

for e 	= f and qee = Be,e+ + Ce,e− + te for all e ∈ A, then Q is linearizable with vector p

given by pe = te +
∑n

i=1 Be,i +
∑n

i=1 Ce,i.

Proof. Let Q̃ = (q̃ef ) be defined as q̃ef = Be,f+ + Ce,f− for all e, f ∈ A. Then Q̃ can

be seen as a generalized weak sum matrix where D and T are equal to the zero matrix,

see Definition 2.11. According to Proposition 2.12, Q̃ is linearizable with supporting vec-

tor p̃ =
∑n

i=1 Be,i +
∑n

i=1 Ce,i. Since Q = Q̃+Diag(t), it follows that Q is linearizable with

supporting vector p given by pe = te +
∑n

i=1 Be,i +
∑n

i=1 Ce,i.

Similar to the notation used in Section 2.4, let SGL(Q) denote the set of all lineariz-

able cost matrices Q̂ ∈ Rm×m that satisfy Q̂ ≤ Q and the conditions of Proposition 2.22.

Moreover, let τGL(Q) be the following polyhedron:

τGL(Q) :=

{
p̂ ∈ Rm :

there exists a Q̂ ∈ SGL(Q) such

that p̂�x = x�Q̂x for all x ∈ P

}
, (2.16)

and

vGL
LBB := max

y∈R2n

p̂∈Rm

{
1�
2ny :

[
U� V �

]
y ≤ p̂, p̂ ∈ τGL(Q)

}
. (2.17)

Now we prove the main result of this section which states that the classical Gilmore-Lawler

type bound can be seen as a special case of linearization-based bound.

Theorem 2.23. We have vGL
LBB = vGL.
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Proof. By using the polyhedral description of SGL(Q) following from Proposition 2.22, the

optimization problem in (2.17) can be written as follows:

vGL
LBB = max

2n∑
i=1

yi (2.18)

s.t.
[
U� V �

]
y ≤ p̂ (2.19)

Be,f+ + Ce,f− ≤ qef ∀e, f ∈ A, f 	= e (2.20)

Be,e+ + Ce,e− + te ≤ qee ∀e ∈ A (2.21)

p̂e = te +

n∑
i=1

Be,i +

n∑
i=1

Ce,i ∀e ∈ A (2.22)

y ∈ R2n, p̂, t ∈ Rm, B, C ∈ Rm×n. (2.23)

We show that this optimization problem is equivalent to (DCGLILP ), the dual problem

of the continuous relaxation of (GLILP ). Take Be,i = λe,i and Ce,i = αe,i for all e ∈ A

and i ∈ N , where λ and α denote the dual vectors belonging to constraints (2.10). Similarly,

let t = θ where θ equals the dual vector to constraints (2.11). Finally, let y = [μ� γ�]�,

where μ and γ are the dual variables belonging to constraints (2.2). By substitution of these

variables and combining constraints (2.19) and (2.22), we obtain the problem (DCGLILP ),

i.e., the dual of (CGLILP ). Thus, we have vGL
LBB = vGL.

Theorem 2.23 shows that the GL type bound belongs to the family of linearization-based

bounds. This is also shown by Hu and Sotirov [217] and Rostami et al. [324], however our

proof is very different as we exploit the fact that vGL can be obtained by solving an LP

problem, i.e., (CGLILP ). Additionally, we show here that the computation of the GL type

bound is equivalent to the search for the optimal linearizable cost matrix Q̂ satisfying the

properties of Proposition 2.22.

2.6.2 The best Gilmore-Lawler type bound

Section 2.6.1 shows that the calculation of the classical GL type bound fits in the general

framework discussed in Section 2.4. In this section we apply the reformulation procedure

of Section 2.5 to the GL type bound. We also show that our approach outperforms several

iterative approaches from the literature.

In order to apply Algorithm 2.1 to the sufficient condition for linearizability of Propos-

ition 2.22, we need to define how to calculate rk for each iteration k, see (2.9). We rewrite

the set τGL(Q), see (2.16), as follows:

τGL(Q) =
{
p̂ ∈ Rm : t ∈ Rm, B, C ∈ Rm×n, (2.20), (2.21), (2.22)

}
,

which is clearly a polyhedron. Then for all k ≥ 1 we calculate the additional amount of

quadratic cost that is linearized by solving:

rk := max
y∈R2n

pk∈Rm

η∈[0,1]

{
1�
2ny :

[
U� V �

]
y = pk, pk ∈ τGL(Q

η
k−1)

}
. (2.24)

Observe that, opposed to the constraints in (2.9), we replaced the constraint [U� V �]y ≤ pk
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by an equality constraint. This does not change the value of rk. To verify this, suppose

we solve (2.24) using the inequality constraint [U� V �]y ≤ pk and let ŷ, p̂k and t̂ be the

corresponding optimal solutions. Let e ∈ A be such that the inequality constraint is satisfied

with strict inequality. Then, without changing ŷ, we can reduce t̂e (and thus p̂e) such that

we get equality for e ∈ A. Although it changes the linearization vector p̂, the resulting

bound remains equal. To verify this, notice that only the left-hand side of constraint (2.21)

is decreased, so the solution is still feasible and the optimal value rk remains unchanged.

From this, it follows that one may replace [U� V �]y ≤ pk by an equality constraint and

solve rk as in (2.24).

Algorithm 2.1 using (2.24) in step 3 gives a new bounding procedure for the QCCP.

We call the resulting bound the reformulated GL type bound (RGL) and denote its value

by vRGL. By construction, it iteratively computes the best Gilmore-Lawler type bound

among all η-equivalent representations of the cost matrix.

The algorithm proposed in this section satisfies another interesting property, namely the

vectors dk satisfy the constant value property for all k ≥ 0. This is an important property

for linearizability because the set of linearizable cost matrices for combinatorial optimization

problems with interaction costs can be characterized by the constant value property, under

certain conditions, see [248].

Theorem 2.24. All dk where k ≥ 0 computed during the RGL approach, satisfy the constant

value property, i.e., we have d�k x = d�k x̄ for all feasible cycle covers x, x̄ ∈ P .

Proof. We apply a proof by induction on k. Note that the vector d0 equals the m× 1 vector

of zeros which trivially satisfies the constant value property.

Now assume that the induction hypothesis is true for iteration k− 1, i.e., d�k−1x = d�k−1x̄

for all feasible cycle covers x, x̄ ∈ P . In iteration k we solve (2.24). Let ŷ ∈ R2n and p̂ ∈ Rm

be the optimal variables for this problem and split ŷ = [μ� λ�]� with μ, λ ∈ Rn. It follows

that [U� V �]ŷ = U�μ+V �λ = p̂. Now let x ∈ P be any feasible cycle cover in G. Then we

can sum up the rows of this system of equalities for all arcs e ∈ A in the cycle cover implied

by x: ∑
e∈A:xe=1

(μe+ + λe−) =
∑

e∈A:xe=1

p̂e, or equivalently,
∑
i∈N

μi +
∑
i∈N

λi = p̂�x

where we use the fact that each vertex is visited exactly once on a cycle cover. So the

quantity p̂�x is equal for all x ∈ P . As a result, p̂ satisfies the constant value property.

The vector dk is constructed as dk−1 + pk with pk = p̂. Since dk−1 and p̂ satisfy the

constant value property, it follows that dk satisfies the constant value property.

Remark 2.25. Since the GL type bound can be computed both as a linearization-based

bound and by solving (CGLILP ) (see Theorem 2.23), the iterative approach derived in this

section can also be defined in terms of (CGLILP ). In that case, we iteratively compute vGL

and reformulate the cost matrix using the dual variables of (CGLILP ). The details of this

equivalent approach can be found in [271].

Since the linearizable matrix Q̂ of Proposition 2.22 can be written as Q̂ = [U� V �]Y +

Diag(z) for some Y ∈ R2n×m and z ∈ Rm, it follows from [217] that we have vRGL ≤ vRLT1.
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2.6.3 Preliminary results

For the instances considered in the preliminary results of Section 2.4, we now test our

Gilmore-Lawler type bounds. First, we compute the classical GL type bound, after symmet-

rizing the cost matrix Q. This bound is denoted by GL. Moreover, we consider the iterative

GL type bounding approach where we symmetrize the cost matrix in each iteration. That

is, we apply Algorithm 2.1 using (2.24) where instead of optimizing over η, we set η = 1
2
.

We denote this bound by RGLsym. Finally, we report the bound RGL which is introduced

in Section 2.6.2. The maximum computation time is set to 3600 seconds. The results are

given in Table 2.3. From Table 2.3 it follows that the iterative approaches significantly im-

GL RGLsym RGL

p n m OPT bound time bound time bound time

0.1 20 44 923 923 0.017 923 0.015 923 0.088

25 76 1039 681 0.039 864 4.652 1018 95.52

30 100 1082 781 0.053 899 2.412 1082 15.18

0.3 15 61 485 347 0.061 368 1.481 485 7.140

20 118 438 223 0.068 263 3.482 418 3600

25 172 382 176 0.136 190 5.105 276 3600

0.5 15 116 226 102 0.336 110 2.602 222 1835

20 177 255 93 0.118 103 5.365 169 3600

25 306 n.a. 66 0.296 75 13.80 105 3600

0.7 15 149 173 63 0.080 67 3.530 117 1236

20 263 n.a. 52 0.181 54 9.624 63 269.3

25 396 n.a. 56 0.365 62 18.77 79 1085

Table 2.3: Bounds and computation times in seconds of GL type bounds on Erdős-Rényi
instances.

prove the classical GL type bound. Among these iterative approaches, RGL provides much

stronger bounds than RGLsym. We conclude that this new approach of calculating the best

GL type bound in each step provides better bounds than setting η = 1
2
in the reformulation.

However, it turns out that this improvement in the quality comes at the cost of efficiency.

Clearly, we can stop our algorithm after a pre-specified number of iterations and/or time.

A comparison between the GL type approaches considered in Table 2.3 and the ap-

proaches considered in the preliminary results of Section 2.4.2 will follow in Section 2.8.

2.7 Other bounds for the QCCP

In this section we present several known bounding approaches from the literature that can

be applied to the QCCP. In the next section, we compare those bounds with the bounds

introduced earlier in this chapter. We consider a column generation approach and a bound

based on a mixed integer linear programming (MILP) formulation.

Galbiati et al. [152] construct a column generation approach for the MinRC3. This

approach can be extended to the QCCP. To the best of our knowledge, this is the only

implemented lower bounding approach for the MinRC3 in the literature.

Let C be the set of all directed cycles in G. Moreover, let C ⊆ C be a subset of cycles

such that it contains at least one cycle cover. Let wc be the cost of a cycle c ∈ C. Then the
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restricted master problem (RMP ) is given by:

(RMP ) min
y

∑
c∈C

wcyc

s.t.
∑

c∈C:i∈c

yc = 1 ∀i ∈ N (2.25)

yc ≥ 0 ∀c ∈ C. (2.26)

Let π ∈ Rn be the vector of dual variables corresponding to constraint (2.25). Then the

subproblem (SP ) searches for the cycle in C with the smallest (negative) reduced costs with

respect to π, i.e.

(SP ) min
x,z

⎧⎪⎪⎪⎨⎪⎪⎪⎩x�Qx− z�π :

∑
e∈δ+(i)

xe =
∑

e∈δ−(i)

xe = zi ∀i ∈ N

∑
e∈A

xe ≥ 2, x ∈ {0, 1}m, z ∈ {0, 1}n

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

where zi = 1 if vertex i is on the cycle and 0 otherwise. As stated in [152], the problem (SP )

is strongly NP-hard itself. The quadratic objective function can be linearized by standard

linearization techniques. A lower bound on the optimal value of the QCCP can be obtained

by iteratively solving the master problem and its corresponding subproblem. If a cycle with

negative reduced cost is found, we add it to the set C. This procedure is repeated until no

more cycle with negative reduced cost is found or after some predefined stopping criteria.

The obtained bound is denoted by vCG.

Based on a procedure by [2, 174], we present the QCCP as an MILP problem. Let us

first fix an equivalent representation of (G,Q). Let ze be computed as in (Pe) for all e ∈ A,

see Section 2.6.1. Moreover, we define for all e ∈ A

qmax
e := max {Qe,:x : x ∈ P, xe = 0} .

Note that qmax
e can be obtained by solving a linear programming problem. Then, the QCCP

can be formulated as a MILP:

(MILP ) min
x,y

∑
e∈A

ye

s.t. ye ≥ zexe ∀e ∈ A (2.27)

ye ≥ Qe,:x− qmax
e (1− xe) ∀e ∈ A (2.28)

x ∈ P, y ∈ Rm.

If we relax the binary constraint on x, then we obtain a lower bound for the QCCP. We

call this bound the MILP-based bound and we denote its value by vMILP . The next result

shows that vMILP is at least as large as the Gilmore-Lawler type bound.

Theorem 2.26. The MILP-based bound dominates the Gilmore-Lawler type bound, i.e.,

vGL ≤ vMILP .

Proof. Let β, δ ∈ Rm
+ denote the dual variables of (2.27) and (2.28), respectively. Moreover,

let μ, γ ∈ Rn denote the dual variables of the cycle cover constraints
∑

e∈δ+(i) xe = 1



623138-L-sub01-bw-deMeijer623138-L-sub01-bw-deMeijer623138-L-sub01-bw-deMeijer623138-L-sub01-bw-deMeijer
Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023 PDF page: 73PDF page: 73PDF page: 73PDF page: 73

Chapter 2. The QCCP: special cases and efficient bounds 53

and
∑

e∈δ−(i) xe = 1 for all i ∈ N , respectively. Then, the dual of the MILP-based bound

equals

(DMILP ) vMILP := max
β,δ,μ,γ

∑
i∈N

μi +
∑
i∈N

γi −
∑
e∈A

δeq
max
e

s.t. βe + δe = 1 ∀e ∈ A

μe+ + γe− ≤ zeβe + δ�Q:,e + δeq
max
e ∀e ∈ A

βe, δe ≥ 0 ∀e ∈ A,

where Q:,e equals the eth column of Q. Now set δe = 0 for all e ∈ A. Then, βe = 1 for

all e ∈ A due to the first set of constraints. Then, (DMILP ) reduces to

max
μ,γ

∑
i∈N

μi +
∑
i∈N

γi

s.t. μe+ + γe− ≤ ze ∀e ∈ A.

This problem equals the dual of the continuous relaxation of (GL). Hence, it follows

that vGL ≤ vMILP .

Note that the MILP-based bound and the Gilmore-Lawler type bound are comparable if

the same equivalent reformulation of (G,Q) is used in their computations.

2.8 Computational results

In this section we test our bounding approaches on a set of test instances and compare them

with several approaches from the literature. We take into account the linearization-based

bound LBB1 from Section 2.4.1, the classical GL type bound GL from Section 2.6.1, the re-

formulated GL type bound RGL discussed in Section 2.6.2, the column generation approach

CG and the MILP-based bound MILP from Section 2.7, and the first level RLT bound

RLT1, see [3, 4]. The GL bound and the MILP-based bound are computed after symmet-

rizing Q. Note that we do not take into account LBB2 and LBB3, since our preliminary

experiments from Section 2.4.2 show that LBB1 is preferred when taking both quality and

efficiency into account.

All lower bounds are implemented in Matlab on a PC with an Intel(R) Core(TM) i5-6500

CPU, 3.20 GHz and 8 GB memory using CPLEX 12.6 as solver.

We consider the following types of instances:

Erdős-Rényi instances: These instances are created via the G(n, p) Erdős-Rényi

model [125]. The number of nodes is fixed to n and each arc is included with probability

p independent of the other arcs. The quadratic cost between any pair of successive

arcs is chosen discrete uniformly at random out of {0, . . . , 100}.

Manhattan instances: The Manhattan instances are introduced in [80] and resemble

modern city street patterns like the streets in Manhattan. Given a finite set of positive

integers (n1, n2, . . . , nk), the graph consists of a n1×n2× . . .×nk directed grid. Each

node in the interior is adjacent to its 2k neighbours. The nodes on the boundary are also

adjacent to the corresponding nodes on the opposite boundary. For each dimension k,

the arcs belonging to the same layer of the grid point in the same direction. However,
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the arcs of two consecutive layers point in the opposite direction. This results in a

graph containing a large number of cycles. The quadratic cost between any pair of

successive arcs is chosen discrete uniformly at random out of {0, . . . , 10}.

Angle-distance instances: The Angle-distance instances are originally constructed

for the QTSP in [133]. The number of nodes n and the graph density p are given.

The (x, y)-coordinates of each node is chosen discrete uniformly at random out of

{0, . . . , 500}2. Exactly �pn(n−1)� arcs are chosen uniformly at random from the total

set of arcs. For each arc e ∈ A, let de denote the Euclidean distance between the

endpoints of e. Moreover, for each two successive arcs e and f , let αef denote the

turning angle (in radians) induced by the arcs. Given some constant ρ ∈ R+, the

quadratic cost of two successive arcs e and f is calculated as:

qef =

⌈
0.1

(
ρ · αef +

de + df
2

)⌉
.

Similar as in [133], we take ρ = 40.

For Erdős-Rényi and Angle-distance instances, preliminary experiments show that in-

stances up to approximately 300 arcs can be solved to optimality within one hour. For the

Manhattan instances the limit is around 2000 arcs, due to the small density of these types

of graphs.

In total we consider two sets of experiments: experiments on small instances and experi-

ments on large instances. Since the optimum, RLT1 and CG cannot be calculated for large

instances, we only test these approaches on the smaller instances. Moreover, we include the

bounds introduced in this chapter, namely LBB1 and RGL. The value and computation

times (in seconds) on small Erdős-Rényi instances can be found in Table 2.4. This table

contains 6 instances for n = 20, 25, 30 and p = 0.3, 0.5. The results on Manhattan and

Angle-distance instances are reported in Tables 2.5 and 2.6, respectively. For the Angle-

distance instances we take the same values for n and p as for the Erdős-Rényi instances,

while for the Manhattan instances we consider several two- and three-dimensional instances.

The maximum computation time is set to 3600 seconds. When after this time no bound is

computed, we report ‘n.a.’ in the tables. Since the optimal value is always integer, we round

up all bounds to the nearest integer value.

For the smaller instances, we see that RLT1 performs best in quality. When it can be

computed, it is often close to the optimal value and it dominates the other bounds. LBB1

is often very close to RLT1, but can be computed much more efficiently. Namely, for the

Erdős-Rényi and the Angle-distance instances the computation time of LBB1 for all small

instances is below 0.4 seconds, whereas RLT1 cannot be computed within one hour for some

of these instances. The column generation approach provides strong bounds, but in most

cases it is not able to compute a bound in a time span of one hour. The reformulated GL

type bound performs well on the Manhattan and Angle-distance instances, see Tables 2.5

and 2.6. Although its total computation time is large, the advantage of this approach is that

it provides a bound in a short time and then iteratively improves the value. This makes

it possible to stop the procedure at any given time and still obtain a bound. The bounds

computed by RGL are in almost all cases dominated by LBB1.

When taking both efficiency and quality into account, we conclude that the linearization-

based bound LBB1 outperforms the other approaches. Based on Tables 2.4, 2.5 and 2.6, the

value of LBB1 is at least 75% of the optimal value for the Erdős-Rényi instances. For the

Angle-distance and Manhattan instances, this percentage equals 98% and 96%, respectively.
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OPT RLT1 CG LBB1 RGL

p n m value time value time value time value time value time

0.3 20 119 319 10.28 301 4.825 289 102.3 260 0.020 285 3600

25 177 386 19.04 331 20.09 331 928.9 305 0.040 280 3600

30 280 n.a. 3600 284 70.62 n.a. 3600 274 0.134 185 3600

0.5 20 195 236 211.0 181 17.00 n.a. 3600 175 0.121 129 3600

25 327 n.a. 3600 141 82.52 n.a. 3600 136 0.233 89 3600

30 442 n.a. 3600 168 385.0 n.a. 3600 162 0.322 99 3600

Table 2.4: Bounds and computation times in seconds of RLT1, CG, LBB1 and RGL on
small Erdős-Rényi instances.

OPT RLT1 CG LBB1 RGL

Instance n m value time value time value time value time value time

(5, 5) 25 50 103 0.483 103 1.534 103 1.484 103 0.006 103 5.756

(10, 10) 100 200 418 2.335 418 1.974 418 1645 418 0.022 371 16.06

(4, 4, 4) 64 192 199 6.312 193 9.415 196 691.4 193 0.081 175 3600

(6, 6, 6) 216 648 700 23.67 683 1152 n.a. 3600 683 0.568 551 3600

(8, 8, 8) 512 1536 1566 394.1 n.a. 3600 n.a. 3600 1530 1.213 n.a. 3600

(10, 10, 10) 1000 3000 n.a. 3600 n.a. 3600 n.a. 3600 3113 3.754 n.a. 3600

Table 2.5: Bounds and computation times in seconds of RLT1, CG, LBB1 and RGL on
small Manhattan instances.

OPT RLT1 CG LBB1 RGL

p n m value time value time value time value time value time

0.3 20 114 474 2.490 474 1.719 474 416.5 474 0.002 474 64.35

25 180 553 323.9 553 4.119 n.a. 3600 552 0.004 553 1559

30 261 512 2951.0 512 19.52 n.a. 3600 512 0.079 494 3600

0.5 20 190 276 177.8 276 6.732 n.a. 3600 276 0.053 274 1319

25 300 342 2163.6 340 53.43 n.a. 3600 338 0.142 320 3600

30 435 n.a. 3600 381 490.5 n.a. 3600 377 0.332 355 3600

Table 2.6: Bounds and computation times in seconds of RLT1, CG, LBB1 and RGL on
small Angle-distance instances.

For the larger instances, we only compute the bounds that can be computed efficiently.

That is, we do not consider the iterative approaches, but only the bounds GL, MILP

and LBB1. We also investigate the effect of a reformulation by adding an optimal incident

skew-symmetric matrix to the cost matrix, see Section 2.4.1. We apply this reformulation

to LBB1, which implies that we optimize over the set τskew
1 (Q), see (2.7), instead of τ1(Q).

The resulting bound is denoted by LBB1skew. For the Manhattan instances this bound

is omitted, since preliminary experiments showed that this reformulation does not improve

the bounds for most Manhattan instances. This could be due to the sparsity of Manhattan

instances. The bounds and computation times (in seconds) for the Erdős-Rényi, Manhattan

and Angle-distance instances are reported in Tables 2.7, 2.8 and 2.9, respectively. For the

Erdős-Rényi and Angle-distance instances we take for n values between 30 and 100 nodes
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and consider p = 0.3 and p = 0.5. For the Manhattan instances we consider large two-

dimensional instances and one large three-dimensional instance. The maximum computation

time for these bounds is set to 1800 seconds. Again, we round up all bound values.

For the larger instances, we see that LBB1 in all cases dominates GL and MILP in

both quality and efficiency. The difference in quality is most present for the Erdős-Rényi

instances, see Table 2.7. For the Manhattan instances, we see that GL and MILP can be

calculated efficiently for instances up to 3000 arcs. However, LBB1 remains efficient even

for larger instances. In particular, bounds for Manhattan instances up to 15 000 arcs can be

computed within 60 seconds.

GL MILP LBB1 LBB1skew

p n m value time value time value time value time

0.3 30 284 111 0.272 122 0.435 230 0.083 232 0.766

40 468 117 0.645 131 1.006 265 0.179 278 1.711

50 754 121 1.598 130 2.410 267 0.404 274 4.184

60 1062 103 4.068 118 5.788 272 0.726 272 8.048

70 1481 114 8.910 123 12.94 255 1.660 258 15.38

80 1842 113 14.26 122 20.82 263 2.740 267 24.67

90 2385 114 23.25 122 37.61 259 5.296 261 41.74

100 2962 119 36.03 126 63.49 269 13.32 270 69.90

0.5 30 434 73 0.557 79 0.783 161 0.182 163 9.218

40 793 69 1.607 74 2.364 166 0.554 169 10.38

50 1197 72 4.323 77 6.682 165 1.185 167 15.74

Table 2.7: Bounds and computation times in seconds of GL, MILP , LBB1 and LBB1skew

on large Erdős-Rényi instances.

GL MILP LBB1

Instance n m value time value time value time

(20, 20) 400 800 1237 5.31 1472 7.491 1537 0.100

(30, 30) 900 1800 2813 56.24 3343 86.46 3517 0.410

(40, 40) 1600 3200 5101 346.8 6028 553.5 6302 1.388

(50, 50) 2500 5000 7983 1225.3 9424 1897.8 9828 2.838

(17, 17, 17) 4913 14739 n.a. 1800 n.a. n.a. 15398 54.79

Table 2.8: Bounds and computation times in seconds of GL, MILP and LBB1 on large
Manhattan instances.

Moreover, we conclude from Tables 2.7 and 2.9 that the addition of an incidence skew-

symmetric matrix to the set τ1(Q) only improves the bounds for some of the instances. In

general, it turns out that the Erdős-Rényi instances can successfully be improved by this

method, whereas for the Angle-distance instances only in a few cases there is an improvement.

Although the computation times of LBB1skew are larger than those of LBB1, bounds can

still be computed in a reasonable time span.



623138-L-sub01-bw-deMeijer623138-L-sub01-bw-deMeijer623138-L-sub01-bw-deMeijer623138-L-sub01-bw-deMeijer
Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023 PDF page: 77PDF page: 77PDF page: 77PDF page: 77

Chapter 2. The QCCP: special cases and efficient bounds 57

GL MILP LBB1 LBB1skew

p n m value time value time value time value time

0.3 30 261 456 0.238 467 0.410 525 0.054 525 6.957

40 468 507 0.693 516 0.984 567 0.463 567 7.795

50 735 622 1.567 631 2.223 709 0.317 709 9.982

60 1062 609 3.684 618 5.401 684 0.694 684 13.97

70 1449 656 7.436 666 12.37 746 1.331 747 21.63

80 1896 749 13.03 756 23.77 867 2.613 867 31.96

90 2403 815 20.33 826 39.99 933 4.838 933 48.81

100 2970 810 30.35 823 66.04 951 12.50 952 78.62

0.5 30 435 339 0.516 343 0.876 373 0.168 373 16.59

40 780 411 1.456 418 2.386 464 0.474 464 16.21

50 1225 466 4.159 473 7.550 534 1.177 535 22.34

Table 2.9: Bounds and computation times in seconds of GL, MILP , LBB1 and LBB1skew

on large Angle-distance instances.

2.9 Conclusions

In this chapter we consider the linearization problem of the QCCP and its applications.

We provide several sufficient conditions for linearizability, and show how these conditions

can be used to obtain strong lower bounds for the QCCP. The linearization-based bound

LBB1, resulting from the incident weak sum property, is the most efficient LBB in terms of

complexity and quality, see Table 2.2. We show here that the GL type bound for the QCCP

also belongs to the family of linearization-based bounds, see Theorem 2.23, by providing the

appropriate sufficient condition, see Proposition 2.22.

The first level RLT bounds and/or the GL type bounds are the only linearization-based

bounds for quadratic binary optimization problems that are implemented for various binary

quadratic optimization problems up to date. This chapter shows that besides these two

well-known bounds, the linearization-based bounds introduced here are worth considering.

Here, we also present how each sufficient condition can be used in an iterative bounding

procedure. In particular, we introduce a new reformulation technique in which we search for

the best η-equivalent representation of the residual cost matrix and its optimal linearizable

matrix, see Algorithm 2.1. We show how the resulting iterative procedure computes the

best GL type bound in each iteration. Our approach outperforms known iterative bounding

procedures that use the GL type bounds, see Table 2.3. Moreover, we prove that the resulting

linearization vectors in each step satisfy the constant value property, see Theorem 2.24.

Finally, our numerical results show that our approach outperforms several other bounds

from the literature if we take into account both quality and efficiency. Although the

linearization-based bounds LBB1 are dominated by the well-known first level RLT bounds,

they can be computed extremely fast. For the Manhattan instances, LBB1 bounds for in-

stances up to 15 000 arcs can be computed within 60 seconds. However, other approaches

fail to provide bounds for instances of this large size.

We expect that similar bounding procedures can be successfully applied to other binary

quadratic optimization problems, such as the quadratic assignment problem, the quadratic

minimum spanning tree and the quadratic traveling salesman problem.
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3
SDP-based bounds for the quadratic cycle cover problem

via cutting-plane augmented Lagrangian methods and

reinforcement learning

Chapter summary

We study the quadratic cycle cover problem (QCCP), which aims to find a node-
disjoint cycle cover in a directed graph with minimum interaction costs between
successive arcs. We derive several semidefinite programming (SDP) relaxations and
use facial reduction to make these strictly feasible. We investigate a nontrivial rela-
tionship between the transformation matrix used in the reduction and the structure
of the graph, which is exploited in an efficient algorithm that constructs this matrix
for any instance of the problem. To solve our relaxations, we propose an algorithm
that incorporates an augmented Lagrangian method into a cutting-plane framework
by utilizing Dykstra’s projection algorithm. Our algorithm is suitable for solving SDP
relaxations with a large number of cutting planes. Computational results show that
our SDP bounds and our efficient cutting-plane algorithm outperform other QCCP
bounding approaches from the literature. Finally, we provide several SDP-based up-
per bounding techniques, among which a sequential Q-learning method that exploits
a solution of our SDP relaxation within a reinforcement learning environment.

59
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3.1 Introduction

A disjoint cycle cover in a graph is a set of node-disjoint cycles such that every node is

covered by exactly one cycle. The cycle cover problem (CCP) is the problem of finding a

disjoint cycle cover such that the total arc weight is minimized. In this chapter we focus

on its quadratic version, which is known as the quadratic cycle cover problem (QCCP). The

QCCP is the problem of finding a disjoint cycle cover in a graph such that the total sum

of interaction costs between consecutive arcs is minimized. Although the problem can be

defined for both directed and undirected graphs, we focus here on the asymmetric version

which is defined on directed graphs.

The QCCP is introduced by Jäger and Molitor [224]. Fischer et al. [138] show that the

problem is NP-hard. This result is later on strengthened in [274], where it is shown that

the QCCP is strongly NP-hard and not approximable within any constant factor, see also

Section 2.2 in this thesis.

The QCCP and its variations, see Section 1.4.2, have applications in various fields, such

as robotics [6], cargo and energy distribution networks [370]. Moreover, it has theoretical

relevance due to its close connection with the quadratic traveling salesman problem, see

Section 1.4.1. For a more comprehensive overview on the background of the QCCP and its

proposed solution approaches, we refer the reader to Section 1.4.2 of this dissertation.

Main results and outline

The aim of this chapter is to construct efficient lower and upper bounding approaches for

the QCCP based on semidefinite programming. To achieve this goal we introduce several

methods that can be extended to a range of other optimization problems. We combine a wide

variety of different techniques including facial reduction, projection methods, randomized

algorithms and reinforcement learning.

First, we derive three SDP relaxations for the QCCP with increasing complexity. Our

strongest SDP relaxation contains nonnegativity constraints and an additional subset of the

facet-defining inequalities of the boolean quadric polytope (BQP), which make it a powerful

yet very difficult to solve relaxation. As a first step in the development of our algorithmic

approaches for computing QCCP lower bounds, we study the geometry of the feasible sets

of our relaxations. We prove that the relaxations are not Slater feasible, and show how

to perform facial reduction to project the feasible sets onto lower dimensional spaces. The

transformation matrix needed for this projection is graph-specific. Therefore we propose a

polynomial time algorithm based on the bipartite representation of the underlying graph

that provides a sparse transformation matrix.

To solve our SDP relaxation with nonnegativity constraints, we study the following two

variants of the alternating direction augmented Lagrangian method; the (original) alternat-

ing direction method of multipliers (ADMM) and the Peaceman-Rachford splitting method

(PRSM) that is also known as the symmetric ADMM. Although the ADMM is tested on

SDP relaxations of various optimization problems, the PRSM with larger stepsize was not

implemented up to date for SDP relaxations. Our results show that the PRSM outperforms

the classical ADMM for the relaxation with nonnegativity constraints. Therefore we take

the PRSM as the backbone of our new approach.

It is well-known that current SDP solvers have difficulties solving relaxations including the

facet-defining inequalities of the BQP. To solve our strongest relaxation including these cuts,

we present an advanced cutting-plane method that extends on the PRSM: a cutting-plane
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augmented Lagrangian method (CP-ALM). The CP-ALM exploits the well-known Dykstra

projection algorithm to deal with the BQP cuts. We (partially) parallelize Dykstra’s cyclic

algorithm by clustering the set of BQP inequalities into subsets of nonoverlapping cuts. We

present several other ingredients that improve the efficiency of the algorithm. The CP-ALM

also exploits warm starts each time new violated cuts are added. Although it might seem

that our algorithm is problem-specific, all ingredients described in this chapter can be easily

extended for solving other optimization problems.

Finally, we derive several upper bounding approaches that exploit the output matrices

from the CP-ALM. Let us list the most prominent ones. In our randomized undersampling

algorithm we sample a partial solution and deterministically extend it to a full cycle cover.

In randomized oversampling we iteratively draw a pair of successive arcs according to a

distribution related to the SDP solution, until we obtain a cycle cover. Our most sophist-

icated rounding approach is based on a distributed reinforcement learning technique, i.e.,

Q-learning. In particular, we let artificial agents learn how to find cycle covers by exploit-

ing the SDP solution matrix such that the expected total reward is maximized. The latter

approach provides the best upper bounds among all presented ones. We expect that these

rounding approaches can be successfully extended to relaxations of other optimization prob-

lems. Let us emphasize that it is challenging to find good feasible solutions for the QCCP,

especially for large instances, since the considered graphs are not necessarily complete.

We provide extensive numerical tests on data sets used for the QCCP as well as data

sets for the QTSP. Our bounds significantly outperform other bounds from the literature.

This chapter is structured as follows. In Section 3.2, we formally introduce the QCCP

and study its associated directed 2-factor polytope. In Section 3.3, we construct several

SDP relaxations for the QCCP of increasing complexity. The Slater feasibility of the SDP

relaxations is the topic of Section 3.4.1. Since the transformation matrices used for the facial

reduction are graph-specific, we provide a polynomial time algorithm for computing their

sparse expressions in Section 3.4.2. In Section 3.5, we propose a new algorithm for solving

the SDP relaxations that is based on a combination of the PRSM, Dykstra’s projection

algorithm and a cutting-plane method. Several upper bounding approaches are discussed in

Section 3.6. Section 3.7 provides an extensive numerical study of all introduced methods.

3.2 The quadratic cycle cover problem

In this section we formally introduce the asymmetric version of the quadratic cycle cover

problem. Moreover, we introduce the directed 2-factor polytope and consider some of its

properties.

The quadratic cycle cover problem (QCCP) is the problem of finding a set of node-disjoint

cycles covering all the nodes such that the sum of interaction costs between successive arcs is

minimized. Since we assume that all cycle covers in this chapter are disjoint, we use the term

cycle cover to denote this concept in the sequel. An instance of the QCCP is specified by the

pair (G,Q), where G = (N,A) is a simple directed graph with n := |N | nodes and m := |A|
arcs and Q = (qef ) ∈ Rm×m

+ is a nonnegative cost matrix. We assume that the entries of Q

are such that qef = 0 if arc f is not a successor of arc e, i.e., if f /∈ δ+(e−). Moreover, recall

from Chapter 2 that the nonnegativity condition on Q is nonrestrictive, see Section 2.2.

Let x ∈ {0, 1}m represent the characteristic vector of a cycle cover. That is, xe = 1 if

arc e belongs to the cycle cover and xe = 0 otherwise. Then, the QCCP can be formulated
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as:

OPT (Q) := min
{
x�Qx : x ∈ P

}
, (3.1)

where P denotes the set of all cycle covers in G, i.e.,

P :=

⎧⎨⎩x ∈ {0, 1}m :
∑

e∈δ+(i)

xe =
∑

e∈δ−(i)

xe = 1 ∀i ∈ N

⎫⎬⎭ . (3.2)

The linear problem corresponding to the QCCP is called the cycle cover problem (CCP).

Given a linear arc-weight function, the CCP asks for a minimum weight cycle cover in G.

The CCP reduces to the well-known linear assignment problem, see e.g., [62], and is therefore

polynomial time solvable.

Let conv(P ) be the convex hull of all characteristic vectors corresponding to directed 2-

factors in G. We call this set the directed 2-factor polytope. Let U ∈ Rn×m and V ∈ Rn×m

be defined as

Ui,e :=

{
1 if arc e starts at node i,

0 otherwise,
Vi,e :=

{
1 if arc e ends at node i,

0 otherwise.

Additionally, let u�
i and v�i denote the ith row of U and V , respectively. Using matrix

notation, we have P = {x ∈ {0, 1}m : [U� V �]�x = 12n}. It follows from the total

unimodularity of [U� V �]� that the directed 2-factor polytope can be written explicitly as:

conv(P ) =

⎧⎨⎩x ∈ Rm : x ≥ 0m ,

⎡⎣U
V

⎤⎦x = 12n

⎫⎬⎭ . (3.3)

Observe that the arcs that are never used in a cycle cover are irrelevant for the QCCP. We

define the set J consisting of all arcs with this property, i.e.,

J := {f ∈ A : xf = 0 for all x ∈ P}.

The elements in J can be obtained in polynomial time by solving for each f ∈ A the following

CCP:

zf := max{e�
f x : x ∈ P}.

The set J consists of all arcs f ∈ A for which zf = 0. Without loss of generality, we can

remove the arcs that are in J from the given instance to simplify the problem. This leads

to the following assumption that applies to the rest of this chapter.

Assumption 3.1. There exists at least one cycle cover in G, i.e., P 	= ∅. Moreover, the

set J is empty.

We end this section by considering the dimension of the directed 2-factor polytope. We

define

α := rank

⎛⎝⎡⎣U
V

⎤⎦⎞⎠ . (3.4)
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In Section 3.4.2, we derive the value of α in terms of the graph. For now, we observe

that n ≤ α ≤ 2n− 1, provided that Assumption 3.1 holds.

It follows from the rank-nullity theorem that dim(Nul([U� V �]�)) = m − α. Let us

prove the following lemma.

Lemma 3.2. Under Assumption 3.1, the dimension of the directed 2-factor polytope is m−α.

Proof. It follows from (3.3) that

conv(P ) =

{
x ∈ Rm :

[
U� V �

]�
x = 12n

}
∩ Rm

+ .

Obviously, Rm
+ is full-dimensional, whereas the dimension of {x ∈ Rm : [U� V �]�x = 12n}

equals dim(Nul([U� V �]�)) = m− α. Hence, we have dim(conv(P )) ≤ m− α, where strict

inequality holds only if conv(P ) is fully contained in one of the facets of Rm
+ . Now, assume

that there exists some arc e such that conv(P ) ⊆ {x ∈ Rm
+ : xe = 0}. Consequently, we must

have P ⊆ {x ∈ Rm
+ : xe = 0}, which implies that e ∈ J . This contradicts Assumption 3.1.

We conclude that dim(conv(P )) = m− α.

3.3 SDP relaxations for the QCCP

In this section we focus on constructing several semidefinite programming relaxations for the

QCCP. These relaxations are increasing in strength and complexity.

The objective function of (3.1) can be rewritten as x�Qx = 〈Q, xx�〉 = 〈Q,X〉, where
we replace xx� by a matrix variable X ∈ Sm. We now relax the equality X − xx� = 0

by replacing it by the SDP constraint X − xx� � 0. It follows from the Schur complement

lemma that we can equivalently write
(

1 x�
x X

)
� 0. Moreover, since x ∈ P is a binary vector,

we have diag(X) = x. This leads to the following basic feasible set for an SDP relaxation of

the QCCP:

Fbasic :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎝1 x�

x X

⎞⎠ ∈ Sm+1 :

u�
i x = v�i x = 1 ∀i ∈ N

x = diag(X),

⎛⎝1 x�

x X

⎞⎠ � 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (3.5)

We show below how to strengthen the feasible set (3.5) by adding valid constraints.

Since each cycle cover consists of n arcs, we know that 1�
mx = n for all x ∈ P . This can

be written equivalently as tr(X) = n, which we refer to as the trace constraint. Moreover,

since xx� is replaced by X, the constraint 〈J, X〉 = n2, which we call the all-ones constraint,

is also valid.

One can also add to Fbasic the so-called squared linear constraints. These constraints

result from taking the product of the linear constraints u�
i x = 1 and u�

j x = 1 for all i, j ∈ N ,

which yield 1 = (u�
i x)(x

�uj) = 〈uiu
�
j , xx

�〉. Hence, the constraint 〈uiu
�
j , X〉 = 1 is valid

for Fbasic. The same can be done by taking the products of the linear constraints v�i x = 1

for all i ∈ N , etc. In total, we distinguish three types of squared linear constraints that are

summarized in Table 3.1.
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Type of squared linear constraint Constraints on X

Type I 〈uiu
�
i , X〉 = 1 and 〈viv�

i , X〉 = 1 for all i ∈ N ;

Type II 〈uiu
�
j , X〉 = 1 and 〈viv

�
j , X〉 = 1 for all i, j ∈ N, i �= j;

Type III 〈uiv
�
j , X〉 = 1 for all i, j ∈ N .

Table 3.1: Three types of valid squared linear constraints for Fbasic.

We show below how the above-mentioned valid constraints relate. An interesting result is

that the squared linear constraints of Type II and III turn out to be redundant when the

Type I constraints and some other constraints are added to (3.5).

Proposition 3.3. Let x ∈ Rm and X ∈ Sm be such that

⎛⎝1 x�

x X

⎞⎠ � 0, diag(X) = x,

tr(X) = n and 〈J, X〉 = n2. If 〈uiu
�
i , X〉 = 〈viv�i , X〉 = 1 for all i ∈ N , then

(i) the squared linear constraints of Type II and III are redundant;

(ii) the linear constraints u�
i x = u�

j x = 1 for all i, j ∈ N are redundant.

Proof. (i) Let i, j ∈ N with i 	= j, then we have,

〈(ui − uj)(ui − uj)
�, X〉 = 〈uiu

�
i + uju

�
j − 2uiu

�
j , X〉

= 〈uiu
�
i , X〉+ 〈uju

�
j , X〉 − 2〈uiu

�
j , X〉

= 2− 2〈uiu
�
j , X〉 ≥ 0,

since 〈uiu
�
i , X〉 = 〈uju

�
j , X〉 = 1 and X � 0. From this it follows that 〈uiu

�
j , X〉 ≤ 1.

Conversely, as all arcs have exactly one starting node, we have 1m =
∑

i∈N ui. Using this,

we can rewrite the matrix J as J =
(∑

i∈N ui

) (∑
i∈N ui

)�
and the constraint 〈J, X〉 = n2

as follows:

n2 = 〈J, X〉 =
〈(∑

i∈N

ui

)(∑
i∈N

ui

)�

, X

〉
=

∑
i∈N

∑
j∈N

〈uiu
�
j , X〉.

The right-hand side expression is a sum of n2 elements for which 〈uiu
�
j , X〉 ≤ 1 for all i, j ∈ N .

Since the sum has to be equal to n2, it follows that 〈uiu
�
j , X〉 = 1 for all i, j ∈ N , i 	= j.

The other equalities can be proven in a similar fashion.

(ii) Let Y := X − xx�. By the Schur complement lemma, we know that Y � 0. Now,

1 = 〈uiu
�
i , X〉 = 〈uiu

�
i , Y 〉+ 〈uiu

�
i , xx

�〉 = 〈uiu
�
i , Y 〉+ (u�

i x)
2.

Since 〈uiu
�
i , Y 〉 ≥ 0, it follows that (u�

i x)
2 ≤ 1 and, consequently, u�

i x ≤ 1 for all i ∈ N .

Now we rewrite the trace constraint 1�
mx = n as

1�
mx =

(∑
i∈N

ui

)�

x =
∑
i∈N

u�
i x = n.
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Since each term u�
i x is bounded by 1, equality is established only when u�

i x = 1 for all i ∈ N .

In a similar way one can show that v�i x = 1 for all i ∈ N .

Observe that there exist 2n constraints of Type I. We show how to merge these constraints

to obtain a more compact formulation. To this end, we define the matrices Ũ , Ṽ ∈ Rm×m

as follows:

Ũ :=
∑
i∈N

⎛⎝−1
ui

⎞⎠⎛⎝−1
ui

⎞⎠�

and Ṽ :=
∑
i∈N

⎛⎝−1
vi

⎞⎠⎛⎝−1
vi

⎞⎠�

.

We establish the following result.

Proposition 3.4. Let x ∈ Rm and X ∈ Sm be such that

⎛⎝1 x�

x X

⎞⎠ � 0 and diag(X) = x.

Then, the following statements are equivalent:

(i) tr(X) = n and 〈uiu
�
i , X〉 = 〈viv�i , X〉 = 1 for all i ∈ N ;

(ii)

〈
Ũ ,

⎛⎝1 x�

x X

⎞⎠〉
=

〈
Ṽ ,

⎛⎝1 x�

x X

⎞⎠〉
= 0.

Proof. It is not difficult to see that (i) =⇒ (ii). We now show the converse statement. We

have〈
Ũ ,

⎛⎝1 x�

x X

⎞⎠〉
=

〈∑
i∈N

⎛⎝−1
ui

⎞⎠⎛⎝−1
ui

⎞⎠�

,

⎛⎝1 x�

x X

⎞⎠〉
=

∑
i∈N

(u�
i Xui − 2u�

i x+ 1) = 0.

Since
(−1

ui

)(−1
ui

)� � 0, it follows that u�
i Xui − 2u�

i x+ 1 ≥ 0 for all i ∈ N . Combining this

with the equality above, we conclude that u�
i Xui − 2u�

i x+ 1 = 0 for all i ∈ N .

Now define Y := X − xx� � 0. Then u�
i Xui − 2u�

i x+ 1 = 0 can be rewritten as

u�
i (Y + xx�)ui − 2u�

i x+ 1 = 0, or equivalently, u�
i Y ui + (u�

i x− 1)2 = 0.

Since u�
i Y ui ≥ 0 and (u�

i x − 1)2 ≥ 0, it follows that u�
i x = 1, which in turn implies

that u�
i Xui = 2u�

i x− 1 = 1. Similarly, one can prove that 〈viv�i , X〉 = 1 for all i ∈ N .

Finally, since 1m =
∑

i∈N ui, we have

tr(X) = 1�
mx =

∑
i∈N

u�
i x = n.

We conclude that (ii) =⇒ (i).

Proposition 3.4 shows that instead of the trace constraint and the squared linear constraints,

we can equivalently include the merged squared linear constraints. Let us now define the
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following set:

F1 :=

{⎛⎝1 x�

x X

⎞⎠ ∈ Sm+1 :

〈
Ũ ,

⎛⎝1 x�

x X

⎞⎠〉
=

〈
Ṽ ,

⎛⎝1 x�

x X

⎞⎠〉
= 0,

〈J, X〉 = n2, diag(X) = x,

⎛⎝1 x�

x X

⎞⎠ � 0

}
.

(3.6)

From the above discussion it follows that F1 ⊆ Fbasic. Let us now introduce our first SDP

relaxation:

(SDP1) min

⎧⎨⎩〈Q,X〉 :

⎛⎝1 x�

x X

⎞⎠ ∈ F1

⎫⎬⎭ . (3.7)

In the sequel we show how to improve the SDP relaxation (3.7). Let us exploit the structure

of a cycle cover to identify a zero pattern in X. For each i ∈ N , we know that there is exactly

one arc e in δ+(i) with xe = 1 and xf = 0 for all other arcs f leaving i. Hence, for each pair

of distinct arcs e, f ∈ δ+(i) we have xexf = 0. This leads to the valid constraint Xef = 0

for all e, f ∈ δ+(i), e 	= f . The same holds for the incoming arcs. We call these type of

equalities the zero-structure constraints. We define:

Z := {(e, f) ∈ A×A : e and f start or end at the same node, e 	= f}. (3.8)

Then the zero-structure constraints read that Xef = 0 for all (e, f) ∈ Z.
Note that one may also add the nonnegativity constraints on matrix variables in (SDP1).

For that purpose, we define the cone of nonnegative symmetric matrices, i.e.,

Nm
+ := {X ∈ Sm : X ≥ 0}.

We show next that after adding nonnegativity constraints to the feasible set of (SDP1), the

zero-structure constraints turn out to be redundant.

Proposition 3.5. Let x ∈ Rm and X ∈ Sm be feasible for (SDP1). If X ∈ Nm
+ , then

Xef = 0 for all (e, f) ∈ Z.

Proof. We prove the statement for the outgoing arcs. The proof for the incoming arcs is

similar. Using Proposition 3.4, we know that 〈uiu
�
i , X〉 = 1 for all i ∈ N . We rewrite this

equality as:

1 = 〈uiu
�
i , X〉 =

∑
e∈A

∑
f∈A

(ui)e(ui)fXef =
∑

e∈δ+(i)

Xee +
∑

e,f∈δ+(i),
e �=f

Xef .

Since diag(X) = x, we have
∑

e∈δ+(i) Xee =
∑

e∈δ+(i) xe = u�
i x = 1, where the last equality

follows from Proposition 3.3. Thus, we have
∑

e,f∈δ+(i),e �=f Xef = 0, from where it follows

that Xef = 0 for all e, f ∈ δ+(i) with e 	= f .
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Let us now define our next, tighter SDP relaxation:

(SDP2) min

⎧⎨⎩〈Q,X〉 :

⎛⎝1 x�

x X

⎞⎠ ∈ F1 ∩Nm+1
+

⎫⎬⎭ . (3.9)

To further strengthen (SDP2), we consider an additional set of valid inequalities. Namely,

we consider cuts that are related to the well-known boolean quadric polytope introduced by

Padberg [297]. The BQP of order m is defined as

BQm := conv
({

(x,X) ∈ Rm × Rm(m−1)/2 : x ∈ {0, 1}m, Xij = xixj ∀1 ≤ i < j ≤ m
})

.

Since the matrix X in our previous relaxations is such that Xef represents xexf , the in-

equalities that are valid for BQm can be added to our SDP relaxations. In [297] it is proven

that the following triangle inequalities (written in our notation) define facets of BQm:

Xef +Xeg ≤ xe +Xfg for all e, f, g ∈ A, e 	= f, f 	= g, e 	= g.

Although there are more facet-defining inequalities for the BQP, we consider only the above-

mentioned ones in this chapter. Namely, our preliminary tests show that the triangle in-

equalities lead to the largest improvement of the SDP bounds. Note that there are O(m3)

triangle inequalities and that it is challenging to solve even medium-size SDPs that include

all triangle inequalities.

Let T ⊆ A×A×A denote the set of arc triples corresponding to the triangle inequalities,

and let C(T ) be the polyhedron induced by these cuts, i.e.,

C(T ) :=

⎧⎨⎩
⎛⎝1 x�

x X

⎞⎠ ∈ Sm+1 : Xef +Xeg ≤ Xee +Xfg ∀ (e, f, g) ∈ T

⎫⎬⎭ ,

where we incorporated the fact that xe = Xee for all e ∈ A in our relaxations. Then our

strongest SDP relaxation is:

(SDP3) min

⎧⎨⎩〈Q,X〉 :

⎛⎝1 x�

x X

⎞⎠ ∈ F1 ∩Nm+1
+ ∩ C(T )

⎫⎬⎭ . (3.10)

By abuse of notation, we will also use T to denote a subset of the set of arc triples corres-

ponding to the triangle inequalities within a cutting-plane environment.

3.4 Graph-dependent facial reduction

In this section we investigate the Slater feasibility of the relaxations constructed in Sec-

tion 3.3. We prove that the relaxations are not Slater feasible and show how to obtain

facially reduced relaxations. We conclude this section by providing an algorithm that com-

putes a sparse transformation matrix required for the facial reduction. Each transformation

matrix is graph-specific, and the algorithm exploits the bipartite representation of the un-

derlying graph.
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3.4.1 Strict feasibility by facial reduction

Recall that Slater’s constraint qualification holds for an SDP relaxation if there exists a

feasible solution that is also positive definite. The following lemma shows that Slater’s

constraint qualification does not hold for the SDP relaxation (3.7), and consequently, neither

for (3.9) and (3.10).

Lemma 3.6. Let Y :=

⎛⎝1 x�

x X

⎞⎠ ∈ Sm+1
+ be feasible for (SDP1). Then

Span

⎧⎨⎩
⎛⎝−1

ui

⎞⎠ ,

⎛⎝−1
vi

⎞⎠ : i ∈ N

⎫⎬⎭ ⊆ Nul(Y ).

Proof. It follows directly from the fact that 〈Ũ , Y 〉 = 0 and positive semidefinite matrices

having a nonnegative trace inner product that we have

(
−1 u�

i

)⎛⎝1 x�

x X

⎞⎠⎛⎝−1
ui

⎞⎠ = 0,

for all i ∈ N . Since Y � 0, this implies that Y
(−1

ui

)
= 0m+1 for all i ∈ N . Thus,

(−1
ui

)
∈

Nul(Y ) for all i ∈ N . Similarly, one can prove that
(−1

vi

)
∈ Nul(Y ) for all i ∈ N .

Lemma 3.6 shows that our SDP relaxations are not Slater feasible. Thus, the feasible

sets of the SDP relaxations are fully contained in one of the faces of Sm+1
+ . For now, we only

focus on the relaxation (SDP1). In order to find an equivalent relaxation for (SDP1) that

is Slater feasible, we project the problem onto the minimal face containing the feasible set,

i.e., apply facial reduction, see e.g., [52, 108, 191, 355].

To find the minimal face containing the feasible set of the SDP relaxation, one needs to

find its exposing vectors, i.e., the vectors orthogonal to the feasible set of the SDP relaxation.

It follows from Lemma 3.6 that the following matrices satisfy that property:⎛⎝−1
ui

⎞⎠⎛⎝−1
ui

⎞⎠�

and

⎛⎝−1
vi

⎞⎠⎛⎝−1
vi

⎞⎠�

for all i ∈ N. (3.11)

Now, let R be defined as follows:

R :=

⎛⎝Span

⎧⎨⎩
⎛⎝−1

ui

⎞⎠ ,

⎛⎝−1
vi

⎞⎠ : i ∈ N

⎫⎬⎭
⎞⎠⊥

= Nul

⎛⎝⎡⎣−1n U

−1n V

⎤⎦⎞⎠ . (3.12)

Observe that under Assumption 3.1 the rank of
[−1n U
−1n V

]
equals the rank of [U� V �]� which

we defined to be α, see (3.4). From this it follows that dim(R) = m + 1 − α. We now

define FR to be the subset of Sm+1
+ that is orthogonal to the exposing vectors (3.11), i.e.,

FR := {X ∈ Sm+1
+ : Col(X) ⊆ R}.

Since faces of Sm+1
+ are known to be in correspondence with linear subspaces of Rm+1, see

Section 1.3.3, FR is a face of Sm+1
+ containing the feasible set of (SDP1). Later on we show
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that FR is actually the minimal face with this property, see Theorem 3.8.

In order to derive an explicit expression of FR, let W ∈ R(m+1)×(m+1−α) be a matrix

whose columns form a basis for R. Then, the face FR can be equivalently written as:

FR = WSm+1−α
+ W�. (3.13)

This implies that any Y ∈ Sm+1
+ that is feasible for (SDP1) can be written as Y = WZW�

for some Z ∈ Sm+1−α
+ . By substituting this term into (SDP1), we obtain an equivalent re-

laxation in a lower dimensional space. As a direct byproduct, some of the original constraints

become redundant. The resulting relaxation is as follows:

(SDPS1) min

{
〈W�Q̂W,Z〉 :

diag(WZW�) = WZW�e1,

e�
1 WZW�e1 = 1, Z � 0

}
, (3.14)

where Q̂ :=
(

0 0�
m

0m Q

)
. Let us define the feasible set of the above relaxation for future

reference:

FS1 :=

{
Z ∈ Sm+1−α

+ :
diag(WZW�) = WZW�e1,

e�
1 WZW�e1 = 1, Z � 0

}
. (3.15)

We show below that the SDP relaxations (3.14) and (3.7) are equivalent.

Theorem 3.7. The SDP relaxation (SDPS1) is equivalent to the SDP relaxation (SDP1).

Proof. Let Z be feasible for (SDPS1) and define Y := WZW�, X := [0m Im]Y [0m Im]�

and x := diag(X). Our goal is to show that x and X are feasible for (SDP1).

Note that the SDP constraint is trivially satisfied. Therefore, it remains to prove that

the all-ones constraint and the merged squared linear constraints hold. Observe that⎛⎝ n

1m

⎞⎠� ⎛⎝1 x�

x X

⎞⎠⎛⎝−n
1m

⎞⎠ =

⎛⎝ n

1m

⎞⎠�

WZW�

⎛⎝−n
1m

⎞⎠ =
∑
i∈N

⎛⎝ n

1m

⎞⎠�

WZW�

⎛⎝−1
ui

⎞⎠ = 0,

where the last equality follows from the construction of W . Since the most left term in the

expression above equals −n2 + 1�
mX1m, it follows that 〈J, X〉 = n2.

Next, we have

〈
Ũ , Y

〉
=

〈∑
i∈N

⎛⎝−1
ui

⎞⎠⎛⎝−1
ui

⎞⎠�

, WZW�

〉
=

∑
i∈N

〈
W�

⎛⎝−1
ui

⎞⎠⎛⎝−1
ui

⎞⎠�

W, Z

〉
= 0,

since the columns of W are orthogonal to [−1 u�
i ]

� for all i ∈ N . In a similar fashion we can

show that 〈Ṽ , Y 〉 = 0. We conclude that the matrix X and vector x obtained from (SDPS1)

are feasible for (SDP1).

Conversely, let Y be feasible for (SDP1). Then it follows from (3.13) that there exists a

matrix Z � 0 such that Y = WZW�. Since the objective functions of (SDP1) and (SDPS1)

coincide, we conclude that the two relaxations are equivalent.

We now prove that (SDPS1) is indeed Slater feasible, see also [355].

Theorem 3.8. The relaxation (SDPS1) contains a Slater feasible point.
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Proof. Since conv(P ) has dimension m − α, see Lemma 3.2, it follows that there exists an

affinely independent set of vectors {x1, . . . , xm+1−α} ⊆ P . Because of the affinely independ-

ence of these vectors, the set⎧⎨⎩
⎛⎝ 1

x1

⎞⎠ ,

⎛⎝ 1

x2

⎞⎠ , . . . ,

⎛⎝ 1

xm+1−α

⎞⎠⎫⎬⎭
is linearly independent in Rm+1. Since [1 x�

i ]
� ∈ R for all i ∈ [m + 1 − α] and the

columns of W form a basis for R, there exist vectors y1, . . . , ym+1−α ∈ Rm+1−α such

that Wyi = [1 x�
i ]

� for all i ∈ [m + 1 − α]. Moreover, the vectors yi are linearly inde-

pendent in Rm+1−α because of the linear independence of the vectors Wyi.

We define

Zλ :=

m+1−α∑
i=1

λiyiy
�
i ,

where λi ≥ 0 for all i ∈ [m+ 1− α] and 1�λ = 1, and rewrite WZλW
� as follows:

WZλW
� =

m+1−α∑
i=1

λiWyi(Wyi)
� =

m+1−α∑
i=1

λi

⎛⎝ 1

xi

⎞⎠⎛⎝ 1

xi

⎞⎠�

.

It is not difficult to see that Zλ is feasible for (SDPS1). By taking λi > 0 for all i ∈ [m+1−α],
the resulting matrix Zλ is nonsingular, which implies that Zλ � 0. Hence, (SDPS1) contains

a Slater feasible point.

Note that the key in the proof of Theorem 3.8 is the known dimension of conv(P ).

Continuing in the same vein, one can show that the following SDP relaxation is equivalent

to the SDP relaxation (3.9):

(SDPS2) min
{
〈W�Q̂W,Z〉 : Z ∈ FS1, WZW� ∈ Nm+1

+

}
, (3.16)

and the following relaxation equivalent to the SDP relaxation (3.10):

(SDPS3) min
{
〈W�Q̂W,Z〉 : Z ∈ FS1, WZW� ∈ Nm+1

+ ∩ C(T )
}
. (3.17)

3.4.2 A polynomial time algorithm for the transformation matrix

Although the subspace R has been defined algebraically in Section 3.4.1, we now focus on

its relation with the graph G. This leads to a polynomial time algorithm for computing a

sparse transformation matrix W that depends on the considered graph. Although one can

compute W numerically, we require its sparse expression for efficient implementation of our

cutting-plane algorithm, see Section 3.5.

Recall that the columns of W form a basis for the subspace R, see (3.12). A natural way

to construct W is as follows: let x̄ ∈ P be the characteristic vector of any cycle cover in G.

Moreover, let W ∈ Rm×(m−α) be a matrix whose columns form a basis for Nul([U� V �]�).
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Then, the matrix

W :=

⎛⎝1 0�
m−α

x W

⎞⎠ (3.18)

forms a basis for the subspace R. Finding a sparse expression for W now boils down to

finding a sparse expression for W . For that purpose, we focus on a graph B(G) that is

induced by G, the so-called bipartite representation of G, which is introduced by Bang-

Jensen and Gutin [30]. The graph B(G) = (V1 � V2, E) is an undirected bipartite graph

where V1 and V2 are copies of the set N and the edge set E is defined as:

E = {{i, j} ∈ V1 × V2 : (i, j) ∈ A} .

By construction, each arc inG corresponds to exactly one edge inB(G), where the orientation

inG determines the configuration of the edges inB(G). Figure 3.1 shows an example ofG and

its corresponding bipartite representation B(G). Observe that a cycle cover in G corresponds

to a perfect matching in B(G) and vice versa.

n1 n1 n1
n2

n2 n2

n3

n3 n3

n4 n4 n4

n5

n5 n5

n6 n6 n6

G = (N,A) B(G) = (V1 � V2, E)

Figure 3.1: Example of graph G and its bipartite representation B(G).

The matrix [U� V �]� equals the incidence matrix of B(G). Suppose we orient all edges

of B(G) from V1 to V2. The incidence matrix with respect to this orientation is [U� − V �]�.

Clearly, we have Nul([U� V �]�) = Nul([U� −V �]�). The null space of the incidence matrix

of a directed graph is in the literature known as the flow space of a graph. Hence, it follows

that the columns of W form a basis for the flow space of the bipartite representation of G

(with respect to the orientation from V1 to V2).

Let C be a cycle in B(G). Since B(G) is a bipartite graph, C consists of an even number

of edges. Let z ∈ Rm denote its signed characteristic vector, i.e., we alternately assign

values +1 and −1 to the edges on C and assign value 0 otherwise. It is well-known that the

flow space of a graph is spanned by the signed characteristic vectors of all its cycles. For

more information about the flow space of a graph, we refer to e.g., [175].

Hence, R is related to the cycles of the bipartite representation of G. A natural question

is how do the cycles of B(G) relate to the original graph G? To answer this question, we

exploit the notion of a closed antidirected trail, which is introduced in [29]. Recall that a

trail is a walk in a graph that does not contain repeated arcs, but is allowed to contain
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repeated nodes. A closed trail is a trail that has the same start and ending node.

Definition 3.9. A closed antidirected trail (CAT) in a directed graph G is a closed trail of

even length with arcs oriented alternately.

A cycle in B(G) corresponds to a CAT in G. To verify this, let φ : E → A be the bijection

between the edges of B(G) and the arcs of G in the natural way. Then, C equals a cycle

in B(G) if and only if φ(C) equals a CAT in G. Obviously, since C starts and ends at the

same vertex in B(G), φ(C) also starts and ends at the same node in G. Moreover, since B(G)

is bipartite, C and thus φ(C) must be of even length. Finally, each two consecutive edges

of C have one common vertex in V1 (resp. V2) and the other vertices in V2 (resp. V1). By

construction of B(G), it follows that two consecutive edges of C correspond to alternately

oriented arcs in G. Thus φ(C) is a CAT. The converse statement can be shown in the same

fashion. This leads to the following proposition.

Proposition 3.10. The flow space of B(G) equals the subspace spanned by the closed anti-

directed trails in G.

We now have two interpretations of the column space of W , one with respect to G and the

other with respect to B(G). The latter one is more suitable for finding a sparse expression

for W .

From the fact that W has m − α columns and the flow space of B(G) has dimen-

sion |E| − |V1 � V2|+ cB(G), where cB(G) is the number of connected components in B(G),

it follows that:

α = |V1 � V2| − cB(G) = 2n− cB(G). (3.19)

Observe that the extreme cases are established by the directed cycle and the complete digraph

on n nodes, which yield α = n and α = 2n− 1, respectively.

There exist several natural bases for the flow space of a graph, see e.g., [175]. We use

the following construction: Let T be a spanning forest of B(G) and let E(T ) ⊆ E denote its

corresponding edge set. Then, for all e ∈ E \ E(T ), we know that T ∪ {e} contains a cycle.

By alternately assigning values +1 and −1 to the edges of the cycle and assigning value 0

to all remaining edges, we obtain a signed characteristic vector of the cycle. By repeating

this construction for all edges in E \E(T ), we obtain m− α linearly independent vectors in

Nul([U� V �]�), which form a basis for this subspace. Finding a spanning forest T can be

done by a breadth first search. By making the trees in the forest rooted, we can efficiently

detect cycles in T ∪ {e}, e ∈ E \ E(T ), based on the levels of the vertices.

The pseudo-code for the computation of a sparse W is given in Algorithm 3.1. This

algorithm applies to all QCCP instances under Assumption 3.1.

Remark 3.11. Although Algorithm 3.1 uses B(G) to compute W , it is possible to perform

the same construction using the original graph G. This follows from the fact that the CATs

of G form the circuits of a matroid (A,F) where

F := {F ⊆ A : subgraph (N(F ), F ) does not contain a CAT},

see [29]. Step 2 of Algorithm 3.1 then reduces to finding a maximal basis of (A,F) using

a greedy algorithm, while step 4 boils down to finding the unique CAT in T ∪ {e} using a

breadth first search.
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Algorithm 3.1 Computation of transformation matrix W

Input: G = (N,A)
1: Construct the bipartite representation B(G) = (V1 � V2, E) of G.
2: Find a spanning forest T of B(G).
3: for e ∈ E \ E(T ) do
4: Find the unique cycle C in T ∪ {e}.
5: Alternately assign values +1 and −1 to edges on C.

6: Construct vector we ∈ Rm by we
f =

{
±1 if f ∈ C (according to step 5),

0 otherwise.

7: end for
8: Find a cycle cover x̄ ∈ P .

9: Let W ∈ R(m+1)×(m+1−α) be the matrix whose columns are

(
1

x̄

)
∪

{(
0

we

)
: e ∈ E \ E(T )

}
.

Output: W

3.5 A cutting-plane augmented Lagrangian approach

It is known that SDP solvers based on interior-point methods exhibit problems in terms of

both time and memory for solving even medium-size SDPs. Moreover, interior-point methods

have difficulties with handling additional cutting planes such as nonnegativity constraints

and triangle inequalities. Therefore, solving strong SDP models remains a challenging task.

Recently, a promising alternative for solving large-scale SDP relaxations based on altern-

ating direction augmented Lagrangian methods has been investigated, see [61, 308, 350, 363,

382]. There exist several variants of alternating direction augmented Lagrangian methods

for solving SDPs, see e.g., [195, 196, 216, 218, 292, 308, 382]. Here, we first consider two vari-

ants known as the (original) alternating direction method of multipliers (ADMM) and the

Peaceman–Rachford splitting method (PRSM), also called the symmetric ADMM. Then,

we present a novel approach that puts these alternating direction augmented Lagrangian

methods into a cutting-plane framework. In particular, we show how to efficiently combine

the PRSM with Dykstra’s projection algorithm [115] within a cutting-plane approach.

3.5.1 The alternating direction method of multipliers and the Peaceman-
Rachford splitting method

The ADMM is a first-order method that is introduced in the 1970s to solve large-scale

convex optimization problems, see Section 1.3.4. Starting from the augmented Lagrangian

function, it decomposes the problem into various subproblems that are relatively easy to

solve. In [292], the authors use the ADMM to solve an SDP relaxation for the quadratic

assignment problem and in [216] a similar approach is used to compute strong SDP bounds

for the quadratic shortest path problem. Their approaches allow for inexpensive iterations

and cheap ways for obtaining lower and upper bounds. In this section we first show how to

exploit the approach from [216, 292] to solve (SDPS2) by the ADMM. Then, we present

the PRSM for this relaxation.

Let us rewrite (SDPS2) by introducing the constraint Y = WZW�. The purpose of

adding this equality is to split the remaining set of constraints into the PSD constraint on Z

and the linear constraints on Y . To deal with the latter type, we introduce the following set:

Y :=

{
Y ∈ Sm+1 :

Y11 = 1, diag(Y ) = Y e1, Yef ≤ 1 ∀e 	= f

Y ≥ 0, tr(Y ) = n+ 1, Yef = 0 ∀(e, f) ∈ Z

}
, (3.20)
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where Z is given in (3.8). Observe that Y also contains constraints that are redundant

for (SDPS2), see Section 3.3. However, these constraints are not redundant in the subprob-

lems after splitting, see (3.23) below. By including them in Y we therefore speed up the

convergence of the ADMM as observed in [216, 218, 292]. Indeed, these constraints make

the alternating projections more accurate.

Remark 3.12. Observe that Y does not contain the redundant constraint 〈J, Y 〉 = (n+1)2.

Namely, our preliminary experiments show that the gain in convergence after adding that

constraint is not worth the additional computational effort caused by adding it to Y, as

further explained in Remark 3.13 below.

Now, the starting point of the algorithm is the following relaxation:

min
{
〈Q̂, Y 〉 : Y = WZW�, Y ∈ Y, Z � 0

}
, (3.21)

that is equivalent to (SDPS2). We assume that the transformation matrix W is normalized

such that W�W = I. Observe that the sparse W resulting from Algorithm 3.1 does not

have orthogonal columns. Therefore, we apply a QR-decomposition on the matrix obtained

from Algorithm 3.1. It has to be noted that by doing so, some of the sparsity of W is lost.

Let S ∈ Sm+1 denote the Lagrange multiplier for the linear constraint Y = WZW�.

We consider the augmented Lagrangian function of (3.21) w.r.t. this constraint for a fixed

penalty parameter β > 0:

Lβ(Z, Y, S) := 〈Q̂, Y 〉+ 〈S, Y −WZW�〉+ β

2
||Y −WZW�||2F .

The ADMM aims to minimize Lβ(Z, Y, S) subject to Y ∈ Y and Z � 0, while iteratively

updating S. This problem can be decomposed into subproblems, where we only minimize

with respect to one of the matrix variables, while keeping the others fixed.

Suppose that (Zp, Y p, Sp) denotes the pth iterate of the ADMM. Then the new iter-

ate (Zp+1, Y p+1, Sp+1) can be obtained by the following updates:

(ADMM)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Zp+1 := argmin

Z�0
Lβ(Z, Y

p, Sp), (3.22)

Y p+1 := arg min
Y ∈Y

Lβ(Z
p+1, Y, Sp), (3.23)

Sp+1 := Sp + γ · β · (Y p+1 −WZp+1W�). (3.24)

Here γ ∈ (0, 1+
√
5

2
) is the stepsize parameter for updating the Lagrange multiplier S, see

e.g., [363]. The efficiency of the ADMM depends on the difficulty of solving the subprob-

lems (3.22) and (3.23).

The Z-subproblem can be solved as follows, see also [216, 292]:

Zp+1 = argmin
Z�0

(
〈Q̂, Y p〉 − 1

2β
‖Sp‖2F +

β

2

∥∥∥∥WZW� −
(
Y p +

1

β
Sp

)∥∥∥∥2

F

)

= argmin
Z�0

∥∥∥∥WZW� −
(
Y p +

1

β
Sp

)∥∥∥∥2

F

= P�0

(
W�

(
Y p +

1

β
Sp

)
W

)
,

where P�0(·) denotes the orthogonal projection onto the cone of positive semidefinite matrices,

which can be performed explicitly, see e.g., [205].
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The Y -subproblem can be rewritten as follows:

Y p+1 = arg min
Y ∈Y

(
〈Q̂,WZp+1W�〉 − β

2

∥∥∥∥∥ Q̂+ Sp

β

∥∥∥∥∥
2

F

+
β

2

∥∥∥∥∥Y −WZp+1W� +
Q̂+ Sp

β

∥∥∥∥∥
2

F

)

= arg min
Y ∈Y

∥∥∥∥∥Y −
(
WZp+1W� − Q̂+ Sp

β

)∥∥∥∥∥
2

F

= PY

(
WZp+1W� − Q̂+ Sp

β

)
,

where PY(·) denotes the orthogonal projection onto the polyhedral set Y.
We now show how to project a matrix M ∈ Sm+1 onto Y. For that purpose, we define

several operators, see Table 3.2.

Operator Description

Tarrow : Sm+1 → Rm Tarrow

((
x0 x�

x X

))
= 1

3 (diag(X) + 2x).

T∗
arrow : Rm → Sm+1 T∗

arrow(x) =

(
0 1

3x
�

1
3x Diag( 1

3x)

)
.

Tinner : Sm+1 → Sm+1
Tinner

((
x0 x�

x X

))
=

(
0 0�

m

0m X̃ − Diag(X̃)

)
where X̃ ∈ Sm is s.t.

X̃ef = 0 if (e, f) ∈ Z and X̃ef = Xef otherwise.

Tbox : Sm+1 → Sm+1 Tbox(X)ef = min(max(Xef , 0), 1) for all (e, f).

Table 3.2: Overview of operators and their definitions.

Let M̂ denote the projection of a matrix M onto Y. The projection can be split into

two parts: the projection of the so-called arrow of M , i.e., the first row, first column and

diagonal of M , and the projection of the remaining entries. We specify details below.

We clearly have M̂11 = 1. The remaining entries of the arrow of M̂ are obtained as the

solution to the following minimization problem:

min
y∈Rm

{
‖y − Tarrow(M)‖22 : 1�y = n, y ≥ 0

}
.

Observe that the problem above boils down to a projection of a vector onto the simplex Δ(n),

where Δ(a) := {x ∈ Rm : 1�x = a, x ≥ 0} for all nonnegative a ∈ R. The projection

onto Δ(a), denoted by PΔ(a)(·), can be performed explicitly in O(m logm), see [199]. The

projection of the remaining entries of M is trivial. We conclude that the explicit projection

of M onto Y equals:

PY(M) = E11 + Tbox

(
Tinner(M)

)
+ T ∗

arrow

(
3 · PΔ(n)

(
Tarrow(M)

))
,

where E11 := e1e
�
1 ∈ Sm+1. The fact that our SDP relaxations satisfy the constant trace

property, i.e., tr(Y ) = n+1, is exploited in the Y -subproblem. The presence of the constant

trace property in SDPs has been exploited recently in conditional gradient-based augmented

Lagrangian methods. These methods iteratively solve a minimization problem with respect

to the set of positive semidefinite matrices having fixed trace, see e.g., [260, 261, 377]. In

contrast, our method exploits the constant trace property in the polyhedral projections.
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Remark 3.13. As indicated in Remark 3.12, the constraint 〈J, Y 〉 = (n+ 1)2 is not added

to Y for efficiency reasons. If this constraint would be included, we require the upper-

triangular elements Yef with e 	= f and (e, f) /∈ Z to be between 0 and 1 and together

add up to 1
2
n(n − 1). Hence, this asks for a projection onto an O(m2)-dimensional capped

simplex [13], resulting in a worst-case complexity of O(m4). Since the ADMM requires this

projection to be done in every iteration, the gain in convergence is not worth the additional

computation overhead of including it.

In the ADMM the Lagrange multiplier is only updated after both primal variables have

been updated. We present below the Peaceman–Rachford splitting method (PRSM) or the

symmetric ADMM with larger stepsize [196]. This method consists of two dual updates per

iteration. Let (Zp, Y p, Sp) denote the pth iterate of the PRSM. Then, the following iterative

scheme is applied:

(PRSM)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Zp+1 := argmin
Z�0

Lβ(Z, Y
p, Sp), (3.25)

Sp+ 1
2 := Sp + γ1 · β · (Y p −WZp+1W�), (3.26)

Y p+1 := arg min
Y ∈Y

Lβ(Z
p+1, Y, Sp+ 1

2 ), (3.27)

Sp+1 := Sp+ 1
2 + γ2 · β · (Y p+1 −WZp+1W�). (3.28)

Here γ1 and γ2 are parameters that must be carefully chosen in order to guarantee conver-

gence. The PRSM is known for accelerated speed of convergence in comparison with other

ADMM-like algorithms, see [196].

3.5.2 ADMM versus PRSM: preliminary results

In Section 3.5.1 we present two methods for solving (SDPS2): the ADMM and the PRSM.

Both approaches can be incorporated within the cutting-plane augmented Lagrangian method

that we present later. We here provide some preliminary experiments to present the beha-

viour of both methods in terms of convergence.

We consider a test set of 10 Erdős-Rényi instances with m ranging from 250 to 750, see

Section 3.7 for a specification of these instances. For each instance, we use the ADMM and

the PRSM to compute (SDPS2) under the same parameter settings as will be explained

in Section 3.7. We compute lower bounds obtained from the methods, see Section 3.5.5.3,

and scale them such that the final bound is indexed to 100. Figure 3.2a shows these scaled

bounds for all instances, while Figure 3.2b shows their average over all instances with respect

to the number of iterations performed.

Figure 3.2 shows that although both methods converge, the PRSM in general produces

strong lower bounds faster than the ADMM. This is in line with the accelerated numerical

performance of the PRSM in contrast to the ADMM presented in [196]. Because we desire a

fast convergence when iteratively adding cuts, we incorporate the PRSM in the cutting-plane

augmented Lagrangian approach introduced in Section 3.5.5.

3.5.3 Projection onto a single BQP Cut

The implementation of the ADMM and the PRSM discussed in the previous section can be

used to solve (SDPS1) and (SDPS2). In order to solve (SDPS3), the constraints Y ∈ C(T )
are added to the set of polyhedral constraints, which significantly increases the complexity of
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Figure 3.2a: Lower bounds for the ADMM (dashed) and the PRSM (solid) for full test set.

Figure 3.2b: Lower bounds for the ADMM (dashed) and the PRSM (solid) on average.

the Y -subproblem (3.23). To project onto Y∩C(T ), we use an iterative projection framework,

see Section 3.5.4. In this section, we first show how to project onto the polyhedron induced

by a single triangle inequality.

Let (e, f, g) denote an arc triple with e 	= f, f 	= g, e 	= g, corresponding to a (possibly

violated) triangle inequality, e.g., resulting from a cutting-plane framework. Now, let Hefg

be the following polyhedron:

Hefg :=
{
Y ∈ Sm+1 : Yef + Yeg ≤ Yee + Yfg, diag(Y ) = Y e1

}
.

Let PHefg (M) denote the projection of a matrix M ∈ Sm+1 onto Hefg. This projection can

be obtained explicitly as stated by the following lemma, where we restrict ourselves to the

matrices M that make their appearance in the algorithm that is presented in Section 3.5.4.

Lemma 3.14. Let M ∈ Sm+1 be such that diag(M) = Me1 and let M̂ := PHefg (M).

If Mef +Meg ≤ Mee+2M1e
3

+Mfg, then

M̂st =

{
1
3
Mee +

2
3
M1e if (s, t) ∈ {(1, e), (e, 1), (e, e)},

Mst otherwise.
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If Mef +Meg > Mee+2M1e
3

+Mfg, then the projection M̂ can be written explicitly as:

M̂st =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
11
Mee +

2
11
M1e +

3
11
Mfg + 8

11
Mef − 3

11
Meg if (s, t) ∈

{
(e, f), (f, e)

}
,

1
11
Mee +

2
11
M1e +

3
11
Mfg − 3

11
Mef + 8

11
Meg if (s, t) ∈

{
(e, g), (g, e)

}
,

− 1
11
Mee − 2

11
M1e +

8
11
Mfg + 3

11
Mef + 3

11
Meg if (s, t) ∈

{
(f, g), (g, f)

}
,

3
11
Mee +

6
11
M1e − 2

11
Mfg + 2

11
Mef + 2

11
Meg if (s, t) ∈

{
(1, e), (e, 1), (e, e)

}
,

Mst otherwise.

Proof. The matrix M̂ equals the solution of the following convex optimization problem:

min
M̂∈Sm+1

{
‖M̂ −M‖2F : M̂ ∈ Hefg

}
.

Since M̂st = Mst for all entries (s, t) that are not involved in the constraints, this optimization

problem boils down to:

min
δ,θ,μ,π

2(δ −Mef )
2 + 2(θ −Meg)

2 + 2(μ−Mfg)
2 + (π −Mee)

2 + 2(π −M1e)
2

s.t. δ + θ ≤ π + μ.

The explicit expression of M̂ follows from the KKT-conditions of the problem above. Let λ ≥ 0

be the Lagrange multiplier of the inequality δ + θ ≤ π + μ. Then, the KKT conditions lead

to the following system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4(δ −Mef ) + λ = 0, λ ≥ 0

4(θ −Meg) + λ = 0, λ(δ + θ − μ− π) = 0

4(μ−Mfg)− λ = 0, δ + θ ≤ π + μ

2(π −Mee) + 4(π −M1e)− λ = 0.

Complementarity implies that either μ = δ + θ − π or λ = 0. The latter case leads

to the KKT-point (δ, θ, μ, π) = (Mef ,Meg,Mfg,
Mee+2M1e

3
), which is optimal if and only

if Mef +Meg ≤ Mee+2M1e
3

+Mfg. Otherwise, the substitution μ = δ + θ − π leads to the

system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4(δ −Mef ) + λ = 0

4(θ −Meg) + λ = 0

4(δ + θ − π −Mfg)− λ = 0

6π − 2Mee − 4M1e − λ = 0

or equivalently,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δ = − 1

4
λ+Mef

θ = − 1
4
λ+Meg

4(δ + θ − π −Mfg)− λ = 0

λ = 6π − 2Mee − 4M1e.

Substitution into the third equation yields

4π = 4

(
−1

4
λ+Mef −

1

4
λ+Meg −Mfg

)
− λ

⇐⇒ 4π = −3λ+ 4Mef + 4Meg − 4Mfg

⇐⇒ 4π = −3 (6π − 2Mee − 4M1e) + 4Mef + 4Meg − 4Mfg

⇐⇒ π =
3

11
Mee +

6

11
M1e −

2

11
Mfg +

2

11
Mef +

2

11
Meg.
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By substitution of this expression into the remaining three equations, we obtain:

λ = − 4

11
Mee −

8

11
M1e −

12

11
Mfg +

12

11
Mef +

12

11
Meg,

δ =
1

11
Mee +

2

11
M1e +

3

11
Mfg +

8

11
Mef −

3

11
Meg,

θ =
1

11
Mee +

2

11
M1e +

3

11
Mfg −

3

11
Mef +

8

11
Meg,

μ = − 1

11
Mee −

2

11
M1e +

8

11
Mfg +

3

11
Mef +

3

11
Meg.

By setting M̂st = δ for (s, t) ∈ {(e, f), (f, e)}, M̂st = θ for (s, t) ∈ {(e, g), (g, e)}, M̂st = μ

for (s, t) ∈ {(f, g), (g, f)} and M̂st = π for (s, t) ∈ {(1, e), (e, 1), (e, e)}, the claim follows.

3.5.4 Semi-parallel Dykstra’s projection algorithm

A reasonable argument for the fact that a cutting-plane technique in an alternating direction

augmented Lagrangian approach has never been considered before, is the increasing com-

plexity of the involved projections. In our case, it requires a projection onto the intersection

of Y, see (3.20), and a finite collection of polyhedra Hefg. This can be performed in an

iterative approach based on Dykstra’s projection algorithm [55, 115]. Although there exist

some similarities between the ADMM and Dykstra’s algorithm, see [351], we are the first

that combine both methods to compute SDP bounds.

Finding the projection onto the intersection of polyhedra or general convex sets is a

well-known problem for which multiple algorithms have been proposed. For a detailed back-

ground on projection methods, we refer the reader to [35, 69]. Bauschke and Koch [35]

compare several projection algorithms for problems motivated by road design and conclude

that Dykstra’s cyclic algorithm performs best for projections onto the intersection of convex

sets. The idea behind Dykstra’s algorithm is to iteratively project a deflected version of the

previous iterate onto the individual sets. This method was first proposed by Dykstra [115]

for closed convex cones in finite-dimensional Euclidean spaces and later generalized to closed

convex sets in Hilbert spaces by Boyle and Dykstra [55].

From now on, we assume the set T to be ordered. That is, T = ((ei, fi, gi))
T
i=1 is an

ordered set of T arc triples corresponding to violated inequalities. We are interested in the

following best approximation problem:

min ‖M̂ −M‖2F s.t. M̂ ∈ YT := Y ∩

⎛⎝ ⋂
(ei,fi,gi)∈T

Heifigi

⎞⎠ , (3.29)

where M is the matrix that we project onto YT . Observe that YT = Y ∩ C(T ).

Dykstra’s algorithm initializes the so-called normal matrices R0
Y = 0 and R0

eifigi
= 0 for
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all (ei, fi, gi) ∈ T . Now, we set X0 = M and iterate for k ≥ 1:

Xk := PY

(
Xk−1 +Rk−1

Y

)
Rk

Y := Xk−1 +Rk−1
Y −Xk

Leifigi := Xk +Rk−1
eifigi

Xk := PHeifigi
(Leifigi)

Rk
eifigi := Leifigi −Xk

⎫⎪⎪⎬⎪⎪⎭ for i = 1, . . . , T.

(CycDyk)

Several authors have shown that the sequence (Xk)k≥1 strongly converges to the solution

of the best approximation problem (3.29), see [55, 150, 194]. Since we project onto the

polyhedra Y,He1f1g1 , . . . ,HeT fT gT in a cyclic order, the iterates (CycDyk) are refered to

as Dykstra’s cyclic algorithm. It was shown in [96] that (CycDyk) has a linear rate of

convergence in case the sets to be projected on are polyhedral. Observe that if T = ∅, then
(CycDyk) boils down to a single projection onto Y.

Instead of projecting on each polyhedron one after another, it is also possible to project

on all polyhedra simultaneously. This method is referred to as Dykstra’s parallel algorithm.

We refer the interested reader to Appendix A.1 for an implementation and some details of

this parallel version. Although the parallel version takes longer to converge in our case, the

projections can be done simultaneously, which might be beneficial if used on parallel ma-

chines. Preliminary experiments show that in our cutting-plane setting the parallel version,

not implemented on parallel machines, is not able to improve on the cyclic version.

To increase the efficiency of (CycDyk), we can, however, partly parallelize the algorithm.

Note that a projection onto Heifigi only concerns the entries (ei, fi), (ei, gi), (fi, gi), (ei, ei)

and (1, ei). Hence, if two projections onto He1f1g1 and He2f2g2 take place one after another

and {e1, f1, g1} ∩ {e2, f2, g2} = ∅, they can in fact be performed simultaneously. We partition

the triples in T into r clusters Ci, i = 1, . . . , r, such that C1 ∪ · · · ∪Cr = T and Ci ∩Cj = ∅
for all i, j. By doing so, an iterate of (CycDyk) is performed in r + 1 consecutive steps,

instead of T + 1 consecutive steps. This requires the set of clusters (Ci)
r
i=1 to be ordered

again, e.g., by fixing some arbitrary ordering. More details about this clustering step are

given in Section 3.5.5.2. This provides a semi-parallel implementation of (CycDyk).

We take the following actions to further accelerate the algorithm:

All matrices in (CycDyk) are symmetric, hence we save memory by only working with

the upper triangular part of the matrices;

The normal matrices Rk
eifigi

for all (ei, fi, gi) ∈ T are very sparse, i.e., the only nonzero

entries correspond to indices (ei, fi), (ei, gi), (fi, gi), (ei, ei) and (1, ei). Therefore, we

work with normal vectors corresponding to the nonzero elements in Rk
eifigi

instead

of using full (m+ 1)× (m+ 1) matrices. This has the additional advantage that the

memory needed does not increase with the size of the instance;

The projection onto Y is considerably more costly than the projection onto the triangle

inequalities in terms of computation time. Instead of performing all separate projec-

tions exactly once and iterate, numerical tests show that the convergence is accelerated

if we perform the projection onto Y only occasionally. That is, after the projection onto

Y we perform the T triangle inequality projections K times in a cyclic order before we

again project onto Y.
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3.5.5 A cutting-plane augmented Lagrangian method

In this section we combine the PRSM discussed in Sections 3.5.1 and 3.5.2 with the projection

method discussed in Sections 3.5.3 and 3.5.4. This leads to a cutting-plane augmented

Lagrangian method (CP-ALM). To the best of our knowledge, no such algorithm exists for

solving SDP problems.

In the CP-ALM, we iteratively solve (SDPS3) for a set of ordered cuts T using the

PRSM. Each time the PRSM has converged up to some precision, we evaluate the solution for

violated cuts and add the numCuts most violated ones to T according to some (arbitrary)

ordering, where numCuts is a predefined parameter, and repeat. An advantage of using

the PRSM in a cutting-plane approach, as opposed to an interior-point method, is that

after the addition of new cuts we can start the new PRSM loop from the last obtained

triple (Zp, Y p, Sp). In other words, we exploit the use of warm starts, which speeds up the

convergence. Overall convergence of the CP-ALM follows from that of the PRSM [196] and

the fact that it suffices to solve the subproblems to a nearly optimal solution [118].

The CP-ALM is provided in Algorithm 3.2. In the sequel, we explain several ingredients

of the algorithm in more detail.

Algorithm 3.2 CP-ALM

Input: εPRSM , εstag, εproj ,maxIter,maxTotalIter,maxStagIter

1: Compute W̃ by Algorithm 3.1 and perform a QR-decomposition on W̃ to obtain W .
2: Set Y 0 = 0, Z0 = 0, S0 = 0, p = 0 and T = ∅.
3: while stopping criteria not met do � See Section 3.5.5.1
4: while stopping criteria not met do � See Section 3.5.5.1

5: Zp+1 := P�0

(
W�

(
Y p + 1

βSp
)
W

)
.

6: Sp+1
2 := Sp + γ1 · β · (Y p − WZp+1W�).

7: Y p+1 := PYT

(
WZp+1W� − Q̂+S

p+1
2

β

)
by solving (3.29) using semi-parallel (CycDyk).

8: Sp+1 := Sp+1
2 + γ2 · β · (Y p+1 − WZp+1W�).

9: p ← p + 1.
10: end while
11: Identify violated inequalities and add the numCuts most violated cuts to T w.r.t. some ordering.
12: Cluster the cuts in T into sets C1, ..., Cr. � See Section 3.5.5.2
13: end while
14: Compute LB(Sp) using the final dual variable Sp. � See Section 3.5.5.3
Output: LB(Sp)

3.5.5.1 Stopping criteria

The inner while-loop of Algorithm 3.2 constructs a PRSM sequence for a fixed T . Experi-

ments show that the algorithm is stabilized if, as opposed to adding many cuts at once, we

add cuts smoothly in order to keep the residuals small. Hence, we want the inner PRSM

sequence to converge before adding new cuts to T . We consider three types of stopping

criteria for the inner while-loop:

1. Let εPRSM > 0 be a predefined tolerance parameter. The inner while-loop is termin-

ated after iteration p if

min
(
‖Y p+1 −WZp+1W�‖F , β‖W� (

Y p+1 − Y p)W‖F) < εPRSM
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The first term on the left-hand side measures primal feasibility, while the second term

measures dual feasibility.

2. We stop when a fixed number of iterations maxIter is reached.

3. We add a stagnation criterion. Let εstag > 0 be a parameter. We introduce a variable

stagIter that is increased by one each time we have |〈Y p+1, Q̂〉 − 〈Y p, Q̂〉| < εstag.

We stop the inner while-loop whenever stagIter > maxStagIter for some predefined

integer maxStagIter.

The Dykstra algorithm in line 7 of Algorithm 3.2 is stopped when ‖Xp+1 −Xp‖F < εproj
for some predefined εproj > 0.

Finally, the outer while-loop, i.e., the cutting-plane part, is stopped whenever no more vi-

olated cuts can be found or after a predefined number of iterations maxTotalIter > maxIter

has been reached.

3.5.5.2 Clustering

As explained in Section 3.5.4, the cyclic Dykstra algorithm can be partially parallelized by

partitioning the set T into r clusters of nonoverlapping cuts. We explain here how this

clustering is done.

LetH = (V,E) denote a graph where each node i ∈ V represents a cut in T and two nodes

are connected by an edge whenever the corresponding cuts are overlapping. Clustering T
into the smallest number of nonoverlapping sets is then equivalent to finding a minimum

coloring in H. This problem is known to be NP-hard. Galinier and Hertz [154] provide

an overview of graph coloring heuristics, where it is concluded that the Tabucol algorithm

of Hertz and De Werra [203] is overall very successful. We implement here the improved

Tabucol algorithm provided in [153].

3.5.5.3 Lower bound

After each CP-ALM iterate p, we obtain a triple (Zp, Y p, Sp) which allows us to com-

pute 〈Q̂, Y p〉. Although this value converges to the optimal solution of the SDP relaxa-

tion (SDPS3), the convergence is typically not monotonic, which implies that this value

does not necessarily provide a lower bound for the QCCP instance. We can still use the out-

put of the CP-ALM to obtain a lower bound. Various methods for obtaining lower bounds

from approximate solutions have been proposed in the literature [117, 225, 292]. We adopt

here the method introduced by Oliveira et al. [292].

Let W�SW := {S : W�SW � 0}. Then, a lower bound is obtained by solving:

LB(Sp) := min
Y ∈YT

〈Q̂+ PW�SW(Sp), Y 〉, (3.30)

where PW�SW(Sp) is the projection of Sp onto the set W�SW. This projection can be

performed efficiently, see [292]. Moreover, note that (3.30) is a linear programming problem.

3.6 SDP-based upper bounds for the QCCP

The matrices resulting from the CP-ALM can be used to construct upper bounds for the

QCCP. In this section we derive several upper bounding approaches, among which a de-

terministic method, two randomized algorithms and a Q-learning algorithm that is based
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on reinforcement learning. We are not aware of other SDP-based rounding algorithms that

make use of reinforcement learning. We end the section by providing a hybrid approach that

combines all aforementioned heuristics.

3.6.1 Best Euclidean approximation

Let (Zout, Y out, Sout) be the outcome of the CP-ALM. Throughout the entire section we

assume that the CP-ALM is solved up to high precision in order for the utilized results

to be valid. Let xout be the vector consisting of the diagonal elements of Y out excluding

the first entry. As xout is an approximation of the optimal cycle cover, one can search for

the vector x ∈ P that is closest to xout in Euclidean norm. This vector can be obtained as

follows:

x∗ := argmax
{
x�xout : x ∈ P

}
. (3.31)

The problem (3.31) can be solved as a linear cycle cover problem, e.g., via a linear program-

ming solver. The corresponding upper bound is UBEB := (x∗)�Qx∗.

3.6.2 Randomized undersampling

Randomized SDP-based heuristics have proven to be successful for various optimization

problems, mainly sparked by the seminal work of Goemans and Williamson [176]. A widely

used procedure in the design of approximation algorithms is randomized rounding [313],

which rounds a relaxed solution to a solution for the original problem that is close to optimal

in expectation. We present an SDP-based randomized rounding algorithm that we refer to

as randomized undersampling.

Let xout ∈ Rm be as discussed in Section 3.6.1. Observe that since all entries of xout

are nonnegative and
∑

e∈δ+(i) x
out
e = 1, see (3.2), we can view {xe}e∈δ+(i) as a probability

distribution on all arcs leaving node i. Similarly, {xe}e∈δ−(i) represents a probability distri-

bution on the set of arcs entering node i. Hence, for each node i we can draw exactly one arc

from δ+(i) according to the distribution {xe}e∈δ+(i). Let y1 ∈ {0, 1}m denote the character-

istic vector of the outcome of these n trials. We do the same for the incoming arcs, yielding

a vector y2 ∈ {0, 1}m. By construction we have Uy1 = V y2 = 1n, but V y1 = Uy2 = 1n are

not necessarily satisfied.

The vector y = y1 ◦ y2 denotes a partial cycle cover that satisfies Uy ≤ 1n and V y ≤ 1n.

Observe that the probability of including arc e in y equals x2
e. To extend y to a feasible cycle

cover, we define:

N+ := {i ∈ N : ye = 0 ∀e ∈ δ+(i)} and N− := {i ∈ N : ye = 0 ∀e ∈ δ−(i)}. (3.32)

We still have to select exactly one arc from δ+(i) for all i ∈ N+ and one arc from δ−(i) for

all i ∈ N− to extend y to a feasible cycle cover. We can do this by solving a modified version

of (3.31). Let UN+ ∈ R|N+|×m (resp. VN− ∈ R|N−|×m) denote the submatrix of U (resp. V )

induced by the rows corresponding to N+ (resp. N−). Let us define the following vector:

x̄out
e :=

{
−∞ if e− ∈ N \N− or e+ ∈ N \N+,

xout
e otherwise,

(3.33)

where some values are set to −∞ in order to avoid in- or outflows larger than one. We now

https://resp.vn/
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solve

z∗ := argmax
z∈Rm

{
z�x̄out : UN+z = 1|N+|, VN−z = 1|N−|, 0m ≤ z ≤ 1m

}
. (3.34)

A partial solution y can be extended to a feasible cycle cover if and only if the optimal

value to (3.34) is finite. Indeed, in that case we have y + z∗ ∈ P , which yields the

bound UBUS = (y + z∗)�Q(y + z∗). We now repeat this procedure and store the smallest

obtained bound.

As we select at most n arcs at random and extend the solution to a full cycle cover, we

call this method randomized undersampling. The steps of this method are summarized in

Algorithm 3.3.

Algorithm 3.3 Randomized undersampling for the QCCP

Input: G,Q, xout

1: Initialize y1 = 0m and y2 = 0m.
2: for i ∈ N do
3: Draw f1 from δ+(i) with respect to {xout

e }e∈δ+(i) and f2 from δ−(i) with respect to {xout
e }e∈δ−(i).

4: Set y1(f1) = 1 and y2(f2) = 1.
5: end for
6: y ← y1 ◦ y2.
7: Obtain the sets N+ and N− and the vector x̄out ∈ Rm as in (3.32) and (3.33), respectively.
8: if problem (3.34) has a finite objective value then

9: UBUS ← (y + z∗)�Q(y + z∗) where z∗ is computed by (3.34).
10: else
11: Go back to Step 2
12: end if
Output: UBUS

3.6.3 Randomized oversampling

Instead of sampling a partial solution and deterministically extend it to a full cycle cover,

we can also randomly add arcs to a subgraph H of G until it contains a cycle cover visiting

all nodes. We call this method randomized oversampling.

We initialize H = (N, ∅) and iteratively add pairs of successive arcs to H. This is done

randomly using a probability distribution on the set δ−(i) × δ+(i) for all i ∈ N . We use a

rank-one approximation of Y out for the sake of finite convergence, see Lemma 3.15 below.

The best rank-one approximation of Y out is given by λmaxww�, where λmax and w ∈ Rm+1

are the corresponding Perron-Frobenius eigenvalue and eigenvector, respectively. Let w0 de-

note the zeroth entry of w and let w̄ ∈ Rm be the vector obtained by excluding w0 from w.

It follows from the Perron-Frobenius theorem that w can be chosen such that it has nonneg-

ative entries. Since the vectors [−1 u�
i ]

� and [−1 v�i ]� are eigenvectors of Y out associated

with the eigenvalue zero, see Lemma 3.6, it follows that

u�
i w̄ = w0 and v�i w̄ = w0 for all i ∈ N .

Suppose that w0 = 0. Then u�
i w̄ = v�i w̄ = 0 for all i ∈ N , which implies that w only

contains zeros. Since this contradicts with the fact that ||w|| > 0, we have w0 > 0.

Now, let r ∈ Rm be defined as r := 1
w0

w̄. Since u�
i r = v�i r = 1 for all i ∈ N

and r ≥ 0, we conclude that r is contained in the directed 2-factor polytope. Hence, we

can view {re · rf}(e,f)∈δ−(i)×δ+(i) as a probability distribution on the pairs of successive arcs

for all i ∈ N .
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The oversampling algorithm, see Algorithm 3.4, iteratively draws a pair of successive

arcs (e, f) around i ∈ N according to the distribution implied by r and adds this pair to H.

We repeat this until H contains a cycle cover. The best among possibly multiple cycle covers

in H is obtained by solving problem (3.31) with respect to xout restricted to the arcs in H.

Algorithm 3.4 Randomized oversampling for the QCCP

Input: G,Q, Y out, xout

1: Obtain Perron-Frobenius eigenpair (w, λmax) of Y out and let r = 1
w0

w̄.

2: Let H = (N, ∅) be the empty subgraph of G.
3: while H contains no directed 2-factor do
4: for i ∈ N do
5: Select (e, f) according to probability distribution {re ·rf}(e,f)∈δ−(i)×δ+(i). Set H ← H∪{e, f}
6: end for
7: end while
8: Solve (3.31) with respect to xout restricted to H, and compute the corresponding upper bound UBOS .
Output: UBOS

We can prove the following result with respect to the termination of Algorithm 3.4.

Lemma 3.15. Algorithm 3.4 terminates in a finite number of steps with high probability.

Proof. Observe that a pair of successive arcs (e, f) ∈ δ−(i)× δ+(i) can be added to H either

by sampling e and f simultaneously in step 5 of Algorithm 3.4 or since both arcs are added

to H in combination with some other arc. In the former case, we say that the pair (e, f)

is drawn around i. For all i ∈ N , (e, f) ∈ δ−(i) × δ+(i) and k ≥ 0, let Y k
i,(e,f) denote the

following random variable:

Y k
i,(e,f) :=

{
0 if (e, f) is not drawn around i during the first k iterations,

1 otherwise.

Observe that Y k
i,(e,f) is independent over i, as step 5 is performed independently over N .

Since the probability that a pair (e, f) is added to H in a single iteration equals re · rf , we
have

Pr
(
Y k
i,(e,f) = 1

)
= 1− Pr

(
Y k
i,(e,f) = 0

)
= 1− (1− re · rf )k .

Since r ∈ conv(P ), there must be at least one cycle cover, say x̄ ∈ P , that has full support

in r. We define the functions p : N → A and s : N → A that map each node i to its

incoming and outgoing arc in x̄, respectively. We show that the probability that the support

of x̄ is in H converges to 1 if k increases. Since the probability that a pair of successive

arcs (e, f) ∈ δ−(i)× δ+(i) is present in H after k iterations is at least Pr
(
Y k
i,(e,f) = 1

)
, we

have:

Pr (supp(x̄) ⊆ H after k iterations) ≥ Pr

(∏
i∈N

Y k
i,(p(i),s(i)) = 1

)

=
∏
i∈N

(
1−

(
1− rp(i) · rs(i)

)k)
.

Since there exists an ξ > 0 such that rp(i) · rs(i) > ξ for all i ∈ N , we have

Pr (supp(x̄) ⊆ H after k iterations) ≥
(
1− (1− ξ)k

)n

.
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Now, for any q < 1, take k∗ =
⌈

log(1− n√q)

log(1−ξ)

⌉
. Then Pr(supp(x̄) ⊆ H after k∗ iterations) ≥ q.

Thus, the cycle cover x̄ is included in H after a finite number of iterations with arbitrary

high probability.

3.6.4 Sequential Q-learning

The final rounding approach we propose is based on a distributed reinforcement learning

(RL) technique, namely Q-learning [361]. Q-learning is a branch of machine learning in which

artificial agents learn how to take actions in order to maximize an expected total reward.

Recently, RL techniques have shown to be successful in deriving good feasible solutions for

combinatorial optimization problems, see e.g., [33]. We propose here an algorithm in which

a set of agents learn how to find (near-)optimal cycles in G by exploiting our SDP relaxation.

Our sequential Q-learning algorithm (SQ-algorithm) is inspired by the work of Gambardella

and Dorigo [158] and exploits the solution of the CP-ALM within the learning process.

In the sequential Q-learning algorithm we introduce n agents each having the independent

task to construct a set of node-disjoint cycles. This is done iteratively by adding nodes to

the agent’s current path until the path contains a directed cycle or no more nodes can be

added. For each agent k ∈ [n], let Pk denote its current path and let ck and pk denote the

current node and its predecessor on the agent’s search, respectively. Besides, let Jk be the

set of nodes that is not placed on a cycle by agent k. In each iteration, the successor sk
of ck is selected among one of the nodes in N+(ck) ∩ Jk, where N+(ck) is the set of nodes

reachable from ck via a single arc, based on a matrix SQ ∈ Rm×m. This matrix indicates on

position (e, f) how useful it is to traverse an arc f after an arc e. We select the successor sk
that leads to a high SQ((pk, ck), (ck, sk))-value and add it to Pk. If the addition of sk to Pk

does not result in a cycle, we set the current node ck to be sk. If the addition of sk does lead to

a cycle Ck ⊆ Pk, we memorize this cycle into the agent’s partial solution vector yk ∈ {0, 1}m
and set ck to one of the nodes not yet on a cycle. An agent’s search terminates whenever no

new successor can be found, i.e., N+(ck) ∩ Jk = ∅, or when yk is a full cycle cover. If one

of these events occurs, we deacivitate the agent. We repeat the steps above for all active

agents, until all agents have been deactivated. The decision tree of a single agent in the

cycle-building phase is depicted in Figure 3.3, where the state Δ represents the situation in

which an agent is deactivated.

When all agents are in state Δ, we obtained n vectors yk that represent sets of node-

disjoint cycles, not necessarily full cycle covers. At the end of the cycle-building phase, the

(partial) solution yk that has relative minimum cost is used to update the SQ-matrix via

delayed reinforcement learning. Now all agents are again activited and a new cycle-building

trial starts using the new SQ-matrix until certain stopping criteria are satisfied, e.g., after

a fixed number of trials.

To decide which successor sk to select for a given pk, ck and Jk, we define a fit func-

tion f that depends on the SQ-values and the quadratic costs Q = (qef ). The fit of visit-

ing u ∈ N+(ck) ∩ Jk after ck is:

f(u | pk, ck, Jk) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[ ∑
e∈δ+(Jk,ck)

SQ (e, (ck, u))

]δ

·
[ ∑
e∈δ+(Jk,ck)

1
qe,(ck,u)+ε

]β

if pk = ∅,

[SQ ((pk, ck), (ck, u))]
δ ·

[
1

q(pk,ck),(ck,u)+ε

]β
otherwise,

where δ, β > 0 are parameters which represent the relative importance between the learned
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Pk = ∅ sk ∈ N+(ck) ∩ Jk ΔIs current path
a cycle?

Is remaining subgraph cyclic?

yes

no

Can a successive arc be found?

no

noyes

yes

Choose

initial

vertex

Figure 3.3: Schematic decision tree corresponding to cycle-building phase of a single agent.

SQ-values and the quadratic costs and ε > 0 is a small value to deal with quadratic costs

that are zero. After computing the fit for all potential successors, we deterministically select

the one with the highest fit value or select randomly proportional to their fit values, i.e.,

sk =

⎧⎨⎩ argmax
u∈N+(ck)∩Jk

f(u | pk, ck, Jk) if q ≤ q0

S otherwise,
(3.35)

where S is a random variable over the set N+(ck)∩Jk, where each node is chosen with prob-

ability proportional to its fit value. The parameter q0 ∈ [0, 1] from (3.35) is the probability

of selecting the successor node deterministically.

The SQ-values measure the usefulness of traversing two successive arcs. Recall that Y out

is the output of the CP-ALM. As Y out
ef is likely to be larger when two arcs e and f are in

an optimal solution, we initialize the SQ-matrix by setting SQ(e, f) = Y out
ef for all pairs of

successive arcs (e, f). The SQ-update is based on a mixture between local memory and a

reinforcement learning, similar to [158]:

SQ(e, f)← (1− α)SQ(e, f) + α

(
ΔSQ(e, f) + γ max

g∈δ+(f−,Jk)
SQ(f, g)

)
, (3.36)

where α, γ ∈ (0, 1) represent the learning rate and discount factor, respectively. The learning

update consists of a discounted reward of the next state and a reinforcement term ΔSQ(e, f).

Similar to the algorithm of [158], we assume that this reinforcement term is zero throughout

the cycle-building phase and update it only at the end of a trial. Hence, we only incur a

delayed reinforcement term ΔSQ(e, f). The discounted reward, however, is incorporated

during the cycle-building phase.

The delayed reinforcement of a pair of successive arcs (e, f) can be seen as a reward for

cost minimal cycles that is obtained at the end of each trial. After all agents are deactivated,

each vector yk is the characteristic vector of a set of node-disjoint cycles. For each agent k

that constructed at least one cycle, we compute Lk := (y�
k Qyk)/(1

�yk), i.e., the relative

cost per arc in yk. Let kbest denote the agent that constructed the solution with the smallest

value Lk, and let Lbest denote its relative cost per arc. Then ΔSQ(e, f) is computed as:

ΔSQ(e, f) =

{
Ω

Lbest
if (e, f) is a pair of successive arcs in ykbest ,

0 otherwise,
(3.37)

where Ω is a constant.
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We let the SQ-algorithm run until some fixed number of trials has passed. All cycles

that have been constructed throughout the entire algorithm are stored in memory. Let Γ

denote the number of distinct cycles that are constructed and define the matrix B ∈ Rn×Γ

as follows:

Bi,k =

{
1 if node i is on cycle k,

0 otherwise.

Let b ∈ RΓ be the vector containing the quadratic cost of each cycle. Then the best up-

per bound based on our SQ-algorithm is obtained by solving the following set partitioning

problem (SPP):

min
{
b�x : Bx = 1n , x ∈ {0, 1}Γ

}
. (3.38)

As the SPP is NP-hard, computing an optimal solution to (3.38) might be too much to ask

for. Instead, an approximate solution to (3.38) can be obtained efficiently, e.g., by using

the Lagrangian heuristic of Atamtürk et al. [25] which is able to compute near-optimal or

even optimal solutions to (3.38) most of the time. For moderate values of Γ and n, however,

current ILP solvers are able to solve (3.38) to optimality in a very short time.

A pseudocode of the SQ-algorithm is provided in Algorithm 3.5.

3.6.5 Hybrid upper bounding algorithm

The design of the SQ-algorithm discussed in the previous section gives rise to a straight-

forward hybrid implementation of all above-mentioned upper bounding approaches. Indeed,

by adding all cycles that have been created by the best Euclidean approximation, the un-

dersampling and the oversampling algorithm to the matrix B and solve or approximate the

corresponding SPP, a hybrid upper bound UBHY is obtained which provably outperforms

any independent implementation of the mentioned upper bounds.

3.7 Computational results

We now test the introduced SDP-based lower and upper bounds on several sets of instances

and compare them to various bounds from the literature.

This section is organized as follows: we start by introducing the test sets and the para-

meter settings that we consider. After that, the performance of the lower and upper bounds

are discussed in Section 3.7.2 and 3.7.3, respectively.

3.7.1 Design of computational experiments

The SDP bounds that we take into account are (SDPS2) and (SDPS3), which we obtain via

the PRSM and the CP-ALM, respectively. The CP-ALM is implemented as presented in

Algorithm 3.2, i.e., using the PRSM and Dykstra’s semi-parallel projection algorithm in the

subproblem. We present results for different number of added cuts. To compare our SDP

bounds, we use the first level RLT bound (RLT1), see Adams and Sherali [3, 4], the MILP-

based bound (MILP ) and the linearization based bound (LBB1) from [274], see Chapter 2.

Since upper bounds for the QCCP are never considered before, we present and compare the

upper bounds introduced in Section 3.6.
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Algorithm 3.5 Sequential Q-learning for QCCP

Input: G,Q, Y out

1: For all pairs of successive arcs (e, f), initialize SQ(e, f) = Y out
ef .

2: For all agents k ∈ [n], initialize the starting node ck = k ∈ N , starting edge ek = ∅ and Jk = N . Set
Pk = {ck} and yk = 0m and activate all agents.

3: while there is at least one active agent do

4: for all active agents k do
5: Update the fit function f(u | pk, ck, Jk) for all u ∈ N+(ck) ∩ Jk and obtain sk by (3.35).
6: Add sk to Pk.
7: end for

8: for all active agents k with pk �= ∅ do
9: SQ((pk, ck), (ck, sk)) ← (1 − α)SQ((pk, ck), (ck, sk)) + αγ maxe∈δ+(sk,Jk) SQ((ck, sk), e).

10: end for

11: for all active agents k do
12: if Pk contains a cycle Ck then
13: Set Jk ← Jk \ Ck.
14: Set (yk)e = 1 for all arcs e in Ck.
15: if Jk = ∅ then
16: Deactivate agent k.
17: else
18: Set pk ← ∅ and choose ck uniformly at random out of Jk. Set Pk ← {ck}.
19: end if
20: else
21: Set pk ← ck and ck ← sk.
22: if N+(ck) ∩ Jk = ∅ then Deactivate agent k end if
23: end if
24: end for

25: end while
26: for all pairs of successive arcs (e, f) do
27: Compute the delayed reinforcement ΔSQ(e, f) according to (3.37).
28: SQ(e, f) ← (1 − α)SQ(e, f) + αΔSQ(e, f)
29: end for
30: If stopping criteria are met, obtain UBSQ using (3.38). Otherwise, go to Step 2.
Output: UBSQ

All lower and upper bounds are implemented in Matlab on a PC with an Intel(R)

Core(TM) i7-8700 CPU, 3.20 GHz and 8 GB RAM. The linear programming problems

appearing in our approaches and in the computation of MILP , LBB1 and RLT1 are solved

using CPLEX 12.7.1. As all costs are integer, we round up all bounds. All computation

times reported in this section concern wall-clock times.

We test our bounds on three sets of instances:

Reload instances: The reload instances are the same as the ones used in Rostami

et al. [326] for the QTSP and are based on a similar setting from Fischer et al. [135].

The underlying graph is the complete directed graph on n nodes. The quadratic

costs are based on the reload model [370], where each arc is randomly assigned a

color from a color set L. The quadratic costs between two successive arcs with the

same color is zero. If successive arcs e and f are assigned distinct colors s and t,

respectively, the costs equal r(s, t), where r : L × L → {1, . . . , D} is a reload cost

function. The function r is constructed uniformly at random. We consider 60 instances

with n ∈ {10, 15, 20}, D ∈ {1, 10} and |L| = 20. Preliminary experiments have shown

that the bound (SDPS2) is very often equal to the optimum value (see also Table 3.11).

For that reason, we do not consider the addition of cutting planes for these instances.

Erdős-Rényi instances: These instances are based on the G(n, p) model by Erdős
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and Rényi [125]. A graph is constructed by fixing n nodes and including each arc

independently with probability p. We present two types of cost structures on these

instances:

– Uniform Erdős-Rényi instances: the quadratic cost between any pair of successive

arcs is chosen discrete uniformly at random from {0, . . . , 100};
– Reload Erdős-Rényi instances: the quadratic cost between any pair of successive

arcs is based on a reload cost model using 20 colors and reload costs drawn

uniformly from {1, . . . , 100}.

We consider 15 instances of each type for n between 20 and 80 and p between 0.3

and 0.5.

Manhattan instances: Comellas et al. [80] introduced multidimensional directed

grid instances that resemble the street pattern of cities like New York and Barcelona.

Given a set of positive integers (n1, . . . , nk), the Manhattan instances are constructed

as explained in [274], see also Section 2.8. The quadratic costs between any pair of

successive arcs is chosen discrete uniformly at random out of {0, . . . , 10}. We consider

a set of 32 Manhattan instances ranging from type (5, 5) to type (9, 10, 10).

For the computation of the bounds we need to specify various parameters. The PRSM

is implemented using β = �m/n�, γ1 = 0.9 and γ2 = 1.09, see (3.25)–(3.28), as preliminary

experiments show that this setting gives the most stable performance. The CP-ALM uses

the same PRSM parameters in the subproblem, where K = 5 is used in the semi-parallel

implementation of (CycDyk), see the third bullet point on page 80. The stopping criteria of

the PRSM and the CP-ALM are as explained in Section 3.5.5.1, where we use εstag = 10−5

and εproj = 10−8. The parameter εPRSM is initially set to 10−6, but after the addition of cuts

increased to 10−4, since solving the Y -subproblem using Dykstra’s algorithm is significantly

slower than the initial Y -subproblem without cuts. Hence, we allow for a lower precision. For

the same reason, the maximum number of iterations of the inner while-loop (i.e., maxIter,

see Section 3.5.5.1) of the CP-ALM is initialized to some value and decreased when the

first cuts are added, after which we do not change it anymore. For the Erdős-Rényi and

Manhattan instances, we initialize maxIter to 1000 and 1500, respectively, and decrease it

to 500 after the addition of cuts. The initial iteration limit for the Manhattan instances is

larger, as the CP-ALM needs more iterations to converge for these type of instances.

It turns out that the number of cuts added per main loop, i.e., the value of numCuts,

see Section 3.5.5, is of major importance for the quality of the final bound. To demonstrate

this behaviour, the lower bounds against the iteration number for a moderate-size Erdős-

Rényi instance (ER 4 with n = 35 and m = 361) is plotted in Figure 3.4 for various values

of numCuts using an iteration limit of 2500. The base line shows the behaviour of the PRSM,

i.e., the CP-ALM without the addition of cuts. It is clear that the addition of cuts after 1000

iterations immediately starts improving the bounds. Moreover, as one might expect, the

addition of more cuts leads to a higher lower bound, although the largest improvement

is due to the addition of the first few cuts. As the addition of more cuts also leads to

higher computation times, a trade-off between quality and time has to be made. Based on

preliminary experiments, we report results for numCuts = 50, 150, 300 and 500 for the Erdős-

Rényi instances. For the Manhattan instances, we only show results for numCuts = 300

and 500, as the addition of a small number of cuts does not significantly improve the bounds.
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Figure 3.4: Behaviour of the PRSM and the CP-ALM for different values of numCuts for
instance ER 4.

Finally, we need to specify the maximum total number of iterations maxTotalIter, see

Section 3.5.5.1. For the reload instances we set this value to 2500 iterations, although the

algorithm in most cases terminates earlier for these instances due to the other stopping

criteria. The value of maxTotalIter for the other two instance types is based on preliminary

tests. Similar to the PRSM and the ADMM, the CP-ALM can suffer from tailing off.

Since the addition of more cuts makes later iterations more expensive, one has to decide

carefully when to stop. This threshold mainly depends on the value of m. Figure 3.5 shows

the behaviour of the lower bounds averaged over numCuts = 150, 300 and 500 on three

instances: a small, a moderate-size and a large instance. We normalize the bounds in order

to make them comparable, i.e., the plots show the fraction of the final lower bound that is

obtained after each iteration. Although at first sight there seems not much difference, one

can see from the zoomed image on the right-hand side that the CP-ALM converges relatively

faster for smaller instances.

Figure 3.5: Normalized lower bounds (averaged over different number of cuts) for three in-
stances with different numbers of arcs. Right figure shows zoomed plot including a threshold
at 0.996.

Based on these preliminary results, the parameter maxTotalIter is set to 2500, 3000
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or 3500 if m < 500, 500 ≤ m < 1000 and m ≥ 1000, respectively, for the Erdős-Rényi

instances. For the Manhattan instances these values are 3000, 3500 and 4000, respectively,

using the same distinction on m.

For the computation of upper bounds, we compute the randomized undersampling and

oversampling bounds 500 times for each instance and return the best value. For the SQ-

algorithm, we use different parameter settings for each instance type based on preliminary

tests. It turns out that the algorithm performs best if the value of δ is significantly larger than

the value of β, see page 86, i.e., we put more emphasis on the SDP-based SQ-values than on

the original quadratic costs. This difference seems more beneficial for larger n, since more

agents provide more reliable information on useful cycles. Hence, we use (δ, β) = (20, 1)

for the Erdős-Rényi and Manhattan instances, while we use (δ, β) = (5, 1) for the reload

instances. Furthermore, we use q0 = 0.4, γ = 0.6 and Ω = 3(m/n), see (3.35), (3.36)

and (3.37), respectively, for all instance types. Finally, as it is not clear from our tests

which value of the learning rate parameter α, see (3.36), provides the best results, we run

the SQ-algorithm three times using α = 0.3, 0.5 and 0.7 and solve the final SPP, see (3.38),

using all generated cycles. The number of iterations of the SQ-algorithm is set to 500 for

the Erdős-Rényi and the reload instances, while it is set to 100 for the Manhattan instances,

due to the large number of nodes. As the final SPPs can be solved efficiently by CPLEX for

all our instances, we report the optimal SPP bounds.

3.7.2 Results on lower bounds

With respect to the efficiency of our algorithm, we observe that if we run the CP-ALM

without any cutting planes, the bottleneck of the code is the projection onto the positive

semidefinite cone. This is not surprising, as the computational complexity of performing

an (approximate) eigenvalue decomposition is worse than that of the cheap polyhedral pro-

jection, whose bottleneck is the projection onto a simplex. When we start adding cuts,

Dykstra’s algorithm starts taking over the major part of the computation time. Although

each separate projection can be done efficiently, the total computation time of Dykstra’s

algorithm suffers from its linear convergence and the dependence on the number of cutting

planes.

We now discuss our findings with respect to the strength of the lower bounds on all

test instances. For the reload instances we compare the performance of (SDPS2) to the

performance of (MILP ), (LBB1) and (RLT1). We omit the brackets from now on to

indicate the bound values. Table 3.3 shows for each of the 60 reload instances the bound

value resulting from each of the approaches. Table 3.4 shows all computation times for the

reload instances, including the number of iterations and the average of the primal and dual

residual, see Section 3.5.5.1, for the PRSM. To visualize the quality of the bounds over the

entire reload test set, Figure 3.6 shows a boxplot of the test data in Table 3.3. On the y-axis

the deviation from the average bound is presented, i.e., for each instance we compute the

ratio of each single bound over the average value of the four bounds and these ratios are

visualized per bound type.
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Instance n D MILP LBB1 RLT1 SDPS2

REL1 10 1 3 4 4 4

REL2 10 3 9 9 9

REL3 1 3 4 5 5

REL4 10 3 8 9 12

REL5 1 3 4 4 4

REL6 10 5 12 13 14

REL7 1 3 4 5 5

REL8 10 4 9 11 11

REL9 1 2 2 2 2

REL10 10 4 9 11 12

REL11 1 2 3 3 3

REL12 10 5 9 9 9

REL13 1 2 4 4 4

REL14 10 3 9 11 11

REL15 1 3 4 4 4

REL16 10 3 8 9 11

REL17 1 4 4 4 4

REL18 10 3 8 9 10

REL19 1 3 5 5 5

REL20 10 3 10 11 11

REL21 15 1 2 4 4 5

REL22 10 2 9 9 12

REL23 1 1 3 3 4

REL24 10 1 7 8 11

REL25 1 1 4 5 5

REL26 10 1 6 6 9

REL27 1 1 4 4 4

REL28 10 1 7 7 9

REL29 1 1 5 5 6

REL30 10 0 6 7 10

Instance n D MILP LBB1 RLT1 SDPS2

REL31 15 1 1 4 4 5

REL32 10 1 7 8 11

REL33 1 1 4 4 4

REL34 10 1 5 5 8

REL35 1 1 4 4 4

REL36 10 1 4 5 8

REL37 1 2 6 6 6

REL38 10 1 9 9 11

REL39 1 1 3 4 3

REL40 10 1 6 7 7

REL41 20 1 0 3 3 4

REL42 10 1 4 4 7

REL43 1 0 2 2 3

REL44 10 0 5 5 7

REL45 1 0 2 2 3

REL46 10 0 5 5 6

REL47 1 0 2 2 3

REL48 10 0 3 3 5

REL49 1 0 3 3 4

REL50 10 0 5 6 8

REL51 1 0 3 3 3

REL52 10 0 3 4 6

REL53 1 0 3 3 4

REL54 10 0 6 6 9

REL55 1 0 2 2 3

REL56 10 1 6 6 8

REL57 1 0 3 3 4

REL58 10 0 3 4 7

REL59 1 0 2 2 3

REL60 10 0 5 5 8

Table 3.3: Comparison of different bounds for reload instances.

Figure 3.6: Boxplot showing the quality of lower bounds MILP , LBB1, RLT1 and SDPS2

on reload instances.
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MILP LBB1 RLT1 SDPS2

Instance time time time time iter res

REL1 0.112 0.007 1.004 0.278 437 0.003

REL2 0.113 0.007 0.398 0.215 300 0.032

REL3 0.111 0.006 0.350 0.751 1192 0.005

REL4 0.106 0.006 0.380 0.624 978 <0.001

REL5 0.107 0.006 0.321 0.332 529 0.001

REL6 0.106 0.006 0.358 0.230 377 0.045

REL7 0.108 0.006 0.364 0.665 1044 0.005

REL8 0.107 0.006 0.366 0.182 294 0.086

REL9 0.107 0.006 0.217 0.370 594 0.042

REL10 0.106 0.006 0.377 0.430 681 0.053

REL11 0.108 0.006 0.320 0.358 586 0.027

REL12 0.108 0.006 0.334 0.147 232 0.078

REL13 0.108 0.005 0.384 0.273 441 0.004

REL14 0.106 0.006 0.380 0.287 327 0.038

REL15 0.108 0.005 0.284 0.396 589 0.039

REL16 0.107 0.006 0.374 0.494 790 0.048

REL17 0.109 0.005 0.218 0.425 695 0.040

REL18 0.107 0.006 0.393 0.442 695 0.041

REL19 0.108 0.005 0.425 0.659 1034 0.005

REL20 0.106 0.006 0.408 0.170 278 0.170

REL21 0.421 0.050 9.542 3.146 1371 0.007

REL22 0.412 0.048 8.475 3.950 1684 <0.001

REL23 0.415 0.044 8.617 3.066 1277 0.006

REL24 0.411 0.048 8.693 2.695 1124 0.001

REL25 0.415 0.044 8.565 5.069 2149 0.006

REL26 0.413 0.046 8.697 2.701 1117 <0.001

REL27 0.414 0.044 9.208 6.097 2500 0.012

REL28 0.411 0.051 8.229 1.667 689 0.017

REL29 0.414 0.045 8.249 1.972 818 0.006

REL30 0.421 0.050 8.676 3.979 1626 <0.001

REL31 0.415 0.043 9.720 3.044 1279 0.006

REL32 0.412 0.047 8.450 3.002 1183 0.005

REL33 0.415 0.044 8.626 5.998 2500 0.022

REL34 0.410 0.046 9.133 0.913 380 0.040

REL35 0.419 0.048 8.277 5.998 2500 0.017

REL36 0.413 0.048 8.711 1.925 775 0.010

REL37 0.419 0.045 8.143 3.439 1417 0.006

REL38 0.412 0.048 8.004 6.119 2500 0.032

REL39 0.414 0.045 7.099 5.864 2433 0.028

REL40 0.415 0.044 8.357 3.131 1291 0.066

REL41 1.062 0.137 120.2 28.54 2500 0.008

REL42 1.088 0.133 142.1 17.93 1501 0.001

REL43 1.075 0.145 127.2 29.58 2500 0.007

REL44 1.083 0.137 120.2 24.44 1990 0.001

REL45 1.067 0.127 105.8 21.15 1781 0.007

REL46 1.095 0.139 118.4 6.955 570 0.035

REL47 1.067 0.155 158.5 19.05 1626 0.007

REL48 1.091 0.138 184.2 4.340 357 0.059

REL49 1.073 0.132 143.0 24.12 2067 0.007

REL50 1.091 0.133 118.1 4.428 355 0.061

REL51 1.067 0.136 97.63 19.34 1651 0.007

REL52 1.093 0.130 162.1 23.48 1907 0.001

REL53 1.076 0.138 128.9 29.56 2500 0.007

REL54 1.080 0.129 107.1 21.26 1725 0.001

REL55 1.064 0.146 128.8 30.50 2500 0.009

REL56 1.086 0.132 127.0 19.09 1548 0.001

REL57 1.071 0.152 122.1 19.68 1578 0.007

REL58 1.095 0.136 145.5 5.723 430 0.041

REL59 1.069 0.136 119.0 17.12 1439 0.007

REL60 1.091 0.126 129.4 6.227 502 0.035

Table 3.4: Computation times in seconds, average residuals and number of iterations for
reload instances.

tel:007%201.004%200.278%20437
tel:007%200.398%200.215%20300
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It follows from Table 3.3 and Figure 3.6 that SDPS2 clearly provides the strongest bounds,

followed by RLT1, LBB1 and finally by MILP , which behaves poorly for most of the in-

stances. In fact, the hierarchy LBB1 ≤ RLT1 ≤ SDPS2 can be proven easily and holds

with strict inequality for the majority of the instances. It can be seen that SDPS2 performs

generally about 1.5 times better than the average of the four bounds. The bound SDPS2

even turns out to be optimal for 88% of the instances.

When considering Table 3.4, it follows that although the computation times are larger

than those of MILP and LBB1, the SDP-bound can be computed efficiently for most of the

instances. The computation times are always within 30 seconds and for 75% of the instances

within 10 seconds, while the computation time of RLT1 is above 90 seconds for 67% of the

instances. Moreover, although the optimum can be computed for all tested reload instances,

the computation time is in some cases as large as 2000 seconds. Hence, for the reload

instances we conclude that SDPS2 can be favoured above other bounds in both quality and

time.

Next, we consider the Erdős-Rényi instances. Table 3.5 shows the bound values for the

Erdős-Rényi test set, among which the bounds SDPS2 and SDPS3 for various number of

cuts. We do not consider the first level RLT bound, as it cannot be efficiently computed for

the majority of the instances. The column OPT reports the optimal solution if this solution

could be computed in 3 hours and ‘-’ otherwise. The computation times are reported in

Table 3.6 and the average of primal and dual residual and the number of final cuts in the

CP-ALM for the SDP bounds are reported in Table 3.7.

For the Erdős-Rényi instances we also see that SDPS2 significantly outperforms MILP

and LBB1 in terms of quality of the bound. Moreover, it is clear that we can successfully

improve the bounds by adding cuts using the new CP-ALM. Except for the instances where

SDPS2 is already optimal, we see that SDPS3 provides a strictly higher bound already after

adding 50 cuts at a time. For most instances, this improvement of SDPS3 compared to

SDPS2 is about 3%-6%. Interestingly, this improvement seems to be independent of the

problem size. As we already observed in Figure 3.4, we see that a higher value of numCuts

leads to a higher lower bound. This higher value comes, however, at the cost of computation

time as can be seen from Table 3.6. When taking both quality and efficiency into account,

it seems beneficial to add only a small number of cuts, as this often leads to a significant

increase of the bound at a relatively low computational cost. For instances up to 1000 arcs

the CP-ALM terminates often within 30 minutes, while SDP bounds for instances up to 1850

arcs (!) can be computed within 2 hours. Hence, the CP-ALM is able to provide strong

lower bounds for very large-scale SDPs in a reasonable time span, whereas the interior-point

method of Mosek [284] can solve (SDPS2) for instances up to only 300 arcs without running

out of memory.

Finally, we consider the performance of the lower bounds on the Manhattan instances,

which can be found in Table 3.8 and 3.9. With respect to the quality of the bounds we can

draw the same conclusions as before. Namely, the SDP bound SDPS3 performs best on all

instances, followed by SDPS2. Since the optimal values for many of these instances can be

computed, we moreover see that our SDP bounds are very close to optimal. Although we

again see that the cuts can successfully improve the lower bounds, the relative improvement

is smaller than for the Erdős-Rényi test set. An explanation can be found by looking at

the residuals in Table 3.9b, which are significantly larger than the residuals for the first two

types of instances. Apparently, the Manhattan instances need more iterations to converge,

probably due to the inner structure of these instances. Stopping the CP-ALM when it has

only partly converged, leads to weaker and less stable lower bounds. Namely, the reported
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lower bound is obtained by a projection of the current dual matrix, and further experiments

show that in particular the dual residual converges slowly. The residuals increase with the

size of the instance. Hence, we expect that even better bounds for the Manhattan instances

can be obtained by letting the CP-ALM run for more iterations. However, we conclude from

the current tables that the SDP bounds for the Manhattan instances significantly outperform

the bounds from the literature in a reasonable time span.

SDPS3

Instance p n m OPT MILP LBB1 SDPS2
numCuts

50

numCuts

150

numCuts

300

numCuts

500

ER1 0.3 20 119 319 165 260 319 319 319 319 319

RER1 113 293 154 274 293 293 293 293 293

ER2 25 177 386 167 305 386 386 386 386 386

RER2 169 391 151 303 391 391 391 391 391

ER3 30 284 - 122 230 287 292 294 295 296

RER3 256 281 69 208 258 262 264 265 266

ER4 35 361 - 138 273 328 331 333 335 336

RER4 347 - 61 189 233 236 238 239 240

ER5 40 468 - 131 265 318 321 322 323 324

RER5 495 - 17 177 215 217 219 219 220

ER6 45 592 - 138 287 330 333 336 337 338

RER6 623 - 9 110 146 148 149 150 151

ER7 50 754 - 130 267 313 316 318 319 319

RER7 746 - 3 91 116 117 118 119 119

ER8 60 1062 - 118 272 301 303 304 305 305

RER8 995 - 1 74 93 94 95 95 95

ER9 70 1481 - 123 255 286 287 288 289 289

RER9 1512 - 0 99 131 132 132 133 133

ER10 80 1842 - 122 263 291 292 293 293 293

RER10 1859 - 0 33 52 53 53 53 54

ER11 0.5 20 195 236 95 175 227 232 233 234 234

RER11 194 172 34 136 172 172 172 172 172

ER12 25 327 - 67 136 169 171 172 173 173

RER12 308 99 7 57 84 85 86 87 87

ER13 30 434 - 79 161 197 200 201 202 202

RER13 435 - 9 106 139 141 142 143 143

ER14 40 793 - 74 166 196 198 199 199 200

RER14 770 - 0 50 72 73 74 73 74

ER15 50 1197 - 77 165 188 189 190 191 191

RER15 1235 - 0 18 35 36 37 37 37

Table 3.5: Comparison of different bounds for Erdős-Rényi instances.
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SDPS3

Instance MILP LBB1 SDPS2
numCuts

50

numCuts

150

numCuts

300

numCuts

500

ER1 0.201 0.016 0.390 0.330 0.470 0.400 0.330

RER1 0.194 0.008 0.150 0.140 0.130 0.130 0.150

ER2 0.333 0.019 2.193 1.700 1.790 1.660 1.710

RER2 0.319 0.016 3.520 18.37 155.6 55.27 163.8

ER3 0.827 0.068 11.89 35.15 128.6 333.2 924.8

RER3 0.673 0.042 8.120 29.55 67.15 110.0 205.0

ER4 1.151 0.106 28.17 54.61 86.61 137.7 237.3

RER4 1.166 0.107 24.83 60.40 93.71 161.4 257.9

ER5 1.914 0.139 48.57 86.64 121.2 230.8 526.3

RER5 2.088 0.153 53.83 89.76 112.7 148.2 234.4

ER6 2.856 0.201 99.59 203.4 253.4 350.3 499.2

RER6 3.048 0.220 113.4 200.4 247.1 345.7 494.7

ER7 4.489 0.327 168.4 291.3 356.6 607.0 1173

RER7 4.207 0.297 164.6 285.2 358.1 447.9 601.8

ER8 10.824 0.625 463.0 870.8 1000 1306 2198

RER8 7.969 0.529 340.5 624.0 652.6 748.8 950.6

ER9 24.184 1.346 1305 2160 2293 2838 4517

RER9 25.232 1.420 1381 2308 2371 2555 2961

ER10 42.034 2.273 2446 4110 4088 4548 7178

RER10 41.74 2.305 2516 4035 4130 4451 4868

ER11 0.397 0.031 6.071 22.95 67.97 178.4 512.1

RER11 0.415 0.027 4.640 13.53 32.20 51.59 82.89

ER12 0.967 0.107 17.99 37.11 70.64 200.9 524.0

RER12 0.862 0.088 14.07 31.89 51.67 97.69 170.2

ER13 1.554 0.155 42.23 77.36 108.5 196.2 472.9

RER13 1.579 0.150 42.59 77.82 98.80 142.1 208.3

ER14 4.539 0.431 201.7 348.8 493.6 868.5 2840

RER14 4.283 0.389 187.8 319.2 373.9 457.3 627.8

ER15 12.663 1.068 721.6 1243 1426 1854 3773

RER15 12.99 1.141 795.2 1438 1427 1559 1775

Table 3.6: Comparison of computation times (in seconds) for Erdős-Rényi instances.



623138-L-sub01-bw-deMeijer623138-L-sub01-bw-deMeijer623138-L-sub01-bw-deMeijer623138-L-sub01-bw-deMeijer
Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023 PDF page: 118PDF page: 118PDF page: 118PDF page: 118

98 Integrality and cutting planes in SDP approaches for CO

SDPS3

SDPS2
numCuts

50

numCuts

150

numCuts

300

numCuts

500

Instance res res cuts res cuts res cuts res cuts

ER1 <0.001 <0.001 0 <0.001 0 <0.001 0 <0.001 0

RER1 <0.001 <0.001 0 <0.001 0 <0.001 0 <0.001 0

ER2 0.003 0.002 0 0.002 0 0.003 0 0.003 0

RER2 <0.001 <0.001 100 <0.001 294 <0.001 303 <0.001 532

ER3 0.002 0.002 148 0.003 446 0.003 878 0.003 1455

RER3 0.002 0.003 150 0.003 444 0.004 882 0.005 1461

ER4 0.002 0.002 148 0.003 450 0.003 899 0.003 1494

RER4 0.003 0.002 150 0.002 446 0.002 887 0.003 1479

ER5 0.002 0.002 150 0.002 449 0.007 898 0.003 1494

RER5 0.003 0.003 150 0.003 450 0.003 899 0.004 1497

ER6 0.001 0.003 200 0.004 598 0.005 1195 0.004 1992

RER6 0.003 0.003 200 0.003 598 0.003 1199 0.003 1995

ER7 0.001 0.002 200 0.002 597 0.002 1195 0.008 1996

RER7 0.002 0.002 199 0.002 598 0.002 1191 0.002 1987

ER8 0.001 0.002 250 0.002 750 0.002 1500 0.002 2500

RER8 0.002 0.002 200 0.002 599 0.003 1198 0.003 1998

ER9 0.001 0.001 250 0.002 749 0.002 1497 0.002 2497

RER9 0.003 0.003 248 0.007 745 0.003 1497 0.003 2500

ER10 0.002 0.002 250 0.002 750 0.002 1500 0.003 2500

RER10 0.003 0.003 250 0.003 750 0.003 1499 0.003 2500

ER11 0.001 0.003 148 0.003 440 0.003 877 0.006 1458

RER11 0.055 <0.001 50 <0.001 150 <0.001 300 <0.001 500

ER12 0.001 0.002 150 0.002 450 0.003 898 0.003 1498

RER12 0.002 0.002 133 0.003 415 0.003 851 0.003 1431

ER13 0.001 0.002 149 0.002 445 0.002 892 0.002 1481

RER13 0.003 0.003 150 0.003 448 0.003 891 0.004 1481

ER14 0.001 0.001 200 0.002 597 0.002 1196 0.004 1992

RER14 0.002 0.003 200 0.002 600 0.019 1200 0.003 2000

ER15 0.001 0.001 250 0.001 750 0.002 1500 0.002 2500

RER15 0.003 0.003 250 0.003 750 0.003 1500 0.003 2500

Table 3.7: Comparison of residuals and total number of cuts for Erdős-Rényi instances.
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SDPS3

Instance Type n m OPT MILP LBB1 SDPS2
numCuts

300

numCuts

500

MH1 (5, 5) 25 50 103 102 103 103 103 103

MH2 (10, 10) 100 200 418 394 418 418 418 418

MH3 (15, 15) 225 450 892 847 892 892 892 892

MH4 (16, 16) 256 512 1030 985 1030 1030 1030 1030

MH5 (17, 17) 289 578 1226 1162 1214 1226 1226 1226

MH6 (18, 18) 324 648 1283 1230 1282 1282 1283 1283

MH7 (19, 19) 361 722 1448 1378 1446 1446 1446 1446

MH8 (20, 20) 400 800 1539 1472 1537 1536 1537 1537

MH9 (25, 25) 625 1250 2572 2439 2559 2568 2568 2568

MH10 (4, 4, 4) 64 192 199 156 193 199 199 199

MH11 (4, 4, 5) 80 240 258 203 249 258 258 258

MH12 (4, 5, 5) 100 300 343 260 324 342 342 342

MH13 (4, 5, 6) 120 360 400 312 384 398 400 400

MH14 (5, 5, 5) 125 375 391 304 376 391 391 391

MH15 (5, 5, 6) 150 450 528 422 513 528 528 528

MH16 (5, 6, 6) 180 540 607 479 586 607 607 607

MH17 (5, 6, 7) 210 630 698 539 668 696 697 697

MH18 (6, 6, 6) 216 648 700 561 683 697 698 699

MH19 (6, 6, 7) 252 756 834 663 808 830 832 832

MH20 (6, 7, 7) 294 882 994 779 958 990 992 992

MH21 (6, 7, 8) 336 1008 1087 847 1047 1079 1083 1083

MH22 (7, 7, 7) 343 1029 1162 907 1107 1155 1158 1159

MH23 (7, 7, 8) 392 1176 1246 975 1201 1238 1241 1242

MH24 (7, 8, 8) 448 1344 1449 1135 1393 1439 1442 1442

MH25 (7, 8, 9) 504 1512 1645 1281 1576 1626 1631 1631

MH26 (8, 8, 8) 512 1536 1566 1247 1530 1555 1557 1557

MH27 (8, 8, 9) 576 1728 1883 1485 1817 1861 1866 1867

MH28 (8, 9, 9) 648 1944 2075 1643 2003 2057 2060 2060

MH29 (8, 9, 10) 720 2160 2339 1850 2259 2309 2313 2314

MH30 (9, 9, 9) 729 2187 - 1894 2329 2416 2421 2422

MH31 (9, 9, 10) 810 2430 - 2081 2535 2603 2608 2608

MH32 (9, 10, 10) 900 2700 - 2304 2817 2886 2888 2889

Table 3.8: Comparison of different bounds for Manhattan instances.
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SDPS3

MILP LBB1 SDPS2
numCuts

300

numCuts

500

Instance time time time time time

MH1 0.103 0.016 0.047 0.030 0.040

MH2 0.309 0.011 0.916 0.839 0.882

MH3 2.665 0.036 20.78 57.07 103.5

MH4 3.805 0.044 39.27 221.2 414.6

MH5 5.406 0.057 52.62 380.2 834.5

MH6 7.684 0.063 69.39 558.2 1478.1

MH7 10.29 0.079 86.52 336.9 588.5

MH8 13.44 0.118 112.3 489.5 898.9

MH9 49.72 0.233 343.6 2226 3210

MH10 0.329 0.013 3.138 40.71 101.6

MH11 0.491 0.022 4.557 119.9 251.0

MH12 0.722 0.033 3.847 3.717 3.628

MH13 0.963 0.047 10.76 117.2 202.6

MH14 1.103 0.052 18.83 133.8 267.6

MH15 2.305 0.073 28.47 177.8 377.5

MH16 3.520 0.092 54.29 252.1 422.5

MH17 5.265 0.135 78.98 291.3 429.1

MH18 5.548 0.138 84.35 364.7 470.6

MH19 8.333 0.159 115.8 397.0 527.1

MH20 12.98 0.191 162.0 512.9 829.1

MH21 18.76 0.234 261.3 888.5 1201

MH22 20.29 0.234 272.8 881.1 1177

MH23 29.29 0.290 382.2 967.7 1457

MH24 43.01 0.338 525.9 1482 1697

MH25 61.54 0.425 670.5 1695 1880

MH26 63.89 0.444 732.8 1726 2265

MH27 90.82 0.512 939.7 2354 2752

MH28 132.2 0.634 1227 2869 3222

MH29 177.0 0.772 1597 3414 4264

MH30 181.4 0.815 1600 3358 3643

MH31 249.3 0.948 2096 4242 4710

MH32 344.2 1.128 2773 5530 5851

(a) Computation times (in seconds)

SDPS3

SDPS2
numCuts

300

numCuts

500

Instance res res cuts res cuts

MH1 0.001 0.002 0 <0.001 0

MH2 <0.001 <0.001 0 0.006 0

MH3 <0.001 <0.001 300 <0.001 500

MH4 0.013 0.013 600 0.013 1000

MH5 0.017 0.011 1200 0.011 2000

MH6 0.011 0.010 916 0.01 1500

MH7 0.024 0.024 1200 0.024 2000

MH8 0.024 0.023 1200 0.023 2000

MH9 0.029 0.035 1500 0.034 2500

MH10 <0.001 <0.001 311 <0.001 569

MH11 0.012 <0.001 574 <0.001 969

MH12 0.002 0.004 0 0.004 0

MH13 0.004 0.018 827 0.022 1322

MH14 0.022 0.041 759 0.040 1284

MH15 0.021 0.036 858 0.044 1219

MH16 0.005 0.031 1072 0.037 1842

MH17 0.009 0.031 1075 0.035 1781

MH18 0.005 0.013 1117 0.016 1773

MH19 0.012 0.027 1032 0.030 1707

MH20 0.013 0.026 1121 0.030 1821

MH21 0.008 0.019 1500 0.022 2500

MH22 0.009 0.020 1500 0.022 2500

MH23 0.010 0.020 1500 0.019 2500

MH24 0.011 0.023 1500 0.026 2500

MH25 0.013 0.024 1500 0.026 2500

MH26 0.030 0.043 1500 0.047 2500

MH27 0.025 0.037 1500 0.040 2500

MH28 0.036 0.050 1500 0.054 2500

MH29 0.034 0.044 1500 0.048 2500

MH30 0.028 0.038 1500 0.040 2500

MH31 0.039 0.048 1500 0.051 2500

MH32 0.031 0.045 1500 0.047 2500

(b) Average residuals and number of cuts

Table 3.9: Comparison of computation times, average residuals and total number of added
cuts for Manhattan instances.

3.7.3 Upper bounds and overall results

We discuss here the results on the upper bounds and provide an overview of the relative gap

between best lower and upper bounds for all instances. Table 3.10 shows several statistics

related to the performance of the hybrid and nonhybrid upper bounds on the full test set.

Besides, it provides the average percentage gap between best lower and upper bound per

instance type. Table 3.11 provides an overview of the best lower bound, best upper bound

and their relative gap for the full set of instances. For each instance and upper bound

type, we compute the upper bound based on the SDP solution resulting from the CP-ALM,

and select the best among all to report in Table 3.11. Since, by construction, the hybrid

algorithm always provides the best among all upper bounds, the last column of Table 3.11

indicates which of the nonhybrid heuristics performs best when applied independently. Since

all upper bounds can be computed relatively fast, we omit computation times here.

It follows from the tables that our bounds are very strong for the Manhattan and the
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reload instances, as the average gap between the best lower and best upper bound using the

hybrid heuristic is 1.25% and 3.90%, respectively. For the Erdős-Rényi instances this gap is

much larger. It is known that the quality of a lower bound, and thus also of a related upper

bound, deteriorate when the size of the problem increases. Also, the results indicate that the

reload and Manhattan instances are easier to solve than the Erdős-Rényi instances for all

here tested QCCP approaches. Nevertheless, the average gap on the Erdős-Rényi instances

with up to 1000 arcs is only 10%.

When comparing the different upper bounds, we conclude that the SQ-algorithm overall

outperforms the other methods, followed by oversampling and undersampling rounding. We

however observe a clear relationship with the instance type. For the Erdős-Rényi instances

the SQ-algorithm is convincingly the best heuristic, while for the reload instances the other

methods perform reliable as well, probably due to the smaller instance size. For the Man-

hattan instances, however, the sequential Q-learning heuristic performs well on the smaller

instances, but is outperformed by oversampling rounding for larger m. This can be explained

by the smaller number of iterations of the SQ-algorithm for these type of instances. Since

the number of agents in the SQ-algorithm for the Manhattan instances is significantly lar-

ger than for the other instance types, we needed to decrease the number of iterations in

order to be able to solve the resulting SPP efficiently. Hence, the learning effect of the SQ-

algorithm is decreased, while it is in particular that part that makes the algorithm powerful.

Nevertheless, we observe for almost all Manhattan instances that the hybrid algorithm ob-

tains a strictly stronger upper bound than UBEB , UBUS or UBOS . This means that the

SQ-algorithm, although not always the favoured heuristic when implemented independently,

creates cycles that can lead to an improvement of the best upper bound.

3.8 Conclusions

This chapter provides an in-depth theoretical as well as practical study on the QCCP. We

provide various lower and upper bounds for the QCCP based on semidefinite programming.

Moreover, we introduce efficient methods to compute these bounds and give an analysis of

their theoretical properties.

We first introduce three SDP relaxations with increasing complexity. Our strongest

SDP relaxation, (SDPS3), see (3.17), contains a large number of constraints which makes

it a strong but very difficult to solve relaxation. Since there are no efficient solvers that

can solve SDP relaxations including BQP cuts, we derive a cutting-plane augmented Lag-

rangian method that is designed to solve such relaxations, see Algorithm 3.2. Our algorithm

starts from the Peaceman–Rachford splitting method where the involved polyhedral set is

strengthened throughout the algorithm by adding valid cuts. To project onto the polyhedral

Statistics on upper bounds and average gaps

Average gap on all instances 20.02% Percentage of instances UBEB performs best 36.89%

Average gap on Erdős-Rényi instances 72.30% Percentage of instances UBUS performs best 53.28%

Average gap on Manhattan instances 1.25% Percentage of instances UBOS performs best 68.85%

Average gap on Reload instances 3.90% Percentage of instances UBSQ performs best 77.87%

Average gap on instances with m ≤ 1000 10.58% Percentage of instances UBHY strictly lower 25.41%

than others

Table 3.10: Statistics on performance of upper bounds and average gaps on total test set.
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set, we implement a semi-parallelized version of Dykstra’s cyclic projection algorithm, see

Section 3.5.4 for details. Parallelization here refers to clustering the set of BQP inequalities

into subsets of nonoverlapping cuts. Besides the parallelization step we implement several

other efficiency improving steps that contribute to the effectiveness of the CP-ALM. Our

algorithm also benefits from warm starts when adding new cuts. The CP-ALM is able to

compute lower bounds for large instances up to 2700 arcs, thus having a semidefinite con-

straint of order 2700, including 7 290 000 nonnegative constrained variables, and up to 2500

BQP cuts within two hours.

We also introduce several upper bounding approaches that exploit matrices resulting

from the CP-ALM, including randomized undersampling (see Algorithm 3.3) and random-

ized oversampling (see Algorithm 3.4). Additionally, we propose an SDP-based distributed

reinforcement learning algorithm, which we call sequential Q-learning, see Algorithm 3.5.

Starting from the SDP solution matrix, we let artificial agents learn how to find near-optimal

cycles in the graph. We are not aware of other approaches in the literature that combine

SDP and reinforcement learning.

We perform extensive numerical experiments. Our numerical results show that both semi-

definite programming bounds SDPS2 and SDPS3 outperform the current strongest QCCP

bounds. The results show that SDPS3 bounds are significantly better than SDPS2 bounds,

provided that there exist violated triangle inequalities. Among the upper bounding ap-

proaches, our sequential Q-learning algorithm is the winner. The average gap between the

best lower and upper bounds on test instances with up to 1000 arcs is about 10%, while for

certain instances this average gap can be as low as 1.25%, see Table 3.10 and Table 3.11 for

details.

Several of the newly introduced approaches can be extended to other problems. The

various components of the CP-ALM are rather general, which make it possible to adopt

it for solving other SDP models that involve a large number of cutting planes, such as for

the quadratic traveling salesman problem. In Chapter 4 we show how a version of the CP-

ALM is applied to compute bounds for several graph partition problems. Our SDP-based

reinforcement learning approach can also be extended for finding feasible solutions to other

optimization problems. We expect that the sequential Q-learning approach should perform

well for problems on complete graphs.
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Instance

Best

lower

bound

Hybrid

upper

bound

Gap

(%)

Best nonhybrid

heuristic

ER1 319 319 0 EB, US, OS, SQ

RER1 293 293 0 EB, US, OS, SQ

ER2 386 386 0 EB, US, OS, SQ

RER2 391 391 0 EB, US, OS, SQ

ER3 296 311 5 OS, SQ

RER3 266 288 8 OS

ER4 336 447 33 SQ

RER4 240 294 23 SQ

ER5 324 404 25 SQ

RER5 220 321 46 SQ

ER6 338 451 33 SQ

RER6 151 253 68 SQ

ER7 319 493 55 SQ

RER7 119 236 98 SQ

ER8 305 525 72 SQ

RER8 95 283 198 SQ

ER9 289 520 80 SQ

RER9 133 399 200 SQ

ER10 293 455 55 SQ

RER10 54 312 478 SQ

ER11 234 236 1 SQ

RER11 172 172 0 US, OS, SQ

ER12 173 187 8 SQ

RER12 87 113 30 SQ

ER13 202 245 21 SQ

RER13 143 169 18 SQ

ER14 200 280 40 SQ

RER14 74 170 130 SQ

ER15 191 326 71 SQ

RER15 37 175 373 SQ

MH1 103 103 0 EB, US, OS, SQ

MH2 418 418 0 EB, US, OS, SQ

MH3 892 892 0 EB, US, OS, SQ

MH4 1030 1030 0 EB, US, OS, SQ

MH5 1226 1226 0 EB, US, OS

MH6 1283 1283 0 EB, US, OS, SQ

MH7 1446 1448 0 EB, US, OS, SQ

MH8 1537 1539 0 EB

MH9 2568 2572 0 EB

MH10 199 199 0 EB, US, OS, SQ

MH11 258 258 0 EB, US, OS, SQ

MH12 342 348 2 US

MH13 400 400 0 EB, US, OS

MH14 391 391 0 EB, US, OS

MH15 528 528 0 EB, US, OS

MH16 607 607 0 EB, US, OS

MH17 697 698 0 OS

MH18 699 706 1 OS

MH19 832 839 1 US, OS

MH20 992 999 1 OS

MH21 1083 1093 1 OS

MH22 1159 1171 1 OS

MH23 1242 1272 2 OS

MH24 1442 1498 4 OS

MH25 1631 1702 4 OS

MH26 1557 1576 1 OS

MH27 1867 1940 4 OS

MH28 2060 2141 4 OS

MH29 2314 2426 6 OS

MH30 2422 2552 5 OS

MH31 2608 2775 6 OS

MH32 2889 3077 7 OS

Instance

Best

lower

bound

Hybrid

upper

bound

Gap

(%)

Best nonhybrid

heuristic

REL1 4 4 0 EB, US, OS, SQ

REL2 9 9 0 EB, US, OS, SQ

REL3 5 5 0 EB, US, OS, SQ

REL4 12 12 0 US

REL5 4 4 0 EB, US, OS, SQ

REL6 14 14 0 US, OS, SQ

REL7 5 5 0 US, OS, SQ

REL8 11 11 0 EB, US, OS, SQ

REL9 2 2 0 EB, US, OS, SQ

REL10 12 12 0 EB, US, OS, SQ

REL11 3 3 0 EB, US, OS, SQ

REL12 9 9 0 EB, US, OS, SQ

REL13 4 4 0 US, OS, SQ

REL14 11 11 0 EB, US, OS, SQ

REL15 4 4 0 EB, US, OS, SQ

REL16 11 11 0 EB, US, OS, SQ

REL17 4 4 0 EB, US, OS, SQ

REL18 10 10 0 EB, US, OS, SQ

REL19 5 5 0 EB, US, OS, SQ

REL20 11 11 0 EB, US, OS, SQ

REL21 5 5 0 US, OS, SQ

REL22 12 12 0 SQ

REL23 4 4 0 US, OS, SQ

REL24 11 11 0 US, OS, SQ

REL25 5 5 0 EB, US, OS, SQ

REL26 9 10 11 SQ

REL27 4 4 0 US, OS, SQ

REL28 9 9 0 US, OS, SQ

REL29 6 6 0 US, OS, SQ

REL30 10 10 0 US, OS, SQ

REL31 5 5 0 US, OS, SQ

REL32 11 11 0 US, OS, SQ

REL33 4 4 0 US, OS, SQ

REL34 8 8 0 OS, SQ

REL35 4 4 0 EB, US, OS, SQ

REL36 8 8 0 US, OS, SQ

REL37 6 6 0 US, OS, SQ

REL38 11 11 0 EB, US, OS, SQ

REL39 3 3 0 EB, US, OS, SQ

REL40 7 7 0 EB, US, OS, SQ

REL41 4 4 0 EB, US, OS, SQ

REL42 7 11 57 SQ

REL43 3 3 0 EB, US, OS, SQ

REL44 7 10 43 SQ

REL45 3 3 0 SQ

REL46 6 6 0 EB, US, OS, SQ

REL47 3 3 0 SQ

REL48 5 5 0 OS, SQ

REL49 4 4 0 US, OS, SQ

REL50 8 8 0 OS

REL51 3 3 0 SQ

REL52 6 9 50 SQ

REL53 4 4 0 EB, US, OS, SQ

REL54 9 11 22 SQ

REL55 3 3 0 EB, US, OS, SQ

REL56 8 11 38 SQ

REL57 4 4 0 US, OS, SQ

REL58 7 7 0 US, OS, SQ

REL59 3 3 0 SQ

REL60 8 9 13 OS, SQ

Table 3.11: Overview of best lower bounds, best hybrid and nonhybrid upper bounds and
their relative gaps for all instances.
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4
Partitioning through projections: strong SDP bounds for

large graph partition problems

Chapter summary

The graph partition problem (GPP) aims at clustering the vertex set of a graph
into a fixed number of disjoint subsets of given sizes such that the sum of weights
of edges joining different sets is minimized. This chapter investigates the quality of
doubly nonnegative (DNN) relaxations, i.e., relaxations having matrix variables that
are both positive semidefinite and nonnegative, strengthened by additional polyhed-
ral cuts for two variations of the GPP: the k-equipartition and the graph bisection
problem. After reducing the size of the relaxations by facial reduction, we solve them
by a cutting-plane algorithm that combines an augmented Lagrangian method with
Dykstra’s projection algorithm. Since many components of our algorithm are general,
the algorithm is suitable for solving various DNN relaxations with a large number of
cutting planes.

We are the first to show the power of DNN relaxations with additional cutting
planes for the GPP on large benchmark instances up to 1024 vertices. Computational
results show impressive improvements in strengthened DNN bounds.
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4.1 Introduction

The graph partition problem (GPP) is the problem of partitioning the vertex set of a graph

into a fixed number of subsets, say k, of given sizes such that the sum of weights of edges

joining different sets is minimized. In the case that all sets are of equal sizes we refer to

the resulting GPP as the k-equipartition problem (k-EP). The case of the graph partition

problem with k = 2 is known as the graph bisection problem (GBP). In the GBP the sizes

of two subsets might differ. The special case of the GBP where both subsets have the same

size is known in the literature as the equicut problem, see e.g. [232].

The graph partition problem is known to be NP-hard [165]. It is a fundamental problem

that is extensively studied, mostly due to its applications in numerous fields, including

VLSI design, social networks, floor planning, data mining, air traffic, image processing,

image segmentation, parallel computing and telecommunication, see e.g., the book [47] and

the references therein. Recent studies in quantum circuit design [214] also relate to the

general graph partition problem. Furthermore, the GPP is used to compute bounds for the

bandwidth problem [320]. For an overview of recent advances in graph partitioning, we refer

the reader to [59].

There exist bounding approaches for the GPP that are valid for all variations of the

GPP. We list only some of them in this paragraph. Donath and Hoffman [104] derive

an eigenvalue bound for the graph partition problem. That bound is improved by Rendl

and Wolkowicz [321]. Wolkowicz and Zhao [371] derive semidefinite programming (SDP)

relaxations for the graph partition problem that are based on the so-called vector lifting

approach. That is, relaxations in [371] have matrix variables of order nk+1, where n is the

number of vertices in the graph. An SDP relaxation based on the so-called matrix lifting

approach is derived in [343], resulting in a compact relaxation for the GPP having matrix

variables of order n. The relaxation from [343] is a doubly nonnegative (DNN) relaxation,

which is an SDP relaxation over the set of nonnegative matrices. In general, vector lifting

relaxations provide stronger bounds than matrix lifting relaxations, see e.g., [241, 343].

For the k-equipartition problem, Karisch and Rendl [231], among others, show how to

reformulate the Donath-Hoffman and the Rendl-Wolkowicz relaxations as semidefinite pro-

gramming problems. Karisch and Rendl also present several SDP relaxations with increas-

ing complexity for the k-EP with matrix variables of order n that dominate relaxations

from [104, 321]. The strongest SDP relaxation from [231] is a DNN relaxation with addi-

tional triangle and independent set inequalities. That relaxation provides the best known

SDP bounds for the k-EP. However, it is difficult to compute those bounds for general graphs

with more than 300 vertices when using interior-point methods.

In this chapter we focus on the relaxations derived in [371] and [231] for large instances.

For a more comprehensive overview of SDP-based solution approaches for the graph partition

problem and its variants, we refer to Section 1.4.3.

Main results and outline

Doubly nonnegative relaxations are known to provide superior bounds for various optim-

ization problems. Although additional cutting planes further improve DNN relaxations, it

is extremely difficult to compute the resulting bounds already for relaxations with matrix

variables of order 300 via interior-point methods. We design an efficient algorithm for com-

puting DNN bounds with a huge number of additional cutting planes and show the power

of the resulting bounds for two variations of the graph partition problem.
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We conduct a study for the k-equipartition problem and the graph bisection problem.

Although there exists a DNN relaxation for the GPP [371] that is suitable for both prob-

lems, we study the problems separately. Namely, the k-EP allows various equivalent SDP

relaxations having different sizes of matrix variables due to the problem’s invariance under

permutations of the subsets. Since one can solve DNN relaxations with smaller matrix vari-

ables more efficiently than those with larger matrix variables, we consider the matrix lifting

DNN relaxation for the k-EP from [231] that is strengthened by the triangle and independent

set inequalities. On the other hand, the vector lifting DNN relaxation for the GBP from [371]

is known to dominate matrix lifting DNN relaxations for the same problem. Therefore, we

consider the vector lifting DNN relaxation for the GBP and strengthen it by adding boolean

quadric polytope (BQP) inequalities. Since the relaxation from [371] that we rely on was

originally proposed for the general GPP, our approach for the GBP can be generalized in a

straightforward way.

Prior to solving the DNN relaxations, we use facial reduction to obtain equivalent smaller

dimensional relaxations that are strictly feasible. The approach we use for the GBP is based

on the dimension of the underlying polytope. Although strict feasibility of an SDP is not

required for our solver, it makes the procedure more efficient.

To solve the DNN relaxations with additional polyhedral inequalities, we design a cutting-

plane algorithm called the cutting-plane ADMM (CP–ADMM). Our algorithm combines the

Alternating Direction Method of Multipliers (ADMM) with Dykstra’s projection algorithm.

The ADMM exploits the natural splitting of the relaxations that arises from the facial

reduction. Dykstra’s cyclic projection algorithm finds projections onto polyhedra induced

by the violated cuts. Since facial reduction eliminates redundant constraints and projects

a relaxation onto a smaller dimensional space, the projections in the CP–ADMM are easier

and faster. To further improve efficiency of the CP–ADMM, we cluster nonoverlapping cuts,

which allows us to perform the projections in each cluster simultaneously. Efficiency of the

algorithm is also due to the exploitation of warm starts, as well as the use efficient separation

routines. Since we present the various components of the CP–ADMM in a general way, the

algorithm is suitable for solving various DNN relaxations incorporating additional cutting

planes.

Our numerical results show that the CP–ADMM computes strong GPP bounds for graphs

with up to 1024 vertices by adding at most 50 000 cuts in less than two hours. Since our

algorithm does not require lots of memory, we are able to compute strong bounds for even

larger graphs than presented here. Numerical results also show that the additional cutting

planes significantly improve the DNN relaxations, and that the resulting bounds can close

gaps for instances with up to 500 vertices.

This chapter is structured as follows. In Section 4.2 we introduce the graph partition

problem. Section 4.2.1 presents DNN relaxations for the k-EP. In Section 4.2.2 we present

DNN relaxations for the GBP and show how to apply facial reduction by exploiting the

dimension of the bisection polytope. Our cutting-plane augmented Lagrangian algorithm is

introduced in Section 4.3. The main ingredients of the algorithm are given in Section 4.3.1

and Section 4.3.2. In particular, Section 4.3.1 explains steps of the ADMM and Section 4.3.2

introduces Dykstra’s projection algorithm and its semi-parallelized version. The CP–ADMM

is outlined in Section 4.3.3. Section 4.4 considers various families of cutting planes that are

used to strengthen DNN relaxations for the k-EP and GBP. Numerical results are given in

Section 4.5.
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4.2 The graph partition problem

Let G = (V,E) be an undirected graph with vertex set V , n := |V |, and edge set E.

Let w : E → R be an edge weight function and let k be an integer such that 2 ≤ k ≤ n− 1.

The graph partition problem is to partition the vertex set of G into k disjoint sets S1, . . . , Sk

of specified sizes m1 ≥ · · · ≥ mk ≥ 1,
∑k

j=1 mj = n such that the total weight of edges

joining different sets Sj is minimized. If k = 2, then we refer to the corresponding graph

partition problem as the graph bisection problem. If m1 = · · · = mk = n/k, then the

resulting GPP is known as the k-equipartition problem.

Let W = (wij) ∈ Sn denote the weight matrix of G, where wij = w({i, j}) if {i, j} ∈ E

and wij = 0 otherwise, and let m := [m1 . . . mk]
�. For a given partition of G into k subsets,

let P = (Pij) ∈ {0, 1}n×k be the partition matrix defined as follows:

Pij :=

{
1 if i ∈ Sj ,

0 otherwise,
for all i ∈ [n], j ∈ [k]. (4.1)

Thus, the jth column of P is the characteristic vector of Sj . The total weight of the partition,

i.e., the sum of weights of edges that join different sets equals

1

2
tr

(
W (Jn − PP�)

)
=

1

2
tr(LPP�),

where L := Diag(W1n) − W is the weighted Laplacian matrix of G. The GPP can be

formulated as the following binary optimization problem:

min
P

1

2

〈
L,PP�

〉
(4.2a)

(GPP ) s.t. P1k = 1n (4.2b)

P�1n = m (4.2c)

Pij ∈ {0, 1} ∀i ∈ [n], j ∈ [k], (4.2d)

where P ∈ Rn×k. Note that the objective function (4.2a) is quadratic. The constraints (4.2b)

ensure that each vertex must be in exactly one subset. The cardinality constraints (4.2c)

take care that the number of vertices in subset Sj is mj for j ∈ [k].

Let us briefly consider the polytope induced by all feasible partitions of G. Let F k
n (m)

be the set of all characteristic vectors representing a partition of n vertices into k disjoint

sets corresponding to the cardinalities in m. In other words, F k
n (m) contains binary vectors

of the form vec(P ), where P is a partition matrix, see (4.1):

F k
n (m) =

⎧⎨⎩x ∈ {0, 1}kn :

⎛⎝Ik ⊗ 1�
n

1�
k ⊗ In

⎞⎠x =

⎛⎝m

1n

⎞⎠⎫⎬⎭ . (4.3)

We now define conv(F k
n (m)) as the k-partition polytope. Since the constraint matrix defin-

ing F k
n (m) is totally unimodular, this polytope can be explicitly written as follows:

conv(F k
n (m)) =

⎧⎨⎩x ∈ Rkn :

⎛⎝Ik ⊗ 1�
n

1�
k ⊗ In

⎞⎠x =

⎛⎝m

1n

⎞⎠ , x ≥ 0

⎫⎬⎭ . (4.4)
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The k-partition polytope can be seen as a special case of a transportation polytope, see

e.g., [111]. We now derive the dimension of the k-partition polytope, which will be exploited

in Section 4.2.2. The following result is implied by the dimension of the transportation

polytope [111]. However, we add a proof for completeness.

Theorem 4.1. The dimension of conv(F k
n (m)) equals (k − 1)(n− 1).

Proof. Let B :=
(

Ik⊗1�
n

1�
k ⊗In

)
. Since for all i ∈ [kn] there exists a partition such that xi = 1,

we know that dim(conv(F k
n (m))) = dim(Nul(B)).

Let b1, . . . , bkn denote the columns of B. Since {b1, . . . , bn, bn+1, b2n+1, . . . , b(k−1)n+1} is

linearly independent, it follows that rank(B) ≥ n+k−1. Next, we define for all l = 1, . . . , k−1
and i = 2, . . . , n a vector wl,i ∈ Rkn as follows:

(wl,i)j =

⎧⎪⎨⎪⎩
+1 if j = 1 or j = l · n+ i,

−1 if j = i or j = l · n+ 1,

0 otherwise.

One can verify that Bwl,i = 0 for all l = 1, . . . , k − 1 and i = 2, . . . , n. Moreover, since wl,i

is the only vector that has a nonzero entry on position ln+ i among all defined vectors, the

set {wl,i : l = 1, . . . , k − 1, i = 2, . . . , n} is a linearly independent set. This proves that

dim(Nul(B)) ≥ (k − 1)(n− 1).

Since rank(B)+dim(Nul(B)) = kn, we conclude that dim(Nul(B)) = (k− 1)(n− 1).

4.2.1 DNN relaxations for the k-equipartition problem

Throughout this section we focus on the special case of the k-EP, i.e.,mj = n/k for all j ∈ [k].

There exist several ways to obtain semidefinite programming relaxations for the k-EP.

Namely, to obtain an SDP relaxation for the k-EP one can linearize the objective func-

tion of (GPP ) by introducing a matrix variable of order n, which results in a matrix lifting

relaxation, see e.g., [231, 343]. Another approach is to linearize the objective function by

lifting the problem in the space of (nk + 1) × (nk + 1) matrices, which results in a vector

lifting relaxation, see [371]. We call a DNN relaxation basic if it does not contain additional

cutting planes such as triangle inequalities, etc. It is proven in [342] that the basic matrix

and vector lifting DNN relaxations for the k-EP are equivalent. A more elegant proof of the

same result can be found in Kuryatnikova et al. [241]. Since one can solve the basic mat-

rix lifting relaxation from [231] more efficiently than the equivalent vector lifting relaxation

from [371], we develop our algorithm for the matrix lifting relaxation for the k-EP.

To linearize the objective from (GPP ) we replace PP� by a matrix variable Y ∈ Sn.

From (4.2b) it follows that Yii =
∑k

j=1 P
2
ij =

∑k
j=1 Pij = 1 for all i ∈ [n]. From (4.2b)–

(4.2c) we have Y 1n = PP�1n = n
k
P1k = n

k
1n. After putting those constraints together,

adding Y ≥ 0 and Y � 0, we arrive at the following DNN relaxation introduced by Karisch

and Rendl [231]:

(DNNEP )

min
Y

1

2
〈L, Y 〉

s.t. diag(Y ) = 1n

Y 1n =
n

k
1n

Y � 0, Y ≥ 0.

(4.5)
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We refer to (DNNEP ) as the basic matrix lifting relaxation. We show below that the

nonnegativity constraints in (DNNEP ) are redundant for the equicut problem.

Lemma 4.2. Let k = 2 and Y ∈ Sn
+ be such that diag(Y ) = 1n and Y 1n = n

2
1n.

Then, Y ≥ 0.

Proof. From Y 1n = n
2
1n it follows that 1n is an eigenvector of Y corresponding to the

eigenvalue n/2. Then, the eigenvalue decomposition of Y is

Y =
1

2
Jn +

n∑
i=2

λiviv
�
i ,

where vi is the eigenvector of Y corresponding to the eigenvalue λi for i = 2, . . . , n. Moreover,

eigenvectors vi are orthogonal to 1n. Thus 2Y − Jn = 2
∑n

i=2 λiviv
�
i � 0.

Now, let Z := 2Y − Jn. From diag(Y ) = 1n it follows that diag(Z) = 1n. Since Z � 0

we have that −1 ≤ Zij ≤ 1 for all i, j ∈ [n], which implies that Yij ≥ 0 for all i, j ∈ [n].

For a different proof of Lemma 4.2 see e.g., Theorem 4.3 in [231]. The relaxation (DNNEP )

can be further strengthened by adding triangle and independent set inequalities, see Sec-

tion 4.4.1 and 4.4.2, respectively. This strengthened relaxation is proposed in [231] and

provides currently the strongest SDP bounds for the k-EP.

As proposed in [231], one can eliminate Y 1n = n
k
1n in (4.5) and project the relaxation

onto a smaller dimensional space, by exploiting the following result.

Lemma 4.3 ([231]). Let V ∈ Rn×(n−1) such that V �1n = 0 and rank(V ) = n− 1. Then,⎧⎨⎩Y ∈ Sn :
diag(Y ) = 1n

Y 1n =
n

k
1n

⎫⎬⎭ =

{
1

k
Jn + V RV � : R ∈ Sn−1, diag(V RV �) =

k − 1

k
1n

}
.

The matrix V in Lemma 4.3 can be any matrix which columns form a basis for 1⊥
n , e.g.,

V =

⎛⎝ In−1

−1�
n−1

⎞⎠ (4.6)

We use the result of Lemma 4.3 and replace Y by 1
k
Jn + V RV � in (DNNEP ), which leads

to the following equivalent relaxation:

min
R

〈LEP , V RV �〉

s.t. diag(V RV �) =
k − 1

k
1n

V RV � ≥ − 1

k
Jn, R � 0,

(4.7)

where R ∈ Sn−1
+ . Here, we exploit 〈L,Jn〉 = 0 to rewrite the objective, and define

LEP :=
1

2
L. (4.8)
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It is not difficult to verify that the matrix

R̂ =
n(k − 1)

k(n− 1)
In−1 −

(k − 1)

k(n− 1)
Jn−1

is feasible for (4.7), see also [231]. The matrix R̂ has two distinct eigenvalues, namely n(k−1)
k(n−1)

with multiplicity n− 2 and (k−1)
k(n−1)

with multiplicity one. This implies that R̂ � 0. Also,

1

k
Jn + V R̂V � =

n(k − 1)

k(n− 1)
In +

(n− k)

k(n− 1)
Jn > 0,

and thus V R̂V � > − 1
k
Jn. This shows that R̂ is a Slater feasible point of (4.7).

For future reference, we define the following sets:

REP :=

{
R ∈ Sn−1 : R � 0

}
, (4.9)

XEP :=

{
X ∈ Sn : diag(X) =

k − 1

k
1n, −

1

k
Jn ≤ X ≤ k − 1

k
Jn

}
. (4.10)

Now, we rewrite the DNN relaxation (4.7) as follows:

min
{
〈LEP , X〉 : X = V RV �, R ∈ REP , X ∈ XEP

}
. (4.11)

Note that XEP also contains upper bound constraints on X, which are redundant for (4.7).

These constraints speed up the convergence of our algorithm, as explained in Section 4.3.1.

In the same section, it becomes clear that the inclusion of redundant constraints should

not complicate the structure of XEP too much. Whether or not to include a redundant

constraint, is determined by an empirical trade-off between these measures.

4.2.2 DNN relaxations for the bisection problem

For the graph bisection problem there exist both vector and matrix lifting SDP relaxations.

The matrix lifting relaxations derived in [232, 343] are equivalent and have matrix variables of

order n. A vector lifting SDP relaxation for the GBP is derived by Wolkowicz and Zhao [371]

and has a matrix variable of order 2n + 1. The DNN relaxation from [371] dominates the

basic matrix lifting DNN relaxations, i.e., DNN relaxations without additional cutting planes,

see [343] for a proof. In [344] a matrix lifting DNN relaxation with additional cutting planes

is derived for the GBP that is equivalent to the DNN relaxation from [371]. Although the

relaxation from [344] has a matrix variable of order n, we work with the vector lifting DNN

relaxation because it has a more appropriate structure for our ADMM approach. Due to the

relaxation from [371] being defined for the general graph partition problem, the approach

that we follow can be easily extended to partitioning into more than two classes.

In this section we present the vector lifting DNN relaxation from [371] and show how to

obtain its facially reduced equivalent version by using properties of the bisection polytope.

As a byproduct, we also study properties of the feasible set of the DNN relaxation, see

Theorem 4.4.

Let m := [m1 m2]
� such that m1 + m2 = n be given. To derive a vector lifting SDP

relaxation for the GBP we linearize the objective from (GPP ) by lifting variables into S2n+1.

In particular, let P ∈ {0, 1}n×2 be a partition matrix and x = vec(P ). We use the properties
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of the Kronecker product and the trace to rewrite the objective as follows:

tr(LPP�) = vec(P )�(I2 ⊗ L)vec(P ) = x�(I2 ⊗ L)x =
〈
I2 ⊗ L, xx�

〉
.

Now, we replace xx� by a matrix variable X̂ ∈ S2n. The constraint X̂ = xx� can be

weakened to X̂ − xx� � 0, which is equivalent to X :=
(

1 x�

x X̂

)
� 0 by the well-known

Schur complement lemma.

In the sequel, we use the following block notation for matrices in S2n+1:

X =

⎛⎜⎜⎝
1 (x1)� (x2)�

x1 X11 X12

x2 X21 X22

⎞⎟⎟⎠ ,

where x1 (resp., x2) corresponds to the first (resp., second) column in P , andXij corresponds

to xi(xj)� for i, j = 1, 2.

Now, from 1�
n x

i = mi for i = 1, 2, it follows that tr(Xii) = mi, tr(JnX
ii) = m2

i

and tr(Jn(X
12 +X21)) = 2m1m2. From x1 ◦ x2 = 0 it follows that diag(X12) = 0.

The above derivation results in the following vector lifting SDP relaxation for the GBP [371]:

(SDPBP )

min
X

1

2

〈
L,X11 +X22〉

s.t. tr(Xii) = mi, tr (JnX
ii) = m2

i ∀i ∈ [2]

diag(X12) = 0, tr
(
Jn(X

12 +X21)
)
= 2m1m2

X =

⎛⎜⎜⎝
1 (x1)� (x2)�

x1 X11 X12

x2 X21 X22

⎞⎟⎟⎠ � 0, xi = diag(Xii) ∀i ∈ [2],

(4.12)

whereX ∈ S2n+1. By imposing nonnegativity constraints on the matrix variable in (SDPBP ),

we obtain the following DNN relaxation:

(DNNBP ) (SDPBP ) & X ≥ 0. (4.13)

The relaxation (DNNBP ) can be further strengthened by additional cutting planes. We

propose adding the boolean quadric polytope inequalities, see Section 4.4.3.

The zero pattern on off-diagonal blocks in (4.12) can be written using a linear oper-

ator GJ (·), known as the Gangster operator, see [371]. The operator GJ : S2n+1 → S2n+1 is

defined as

GJ (X) =

⎧⎨⎩ Xij if (i, j) ∈ J ,

0 otherwise,

where

J :=

{
(i, j) :

i = 1 + (p− 1)n+ q, j = 1 + (r − 1)n+ q

q ∈ [n], p, r ∈ {1, 2}, p 	= r

}
. (4.14)
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The constraints diag(X12) = diag(X21) = 0 are given by GJ (X) = 0.

We now show how to project the SDP relaxation (4.12) onto a smaller dimensional space

in order to obtain an equivalent strictly feasible relaxation by facial reduction. Although

such reduction is performed for the general graph partitioning problem in [371], our approach

differs by relying on the polytope of all bisections. We first apply facial reduction to the

relaxation (SDPBP ), after which we derive the facially reduced equivalent of (DNNBP ).

We start by deriving two properties that hold for all feasible solutions of (SDPBP ).

Theorem 4.4. Let X =

⎛⎜⎜⎝
1 (x1)� (x2)�

x1 X11 X12

x2 X21 X22

⎞⎟⎟⎠ with X̂ =

⎛⎝X11 X12

X21 X22

⎞⎠ and x =

⎛⎝x1

x2

⎞⎠
be feasible for (SDPBP ). Then,

(i) a�
i

(
X̂ − xx�

)
ai = 0 where ai = ei ⊗ 1n, ei ∈ R2, i ∈ [2];

(ii) b�i

(
X̂ − xx�

)
bi = 0 where bi = 12 ⊗ ei, ei ∈ Rn, i ∈ [n].

Proof. (i) Without loss of generality we take i = 1. Then a1 = e1 ⊗ 1n, which yields

a�
1

(
X̂ − xx�

)
a1 = 1�

nX
111n − 1�

n x
1(x1)�1n = tr(JnX

11)− tr(X11)2 = m2
1 −m2

1 = 0,

using the constraints of (4.12). The proof for i = 2 is similar.

(ii) We first show that any feasible solution to (4.12) satisfies diag(X11) + diag(X22) = 1n.

For all i ∈ [n] we define vi ∈ R2n as

(
vi
)
j
:=

{
−1 if j = i or j = n+ i,

0 otherwise.

From X̂ − xx� � 0, we have⎛⎝ 1

vi

⎞⎠� ⎛⎝1 x�

x X̂

⎞⎠⎛⎝ 1

vi

⎞⎠ ≥ 0 implying X11
ii +X22

ii ≤ 1,

where we used the fact that diag(X̂) = x. Since

n = m1 +m2 = tr(X11) + tr(X22) =

n∑
i=1

(
X11

ii +X22
ii

)
,

and the latter summation consists of n elements bounded above by one, it follows that for

all i ∈ [n] we have X11
ii +X22

ii = 1.

Now, for bi = 12 ⊗ ei, i ∈ [n], we have

b�i

(
X̂ − xx�

)
bi = X11

ii +X12
ii +X21

ii +X22
ii −

(
X11

ii +X22
ii

)2
.

Since diag(X12) = diag(X21) = 0 and diag(X11) + diag(X22) = 1n, we conclude that for

all i ∈ [n] we have b�i
(
X̂ − xx�)

bi = 1− 12 = 0.
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We can exploit the properties stated in Theorem 4.4 to identify vectors in the null space of

all feasible solutions of (SDPBP ). To do so, we use the following basic result, see e.g., [319].

Lemma 4.5. Let X ∈ Sl, x ∈ Rl and a ∈ Rl be such that X − xx� � 0, a�x = t for some

t ∈ R, and a� (
X − xx�)

a = 0. Then [−t a�]� is an eigenvector of
(

1 x�
x X

)
with respect to

eigenvalue 0.

It follows from the constraints of (4.12) that a�
i x = mi for i ∈ [2] and b�i x = 1 for i ∈ [n],

where ai and bi are defined as in Theorem 4.4. As a result, Theorem 4.4 and Lemma 4.5

imply that ⎛⎝ −mi

ei ⊗ 1n

⎞⎠ , i ∈ [2], and

⎛⎝ −1
12 ⊗ ei

⎞⎠ , i ∈ [n], (4.15)

are eigenvectors of
(

1 x�

x X̂

)
with respect to eigenvalue 0. Now, let the vectors in (4.15) define

the rows of a matrix T ∈ R(n+2)×(2n+1), i.e.,

T :=

⎛⎝−m I2 ⊗ 1�
n

−1n 1�
2 ⊗ In

⎞⎠ .

Moreover, let V = Nul(T ). Any a ∈ V defines an element aa� exposing the feasible set

of (SDPBP ). It follows from the facial geometry of the cone of positive semidefinite matrices

that the feasible set of (SDPBP ) is contained in

SV :=
{
X ∈ S2n+1

+ : Col(X) ⊆ V
}
,

which is a face of S2n+1
+ . It remains to prove that this is actually the minimal face of S2n+1

+

containing the feasible set of (SDPBP ). For that purpose, we consider the underlying bi-

section polytope conv(F 2
n(m)), see (4.4). Theorem 4.1 implies dim(conv(F 2

n(m))) = n− 1.

Besides, observe that T is constructed as the constraint matrix defining conv(F 2
n(m)) aug-

mented with an additional column. Since this additional column does not increase its rank,

we have rank(T ) = n + 1, which implies that dim(V) = n. Let V ∈ R(2n+1)×n be a matrix

whose columns form a basis for V. Then the face SV can be equivalently written as

SV = V Sn
+V

�. (4.16)

To show that SV is the minimal face containing the feasible set of (SDPBP ) we apply a

result by Tunçel [355].

Theorem 4.6 ([355]). Given F ⊆ Rl, let F :=
{(

1 x�

x X̂

)
∈ Sl+1

+ : A
((

1 x�

x X̂

))
= 0

}
,

with A : Sl+1 → Rp a linear transformation, be a relaxation of the lifted polyhedron

conv

⎛⎝⎧⎨⎩
⎛⎝1

x

⎞⎠⎛⎝1

x

⎞⎠�

: x ∈ F

⎫⎬⎭
⎞⎠ .

Suppose that F ⊆ V Sd
+V

� for some full-rank matrix V ∈ R(l+1)×d. If dim(conv(F )) = d−1,

then there exists some R � 0 such that V RV � ∈ F .
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Based on Theorem 4.6, we can now show the minimality of the face SV for both (SDPBP )

and (DNNBP ).

Theorem 4.7. The set SV is the minimal face of S2n+1
+ containing the feasible set of

(SDPBP ). If m1,m2 ≥ 2, then SV is also the minimal face of S2n+1
+ containing the feasible

set of (DNNBP ).

Proof. The feasible region of (SDPBP ) can be written in the form of F in the statement of

Theorem 4.6. To show minimality for (SDPBP ), it suffices to show that there exists a mat-

rix R ∈ Sn
+, R � 0 such that V RV � is feasible for (SDPBP ). As dim(conv(F 2

n(m))) = n− 1,

it immediately follows from Theorem 4.6 that such matrix, say R1, exists.

To prove the second statement, it suffices to show that there exists an R ∈ Sn
+ such

that R � 0 and (V RV �)ij > 0 for all (i, j) ∈ JC , where JC = ([2n + 1] × [2n + 1]) \ J ,

see (4.14). Since m1,m2 ≥ 2, it follows that for any (i, j) ∈ JC there exists a bisection xij

such that ⎛⎝⎛⎝ 1

xij

⎞⎠⎛⎝ 1

xij

⎞⎠�⎞⎠
ij

> 0.

Let Rij ∈ Sn
+ denote the matrix such that V RijV � =

(
1

xij

)(
1

xij

)�
, which consists by

construction of SV . Now, let R2 be any positive convex combination of the elements

in {Rij : (i, j) ∈ JC}. By construction, R2 � 0, while (V R2V
�)ij > 0 for all (i, j) ∈ JC .

Finally, any positive convex combination of R1 and R2 provides a matrix R with the desired

properties.

The result of Theorem 4.7 can be exploited to derive strictly feasible equivalent ver-

sions of (SDPBP ) and (DNNBP ). We focus here only on the DNN relaxation (DNNBP ).

Theorem 4.7 allows us to replace X by V RV � in (DNNBP ), where we can take

V :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0�
n−1

m1/n
...

In−1

m1/n −1�
n−1

m2/n
...

−In−1

m2/n 1�
n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.17)

Because of the structure of V , most of the constraints in (DNNBP ) become redundant. One

can easily verify that the resulting relaxation in lower dimensional space is as follows, see

e.g., [371]:

min
R

tr(LBPV RV �)

s.t. GJ (V RV �) = 0

(V RV �)1,1 = 1

V RV � ≥ 0, R ∈ Sn
+,

(4.18)
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where

LBP :=
1

2

⎛⎝0 0�

0 I2 ⊗ L

⎞⎠ , (4.19)

and L is the weighted Laplacian matrix of G. Let us now define the following sets:

RBP :=
{
R ∈ Sn : R � 0

}
, (4.20)

XBP :=

⎧⎪⎨⎪⎩X ∈ S2n+1 :

GJ (X) = 0, X1,1 = 1, tr(Xii) = mi ∀i ∈ [2]

diag(X11) + diag(X22) = 1n, Xe1 = diag(X)

0 ≤ X ≤ J

⎫⎪⎬⎪⎭ . (4.21)

Now, we are ready to rewrite the facially reduced DNN relaxation (4.18) as follows:

min
{
〈LBP , X〉 : X = V RV �, R ∈ RBP , X ∈ XBP

}
. (4.22)

Note that XBP also contains constraints that are redundant for (4.18).

4.3 A cutting-plane augmented Lagrangian algorithm

SDP has proven effective for modeling optimization problems and providing strong bounds.

It is well-known that SDP solvers based on interior-point methods might have considerable

memory demands already for medium-scale problems. Recently, promising alternatives for

solving large-scale SDP relaxations have been investigated. We refer the interested reader to

[61, 260, 308, 350, 363, 377] for algorithms based on alternating direction augmented Lag-

rangian methods for solving SDPs. For efficient approaches to solving DNN relaxations, see

also e.g., [216, 218, 252, 292, 365, 380]. To the best of our knowledge only [275] incorporates

an augmented Lagrangian method into a cutting-plane framework. The authors of [275] con-

sider only one type of cutting planes. Here, we incorporate various types of cutting planes

into one framework and use a more efficient version of the ADMM than the one used in [275].

In Section 4.3.1 we describe variants of the ADMM that are used within our cutting-

plane algorithm. Section 4.3.2 presents Dykstra’s cyclic projection algorithm that is used

for projections onto polyhedra induced by the violated cuts. Section 4.3.3 presents our

cutting-plane augmented Lagrangian algorithm.

4.3.1 The alternating direction method of multipliers

The ADMM is a first-order method from the 1970s that is developed for solving convex

optimization problems. This method decomposes an optimization problem into several sub-

problems that are easier to solve than the original problem. There exist several variants

of the ADMM for solving SDPs. We consider here a variant of the ADMM that resembles

variants from [216, 292], where we additionally consider an adaptive stepsize term proposed

by Lorenz and Tran-Dinh [258] when solving the k-EP.

In order to describe the ADMM scheme for solving SDP relaxations for both problems,

the k-equipartition problem (4.11) and the graph bisection problem (4.22), we introduce the

following unified notation: For the k-EP, define L̄ := LEP , R := REP and X := XEP (see
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resp., (4.8), (4.9), (4.10)), and for the GBP define L̄ := LBP , R := RBP and X := XBP (see

resp., (4.19), (4.20), (4.21)).

Let S denote the Lagrange multiplier for the constraint X = V RV �. Then, the augmen-

ted Lagrangian function of (4.11) and (4.22) w.r.t. the constraint X = V RV � for a penalty

parameter σ is as follows:

Lσ(X,R, S) = 〈L̄,X〉+ 〈S,X − V RV �〉+ σ

2
‖X − V RV �‖2F . (4.23)

In each iteration, the ADMM minimizes Lσ(X,R, S) subject to X ∈ X and R ∈ R and

updates S via a stepsize update. The ADMM update scheme requires a matrix V that has

orthonormal columns that can be obtained by applying a QR-decomposition to (4.6) for

the k-EP and to (4.17) for the GBP. Thus, from now on we assume that V �V = I.

Let (Rp, Xp, Sp) denote the pth iterate of the ADMM. The next iterate (Rp+1, Xp+1, Sp+1)

is obtained as follows:

Rp+1 := argmin
R∈R

Lσp(R,Xp, Sp), (4.24a)

Xp+1 := argmin
X∈X

Lσp(Rp+1, X, Sp), (4.24b)

Sp+1 :=Sp + γ · σp · (Xp+1 − V Rp+1V �), (4.24c)

where γ ∈
(
0, 1+

√
5

2

)
is a parameter for updating the dual multiplier Sp, see e.g., [363].

There exist different ways for dealing with the stepsize term γ · σp. One possibility is

to keep σp and γ fixed during the algorithm. In this approach, σp depends on the problem

data and γ has a value larger than one. This is known in the literature as the ADMM with

larger stepsize, as originally proposed by [141]. An alternative is the ADMM with adaptive

stepsize term as introduced in [258]. In that case γ = 1 and the parameter σp is updated as

follows:

σp+1 := (1− ωp+1)σp + ωp+1P[σmin,σmax]
‖Sp+1‖F
‖Xp+1‖F

, (4.25)

where ωp+1 := 2−p/100 is the weight, σmin and σmax are the box bounds for σp, and P[σmin,σmax]

is the projection onto [σmin, σmax].

Recall that we added redundant constraints for the SDP relaxations (4.11) and (4.22) to

the set X . Those constraints are, though, not redundant in the subproblem (4.24b). They

are included to speed up the convergence of the ADMM in practice, see e.g., [216, 275, 292].

One can solve the R-subproblem (4.24a) as follows:

Rp+1 =argmin
R∈R

Lσp(R,Xp, Sp) = argmin
R∈R

〈Sp,−V RV �〉+ σp

2

∥∥∥Xp − V RV �
∥∥∥2

F
,

=argmin
R∈R

∥∥∥∥V �
(
Xp +

1

σp
Sp

)
V −R

∥∥∥∥2

F

= P�0

(
V �

(
Xp +

1

σp
Sp

)
V

)
,

where P�0(·) denotes the orthogonal projection onto the cone of positive semidefinite matrices.

The X-subproblem (4.24b) can be solved as follows:

Xp+1 =argmin
X∈X

Lσp(Rp+1, X, Sp) = argmin
X∈X

〈L̄+ Sp, X〉+ σp

2

∥∥∥X − V Rp+1V �
∥∥∥2

F
,
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=argmin
X∈X

∥∥∥∥X − (
V Rp+1V � − 1

σp

(
L̄+ Sp))∥∥∥∥2

F

= PX

(
V Rp+1V � − 1

σp

(
L̄+ Sp)) ,

where PX (·) denotes the orthogonal projection onto the polyhedral set X , where X is given

in (4.10) and (4.21) for the k-EP and GBP, respectively. We below show how this projection

can be performed for the GBP. The projector for the k-EP, which has a simpler structure,

can be obtained similarly.

Recall from (4.21) that the polyhedral set XBP looks as follows:

XBP =

⎧⎪⎪⎨⎪⎪⎩X =

⎛⎜⎜⎝
1 (x1)� (x2)�

x1 X11 X12

x2 X21 X22

⎞⎟⎟⎠ ∈ S2n+1 :

GJ (X) = 0, tr(Xii) = mi ∀i ∈ [2]

diag(X11) + diag(X22) = 1n

0 ≤ X ≤ J, Xe1 = diag(X)

⎫⎪⎪⎬⎪⎪⎭ .

Let PXBP : S2n+1 → S2n+1 denote the projection onto XBP .

Observe that each constraint that defines XBP either acts on the diagonal, first row, and

first column of the matrix, or on the remaining entries. In the latter case, an entry Xij is

either bounded by 0 and 1 or equals 0 if (i, j) ∈ J . These projections are very simple and

are given by the operators Tinner and Tbox in Table 4.1.

Next, we focus on the entries on the diagonal, first row, and first column of the orthogonal

projection. Suppose Y = PXBP (X) and let y1 := diag(Y 11) and y2 := diag(Y 22). Then y1
and y2 can be obtained via the following optimization problem:

min
y1,y2∈Rn

(y1 − diag(X11))�(y1 − diag(X11)) + 2(y1 − x1)�(y1 − x1)

+ (y2 − diag(X22))�(y2 − diag(X22)) + 2(y2 − x2)�(y2 − x2)

s.t. 1�
n y1 = m1, 1�

n y2 = m2, y1 + y2 = 1n, y1 ≥ 0n, y2 ≥ 0n.

(4.26)

Using basic algebra, one can show that the optimal y1 to (4.26) is attained by the minimizer

of the following optimization problem:

min
y1∈Rn

∥∥∥∥y1 − (
1

6
(diag(X11)− diag(X22)) +

1

3
(x1 − x2) +

1

2
1n

)∥∥∥∥2

2

s.t. 1�
n y1 = m1, 0n ≤ y1 ≤ 1n,

(4.27)

while the corresponding optimal y2 to (4.26) is y2 = 1n−y1. Observe that (4.27) is equivalent

to a projection onto the capped simplex Δ̄(m1) = {y ∈ Rn : 1�
n y = m1, 0n ≤ y ≤ 1n}. The

projection onto Δ̄(m1) we denote by PΔ̄(m1)
: Rn → Rn, which can be performed efficiently,

see [13]. We define the operator Tarrow, see Table 4.1, to embed the optimal y1 and y2 in the

space S2n+1.
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Operator Description

Tinner : S2n+1 → S2n+1 Tinner (X)ij = 0 if i = 1 or j = 1 or i = j or (i, j) ∈ J
and Tinner(X)ij = Xij otherwise.

Tbox : S2n+1 → S2n+1 Tbox(X)ij = min(max(Xij , 0), 1) for all (i, j).

Tarrow : Rn → S2n+1 Tarrow(x) =

⎛⎜⎜⎝
1 x� (1n − x)�

x Diag(x) 0

1n − x 0 Diag(1n − x)

⎞⎟⎟⎠.

Table 4.1: Overview of operators and their definitions.

Now, the projector PXBP can be written out explicitly as follows:

PXBP

⎛⎜⎜⎝
⎛⎜⎜⎝
x0 (x1)� (x2)�

x1 X11 X12

x2 X21 X22

⎞⎟⎟⎠
⎞⎟⎟⎠ = Tbox

⎛⎜⎜⎝Tinner

⎛⎜⎜⎝
⎛⎜⎜⎝
x0 (x1)� (x2)�

x1 X11 X12

x2 X21 X22

⎞⎟⎟⎠
⎞⎟⎟⎠
⎞⎟⎟⎠

+Tarrow

(
PΔ̄(m1)

(
1

6
(diag(X11)− diag(X22)) +

1

3
(x1 − x2) +

1

2
1n

))
.

The performance of the ADMM greatly depends on the stepsize term. Our preliminary

tests show that for the k-EP the updating scheme (4.24)–(4.25) with adaptive stepsize term

outperforms the ADMM with larger stepsize. That is, our adaptive ADMM performs better

than the ADMM variants from [216, 218, 292]. Moreover, preliminary results show that it

outperforms the algorithm from [252]. For the GBP, however, our preliminary tests show that

it is more beneficial to keep σp fixed and use larger γ. The resulting version of the ADMM

resembles versions from [216, 218, 292]. Consequently, we initialize the ADMM (4.24) for

the k-EP by

R0 = 0, X0 =
k − 1

k
In, S0 = 0, σ0 =

⌈n
k

⌉
, γ = 1, (4.28)

and for the GBP we set

R0 = 0, X0 = e1e
�
1 , S0 = 0, σ0 =

⌈(
2n

m1

)2
⌉
, γ = 1.608. (4.29)

4.3.2 Clustered Dykstra’s projection algorithm

Both DNN problems, (4.11) and (4.22), can be strengthened by adding valid cutting planes,

see Section 4.4. Since these cutting planes are polyhedral, it is natural to include additional

cuts to the set X . This addition will, however, spoil the easy structure of X . As a result,

finding the explicit projection onto this new polyhedral set becomes a difficult task, even

after the addition of a single cut. In [275] this issue is resolved by splitting the polyhedral

set into subsets and using iterative projections based on Dykstra’s algorithm [55, 115]. This

algorithm finds the projection onto the intersection of a finite number of polyhedral sets,
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assuming that the projection onto each of the separate sets is known. Although there exist

many algorithms for finding such projection in the literature, the recent study of [35] shows

superior behaviour of Dykstra’s cyclic projection algorithm.

In this section we briefly present Dykstra’s algorithm and show how to implement it

efficiently by clustering nonoverlapping cuts. Similar to the previous section, we present a

generic version of the algorithm that can be applied to both the k-EP and the GBP.

Let us assume that T = (ti)
T
i=1 is an ordered index set of T cutting planes on the primal

variable X in the ADMM scheme, i.e., every ti ∈ T corresponds to a single cut. Also, for

each ti ∈ T let Hti be a polyhedron that is induced by the cut ti. One can think of Hti

as the halfspace induced by the cut ti, where additional constraints are added as long as

the projection onto Hti remains efficient. In Section 4.4 we show how the set T and the

polyhedra Hti look like for cuts related to both the k-EP and the GBP, and present the

projectors onto the sets Hti .

When adding the cuts in T to the relaxation, the polyhedral set X has to be replaced by

XT := X ∩

⎛⎝ ⋂
ti∈T

Hti

⎞⎠ . (4.30)

The X-subproblem of the ADMM scheme (4.24b) asks for the projection onto XT . That is,

for a given matrix M , one wants to solve the following best approximation problem:

min
M̂
‖M̂ −M‖2F s.t. M̂ ∈ XT . (4.31)

Since the structure of XT is too complex to perform the projection in one step, the idea

behind Dykstra’s algorithm is to use iterative projections. Let PHti
(·) denote the projection

onto Hti for each ti ∈ T . Also, we assume that PX (·) is known.
In Dykstra’s algorithm we initialize the so-called normal matrices N0

X = 0 and N0
ti = 0

for all ti ∈ T . These normal matrices have the same size as the primal variable X in the

ADMM scheme. Moreover, we initialize X0 = M . For q ≥ 1, the algorithm iteratively

updates:

Xq := PX
(
Xq−1 +Nq−1

X
)

Nq
X := Xq−1 +Nq−1

X −Xq

Lti := Xq +Nq−1
ti

Xq := PHti
(Lti)

Nq
ti

:= Lti −Xq

⎫⎪⎬⎪⎭ for i = 1, . . . , T.

(CycDyk)

Observe that the polyhedra X , Ht1 , . . . ,HtT are considered in a cyclic order. Therefore, the

iterative scheme (CycDyk) is also known in the literature as Dykstra’s cyclic projection al-

gorithm. The sequence (Xq)q≥1 strongly converges to the solution of the best approximation

problem (4.31), see e.g., [47, 55, 150], and the convergence rate is known to be linear [96] in

case the sets to be projected on are polyhedral.

We perform several actions to implement the algorithm (CycDyk) as efficiently as pos-

sible. First, we can reduce the number of iterations needed to converge by adding some of

the constraints of X also to the sets Hti . This brings the sets Hti closer to the intersection

XT , leading to faster convergence. A restriction on this addition is that we should still be
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able to find the explicit projection onto Hti . In Section 4.4.3 we show how some of the

constraints from the DNN relaxation of the bisection problem are added to the polyhedra

Hti , while keeping the structure of the polyhedra sufficiently simple.

Second, as observed in [275], it is possible to partly parallelize the algorithm (CycDyk).

The cuts in T are often very sparse. This implies that the projection onto Hti only involves

a small number of entries, while the other entries are kept fixed. This property can be

exploited by clustering nonoverlapping cuts. Two cuts 〈At1 , X〉 ≤ bt1 and 〈At2 , X〉 ≤ bt2
are called nonoverlapping if the matrices At1 and At2 have disjoint supports. When the cuts

indexed by t1 and t2 are nonoverlapping, the projections onto Ht1 and Ht2 are independent

and, hence, can be performed simultaneously. This idea can be generalized by creating

clusters of nonoverlapping cuts. Suppose we cluster the set T into r clusters Ci, i ∈ [r]

such that C1 ∪ · · · ∪ Cr = T , Ci ∩ Cj = ∅ for i 	= j, i, j ∈ [r], and all cuts in Ci, i ∈ [r]

are nonoverlapping. Then, an iterate of (CycDyk) is performed in r + 1 consecutive steps,

instead of T + 1. Observe that this requires the set of clusters (Ci)
r
i=1 to be ordered.

To cluster the cuts, we proceed as follows. We denote by H an undirected graph in

which each vertex represents a cutting plane indexed by an element from T . Two vertices

in H are connected by an edge if and only if two cuts are overlapping. Clustering T into

nonoverlapping sets corresponds to clustering vertices of H into independent sets. Therefore,

clustering T into the smallest number of nonoverlapping sets reduces to finding a minimum

coloring in H. Since the graph coloring problem is NP-hard, we use an efficient heuristic

algorithm from [153] to find a near-optimal coloring.

4.3.3 The cutting-plane ADMM

In this section we put all elements of our cutting-plane algorithm together. In particular,

we combine the ADMM from Section 4.3.1 and the clustered implementation of Dykstra’s

projection algorithm from Section 4.3.2 into a cutting-plane ADMM-based algorithm. We

refer to this algorithm as the cutting-plane ADMM. Algorithm 4.1 provides a pseudo-code

of our algorithm. Since the CP–ADMM solves a two-block separable convex problem, it is

guaranteed to converge, see e.g., [53, 363]. Convergence of the (generalized) ADMM in case

the subproblems are solved approximately is established in [118, Theorem 8]. The stopping

criteria and input parameters are specified in Section 4.3.3.2 and Section 4.5, respectively.

The CP–ADMM is designed to solve DNN relaxations for the GPP with additional

cutting planes. In particular, Algorithm 4.1 can solve the DNN relaxation for the k-EP,

see (4.11), that is strengthened by the triangle inequalities (4.35) and independent set in-

equalities (4.38). Similarly, Algorithm 4.1 also solves the DNN relaxation for the GBP,

see (4.22), with additional BQP inequalities (4.42).

Let us outline the main steps of the CP–ADMM. Initially, the ordered set T is empty and

the algorithm solves the basic DNN relaxation, i.e., the DNN relaxation without additional

cutting planes, using the ADMM as described in Section 4.3.1. After one of the stopping

criteria from the inner while-loop is satisfied, see Section 4.3.3.2, a valid lower bound is com-

puted based on the current approximate solution, see Section 4.3.3.1. Then, the algorithm

identifies violated cuts and adds the numCuts most violated ones to T according to some

(arbitrary) ordering. We also remove existing cuts from T in case they are no longer active.

To increase performance, the cuts induced by tuples in T are clustered by using a heuristic

for the graph coloring problem from [153]. The procedure is repeated, where the projection

onto XT , see (4.30), is performed by the semi-parallelized version of Dykstra’s projection

algorithm, see Section 4.3.2. The outer while-loop stops whenever one of the global stopping
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criteria is met.

The CP–ADMM can be extended to solve various DNN relaxations with a large number

of additional cutting planes. We remark that computing such strong bounds was not possible

until now even for medium-sized problems and limited number of cutting planes.

Algorithm 4.1 CP–ADMM for the GPP

Input: weighted Laplacian matrix L̄, m1 ≥ . . . ≥ mk, UB, εADMM, εproj, numCuts, maxOuterLoops,
maxTime

1: Initialization: Set (R0, X0, S0), σ0 and γ by using (4.28) or (4.29). Set p = 0, T = ∅.
2: Obtain V by applying a QR-decomposition to (4.6) for the k-EP and to (4.17) for the GBP.
3: while stopping criteria not met do
4: while stopping criteria not met do

5: Rp+1 := P�0

(
V � (

Xp + 1
σp Sp

)
V
)
.

6: Xp+1 := PXT

(
V Rp+1V � − 1

σp

(
L̄ + Sp

))
by solving (4.31) using (CycDyk).

7: Sp+1 := Sp + γ · σp · (Xp+1 − V Rp+1V �).

8: If adaptive stepsize term is used, update σp+1 by using (4.25).
9: p ← p + 1.
10: end while
11: Compute a valid lower bound LB(Sp) by using (4.33) .
12: Remove inactive cuts from T . Identify violated inequalities and add the numCuts most violated

cuts to T w.r.t. some ordering.
13: Cluster the cuts in T .
14: end while
Output: valid lower bound LB(Sp)

4.3.3.1 Valid lower bounds

There are several existing ways to obtain valid lower bounds when stopping iterative al-

gorithms earlier, see e.g., [252, 292]. We compute valid lower bounds by exploiting the

approach from [252].

We use our uniform notation for the k-EP and the GBP to derive the Lagrangian dual

problem for both problems. Let L(X,R, S) := L0(X,R, S), see (4.23), denote the Lagrangian

function of (4.11) and (4.22) with respect to dualizing X = V RV �. Moreover, we define the

restricted set R for both problems as follows:

R := R∩ {R : tr(R) = ξ},

where ξ = (k−1)n
k

for the k-EP and ξ = n+1 for the GBP. Indeed, the trace constraints added

to R follow from (4.10) and (4.21), respectively. Replacing the constraint R ∈ R by R ∈ R
in (4.11) and (4.22) does not change the corresponding problems. We can, however, exploit

it in the corresponding Lagrangian dual problem:

max
S∈Sq

min
X∈XT ,R∈R

L(X,R, S) = max
S∈Sq

{
min

X∈XT
〈L̄+ S,X〉 − ξλmax

(
V �SV

)}
, (4.32)

where λmax(V
�SV ) is the largest eigenvalue of V �SV , and q is the appropriate order of

the cone of symmetric matrices. In (4.32) we exploit the well-known Rayleigh principle. It

follows from (4.32) that for any S ∈ Sq one can obtain a valid lower bound by computing:

LB(S) = min
X∈XT

〈L̄+ S,X〉 − ξλmax(V
�SV ), (4.33)
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where ξ differs for both problems. Since the minimization problem in (4.33) is a linear

programming problem, the computation of valid lower bounds is efficient.

4.3.3.2 Stopping criteria for the CP–ADMM

We use different stopping criteria for the inner and outer while-loops in Algorithm 4.1. The

following measure is used as one of the stopping criteria for the inner while-loop:

max

{
‖Xp − V RpV �‖F

1 + ‖Xp‖F
, σ
‖Xp+1 −Xp‖F

1 + ‖Sp‖F

}
< εADMM,

where εADMM is the prescribed tolerance precision. We also stop the inner while-loop

when maxTime is reached.

The Dykstra’s projection algorithm (CycDyk) stops when ‖Xq+1 − Xq‖F < εproj for a

given input parameter εproj.

We consider the following types of stopping criteria for the outer while-loop:

The algorithm stops if the gap between a valid lower bound, that is rounded up to the

closest integer, and a given upper bound UB is closed.

The algorithm stops if an improvement in lower bounds between two consecutive outer

loops is less than the prescribed threshold, i.e., 0.001.

The algorithm stops if the number of new cuts to be added in the next outer loop is

small, i.e., < 0.25n.

The algorithm stops if the maximum number of outer loopsmaxOuterLoops is reached.

The algorithms stops immediately if the maximum computation time maxTime is

reached.

We specify the values of the input parameters in Section 4.5.

4.3.3.3 Efficient ingredients of the CP–ADMM

Algorithm 4.1 is efficient due to the following ingredients:

1. Warm starts. After identifying new cuts we start the new ADMM iterate from the

last obtained triple (Rp, Xp, Sp). Observe that there is no warm start strategy for an

interior-point method.

2. Scaling of data. Since the course of the algorithm depends on the magnitude of the

objective value coefficients, we can improve the robustness of the proposed algorithm by

an appropriate scaling of the data. Therefore, we scale the objective by a scalar ρ ∈ R
that depends on the problem and its size. Namely, for the k-EP we set ρ = 1/‖L‖F
for n ≤ 400, ρ = k/‖L‖F for 400 < n ≤ 800, and ρ = n/(k‖L‖F ) otherwise. For the

GBP we use ρ = 1. The values for ρ are obtained by extensive numerical tests.

3. Clustering. A crucial ingredient for improving the performance of Dykstra’s projec-

tion algorithm is clustering cuts, see Section 4.3.2.

4. Separation. We introduce a probabilistic independent set separation method to sep-

arate independent set inequalities, see Algorithm 4.2 in Section 4.4.
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Similar to what has been indicated in Section 3.7.2, the bottleneck of the CP-ADMM is

the projection onto the positive semidefinite cone when T = ∅. When we start adding cuts,

Dykstra’s algorithm starts taking over the major part of the computation time.

4.4 Valid cutting planes, their projectors and separators

In this section we consider various families of cutting planes that strengthen the DNN relax-

ations for the k-EP and GBP. In the light of adding them in the cutting-plane augmented

Lagrangian algorithm of Section 4.3, we present for each cut type a polyhedral set Hti in-

duced by the cut (and, possibly, a subset of the constraints from the corresponding DNN

relaxation). We show how to explicitly project a matrix onto these polyhedral sets. The

efficient separation of these cut types is also considered.

In total we consider three types of cutting planes: two for the k-EP and one for the GBP.

4.4.1 Triangle inequalities for the k-EP

Let us consider the relaxation (DNNEP ), see (4.5) for the k-equipartition problem. Mar-

cotorchino [262] as well as Grötschel and Wakabayashi [185] observe that the linear relaxation

of the k-equipartition problem can be strengthened by adding the triangle inequalities:

Yij + Yil ≤ 1 + Yjl for all triples (i, j, l), i 	= j, j 	= l, i 	= l. (4.34)

For a given triple (i, j, l) of distinct vertices, the triangle constraint (4.34) ensures that if i

and j are in the same set of the partition and so are i and l, then also j and l have to

belong to the same set of the partition. Karisch and Rendl [231] use these inequalities to

strengthen (DNNEP ).

To obtain the equivalent facially reduced relaxation (4.7), we apply the linear transform-

ation X = Y − 1
k
Jn, see Section 4.2.1. As we apply our cutting-plane algorithm on this latter

relaxation, we also perform this transformation on the triangle inequalities. The transformed

cuts are as follows:

Xij +Xil ≤
k − 1

k
+Xjl for all triples (i, j, l), i 	= j, j 	= l, i 	= l. (4.35)

Observe that there exist 3
(
n
3

)
triangle inequalities.

To incorporate the cutting planes (4.35) into our cutting-plane augmented Lagrangian

algorithm, we define for each cut a polyhedral set that is induced by the cut. For each

triple (i, j, l) we define the polyhedron HΔ
ijl ⊆ Sn as follows:

HΔ
ijl :=

{
X ∈ Sn : Xij +Xil ≤

k − 1

k
+Xjl

}
. (4.36)

Let PHΔ
ijl

: Sn → Sn denote the operator that projects a matrix in Sn onto HΔ
ijl. As HΔ

ijl is

a halfspace, this projection has an easy closed-form expression.

Identifying the most violated inequalities of the form (4.35) can be done by a complete

enumeration. This separation can be done in O(n3).
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4.4.2 Independent set inequalities for the k-EP

Chopra and Rao [76] introduced a further type of inequalities that are valid for the linear

relaxation of the k-equipartition problem, namely∑
i,j∈I,i<j

Yij ≥ 1 for all I ⊆ V with |I| = k + 1, (4.37)

which are known as the independent set inequalities. These inequalities have also been used

for the SDP relaxation in the work of Karisch and Rendl [231]. The intuition behind these

constraints is that for all subsets of k+1 nodes, there must always be two nodes that are in

the same set of the partition. Thus, the graph with adjacency matrix Y has no independent

set of size k + 1.

Using the linear transformation X = Y − 1
k
Jn, we obtain the following equivalent in-

equalities that are valid for the facially reduced relaxation (4.7):∑
i,j∈I,i<j

Xij ≥
1− k

2
for all I with |I| = k + 1. (4.38)

Observe that there are
(

n
k+1

)
independent set inequalities.

Let us define for each set I ⊆ V with |I| = k + 1 a polyhedral set HIS
I ⊆ Sn that is

induced by the cut, i.e.,

HIS
I :=

{
X ∈ Sn :

∑
i,j∈I,i<j

Xij ≥
1− k

2

}
. (4.39)

We let PHIS
I

: Sn → Sn denote the projector onto the halfspaceHIS
I , which can be performed

by a closed-form expression.

In order to find the most violated inequalities of type (4.38), we need a separator for

independent set inequalities. Exact separation of these inequalities for general k is known to

be NP-hard [122, 345]. Complete enumeration leads to a running time of O(nk+1), which is

reasonable for k = 2 and k = 3, but becomes practically very expensive for k > 3. For these

larger k, we apply a combination of two separation heuristics to identify violated inequalities.

First, we apply the deterministic separation heuristic from [14]. This method efficiently

generates at most n inequalities, which turn out to be effective as numerical experiments

in [14] suggest.

On top of the heuristic from [14], we also introduce a probabilistic independent set

inequality separation heuristic. Although this algorithm relies on the same idea as the

deterministic heuristic from [14], the greedy selection of a new vertex to add in the set C is

randomized with probabilities inversely proportional to their values in the current solution

matrix X. A pseudo-code of this heuristic is given in Algorithm 4.2. The parameter NR

corresponds to the number of repetitions, while ε > 0 is a sensitivity parameter. Low values

of ε lead to very sensitive behaviour with respect to differences in the current solution X,

while the selection eventually resembles a uniform distribution when ε is increased. The

advantage of this randomization is that the combination of both heuristics can yield more

than n violated independent set inequalities.
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Algorithm 4.2 Probabilistic separation method for independent set inequalities

Input: the number of partitions k, the size of graph n, output matrix X from the ADMM, number of
repetitions NR, sensitivity parameter ε > 0.

1: Initialization: Y = X + 1
kJn, C = ∅.

2: for r ∈ [NR] do
3: Choose vertex v uniformly at random from [n].
4: C ← {v}
5: S ← [n] \ {v}
6: for l ∈ [k] do
7: Define pi :=

∑
j∈C yij + ε for all i ∈ S

8: Define qi :=
(1/pi)∑

i∈S(1/pi)
for all i ∈ S

9: Randomly select vertex i ∈ S according to probability mass function {qi}i∈S

10: C ← C ∪ {i}, S ← S \ {i}
11: end for
12: if C /∈ C then
13: C ← C ∪ {C}
14: end if
15: end for
Output: a collection of violated distinct independent set inequalities C, its violation vector v.

4.4.3 BQP inqualities for the GBP

We now consider the relaxation (DNNBP ), see (4.13). The relaxation (DNNBP ) can be

further strengthened by adding the following inequalities:

0 ≤ Xij ≤ Xii (4.40)

Xii +Xjj ≤ 1 +Xij (4.41)

Xil +Xjl ≤ Xll +Xij (4.42)

Xii +Xjj +Xll ≤ Xij +Xil +Xjl + 1, (4.43)

where X = (Xij) ∈ S2n+1 and 1 ≤ i, j, l ≤ 2n, i 	= j, i 	= l, j 	= l. The inequalities (4.40)–

(4.43) are facet defining inequalities of the boolean quadric polytope [297]. Wolkowicz and

Zhao [371] prove that the inequalities (4.40) and (4.41) are already implied by the constraints

in (4.12). Moreover, preliminary numerical results show that the inequalities (4.42) make

larger improvements in the bounds when added to the DNN relaxation than the inequalit-

ies (4.43). Therefore, we consider only the constraints (4.42) within our algorithm.

Different from the SDP relaxation of the k-EP, the polyhedral set XBP is a subset of the

lifted space S2n+1. As a result, the polyhedral part induced by a BQP cut of the form (4.42)

is also a subset of S2n+1. For each triple (i, j, l) with 2 ≤ i, j, l ≤ 2n+1, i 	= j, i 	= l, j 	= l,

we define the following polyhedron:

HBQP
ijl :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎝
1 (x1)� (x2)�

x1 X11 X12

x2 X21 X22

⎞⎟⎟⎠ ∈ S2n+1 :

X =

⎛⎝X11 X12

X21 X22

⎞⎠ , x1 + x2 = 1n

Xil +Xjl ≤ Xll +Xij

diag(Xii) = xi ∀i ∈ [2]

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (4.44)

The polyhedron HBQP
ijl is not only induced by the BQP cut, it also contains a subset of the

constraints of the relaxation (4.13). This idea is inspired by the approach in [275], where the

inclusion of additional constraints in each polyhedron in Dykstra’s algorithm speeds up the
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convergence. Since the structure of HBQP
ijl must remain simple enough to project onto it via

a closed form expression, it is impractical to add all constraints from (4.13). The set HBQP
ijl

is chosen such that we are still able to project onto it explicitly.

Let PHBQP
ijl

: S2n+1 → S2n+1 denote the projector onto HBQP
ijl . Given that the matrix

that is projected already satisfies diag(X11) = x1, diag(X22) = x2 and x1 + x2 = 1n, which

is always the case in our implementation, this projector is specified by the result below.

Lemma 4.8. Let M =

⎛⎜⎜⎝
1 diag(M11)� diag(M22)�

diag(M11) M11 M12

diag(M22) M21 M22

⎞⎟⎟⎠ ∈ S2n+1 be such that

diag(M11) + diag(M22) = 1n and let M̂ := PHBQP
ijl

(M). If Mil + Mjl ≤ Mij + 1
6
Mll +

1
3
M1l − 1

6
Ml∗l∗ − 1

3
M1l∗ + 1

2
, then

M̂pq =

⎧⎪⎨⎪⎩
1
6
Mll +

1
3
M1l − 1

6
Ml∗l∗ − 1

3
M1l∗ + 1

2
if (p, q) ∈ {(l, l), (1, l), (l, 1)},

− 1
6
Mll − 1

3
M1l +

1
6
Ml∗l∗ + 1

3
M1l∗ + 1

2
if (p, q) ∈ {(l∗, l∗), (1, l∗), (l∗, 1)},

Mpq otherwise.

Otherwise, M̂ is such that

M̂pq =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

7
10

Mil − 3
10

Mjl + 3
10

Mij + 1
20

Mll + 1
10

M1l − 1
20

Ml∗l∗ − 1
10

M1l∗ + 3
20

if (p, q) ∈ {(i, l), (l, i)},
− 3

10
Mil + 7

10
Mjl + 3

10
Mij + 1

20
Mll + 1

10
M1l − 1

20
Ml∗l∗ − 1

10
M1l∗ + 3

20
if (p, q) ∈ {(j, l), (l, j)},

3
10

Mil + 3
10

Mjl + 7
10

Mij − 1
20

Mll − 1
10

M1l + 1
20

Ml∗l∗ + 1
10

M1l∗ − 3
20

if (p, q) ∈ {(i, j), (j, i)},
1
10

Mil + 1
10

Mjl − 1
10

Mij + 3
20

Mll + 1
10

M1l − 3
20

Ml∗l∗ − 3
10

M1l∗ + 9
20

if (p, q) ∈ {(l, l), (1, l),
(l, 1)}

− 1
10

Mil − 1
10

Mjl + 1
10

Mij − 3
20

Mll − 3
10

M1l + 3
20

Ml∗l∗ + 3
10

M1l∗ + 11
20

if (p, q) ∈ {(l∗, l∗),
(1, l

∗
),

(l
∗
, 1)}

Mpq otherwise.

where l∗ is obtained from l by l∗ := 2 + (l + n− 2) mod 2n.

Proof. The matrix M̂ is the solution to minM̂∈S2n+1

{
‖M̂−M‖2F : M̂ ∈ Hijl

}
. The inequal-

ity describing HBQP
ijl only involves the pairs (i, l), (j, l), (i, j) and (l, l). Since diag(X11) = x1,

diag(X22) = x2 and x1 + x2 = 1n should be satisfied for M̂ , any change in (l, l) also has an

effect on the pairs (1, l), (l∗, l∗) and (1, l∗), where l∗ is the index corresponding to l in the

diagonal block not containing l. Taking these pairs into account, we can restrict ourselves

to the following convex optimization problem:

min
α,β,γ,μ

2(α−Mil)
2 + 2(β −Mjk)

2 + 2(γ −Mij)
2 + (μ−Mll)

2 + 2(μ−M1l)
2

+ (1− μ−Ml∗l∗)
2 + 2(1− μ−M1l∗)

2

s.t. α+ β ≤ γ + μ.

Let λ ≥ 0 denote the Lagrange multiplier for the inequality, then the KKT conditions imply
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the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4(α−Mil) + λ = 0

4(β −Mjl) + λ = 0

4(γ −Mij)− λ = 0

2(μ−Mll) + 4(μ−M1l) + 2(μ− 1 +Ml∗l∗) + 4(μ− 1 +M1l∗)− λ = 0

λ(α+ β − γ − μ) = 0

α+ β ≤ γ + μ

λ ≥ 0.

Complementarity implies that either α + β = γ + μ or λ = 0. The latter case leads to

the KKT-point (α, β, γ, μ) =
(
Mil,Mjl,Mij ,

1
6
Mll +

1
3
M1l − 1

6
Ml∗l∗ − 1

3
M1l∗ + 1

2

)
, which is

optimal if Mil +Mjl ≤Mij +
1
6
Mll +

1
3
M1l − 1

6
Ml∗l∗ − 1

3
M1l∗ + 1

2
.

Now assume that λ 	= 0. Then α + β = γ + μ. The first four equalities of the KKT

system can be rewritten as:

α = Mil −
1

4
λ, β = Mjl −

1

4
λ, γ = Mij +

1

4
λ

μ =
1

6
Mll +

1

3
M1l −

1

6
Ml∗l∗ −

1

3
M1l∗ +

1

2
+

1

12
λ

Substitution into α+ β = γ + μ yields

Mil −
1

4
λ+Mjl −

1

4
λ = Mij +

1

4
λ+

1

6
Mll +

1

3
M1l −

1

6
Ml∗l∗ −

1

3
M1l∗ +

1

2
+

1

12
λ

⇐⇒ λ =
12

10

(
Mil +Mjl −Mij −

1

6
Mll −

1

3
M1l +

1

6
Ml∗l∗ +

1

3
M1l∗ −

1

2

)
.

Substitution of this expression for the Lagrange multiplier into the remaining equalities

provides the optimal values for α, β, γ and μ:

α =
7

10
Mil −

3

10
Mjl +

3

10
Mij +

1

20
Mll +

1

10
M1l −

1

20
Ml∗l∗ −

1

10
M1l∗ +

3

20

β = − 3

10
Mil +

7

10
Mjl +

3

10
Mij +

1

20
Mll +

1

10
M1l −

1

20
Ml∗l∗ −

1

10
M1l∗ +

3

20

γ =
3

10
Mil +

3

10
Mjl +

7

10
Mij −

1

20
Mll −

1

10
M1l +

1

20
Ml∗l∗ +

1

10
M1l∗ −

3

20

μ =
1

10
Mil +

1

10
Mjl −

1

10
Mij +

3

20
Mll +

3

10
M1l −

3

20
Ml∗l∗ −

3

10
M1l∗ +

9

20
.

Setting M̂il = M̂li = α, M̂jl = M̂lj = β, M̂ij = M̂ji = γ, M̂ll = M̂1l = M̂l1 = μ

and M̂l∗l∗ = M̂1l∗ = M̂l∗1 = 1− μ gives the final result.

Separating the BQP inequalities (4.42) can be done in O(n3) by complete enumeration.

4.5 Computational results

We implemented our algorithm CP–ADMM in Matlab. For efficiency some separation

routines have been coded in C. In order to evaluate the quality of the bounds and the run

times to compute these bounds, we test our algorithms on various instances from the literat-
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ure. All experiments were run on an Intel Xeon, E5-1620, 3.70 GHz with 32 GB memory. To

compute valid lower bounds after each run of the inner while-loops we use Mosek [284]. Note

that the computation of a valid bound after the inner while-loops is necessary for checking

the stopping criteria.

We now describe the data sets used in our evaluation. Most of these instances were also

considered in [20] and [21].

G|V |,|V |p and U|V |,|V |πd2 : randomly generated graphs by Johnson et al. [228].

– G|V |,|V |p: graphs G = (V,E), with |V | ∈ {124, 250, 500, 1000} and four individual

edge probabilities p. These probabilities were chosen depending on |V |, so that the

average expected degree of each node was approximately |V |p ∈ {2.5, 5, 10, 20}.
– U|V |,|V |πd2 : graphs G = (V,E), with |V | ∈ {500, 1000} with distance value d such

that |V |πd2 ∈ {5, 10, 20, 40}. To form such a graph G = (V,E), one chooses 2|V |
independent numbers uniformly from the interval (0, 1) and views them as co-

ordinates of |V | nodes on the unit square. An edge is inserted between two

vertices if and only if their Euclidean distance is at most d.

Mesh graphs from [131, 346]: Instances from finite element meshes; all nonzero edge

weights are equal to one. Graph names begin with ‘mesh’, followed by the number of

vertices and the number of edges.

KKT graphs: These instances originate from nested bisection approaches for solving

sparse symmetric linear systems. Each instance consists of a graph that represents the

support structure of a sparse symmetric linear system, for details see [202].

Toroidal 2D- and 3D-grid graphs arise in physics when computing ground states for

Ising spinglasses, see e.g., [202]. They are generated using the rudy graph gener-

ator [322]:

– spinglass2pm nr: A toroidal 2D-grid for a spinglass model with weights {+1,−1}.
The grid has size nr × nr, i.e., |V | = n2

r. The percentage of edges with negative

weights is 50%.

– spinglass3pm nr: A toroidal 3D-grid for a spinglass model with weights {+1,−1}.
The grid has size nr×nr×nr, i.e., |V | = n3

r. The percentage of edges with negative

weights is 50%.

4.5.1 Computational results for the k-EP

In the CP–ADMM, see Algorithm 4.1, we input an upper bound UB and the parameters

maxTime, numCuts, maxOuterloops, εproj, and εADMM. We also require the bounds σmin,

and σmax for the adaptive stepsize term. The setting of these parameters is as follows:

As an upper bound we input the values we obtained by heuristics or the optimal

solution given in the literature.

The maximal number of cuts added in each outer while-loop, numCuts, is 3n for graphs

with n ≤ 300 and 5n when n > 300. These values are determined by preliminary tests,

see also Appendix A.2.
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The maximal number of outer while-loops is 30 for instances with n ≤ 300, and 10

when n > 300.

The precision for Dykstra’s projection algorithm εproj is set to 10−4.

The inner precision εADMM is 10−4 in the last iteration and 10−3 in all previous loops.

The maximum computation time maxTime is set to 2 hours.

The bounds σmin and σmax for σp are 10−5 and 103, respectively.

In each outer while-loop we separate MaxIneq violated inequalities. We experimented with

two strategies: One strategy is to first add violated triangle inequalities and, in case less

than MaxIneq violated triangle inequalities are found, we add violated independent set

inequalities. The other strategy is to mix the two kinds of cuts and search for violated

triangle and independent set inequalities together. The experiments showed that the latter

strategy obtains better results, i.e., better bounds within the same time. Therefore, in

the final setting we search for the most violated inequalities from both, the triangle and

independent set inequalities.

The separation of triangle inequalities is done by complete enumeration. Searching for

independent set inequalities is also done by complete enumeration if k ∈ {2, 3}. For k ∈ {4, 5}
we apply the heuristic from [14] and Algorithm 4.2, as explained in Section 4.4.2.

In Table 4.2 we compare the eigenvalue lower bound by Donath and Hoffman [104]

(denoted by DH) with the lower bound when computing the DNN relaxation as well as the

DNN relaxation with additional cuts on selected graphs from our testbed. We do not include

other bounds from the literature, such as bounds from [193], as they are weaker than the

DH bound. The DH bound is obtained by solving the corresponding SDP relaxation using

Mosek [284]. The numbers in the table show that the DNN bound significantly improves

over the DH bound. Moreover, our ADMM algorithm requires less time and memory to

compute the DNN bound than Mosek to compute the DH bound. Adding cuts to the DNN

gives an even more substantial improvement. Hence, including triangle and independent

set inequalities is much stronger than including nonnegativity constraints only. As the DH

bound is not competitive with the DNN bound and far from the DNN+cuts bound, we will

not include it in the subsequent presentation of the numerical results.

As shown by [342, 343], the bound (4.11) is equivalent to the SDP bounds derived in [233,

343] and the bound [371] with nonnegativity constraints. Also, it dominates the bounds [104,

321] as shown by [231]. For that reason, we do not include these SDP approaches in the

numerical results.

Computing an equipartition using commercial solvers is out of reach unless the graphs

are extremely sparse. For instances in Table 4.2, Gurobi (with the default settings) solves

the small and very sparse instances within a few seconds, but obtains a gap of more than 40%

after 2 hours for larger, but still reasonably sparse graphs. E.g., for G250,5, a graph on 250

vertices with density 2%, the gap after two hours is more than 40%. For G250,20, a graph

on 250 vertices and density 8%, the gap is even more than 80% after two hours. This limited

power of commercial solvers to tackle the k-EP is also observed in [59]. Hence, we omit the

comparison to Gurobi or other LP-based solvers in the tables.

In Tables 4.3 to 4.9 we give the details of our numerical results. In the first 4 columns

we list the name of the instance, the number of vertices n, the partition number k and an
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Graph n k UB DH DNN DNN + Cuts

mesh.70.120 70 2 7 1.93 2.91 6.02

KKT.lowt01 82 2 13 2.47 4.88 12.43

mesh.148.265 148 4 22 5.46 8.13 21.23

G124,2.5 124 2 13 4.59 7.29 12.01

G124,10 124 2 178 138.24 152.86 170.88

G124,20 124 2 449 403.08 418.67 439.96

G250,2.5 250 2 29 10.99 15.16 28.30

G250,5 250 2 114 70.21 81.52 105.00

G250,10 250 2 357 280.25 303.02 330.40

Table 4.2: Comparison of different lower bounds.

upper bound. The upper bounds are obtained by heuristics or the optimal solution from the

literature.

In columns 5 and 6 the lower bound (rounded up) and the time when solving the DNN

relaxation are given. Finally, in the remaining columns we display the results when adding

cuts to the DNN relaxation: we report the rounded up lower bounds, the computation time

and the improvement (in %) on the rounded up lower bounds with respect to the DNN

relaxation without cuts. We decided to report the improvement with respect to the rounded

values, since otherwise for small numbers the percentages are incredibly huge. E.g., for

instance U1000,5 and k = 4, the value of the DNN bound is 0.17, the DNN+cuts bound

is 2.45, giving an improvement of 1341.2%. The rounded up values are 1 and 3, respectively,

giving a 200% improvement, which reflects the situation much better. Moreover, we present

the percentage of the gap between the upper bound and the rounded DNN relaxation without

cuts that is closed by the rounded DNN relaxation with cutting planes.

In columns 10 and 11 we list the number of triangle cuts and independent set cuts

present when stopping the algorithm. In the last two columns, the number of iterations of

the ADMM and the number of outer while-loops is reported.

As can be observed in all tables, the bounds improve drastically when adding triangle

and independent set inequalities to the DNN relaxation while the time for computing these

bounds is still reasonable. We remark here that we can stop the CP–ADMM at any time

and provide a valid lower bound.

The results show that the CP–ADMM takes much more of the triangle inequalities when

computing bounds for the k-equipartition problem. Remember that we search for triangle

and independent set inequalities together. Hence, there are more triangle inequalities with

a large violation which means that the triangle inequalities contribute more to the strength

of the bound than the independent set inequalities.

We discuss the results in more detail in the subsequent sections.

4.5.1.1 Detailed results for k = 2

In Tables 4.3 and 4.4 we report results for k = 2. Table 4.3 includes graphs with up

to 274 vertices, the DNN bound for these graphs can be computed within a few seconds.

After adding in total some 500 up to 16 000 triangle inequalities and additional 300 up to

roughly 7000 independent set inequalities, the bound improves between 4.55% and 300%. In

several cases, the bound closes the gap to the best known upper bound, as can be seen from
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the large percentage of the gap that is closed by the addition of cutting planes. Otherwise,

the algorithm stops due to the little improvement of the bounds in consecutive outer while-

loops. The time for computing these bounds ranges from a few seconds to 17 minutes.

In Table 4.4 we consider larger graphs with 500 and 1000 vertices. The DNN bound can

be computed for these graphs within 12 minutes. After adding triangle and independent

set inequalities, the bound improves up to 200% in a running of 40 seconds up to 2 hours.

On the G graphs one observes that the improvement of the bound when adding cuts gets

more significant as the graphs get sparser. Note that for all these instances we stop because

the number of outer while-loops is reached or the improvement of the bounds in consecutive

outer while-loops is too small.

We give further results for graphs from the literature in Table A.3 in Appendix A.2. For

most of these we prove optimality of the best found k-equipartition, confirming the high

quality of our lower bounds.

4.5.1.2 Detailed results for k > 2

In Tables 4.5 to 4.9 we report results for k > 2. As in the case for k = 2, the bounds can be

significantly improved while the time for obtaining the bounds is still reasonable. However,

we close the gap for fewer instances as for k = 2, although the percentage of the gap closed

by the addition of cutting planes is in almost all cases substantial. The improvement for the

larger graphs after adding cuts to the DNN relaxation is up to 200% for k = 4 and up to

300% for k = 5.

It has been observed by [231, 256, 365] that when k increases, the nonnegativity con-

straints become more important for the strength of the bound, while the number of violated

triangle inequalities becomes smaller. This claim is supported by our numerical results,

which show that the effect of the additional cutting planes is more significant for k = 2 than

for k > 2. Since the largest k we consider, i.e., k = 6, is rather small, we still observe an

improvement by adding triangle and independent set constraints.

For smaller graphs the CP–ADMM stops because the improvement of the lower bound

compared to the previous iteration is below the threshold 0.001, see Section 4.3.3.2. The

largest improvement in the DNN+cuts bound w.r.t. the DNN bound is 500%. Again, we

observe that for graphs with more than 250 vertices, the algorithm typically stops because

the maximum number of outer loops is reached.

4.5.2 Computational results for the GBP

In Algorithm 4.1, we input an upper bound UB and parameters numCuts, maxOuterloops,

εproj, εADMM, and maxTime. The setting of these parameters is as follows.

As an upper bound we input the numbers we obtained by heuristics.

The maximal number of cuts added in each outer while-loop, numCuts, is 3n for

graphs with n ≤ 300 and 5n when n > 300.

The maximal number of outer while-loops is 30 for instances with n ≤ 300, and 10

when n > 300.

The precision for Dykstra’s projection algorithm εproj is set to 10−6.

The inner precision εADMM is 10−5 in the first and last inner while-loop, and 10−4 in

all other inner while-loops.
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The maximum computation time maxTime is set to 2 hours.

The parameters differ from the experiments for the k-equipartition problem since for the

bisection problem the size of the matrix in the SDP is of order 2n+1, i.e., more than double

the size than for the k-equipartition problem. Violated BQP inequalities (4.42) are found

by an enumeration search.

We take m1 = �np� where n is the number of vertices in the graph and for p we choose

a number out of {0.6, 0.65, 0.7}.
It is shown in [343, 344] that the DNN bound (4.22) is equivalent to the bounds [233, 344],

while it dominates the bounds derived in [104, 232, 321, 343]. Since the DNN relaxation (4.22)

is currently the strongest known bound for the GBP, we do not include alternative SDP

bounds in the numerical results.

The results are given in Table 4.10 for smaller graphs and in Table 4.11 for larger graphs.

Similar as for the k-equipartition problem, we observe a significant improvement of the bound

after adding inequalities. For graphs with up to 274 vertices, see Table 4.10, the improvement

of the DNN+cuts bound over the DNN bound ranges between 2.23% and 200% after adding

up to 16 000 BQP inequalities. For five of the graphs in Table 4.10 the algorithm stopped

because the gap was closed, for four graphs the improvement of the lower bound was only

minor and four times the number of violated cuts found was too small. Only for one graph

the algorithm stopped due to the time limit. For the larger graphs we typically stop because

of the time limit of 2 hours, see Table 4.11. For those graphs the DNN+cuts bound improves

over the DNN bound between 0.44% and 17.32% after adding between 8000 and 24 200 BQP

inequalities. The percentage of the gap closed by the addition of cuts ranges from 3.23%

to 78.26%, and is especially large for the spinglass instances.

One can observe that the results are somewhat weaker than for the k-equipartition prob-

lem. Note that the nature of the cuts added to the DNN relaxations for the k-EP and GBP

differs, and the size of matrix variables in the GBP relaxations is more than twice larger than

in the case of the k-EP for the same graph. For large graphs, we are able to add roughly up

to 50 000 cuts for the k-EP and 24 000 cuts for the GBP within a time span of 2 hours.

4.6 Conclusions

This study aims to investigate and expand the boundary of obtaining strong DNN bounds

with additional cutting planes for large graph partition problems. Due to memory require-

ments, state-of-the-art interior-point methods are only capable of solving medium-size SDPs

and are not suitable for handling lots of polyhedral cuts. We overcome both difficulties

by utilizing a first-order method in a cutting-plane framework. Our approach focuses on

two variations of the graph partition problem: the k-equipartition problem and the graph

bisection problem.

We first derive DNN relaxations for both problems, see (4.5) and (4.13), then we apply

facial reduction to obtain strictly feasible equivalent relaxations, see (4.7) and (4.18), re-

spectively. To prove the minimality of the face of the DNN cone containing the feasible set

of (4.13), we exploit the dimension of the bisection polytope, see Theorem 4.1. After facial

reduction, both relaxations enclose a natural splitting of the feasible set into polyhedral and

positive semidefinite constraints. Moreover, both relaxations can be further strengthened by

several types of cutting planes.

To solve both relaxations, we use an ADMM update scheme, see (4.24), that is in-

corporated in a cutting-plane framework, leading to the so-called CP–ADMM, see Al-
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gorithm 4.1. The cutting planes are handled in the polyhedral subproblem by exploiting

a semi-parallelized version of Dykstra’s cyclic projection algorithm, see Section 4.3.2. The

CP–ADMM benefits from warm starts whenever new cuts are added, provides valid lower

bounds even after solving with low precision, and can be implemented efficiently. A partic-

ular ingredient of the CP–ADMM are the projectors onto polyhedra induced by the cutting

planes. Projection operators for three types of cutting planes that are effective for the graph

partition problem, i.e., the triangle, independent set and BQP inequalities, are derived.

Numerical experiments show that using our CP–ADMM algorithm we are able to produce

high-quality bounds for graphs up to 1024 vertices. We experimented with several graph

types from the literature. For structured graphs of medium size and the 2-EP we often close

the gap in a few seconds or at most a couple of minutes. For bisection problems on those

graphs, we also close the gaps in many cases. For larger graphs, we are able to add polyhedral

cuts roughly up to 50 000 for k-EP and 24 000 for the GBP within 2 hours, which results in

strong lower bounds. Our results provide benchmarks for solving medium and large scale

graph partition problems.

This research can be extended in several directions. As indicated in Section 4.2.2, our

approach for the GBP has a straightforward extention to the general GPP strengthened by

BQP cuts. Motivated by the optimistic results for the k-EP and the GBP, we expect that

strong bounds from DNN relaxations with additional cutting planes can be obtained for

other partition problems, such as the vertex separator problem and the max-cut problem.

Moreover, since the major ingredients of our algorithm are presented generally, establish-

ing an approach for solving general DNN relaxations with additional cutting planes is an

interesting future research direction. Our results also provide new perspectives on solving

large-scale optimization problems to optimality by using SDPs.
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136 Integrality and cutting planes in SDP approaches for CO
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138 Integrality and cutting planes in SDP approaches for CO
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Chapter 4. Partitioning through projections: strong SDP bounds for large graph partition
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5
The Chvátal-Gomory procedure for integer SDPs with

applications in combinatorial optimization

Chapter summary

In this chapter we study the well-known Chvátal-Gomory (CG) procedure for the
class of integer semidefinite programs (ISDPs). We prove several results regarding the
hierarchy of relaxations obtained by iterating this procedure. We also study different
formulations of the elementary closure of spectrahedra. A polyhedral description of
the elementary closure for a specific type of spectrahedra is derived by exploiting total
dual integrality for SDPs. Moreover, we show how to exploit (strengthened) CG cuts
in a branch-and-cut framework for ISDPs. Different from existing algorithms in the
literature, the separation routine in our approach exploits both the semidefinite and
the integrality constraints. We provide separation routines for several common classes
of binary SDPs resulting from combinatorial optimization problems. In the second
part of the chapter we present a comprehensive application of our approach to the
quadratic traveling salesman problem (QTSP). Based on the algebraic connectivity
of the directed Hamiltonian cycle, two ISDPs that model the QTSP are introduced.
We show that the CG cuts resulting from these formulations contain several well-
known families of cutting planes. Numerical results illustrate the practical strength
of the CG cuts in our branch-and-cut algorithm, which outperforms alternative ISDP
solvers and is able to solve large QTSP instances to optimality.
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142 Integrality and cutting planes in SDP approaches for CO

5.1 Introduction

Convex integer nonlinear programs (CINLPs) are optimization problems in which the ob-

jective function is convex and the continuous relaxation of the feasible region is a convex set.

Nonlinearities in CINLPs can appear in both the objective function and/or the constraints.

Motivated by their numerous applications and their ability to generalize several well-known

problem classes, CINLPs have been studied for decades. In this chapter we focus on a spe-

cific class of CINLPs: the integer semidefinite programs (ISDPs). These problems can be

formulated as:

sup b�x

s.t. C −
m∑
i=1

Aixi � 0, x ∈ Zm,
(5.1)

with b ∈ Rm, C,Ai ∈ Sn, where Sn denotes the cone of symmetric matrices of order n.

Since integer linear programs belong to the family of ISDPs, problems of the form (5.1) are

generally NP-hard to solve.

Although CINLPs have been studied extensively, see e.g., the survey of Bonami et al. [51],

the special case of ISDPs has received attention only very recently. This is remarkable, as

the mixture of positive semidefiniteness and integrality leads naturally to a broad range of

applications, e.g., in architecture [71, 376], signal processing [155, 302] and combinatorial

optimization [156, 318]. For a more detailed overview of applications of ISDPs, we refer the

reader to [156, 234].

Only a few solution approaches for solving SDPs with integrality constraints have been

considered. Gally et al. [156] propose a general framework called SCIP-SDP for solving

mixed integer semidefinite programs (MISDPs) using a branch-and-bound (B&B) procedure

with continuous SDPs as subproblems. They show that strict duality of the relaxations is

maintained in the B&B tree and study several solver components. Alternatively, Kobayashi

and Takano [234] propose a cutting-plane algorithm that initially relaxes the positive semi-

definite (PSD) constraint and solves a mixed integer linear programming problem, where the

PSD constraint is imposed dynamically via cutting planes. This leads to a general branch-

and-cut (B&C) algorithm for solving MISDPs. A third project that encounters general

ISDPs is YALMIP [257]. However, it is noted by the authors of [156] and [234] that the

branch-and-bound ISDP solver in YALMIP is not yet competitive to the performance of the

other two methods. Recently, Matter and Pfetsch [270] study different presolving strategies

for MISDPs for both the B&B and B&C approach.

Apart from solution methods for solving general ISDPs or MISDPs, there are several other

approaches in the literature that aim to solve integer problems by utilizing SDP relaxations in

a B&B framework. Although these approaches are very related to problems of the form (5.1)

in the sense that they also combine semidefinite programs with a branching strategy, they

differ in the sense that the problem at hand is not necessarily formulated as a MISDP.

Examples are the BiqCrunch solver for constrained binary quadratic problems [240] and the

Biq Mac solver for unconstrained binary quadratic problems [318].

In the light of improving the performance of the B&C algorithm of [234], we consider the

exploitation of cutting planes for ISDPs. Practical algorithms for CINLPs have benefited

a lot from the addition of strong cutting planes, see e.g., [23, 24, 39, 349], where many of

these cutting plane frameworks are based on generalizations from integer linear program-

ming. Among the most well-known cutting planes for integer linear programs (ILPs) are
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the Chvátal-Gomory (CG) cuts [77, 179]. Gomory [179] introduced these cuts to design the

first finite cutting plane algorithm for ILPs. Chvátal [77] later generalized this notion and

introduced the closure of all such cuts that leads to a hierarchy of relaxations of the ILP with

increasing strength. Chvátal [77] and Schrijver [329] prove that this hierarchy is finite for

bounded real polyhedra and rational polyhedra, respectively. Later on, the CG procedure is

introduced for more general convex sets, see e.g., [56, 88, 89, 98, 112]. In particular, Çezik

and Iyengar [68] show how to generate CG cuts for CINLPs where the continuous relaxation

of the feasible region is conic representable.

A leading application in this chapter is a combinatorial optimization problem that can

be modeled as an ISDP: the quadratic traveling salesman problem (QTSP). Jäger and

Molitor [224] introduce the QTSP as the problem of finding a Hamiltonian cycle in a graph

that minimizes the total interaction costs among consecutive arcs. The problem is mo-

tivated by an important application in bioinformatics [135, 224], but has also applications

in telecommunication, precision farming and robotics, see e.g., [6, 127, 370]. The QTSP

is NP-hard in the strong sense and is currently considered as one of the hardest combin-

atorial optimization problems to solve in practice. For a more comprehensive overview of

the background, applications and solution approaches proposed for the QTSP, we refer the

reader to Section 1.4.1.

5.1.1 Main results and outline

In this chapter we consider the Chvátal-Gomory procedure for ISDPs from a theoretical

as well as a practical point of view. On the theoretical side, we derive several results on

the elementary closure of all CG cuts for spectrahedra. On the practical side, we show

how to apply these cuts in a generic branch-and-cut algorithm for ISDPs that exploits both

the positive semidefiniteness and the integrality of the problem. We extensively study the

application of this new approach to the QTSP, which confirms the practical strength of the

proposed method.

We start by reformulating a CG cut for a spectrahedron in terms of its data matrices in

combination with the elements from the dual cone. This leads to a constructive description of

the elementary closure of spectrahedra rather than the implicit description that is known for

general convex sets. Equivalent to the case of polyhedra, the elementary closure operation

can be repeated, leading to a hierarchy of stronger approximations of the integer hull of

the spectrahedron. For the case of bounded spectrahedra, we provide a compact proof of

a homogeneity property for the elementary closure operation that is based on a theorem of

alternatives and Dirichlet’s approximation theorem. We prove this property for halfspaces

that are sufficient to describe any compact convex set. Homogeneity is the cornerstone in

showing that the elementary closure of a bounded spectrahedron is polyhedral. Although

the latter result is known in the literature, our proof significantly simplifies compared to the

general proofs given in [56, 89]. Finally, we exploit the recently introduced notion of total

dual integrality for SDPs [65] to derive a closed-form expression for the elementary closure

of spectrahedra defined by a totally dual integral linear matrix inequality. We additionally

provide a characterization of bounded spectrahedra with this property and several more

general sufficient conditions.

It is known that the practical strength of CG cuts in integer linear programming is

mainly due to their application in branch-and-bound methods. In this vein, we propose a

generic branch-and-cut (B&C) framework for ISDPs. Our algorithm initially relaxes the PSD

constraint and solves a mixed integer linear program (MILP), where the PSD constraint is
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imposed iteratively via CG and/or strengthened CG cuts. To derive strengthened CG cuts,

we use a similar approach to the one for rational polyhedra by Dash et al. [93]. Our B&C

algorithm is an extension of the algorithm of [234], in which separation is only based on

positive semidefiniteness without taking into account the integrality of the variables. Our

approach also builds up on the work by Çezik and Iyengar [68], in which the authors leave

the separation of CG cuts for conic problems as an open problem and do not include these

cuts in their computational study. We provide an example of our approach for two common

classes of binary SDPs that frequently appear in combinatorial optimization.

In the third part of this chapter we apply our results to a difficult-to-solve combinatorial

optimization problem: the quadratic traveling salesman problem. We derive two ISDP

formulations of this problem based on the notion of algebaic connectivity. To solve these

models using our B&C algorithm, we propose several CG separation routines and show that

various of these routines lead to well-known cuts for the QTSP. Computational results on a

large set of benchmark QTSP instances show that the practical potential of our new method

is twofold. The method significantly outperforms the ISDP solvers from the literature,

whereas it also provides competitive results to the state-of-the-art QTSP solution method

of [135].

This chapter is organized as follows. In Section 5.2 we study the Chvátal-Gomory pro-

cedure for spectrahedra. Section 5.3 provides a CG-based B&C framework for general ISDPs

and provides specific CG separation routines for two classes of binary SDPs. In Section 5.4

we formally define the QTSP and present two ISDP formulations of this problem. Numerical

results are given in Section 5.5.

5.2 The Chvátal-Gomory procedure for ISDPs

In this section we study the extension of the cutting-plane procedure by Chvátal [77] and

Gomory [179] for integer linear programs to the class of integer semidefinite programs. We

show that several concepts, such as the Chvátal-Gomory closure and the Chvátal rank, can

be generalized to ISDPs. We start by recollecting the procedure for general convex sets.

5.2.1 The Chvátal-Gomory procedure

Let C ⊆ Rm be a nonempty closed convex set and let CI be its integer hull, i.e., CI :=

conv(C ∩ Zm). The Chvátal-Gomory cutting-plane procedure is introduced by Chvátal [77]

and Gomory [179] and is regarded to be among the most celebrated results in integer pro-

gramming. The CG procedure aims at systematically identifying valid inequalities for C

that cut off noninteger solutions. By adding these new cuts to the relaxation and repeating

this process, one obtains a hierarchy of stronger relaxations that converges to CI .

The CG procedure relies on the notion of rational halfspaces. A rational halfspace is of

the form H = {x ∈ Rm : c�x ≤ d} for some c ∈ Qm, d ∈ Q. It is known that all such

halfspaces can be represented by c ∈ Zm such that the entries of c are relatively prime.

If H = {x ∈ Rm : c�x ≤ d} with c ∈ Zm, gcd(c) = 1, then HI = {x ∈ Rm : c�x ≤ �d�}.

Definition 5.1. The elementary closure of a closed convex set C is the set

clCG(C) :=
⋂

(c,d)∈Qm×Q

C⊆H={x : c�x≤d}

HI . (5.2)
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Equivalently, the elementary closure of C can be written as:

clCG(C) =
⋂

(c,d)∈Zm×R

C⊆{x : c�x≤d}

{
x ∈ Rm : c�x ≤ �d�

}
, (5.3)

and we will primarily use this form in this chapter. The inequalities that define clCG(C)

in (5.3) are known as CG cuts [179]. One can verify that CI ⊆ clCG(C). When C is compact,

we can exploit the following proposition due to Dadush et al. [88] and De Carli Silva and

Tunçel [65].

Proposition 5.2. If C ⊆ Rm is a compact convex set, then

C =
⋂

(c,d)∈Zm×R

C⊆{x : c�x≤d}

{
x ∈ Rm : c�x ≤ d

}
.

It follows from Proposition 5.2 that for compact convex sets C we have clCG(C) ⊆ C.

We can now repeat the procedure by defining C(0) := C and C(k+1) := clCG(C
(k)) for all

integer k ≥ 0, where C(k) is referred to as the kth CG closure of C. For any compact

convex set C this leads to the hierarchy CI ⊆ . . . ⊆ C(k+1) ⊆ C(k) ⊆ . . . ⊆ C(0) = C.

The smallest k for which CI = C(k) is known as the Chvátal rank of C. In the same vein,

the Chvátal rank of an inequality c�x ≤ d valid for CI is defined as the smallest k such

that C(k) ⊆ {x ∈ Rm : c�x ≤ d}.

Remark 5.3. Observe that for an unbounded closed convex set C, clCG(C) ⊆ C does not

have to hold. For instance, the irrational halfspace {x ∈ R2 : x1 +
√
2x2 ≤ 0} is not

contained in any halfspace of the form {x ∈ R2 : c�x ≤ d} with c ∈ Z2. Therefore, clCG(C)

is the intersection over an empty set of halfspaces, resulting in clCG(C) = R2.

The finiteness of the Chvátal rank is proven in the literature for bounded real poly-

hedra [77], unbounded rational polyhedra [329] and conic representable sets in the 0/1-

cube [68]. However, the Chvátal rank for unbounded real polyhedra can be infinite as shown

by Schrijver [329]. Schrijver also shows that the elementary closure of a rational polyhedron is

a rational polyhedron. This result is later generalized to irrational polytopes [112], bounded

rational ellipsoids [98], strictly convex bodies [88] and general compact convex sets [56, 89].

As a consequence, the Chvátal rank of these sets is also known to be finite.

5.2.2 The elementary closure of spectrahedra

We now apply the notions from Section 5.2.1 to integer semidefinite programming problems

in standard primal and dual forms. On top of the general definition given in the previous

section, we derive alternative formulations of the elementary closure of spectrahedra.

Let b ∈ Rm, C ∈ Sn and Ai ∈ Sn for all i ∈ [m]. An ISDP in standard primal form is

given by:

(PISDP )

⎧⎪⎨⎪⎩
inf 〈C,X〉
s.t. 〈Ai, X〉 = bi for all i ∈ [m],

X � 0, X ∈ Zn×n,

(5.4)
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while an ISDP in standard dual form is given by:

(DISDP )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sup b�x

s.t. C −
m∑
i=1

Aixi � 0

x ∈ Zm.

(5.5)

Using standard techniques, one can syntactically rewrite an integer SDP from primal form

to dual form and vice versa. Consistent with most of the literature, we mainly consider, but

not restrict ourselves to, ISDPs in dual form.

The continuous relaxation of the feasible set of (5.5) is defined as follows:

P :=

{
x ∈ Rm : C −

m∑
i=1

Aixi � 0

}
. (5.6)

The set P is a spectrahedron that is a closed, semialgebraic and convex set. We define the

integer hull of P to be PI := conv(P ∩ Zm), i.e., the convex hull of the integral points in P .

We briefly consider some illustrative examples of spectrahedra and their integer hulls.

Example 5.4 (Examples in R2). Let

C =

⎛⎝0 3

3 3

⎞⎠ , A1 =

⎛⎝−3 1

1 1

⎞⎠ and A2 =

⎛⎝0.5 1

1 0

⎞⎠ .

Then, the induced spectrahedron P in the dual form (5.6) is the semialgebraic set of points

in R2 described by the quadratic inequality 4x2
1 + x2

2 ≤ 15x1 + 4 1
2
x2 − 1 1

2
x1x2 − 9. This

spectrahedron is bounded and given in Figure 5.1a.

Let Q be described by (5.6) with

C =

⎛⎝1 0

0 0

⎞⎠ , A1 =

⎛⎝ 0 −1
−1 0

⎞⎠ and A2 =

⎛⎝0 0

0 −2

⎞⎠ .

The spectrahedron Q is the unbounded semialgebraic set {x ∈ R2 : x2 ≥ 1
2
x2
1}, see Fig-

ure 5.1b.

Example 5.5 (Example in R3). Let

C =

⎛⎝1 2

2 2

⎞⎠⊕
⎛⎝5 0

0 5

⎞⎠ , A1 =

⎛⎝−1 0.5

0.5 1

⎞⎠⊕
⎛⎝0 0

0 0

⎞⎠ ,

A2 =

⎛⎝−0.6 0.3

0.3 0

⎞⎠⊕
⎛⎝1 0

0 −1

⎞⎠ , A3 =

⎛⎝0.5 2

2 −3

⎞⎠⊕
⎛⎝0 0

0 0

⎞⎠ ,

and let P be the induced spectrahedron of the form (5.6). Then, P is the semialgebraic set

in R3 described by 1 1
4
x2
1+

9
100

x2
2+5 1

2
x2
3 ≤ −2+3x1+2 2

5
x2+10x3− 9

10
x1x2+

3
5
x2x3+1 1

2
x1x3,

1 + x1 +
3
5
x2 − 1

2
x3 ≥ 0, 2− x1 + 3x3 ≥ 0, −5 ≤ x2 and x2 ≤ 5, see Figure 5.2.
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(a) Bounded spectrahedron P (b) Unbounded spectrahedron Q

Figure 5.1: Spectrahedra P and Q defined in Example 5.4. Their corresponding integer hulls
are given by the dark gradient areas.

Figure 5.2: Spectrahedron P in R3 defined in Example 5.5.

Throughout this chapter, we make an additional assumption regarding the representation

of the spectrahedron P in the form (5.6). Namely, in case P is not full-dimensional, we

augment its representation matrices, without changing the spectrahedron itself, see also [314].

This assumption is required to obtain an alternative formulation of the elementary closure.

Assumption 5.6. In case P is not full-dimensional, i.e., the subspace L := Aff(P )⊥ is

nontrivial, we extend C and Ai, i ∈ [m], to

C ⊕Diag(Lx0)⊕−Diag(Lx0) and Ai ⊕Diag(�i)⊕−Diag(�i) for all i ∈ [m]

where L := [�1 . . . �m] ∈ Rdim(L)×m is a matrix whose rows form a basis for L and x0 ∈ P .

Observe that the extended map in Assumption 5.6 does not change the spectrahedron P .
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Indeed, if L = Aff(P )⊥ is non-trivial, then L(x− x0) = 0, or equivalently, Lx−Lx0 = 0 for

all x ∈ P . Hence, the additional linear constraints are redundant for all x ∈ P . No additional

constraints are needed if P is full-dimensional, e.g., the spectrahedra in Example 5.4 and 5.5.

In the remaining part of this section we study the elementary closure, see Definition 5.1,

of spectrahedra in primal and dual standard forms. The proofs of several results that will

follow rely on the following semidefinite version of the theorem of alternatives, see e.g.,

Balakrishnan and Vandenberghe [26]. In this proposition, X � 0 denotes that X is positive

semidefinite, but unequal to the zero matrix.

Proposition 5.7 (Theorem of the alternatives for SDP [26]). Let C, A1, . . . , Am ∈ Sn.

Then, at most one of the following is true:

1. There exists an X � 0, 〈Ai, X〉 = 0 for all i ∈ [m] and 〈C,X〉 ≤ 0;

2. There exists an x ∈ Rm such that C −
∑m

i=1 Aixi � 0.

Moreover, if there exists no x ∈ Rm such that
∑m

i=1 Aixi � 0, then exactly one of the

statements above is true.

Since C−
∑m

i=1 Aixi is positive semidefinite if and only if 〈C −
∑m

i=1 Aixi, U〉 ≥ 0 for all

U ∈ Sn
+, we can rewrite P as follows:

P =

{
x ∈ Rm :

〈
C −

m∑
i=1

Aixi, U

〉
≥ 0, U ∈ Sn

+

}

=
⋂

U∈Sn
+

{
x ∈ Rm :

m∑
i=1

xi〈Ai, U〉 ≤ 〈C,U〉
}
. (5.7)

Moreover, since P is a closed convex set, we can write P as the intersection of the halfspaces

that contain it:

P =
⋂

(c,d)∈Rm+1

P⊆{x : c�x≤d}

{
x ∈ Rm : c�x ≤ d

}
. (5.8)

It is clear that all halfspaces in the intersection of (5.7) are contained in the intersection

(5.8). In order to show the converse statement, we consider the geometric and algebraic

polar sets studied in [314].

The geometric polar of spectrahedron P is defined as

P ◦ := {y ∈ Rm : y�x ≤ 1 for all x ∈ P},

which coincides with the general definition of the polar set of a convex set. Ramana and

Goldman [314] moreover define the algebraic polar of a spectrahedron P in the form (5.6) as

P ∗ :=
{
[〈A1, U〉 . . . 〈Am, U〉]� : 〈C,U〉 ≤ 1, U ∈ Sn

+

}
.

It is shown in [314] that if 0 ∈ P , then P ◦ = P ∗ + Aff(P )⊥. Under Assumption 5.6, this

implies that P ◦ = P ∗ whenever 0 ∈ P . This equality forms the key of the following result.

Theorem 5.8. Let P = {x ∈ Rm : C −
∑m

i=1 Aixi � 0} be a nonempty spectrahedron.

Let (c, d) ∈ Rm+1 be such that P ⊆ {x ∈ Rm : c�x ≤ d}. Then, there exists a matrix

U ∈ Sn
+ such that 〈Ai, U〉 = ci for all i ∈ [m] and 〈C,U〉 ≤ d.
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Proof. First, suppose (c, d) is such that P is contained in the hyperplane {x ∈ Rm : c�x = d}.
Then, c ∈ Aff(P )⊥. This implies α�L = c� for some α ∈ Rdim(L) and α�Lx0 = c�x0 = d,

where L and x0 are as defined in Assumption 5.6. Now, by taking U = 0⊕Diag(max(α,0)⊕
Diag(−min(α,0)), it follows directly from Assumption 5.6 that 〈Ai, U〉 = ci for all i ∈ [m]

and 〈C,U〉 = d.

Let us now assume that (c, d) is such that P � {x ∈ Rm : c�x = d}. Then, there

exists a x0 ∈ P such that c�x0 < d. Let Ĉ := C −
∑m

i=1 Ai(x0)i and consider the translated

spectrahedron P̂ := P − x0 = {x ∈ Rm : Ĉ −
∑m

i=1 Aixi � 0}. For this translated spectra-

hedron we know 0 ∈ P̂ , from which it follows that P̂ ◦ = P̂ ∗.

From P ⊆ {x ∈ Rm : c�x ≤ d}, we obtain P̂ ⊆ {x ∈ Rm : c�x ≤ d̂}, where d̂ :=

d − c�x0 > 0. Consequently, we know that (1/d̂)c�x ≤ 1 for all x ∈ P̂ , which implies

that (1/d̂)c ∈ P̂ ◦ = P̂ ∗. Then, we know there exists an Û ∈ Sn
+ such that

〈Ai, Û〉 =
1

d̂
ci for all i ∈ [m], and 〈Ĉ, Û〉 ≤ 1.

Taking U := d̂ Û and using the definitions of d̂ and Ĉ, we obtain 〈Ai, U〉 = ci for all i ∈ [m]

and 〈C,U〉 −
∑m

i=1〈Ai, U〉(x0)i ≤ d− c�x0, yielding 〈C,U〉 ≤ d.

Using the representation of P given by (5.7) and the result of Theorem 5.8, we now

provide an alternative formulation of the elementary closure for spectrahedra of the form P .

We have,

clCG(P ) =
⋂

U∈Sn
+ s.t.

〈Ai,U〉∈Z, i∈[m]

{
x ∈ Rm :

m∑
i=1

xi〈Ai, U〉 ≤ �〈C,U〉�
}
. (5.9)

Hence, any possible CG cut for a spectrahedron is constructed by a matrix U ∈ Sn
+ such

that 〈Ai, U〉 ∈ Z for i ∈ [m].

A similar alternative definition of the elementary closure of spectrahedra in standard

primal form can be obtained. Let Q ⊆ Sn denote the continuous relaxation of the feasible

set of (5.4), i.e.,

Q = {X ∈ Sn : 〈Ai, X〉 = bi, i ∈ [m], X � 0}
= {X ∈ Sn : 〈Ai, X〉 = bi, i ∈ [m], 〈X,U〉 ≥ 0, U ∈ Sn

+}

=

{
X ∈ Sn :

〈
X,U +

m∑
i=1

Aiλi

〉
≥

m∑
i=1

biλi, U ∈ Sn
+, λ ∈ Rm

}
,

where the last equality follows from the fact that (U, λ) = (0, ei) and (U, λ) = (0,−ei) lead

to the cuts 〈Ai, X〉 ≥ bi and 〈Ai, X〉 ≤ bi, respectively. Now, the elementary closure of Q

can be described by the following intersection of CG cuts:

clCG(Q) =
⋂

(U,λ)∈Sn
+×Rm s.t.

U+
∑m

i=1 Aiλi∈Zn×n

{
X ∈ Sn :

〈
X,U +

m∑
i=1

Aiλi

〉
≥

⌈
m∑
i=1

biλi

⌉}
. (5.10)

For many SDPs resulting from applications the spectrahedra that define the feasible sets are

contained in the cone of nonnegative vectors or matrices. In that case, alternative equivalent

formulations of the elementary closure can be given, see also [68].
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Theorem 5.9. Let P =
{
x ∈ Rm

+ : C −
∑m

i=1 Aixi � 0
}

be a nonempty spectrahedron.

Then, clCG(P ) can equivalently be written as

clCG(P ) =
⋂

U∈Sn
+

{
x ∈ Rm :

m∑
i=1

xi�〈Ai, U〉� ≤ �〈C,U〉�
}
. (5.11)

Similarly, let Q = {X ∈ Sn : 〈Ai, X〉 = bi, i ∈ [m], X � 0, X ≥ 0}. Then clCG(Q) can equi-

valently be written as

clCG(Q) =
⋂

(U,λ)∈Sn
+×Rm

{
X ∈ Sn :

〈
X,

⌈
U +

m∑
i=1

Aiλi

⌉〉
≥

⌈
m∑
i=1

biλi

⌉}
. (5.12)

Proof. We prove the statement for the dual form (5.11). The proof for the primal form is

similar.

Let clCG(P ) :=
⋂

U∈Sn
+

{
x ∈ Rm :

∑m
i=1 xi�〈Ai, U〉� ≤ �〈C,U〉�

}
and let clCG(P ) be

as given in (5.9). The inclusion clCG(P ) ⊆ clCG(P ) is obvious, as any halfspace in the

intersection defining clCG(P ) is also in the intersection defining clCG(P ). Now, given some

U ∈ Sn
+, consider the halfspace H̄ = {x ∈ Rm :

∑m
i=1 xi�〈Ai, U〉� ≤ �〈C,U〉�} that is

included in the intersection defining clCG(P ). Since P ⊆ Rn
+, we know

P ⊆
{
x ∈ Rm

+ :
m∑
i=1

xi〈Ai, U〉 ≤ 〈C,U〉
}
⊆

{
x ∈ Rm

+ :
m∑
i=1

xi�〈Ai, U〉� ≤ 〈C,U〉
}

⊆
{
x ∈ Rm :

m∑
i=1

xi�〈Ai, U〉� ≤ 〈C,U〉
}
.

Now we apply Theorem 5.8 to the latter halfspace. It follows that there exists a mat-

rix V ∈ Sn
+ such that

〈Ai, V 〉 = �〈Ai, U〉� for all i ∈ [m], and 〈C, V 〉 ≤ 〈C,U〉.

We define H := {x ∈ Rm :
∑m

i=1 xi〈Ai, V 〉 ≤ �〈C, V 〉�}. Since �〈C, V 〉� ≤ �〈C,U〉�, it

follows that the halfspace H̄ contains the halfspaceH, whileH is contained in the intersection

of clCG(P ) given in (5.9). Since this construction can be repeated for all halfspaces in the

intersection (5.11) defining clCG(P ), it follows that clCG(P ) ⊆ clCG(P ).

Example 5.10. Let us reconsider the bounded spectrahedron P defined in Example 5.4.

The elementary closure clCG(P ) of this spectrahedron is the intersection of six rational

halfspaces, represented by the dashed lines in Figure 5.3. Each such halfspace is obtained

from a rational halfspace {x ∈ R2 : c�x ≤ d} containing P , where d is shifted towards

PI until the corresponding hyperplane hits an integral point. The integer hull PI is the

intersection of only five halfspaces. Thus, for this example we have PI � clCG(P ) � P .

In Section 5.2.4 we provide a polyhedral description of the elementary closure of spec-

trahedra that satisfy the notion of total dual integrality.



623138-L-sub01-bw-deMeijer623138-L-sub01-bw-deMeijer623138-L-sub01-bw-deMeijer623138-L-sub01-bw-deMeijer
Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023 PDF page: 171PDF page: 171PDF page: 171PDF page: 171
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Figure 5.3: Spectrahedron P , its integer hull PI and its elementary closure clCG(P ).

5.2.3 The Chvátal rank of bounded spectrahedra

In this section we derive several results on the sequence of relaxations resulting from the

Chvátal-Gomory procedure. Although some of these results are already known for general

compact convex sets, we provide simplified proofs for the case of bounded spectrahedra.

Throughout this section we assume P to be a spectrahedron of the form (5.6) that is bounded.

For unbounded sets it is in general not even clear whether C(k+1) ⊆ C(k).

It is known that the Chvátal rank of compact convex sets is finite, including the special

case of bounded spectrahedra.

Proposition 5.11. Let P =
{
x ∈ Rm : C −

∑m
i=1 Aixi � 0

}
be bounded. Then, P (k) = PI

for some finite k.

Proof. See e.g., [77, 89].

Next, we aim to prove a homogeneity property of the CG procedure for bounded spec-

trahedra, which states that the elementary closure operation commutes with taking the

intersection with supporting hyperplanes. This property plays a key role in showing that

the elementary closure of P is a rational polytope, following the proof of Braun and Pok-

utta [56]. We provide a simplified proof of this property for bounded spectrahedra, which

can be seen as the conic analogue to a polyhedral result of Schrijver [329]. In the proof we

restrict ourselves to halfspaces of the form {x ∈ Rm : w�x ≤ d} where w ∈ Zm and d ∈ R.
It follows from Proposition 5.2 that these halfspaces are sufficient to describe a compact

convex set.

Before we show the main theorem, we need a chain of intermediate results, starting with

a proposition regarding the condition of Proposition 5.7.

Proposition 5.12. Let P =
{
x ∈ Rm : C −

∑m
i=1 Aixi � 0

}
be a nonempty and bounded

spectrahedron. Then there does not exist an x ∈ Rm such that
∑m

i=1 Aixi � 0.

Proof. Since P is nonempty, there exists a point x∗ ∈ P , i.e., C −
∑m

i=1 Aix
∗
i � 0. Now

suppose there exists a point x̂ such that
∑m

i=1 Aix̂i � 0. Then clearly x̂ 	= 0m and for
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all t ≥ 0 we have

C −
m∑
i=1

Aix
∗
i + t

m∑
i=1

Aix̂i = C −
m∑
i=1

Ai(x
∗
i − tx̂i) � 0,

i.e., x∗ − tx̂ ∈ P for all t ≥ 0. Thus, P is unbounded, so such x̂ cannot exist.

We also need Dirichlet’s approximation theorem and its weakened version.

Proposition 5.13 (Dirichlet’s Approximation Theorem). Let d ∈ R and N ≥ 2 be a positive

integer. Then there exist integers p and q with 1 ≤ p ≤ N such that |pd− q| ≤ 1
N
.

We now derive its one-sided variant below.

Corollary 5.14 (One-sided Approximation Theorem). Let d ∈ R and N ≥ 2 be a positive

integer number. Then there exists an integer p ∈ Z+ such that

pd− �pd� ≤ 1

N
.

Proof. By Dirichlet’s Theorem, we know that for the given d and N , there exist integers q1
and q2 with 1 ≤ q1 ≤ N such that |q1d− q2| ≤ 1

N
. If q1d ≥ q2, then we have

q1d− �q1d� ≤ q1d− q2 = |q1d− q2| ≤
1

N
,

so the choice p = q1 leads to the desired result. Next, we consider the case q1d < q2,

for which we have − 1
N
≤ q1d − q2 < 0. Let M ≥ 1 be the smallest integer that sat-

isfies M(q1d− q2) ≤ −N−1
N

, which exists because q1d − q2 < 0. For this M we must

have −1 ≤ M(q1d − q2). Namely, if M(q1d − q2) < −1, then (M − 1)(q1d − q2) ≤ −N−1
N

,

contradicting the minimality of M . Thus,

−1 ≤M(q1d− q2) ≤ −
N − 1

N
or equivalently, 0 ≤Mq1d− (Mq2 − 1) ≤ 1

N
.

Since Mq2 − 1 is integer, it follows that

Mq1d− �Mq1d� ≤Mq1d− (Mq2 − 1) ≤ 1

N
,

so taking p = Mq1 gives the desired result.

We are now ready to present a simplified proof of Braun and Pokutta [56] for the homo-

geneity property of the elementary closure of bounded spectrahedra, see also Proposition 1

in [89].

Theorem 5.15 (Homogeneity property of elementary closure). Let a bounded spectrahed-

ron P = {x ∈ Rm : C −
∑m

i=1 Aixi � 0} be contained in a halfspace {x ∈ Rm : w�x ≤ d}
with w ∈ Zm and d ∈ R. Let K := {x ∈ Rm : w�x = d}. Then, clCG(P )∩K = clCG(P ∩K).

Proof. If P is empty the claim is obvious, hence we assume that P is nonempty.

The inclusion clCG(P ∩K) ⊆ clCG(P )∩K is trivial. To prove the converse statement, we

assume that H is a rational halfspace containing P ∩K, i.e., we may assume that H = {x ∈
Rm : v�x ≤ α} where v is integer-valued with gcd(v) = 1. It suffices to show that there
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exists a halfspace Ĥ containing P such that ĤI ∩K ⊆ HI . As P ∩K is the intersection of

all such halfspaces H, we establish clCG(P ) ∩K ⊆ clCG(P ∩K).

For each i ∈ [m] we define the following extended matrix Ãi ∈ Sn+2:

Ãi :=

⎡⎢⎢⎣
Ai 0 0

0� −wi 0

0� 0 −vi

⎤⎥⎥⎦ .

We first show that there does not exist an x ∈ Rm such that
∑m

i=1 Ãixi � 0. For the

sake of contradiction, suppose such a vector exists, i.e., we have
∑m

i=1 Aix̃i � 0, w�x̃ ≤ 0

and v�x̃ ≤ 0 for some x̃, but not all of them are satisfied with equality. Since P is nonempty

and bounded, it follows from Proposition 5.12 that there does not exist an x ∈ Rm such

that
∑m

i=1 Aixi � 0. Hence, we must have
∑m

i=1 Aix̃i = 0. This implies that either w�x̃ < 0

or v�x̃ < 0, or both.

Since P is contained in {x ∈ Rm : w�x ≤ d}, it follows from Theorem 5.8 that there

exists T � 0 such that 〈Ai, T 〉 = wi for all i ∈ [m]. Since
∑m

i=1 Aix̃i = 0, we have〈
m∑
i=1

Aix̃i, T

〉
=

m∑
i=1

x̃i〈Ai, T 〉 = w�x̃ = 0.

Since P ∩ K is contained in H = {x ∈ Rm : v�x ≤ α}, we can apply Theorem 5.8 to

the extended linear matrix inequality (C ⊕ d⊕−d)−
∑m

i=1(Ai ⊕ wi ⊕−wi)xi � 0 to show

that vi = 〈Ai, S〉 + βwi for some S � 0 and β ∈ R. From this it follows that v�x̃ = 0. We

conclude that there exists no x ∈ Rm such that
∑m

i=1 Ãixi � 0.

Next, we define the following extended matrix C̃ ∈ Sn+2 and parameter ε > 0:

C̃ :=

⎡⎢⎢⎣
C 0 0

0� −d 0

0� 0 −(α+ ε)

⎤⎥⎥⎦ and ε :=

{
1
2
(�α� − α) if α is not integer,

1
2

otherwise.

Since P ∩ K is contained in H, it follows that (P ∩ K) ∩ {x ∈ Rm : v�x ≥ α + ε} = ∅.
As P ∩K can be expressed as P ∩ {x ∈ Rm : w�x ≥ d}, we equivalently know that there

does not exist an x ∈ Rm such that C̃ −
∑m

i=1 Ãixi � 0. We can now apply Proposition 5.7

to this system, from where it follows that the first of the two alternative statements should

be satisfied. Hence, there exist Û � 0, λ > 0 and μ > 0 such that 〈Ai, Û〉 − wiλ − viμ = 0

for all i ∈ [m] and 〈C, Û〉 − dλ − (α + ε)μ ≤ 0. Without loss of generality, we may assume

that μ = 1 and we define

α̂ := 〈C, Û〉 and v̂i := 〈Ai, Û〉 for all i ∈ [m].

It follows from above that this particular α̂ and v̂ satisfy

α̂ ≤ α+ ε+ dλ and v̂i = vi + wiλ for all i ∈ [m]. (5.13)
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Also, since Û � 0, we know that for all x ∈ P we have

v̂�x =

m∑
i=1

〈Ai, Û〉xi =

〈
m∑
i=1

Aixi, Û

〉
≤ 〈C, Û〉 = α̂, (5.14)

where we use the fact that 〈C −
∑m

i=1 Aixi, Û〉 ≥ 0. Observe that the tuple (λ, v̂, α̂) can

be replaced by (λ+ λ0, v̂ + λ0w, α̂+ λ0d) for all λ0 ≥ 0 without affecting (5.13) and (5.14),

where for the maintenance of (5.14) we use the fact that P ⊆ {x ∈ Rm : w�x ≤ d}. Now

we choose λ0 such that λ + λ0 ∈ Z+ and df := d(λ + λ0) − �d(λ + λ0)� < ε, which can be

done by Corollary 5.14.

Define Ĥ := {x ∈ Rm : (v̂ + λ0w)�x ≤ α̂ + λ0d}. It follows from (5.14) that P ⊆ Ĥ.

Moreover, by exploiting (5.13) and the definitions of df and ε, we have

ĤI ∩K ⊆ {x ∈ Rm : (v̂ + λ0w)�x ≤ �α̂+ λ0d�} ∩ {x ∈ Rm : w�x = d}
⊆ {x ∈ Rm : v�x+ w�x(λ+ λ0) ≤ �α+ ε+ d(λ+ λ0)�} ∩ {x ∈ Rm : w�x = d}
⊆ {x ∈ Rm : v�x+ df ≤ �α+ ε+ df�}
⊆ {x ∈ Rm : v�x ≤ �α+ ε+ df�}
= {x ∈ Rm : v�x ≤ �α�} = HI ,

where the last inclusion follows from the fact that df ≥ 0. For the first equality in the last

line we exploit the fact that ε + df < 2ε, where ε is chosen such that 2ε = 1 if α is integer

and 2ε = �α� − α otherwise. In both cases, we have �α� = �α+ ε+ df�.

The result of Theorem 5.15 holds for any halfspace {x ∈ Rm : w�x ≤ d} with w ∈ Zm

containing P . In particular, it holds for all such halfspaces that support P , meaning

that P ∩K 	= ∅, where K is the corresponding hyperplane. In such case, the set P ∩ K

defines a face of the spectrahedron. It is known that all proper faces of spectrahedra are

exposed [314], meaning that they can be obtained as the intersection of P with a supporting

hyperplane. Note, however, that for the faces of bounded spectrahedra these hyperplanes are

not necessarily such that the entries in w are integral, even if the data matrices describing

the spectrahedron are rational (as is the case for polyhedra).

Homogeneity plays a key role in Braun and Pokutta’s [56] proof for the polyhedrality of

the elementary closure of compact convex sets. For the sake of completeness, we include this

result here for the case of bounded spectrahedra.

Theorem 5.16 (Dadush et al. [89], Braun and Pokutta [56]). The elementary closure

clCG(P ) of a bounded spectrahedron P is a rational polytope.

From Theorem 5.16 and the fact that the elementary closure of a rational polytope is

again a rational polytope [329], it follows that the finite sequence

P = P (0) ⊇ P (1) ⊇ . . . ⊇ P (k) ⊇ P (k+1) ⊇ . . . ⊇ PI ,

consists of rational polyhedra from the first closure onwards. Observe that the boundedness

assumption cannot be relaxed. Indeed, if P is unbounded, it is not even clear whether PI is

a polyhedron, as the following example suggests.

Example 5.17. Consider the spectrahedron Q in Example 5.4. The integer hull QI is the

convex hull of the integer points in the epigraph of f(x1) = 1
2
x2
1. This convex hull is not
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polyhedral. To verify this, observe that the recession cone of QI is contained in the recession

cone of Q, which is rec(Q) := {x ∈ R2 : x2 ≥ 0, x1 = 0}. Since QI is unbounded and rec(Q)

has only one ray, the recession cone of QI must also be rec(Q). If QI would be polyhedral,

this implies that the halfspace x1 ≤ N supports QI for some finite value of N . However,

this cannot be true as QI contains integral points (x1, x2) ∈ Z2 for arbitrarily large x1.

One can verify that clCG(Q) = QI . Namely, each facet of QI is induced by a line between

the points (2k, 2k2), (2(k − 1), 2(k − 1)2) ∈ Z2 for any k ∈ Z. Let such line for a fixed k be

described by x2 = cx1 + d with c, d ∈ Z. Then, the parallel line x2 = cx1 + d− 1 lies strictly

below Q. This implies that the halfspace x2 ≥ cx1 + d − 1 + ε for any ε > 0 contains Q

and that its integer hull is x2 ≥ cx1 + d. Therefore, all facet-defining inequalities of QI have

Chvátal rank one and clCG(Q) = QI . This shows that clCG(Q) is not a polyhedron.

5.2.4 The elementary closure of spectrahedra and total dual integrality

In this section we derive a class of spectrahedra for which we can find an explicit expression

for the elementary closure. For rational polyhedra such an expression can be derived from a

totally dual integral representation of the linear system [329]. It is therefore not surprising

that a similar construction can be applied for bounded spectrahedra, albeit with a bit more

technicalities. After connecting total dual integrality for SDPs to the elementary closure, we

derive a characterization and several sufficient conditions for a linear matrix inequality to

be totally dual integral.

Recently, De Carli Silva and Tunçel [65] introduced a notion of total dual integrality

for SDPs. The authors of [65] argue that the term integrality in SDPs should be defined

with care. For instance, the rank-one property that is sometimes used in the literature as

the notion of SDP integrality is proven to be primal-dual asymmetric and therefore not the

favoured choice. Instead, the authors of [65] propose a notion of SDP integrality that is

based on a set of integer generating matrices.

Definition 5.18 (Property (PZ)V). Let V := {V1, . . . , Vk} ⊆ Sn
+ be a finite set of integer

PSD matrices. A matrix X ∈ S+
n satisfies integrality property (PZ)V if

X =
∑
j∈[k]

yjVj for some y : V → Z+. (PZ)V

The authors of [65] restricted to the set V = { S
�
S : S ⊆ [n]}, which could be seen

as a natural embedding for the combinatorial problems that are considered in [65]. One

could argue, however, that this embedding is rather arbitrary. For that reason, we consider a

general set of generating matrices. Note that the matrices X that satisfy property (PZ)V are

also integral in the sense that X ∈ Zn×n. To overcome confusion between these definitions,

we will always explicitly refer to property (PZ)V if that notion is meant.

Now we present the definition of total dual integrality for SDPs, see also [65].

Definition 5.19 (Total dual integrality). Let Z ⊆ Zm. A linear matrix inequality (LMI) C−∑m
i=1 Aixi � 0 is called totally dual integral (TDI) on Z if there exists some finite set of

integer PSD matrices V such that, for every b ∈ Z, the SDP dual to sup{b�x : C −∑m
i=1 Aixi � 0} has an optimal solution satisfying property (PZ)V whenever it has an

optimal solution.

A main difference with the original definition of total dual integrality for polyhedra, see

e.g. [121], is that we restrict the objective vectors for which dual integrality should hold to a
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subset Z of Zm. As explained in [65], this follows from the fact that semidefinite programs

often follow from lifted formulations. For instance, Z could be the range from a linear lifting

map, e.g., Z = {0⊕ b′ : b′ ∈ Zm−1}.
Based on this restriction to vectors in Z, it makes sense to consider a relaxed version of

the CG closure in which we take the intersection of halfspaces induced by coefficient vectors

in Z. More precisely, we define the CG closure with respect to Z as

clCG(P,Z) :=
⋂

(c,d)∈Z×R

P⊆{x : c�x≤d}

{
x ∈ Rm : c�x ≤ �d�

}
. (5.15)

This relaxation of the CG closure is also considered in the literature, see e.g., [88, 89]. The

standard CG closure clCG(P ) that we considered so far equals clCG(P,Zm).

The following theorem shows that if a spectrahedron is defined by an LMI that is TDI

on Z, its (relaxed) CG closure clCG(P,Z) can be explicitly defined.

Theorem 5.20. Let P =
{
x ∈ Rm : C −

∑m
i=1 Aixi � 0

}
be such that C −

∑m
i=1 Aixi � 0

is TDI on Z and satisfies Slater’s condition. Let V = {V1, . . . , Vk} denote the correspond-

ing generating set of integer PSD matrices and suppose [〈Vj , A1〉 . . . 〈Vj , Am〉]� ∈ Z for

all j ∈ [k]. Define B ∈ Zk×m and d ∈ Zk such that:

Bj,i := 〈Ai, Vj〉 and dj := �〈C, Vj〉� ,

for all j ∈ [k] and i ∈ [m]. Then,

clCG(P,Z) = Q := {x ∈ Rm : Bx ≤ d} .

Proof. To prove that clCG(P,Z) ⊆ Q, observe that Vj � 0 with [〈Vj , A1〉 . . . 〈Vj , Am〉]� ∈ Z

for all j ∈ [k]. Consequently, we know that P ⊆
{
x ∈ Rm :

∑m
i=1 xi〈Ai, Vj〉 ≤ 〈C, Vj〉

}
. It

follows from (5.15) that clCG(P,Z) ⊆ {x ∈ Rm :
∑m

i=1 xi〈Ai, Vj〉 ≤ �〈C, Vj〉�}. Since all

inequalities in Bx ≤ d are of this form, it follows that clCG(P,Z) ⊆ Q.

To prove the converse direction, let H :=
{
x ∈ Rm : b�x ≤ q

}
be a halfspace contain-

ing P with b ∈ Z. Since P ⊆ H, we have

q ≥ sup
x

{
b�x : C −

m∑
i=1

Aixi � 0

}
(5.16)

= inf
X
{〈C,X〉 : 〈Ai, X〉 = bi, i ∈ [m], X � 0} , (5.17)

where strong duality among (5.16) and (5.17) holds since the former problem has a Slater

feasible point. By the same argument, we know that the infimum in (5.17) is attained.

Since C −
∑m

i=1 Aixi � 0 is TDI on Z, it follows that there exists an optimal solution X̂

to (5.17) satisfying property (PZ)V . In other words, there exists an ŷ ∈ Zk
+ such that

X̂ =
∑
j∈[k]

ŷjVj , 〈Ai, X̂〉 = bi for all i ∈ [m], X̂ � 0.

Consequently, we have

�q� ≥ �〈C, X̂〉� =

⎢⎢⎢⎣∑
j∈[k]

ŷj 〈C, Vj〉

⎥⎥⎥⎦ ≥ ∑
j∈[k]

ŷj �〈C, Vj〉� = d�ŷ.
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Now, consider the following linear optimization problem and its corresponding dual:

max{b�x : Bx ≤ d} = min{d�y : y ≥ 0, y�B = b�}.

Since ŷ ≥ 0 and (ŷ�B)i =
∑

j∈[k] ŷj〈Ai, Vj〉 = 〈Ai, X̂〉 = bi, the solution ŷ is feasible for the

minimization problem above. This yields

max{b�x : Bx ≤ d} ≤ d�ŷ ≤ �q�.

Hence, Q ⊆
{
x ∈ Rm : b�x ≤ �q�

}
. Since this holds for all halfspaces H induced by coeffi-

cient vectors in Z, it follows that Q ⊆ clCG(P,Z).

For the special case Z = Zm, Theorem 5.20 provides a closed-form expression for clCG(P ).

Observe that for that case the condition that [〈Vj , A1〉 . . . 〈Vj , Am〉]� ∈ Z for all j ∈ [k] can

be simplified to 〈Ai, Vj〉 ∈ Z for all i ∈ [m] and j ∈ [k].

Besides providing a closed-form expression for clCG(P ), Theorem 5.20 can be used

to identify bounded spectrahedra for which P = PI . Namely, if the matrix C is such

that 〈C, Vj〉 ∈ Z for all j ∈ [k], then P ⊆ Q. For spectrahedra that are bounded, this implies

that the chain Q = clCG(P ) ⊆ P ⊆ Q holds with equality, hence clCG(P ) = P . As P (k) = PI

for some finite k for all bounded spectrahedra, we must have P = PI . De Carli Silva and

Tunçel [65] show that this, for example, happens for the SDP formulation of the Lovász

theta function when the underlying graph is perfect. Similar results cannot be extended to

general Z, since clCG(P,Z) is not contained in P anymore.

A natural question is under which conditions a linear matrix inequality is TDI on a certain

set Z. Below we first derive a full characterization of LMIs that are totally dual integral on

the full set Zm. The characterization relates to the faces of the spectrahedron induced by

the LMI. It is well-known that the faces of Sn
+ are associated with linear subspaces of Rn,

see e.g., [32]. In the same vein, the facial structure of a spectrahedron can be characterized

as follows.

Lemma 5.21 (Ramana and Goldman [314]). Let P = {x ∈ Rm : C −
∑m

i=1 Aixi � 0}
be a spectrahedron and let F ⊆ P be a nonempty face of P . Then, there exists a subspace

RF ⊆ Rn such that

F =

{
x ∈ P : RF ⊆ Nul

(
C −

m∑
i=1

Aixi

)}
,

where any point x in the relative interior of F satisfies Nul
(
C −

∑m
i=1 Aixi

)
= RF .

Lemma 5.21 implies that in the particular case where the face F of P is an extreme

point x̄, we have Rx̄ = Nul(C −
∑m

i=1 Aix̄i).

For any nonempty face F of P , we define the cone of objective vectors b for which the

elements in F maximize b�x over P , i.e.,

K(F ) :=
{
b ∈ Rm : b�y = max{b�x : x ∈ P} for all y ∈ F

}
. (5.18)

For any proper face F ⊆ P , the cone K(F ) is nonempty and equals the intersection over all

normal cones of P at the points in F .

Next, we recall the definition of a so-called Hilbert basis.
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Definition 5.22. A set {v1, . . . , vk} ⊆ Zm forms a Hilbert basis if every integral vector x ∈
cone({v1, . . . , vk}) can be written as x =

∑k
j=1 αjvj , αj ≥ 0, αj ∈ Z, for all j ∈ [k].

By abuse of terminology, we will refer to an LMI whose solution set is bounded as a

bounded LMI. The following theorem provides a full characterization of bounded LMIs that

are TDI on the full set of integer vectors.

Theorem 5.23. Let the linear matrix inequality C−
∑m

i=1 Aixi � 0 be bounded and assume

Slater’s condition holds. Then, C−
∑m

i=1 Aixi � 0 is totally dual integral on Zm if and only

if there exists some finite set of integer PSD matrices V = {V1, . . . , Vk} such that for each

extreme point x̄ of the induced spectrahedron P = {x ∈ Rm : C −
∑m

i=1 Aixi � 0} with

K(x̄) ∩ Zm 	= ∅, the vectors

gj :=
[
〈A1, Vj〉 . . . 〈Am, Vj〉

]�
for j ∈ J := {j ∈ [k] : Col(Vj) ⊆ Rx̄}

form a Hilbert basis of K(x̄).

Proof. Let b ∈ Zm. Since P is bounded, the maximum of b�x over x ∈ P is attained at a

face of P . Thus, there exists an extreme point x̄ of P with b ∈ K(x̄). As P contains a Slater

feasible point, we have

max
x

{
b�x : x ∈ P

}
= min

X
{〈C,X〉 : 〈Ai, X〉 = bi, i ∈ [m], X � 0} . (5.19)

The point x̄ is optimal for the maximization problem above. Complementary slackness then

implies that any X optimal to the dual problem should satisfy (C −
∑m

i=1 Aix̄i)X = 0, or

equivalently, Col(X) ⊆ Nul(C −
∑m

i=1 Aix̄i) = Rx̄. To show that gj is contained in K(x̄)

for j ∈ J , we first observe that Vj is feasible for the minimization problem

min
X
{〈C,X〉 : 〈Ai, X〉 = (gj)i, i ∈ [m], X � 0} .

Then, since Col(Vj) ⊆ Rx̄, we know that (C −
∑m

i=1 Aix̄i)Vj = 0. Therefore, x̄ and Vj

are optimal solutions to maxx

{
gj

�x : x ∈ P
}

and minX{〈C,X〉 : 〈Ai, X〉 = (gj)i, i ∈
[m], X � 0}, respectively. This implies that gj is indeed contained in K(x̄) for j ∈ J .

Now, suppose that the vectors gj , j ∈ J form a Hilbert basis of K(x̄). Then, we

have b =
∑

j∈J αjgj for some αj ≥ 0, αj ∈ Z, j ∈ J . Consequently, X :=
∑

j∈J αjVj is

feasible for the minimization problem in (5.19) with Col(X) ⊆ Rx̄. Since this establishes

complementary slackness between X and x̄, it follows that X is a dual optimal solution that

satisfies property (PZ)V .
Conversely, if the LMI is totally dual integral on Zm, it follows that the dual problem

in (5.19) has an optimal solution X satisfying property (PZ)V . Therefore, X =
∑k

j=1 αjVj

for some αj ≥ 0, αj ∈ Z, j ∈ [k]. Now, let JC := [k] \ J . Then,

X =
∑
j∈J

αjVj +
∑
j∈JC

αjVj .

By complementary slackness, we have Col(X) ⊆ Rx̄, implying that Col(
∑

j∈JC αjVj) =

Col(X −
∑

j∈J αjVj) ⊆ Rx̄. Since the Vj ’s are positive semidefinite, we also know that

Col(αjVj) ⊆ Col(
∑

j∈JC αjVj) ⊆ Rx̄ for all j ∈ JC . However, by the definition of JC we

have Col(Vj) � Rx̄, so we must have αj = 0 for all j ∈ JC . We conclude that X is a

nonnegative integer combination of the matrices Vj with j ∈ J . By the constraints of the
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Chapter 5. The Chvátal-Gomory procedure for ISDPs with applications in combinatorial
optimization 159

minimization problem in (5.19), it finally follows that b =
∑

j∈J αjgj . As the construction

can be repeated for all b ∈ Zm in K(x̄), we conclude that {gj : j ∈ J} indeed forms a Hilbert

basis of K(x̄). The same holds for all other extreme points x̄ for which K(x̄) ∩ Zm 	= ∅.

Theorem 5.23 has a significant implication on the structure of the induced spectrahedron

of a bounded LMI that is TDI on Zm.

Corollary 5.24. If a bounded LMI C −
∑m

i=1 Aixi � 0 that satisfies Slater’s condition is

totally dual integral on Zm, the spectrahedron P = {x ∈ Rm : C −
∑m

i=1 Aixi � 0} is poly-

hedral.

Proof. Let hP : Rm → R denote the support function of P , i.e., hP (x) := supa∈P {x�a}.
Now, consider the polytope

P ′ := {x ∈ Rm : g�j x ≤ hP (gj) for all j ∈ [k]},

where the vectors gj , j ∈ [k] are defined as in Theorem 5.23. We clearly have P ⊆ P ′. To

prove the converse inclusion, let (c, d) ∈ Zm×R be such that P ⊆ {x ∈ Rm : c�x ≤ d} and
let x̄ denote an extreme point such that c ∈ K(x̄). By Theorem 5.23, it follows that there

exists a subset J ⊆ [k] and αj ≥ 0, αj ∈ Z, j ∈ J such that c =
∑

j∈J αjgj . Since gj ∈ K(x̄),

we know hP (gj) = g�j x̄ for all j ∈ J . Moreover, we also have hP (c) = c�x̄. We now take a

conical combination of the inequalities g�j x ≤ hP (gj), each with weight αj , resulting in∑
j∈J

αjg
�
j x ≤

∑
j∈J

αjhP (gj), which implies, c�x ≤
∑
j∈J

αjg
�
j x̄ = c�x̄ = hP (c) ≤ d.

Hence, the halfspace {x ∈ Rm : c�x ≤ d} is implied by the inequalities defining P ′. Since

this construction can be repeated for all halfspaces of the form {x ∈ Rm : c�x ≤ d} and

P equals the intersection of all such halfspaces, see Proposition 5.2, it follows that P ′ ⊆ P .

We conclude that P is a polyhedral set.

Corollary 5.24 implies that the only bounded linear matrix inequalities that may be TDI

on Zm can be described by a finite number of linear inequalities, e.g., when C and Ai, i ∈ [m],

are diagonal or simultaneously diagonalizable. Total dual integrality on Zm therefore hap-

pens to be quite a rare event. In general, it is NP-hard to decide whether a spectrahedron is

polyhedral, see Ramana [315]. The following result provides a characterization of polyhedral

spectrahedra that are full-dimensional. Observe that any spectrahedron can be transformed

to a full-dimensional spectrahedron by a restriction to its affine hull.

Theorem 5.25 (Ramana [315]). Let P = {x ∈ Rm : C −
∑m

i=1 Aixi � 0} be a full-

dimensional spectrahedron. Then, P is polyhedral if and only if there exists a nonsingular

matrix M ∈ Rn×n and d, ai ∈ R�, C′, A′
i ∈ Sn−�, i ∈ [m], with 1 ≤ � ≤ n such that for

all x ∈ Rm we have

M

(
C −

m∑
i=1

Aixi

)
M� =

⎡⎣C′ −
∑m

i=1 A
′
ixi 0

0 Diag(d)−
∑m

i=1 Diag(ai)xi

⎤⎦ (5.20)

with P = {x ∈ Rm : Diag(d)−
∑m

i=1 Diag(ai)xi � 0}.

It is well-known that any rational polyhedron can be described by a totally dual integral

system of linear inequalities, see Giles and Pulleyblank [171]. Hence, if a spectrahedron
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P satisfies Theorem 5.25 with rational d, ai for all i ∈ [m], then it is possible to rewrite

P such that its LMI is totally dual integral on Zm with respect to generating matrices

V = {Diag(e1), . . . ,Diag(e�)} ⊆ S�
+.

By relaxing the notion of total dual integrality to a strict subset Z of Zm, it might be

possible to identify other conditions of TDIness that go beyond polyhedrality. In return, the

best one can hope for is a description of clCG(P,Z), see Theorem 5.20.

As shown by Bhardwaj et al. [43], any full-dimensional spectrahedron P can be expressed

by a linear matrix inequality in the form of (5.20), even if P is nonpolyhedral. When the

residual linear matrix form C′ −
∑m

i=1 A
′
ixi cannot be further diagonalized, the form on the

right-hand side of (5.20) is called the normal form of the linear matrix inequality. Intuitively

speaking, the bottom right block of (5.20) can be viewed as the polyhedral part of the

spectrahedron. As an extension of the result by Giles and Pulleyblank [171], the following

result shows that the polyhedral part of a spectrahedron can, under mild conditions, be

made totally dual integral on an appropriate set Z.

Theorem 5.26. Let P = {x ∈ Rm : C −
∑m

i=1 Aixi � 0} be a full-dimensional spectrahed-

ron that can be written in the normal form (5.20) for some nonsingular matrix M ∈ Rn×n

and d, ai ∈ Q�, C′, A′
i ∈ Sn−�, i ∈ [m] with 1 ≤ � ≤ n. Let Z ⊆ Zm be such that

max
x

{
b�x : x ∈ P

}
= max

x

{
b�x : Diag(d)−

m∑
i=1

Diag(ai)xi � 0

}

for all b ∈ Z. Then there exists a linear matrix inequality describing P that is totally dual

integral on Z.

Proof. Let Q = {x ∈ Rm : Diag(d) −
∑m

i=1 Diag(ai)xi � 0}. Since d and ai are rational

for all i ∈ [�], it follows from Giles and Pulleyblank [171] that there exists some totally dual

integral representation of Q, i.e., Q = {x ∈ Rm : Âx ≤ d̂} for some Â ∈ Z�′×m, d̂ ∈ Q�′

with Âx ≤ d̂ TDI. For all i ∈ [m], let âi denote the ith column of Â. Then, P can be written

as

P =

⎧⎨⎩x ∈ Rm :

⎡⎣C′ −
∑m

i=1 A
′
ixi 0

0 Diag(d̂)−
∑m

i=1 Diag(âi)xi

⎤⎦ � 0

⎫⎬⎭ . (5.21)

We will show that the LMI in (5.21) is totally dual integral on Z. For any b ∈ Z, we have

that

max
x

{
b�x : x ∈ P

}
= max

x

{
b�x : x ∈ Q

}
= min

y

{
d̂�y : y ≥ 0, y�Â = b�

}
.

By construction, the minimization problem above has an optimal solution ŷ ∈ Z�′
+. Now, we

define

X̂ :=

⎡⎣0 0

0 Diag(ŷ)

⎤⎦ ∈ Sn−�
+ ⊕ S�′

+.
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It follows from above that〈⎡⎣C′ 0

0 Diag(d̂)

⎤⎦ , X̂

〉
= d̂�ŷ and

〈⎡⎣A′
i 0

0 Diag(âi)

⎤⎦ , X̂

〉
= bi for all i ∈ [m].

Therefore, X̂ is optimal to the SDP dual to maxx{b�x : x ∈ P}. By construction, X̂ is an

integer conical combination of matrices in the set V = {0 ⊕ Diag(ei) : i ∈ [�′]} of integer

PSD matrices. We conclude that the LMI given in (5.21) is totally dual integral on Z.

Our final condition for total dual integrality on a set Z is not related to the polyhedrality

of the spectrahedron induced by the linear matrix inequality, but related to the feasible set

of its corresponding dual problem to be polyhedral. It is possible for a spectrahedron to be

nonpolyhedral, while the feasible set of its dual problem is polyhedral. For instance, consider

the nonpolyhedral spectrahedron Q = {x ∈ R2 : x2 ≥ 1
2
x2
1} considered in Example 5.4. For

any b ∈ Z2
−, its dual feasible set is given by⎧⎨⎩

⎡⎣x1 x2

x2 x3

⎤⎦ ∈ S2 : x1 ≥ −
b21
2b2

, x2 = −1

2
b1, x3 = −1

2
b2

⎫⎬⎭ ,

which is polyhedral. Let us formalize the criterion of polyhedrality of the dual feasible set.

Definition 5.27. The set {A1, . . . , Am} is called finitely generative on Z ⊆ Zm if there

exists a finite set of integer PSD matrices V = {V1, . . . , Vk} such that

{X : 〈Ai, X〉 = bi, i ∈ [m], X � 0}

is contained in cone(V) :=
{∑

j∈[k] αjVj : αj ≥ 0 ∀j ∈ [k]
}

for all integer vectors b ∈ Z.

The condition of the dual feasible set to be polyhedral is also considered in recent works

on SDP exactness [360].

Note that if {A1, . . . , Am} is finitely generative, then {X : 〈Ai, X〉 = bi, i ∈ [m], X � 0}
is polyhedral for all b ∈ Z (since cone(V) ⊆ Sn

+). Moreover, if {A1, . . . , Am} is finitely gen-

erative on Z, then {tA1, . . . , tAm} is also finitely generative on Z for any scalar t > 0.

As shown below, the constraint matrices being finitely generative and integer is a sufficient

condition for the existence of a totally dual integral description of the spectrahedron.

Theorem 5.28. Let C −
∑m

i=1 Aixi � 0 be a linear matrix inequality satisfying Slater’s

condition with {A1, . . . , Am} ⊆ Zn×n being finitely generative on Z. Then, the spectrahed-

ron P =
{
x ∈ Rm : C −

∑m
i=1 Aixi � 0

}
can be described by a linear matrix inequality that

is totally dual integral on Z.

Proof. Let V = {V1, . . . , Vk} denote the finite set of integer PSD matrices corresponding

to {A1, . . . , Am} in Definition 5.27. Let b ∈ Z and let t > 0 be a positive rational number.

We consider the following semidefinite program and its dual:

sup
x

{
b�x : tC −

m∑
i=1

tAixi � 0

}
= inf

X
{〈tC,X〉 : 〈tAi, X〉 = bi, i ∈ [m], X � 0} . (5.22)

Based on the fact that {A1, . . . , Am} is finitely generative, we know that the feasible set of

the minimization problem in (5.22) is contained in cone(V). Since we also know the minimum
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is attained due to Slater’s condition, we can rewrite the dual problem as follows:

min
X

{
〈tC,X〉 : 〈tAi, X〉 = bi, i ∈ [m], X = α1V1 + · · ·+ αkVk, α ≥ 0

}
=min

X

{
〈tC,X〉 :

t triu(Ai)
�svec(X) = bi, i ∈ [m], α ≥ 0

svec(X)− α1svec(V1)− · · · − αksvec(Vk) = 0

}

=min
X

⎧⎨⎩〈tC,X〉 :

⎡⎣tA′ 0

I −V ′

⎤⎦⎡⎣svec(X)

α

⎤⎦ =

⎡⎣b
0

⎤⎦ , α ≥ 0

⎫⎬⎭ .

Here A′ := [triu(A1) · · · triu(Am)]�, V ′ := [svec(V1) · · · svec(Vk)], triu : Sn → R
1
2
(n2+n)

is the operator that maps a matrix to a vector containing its upper-triangular entries

and svec : Sn → R
1
2
(n2+n) is the symmetric vectorization operator that maps a matrix to

a vector containing its upper-triangular part with weight two on the off-diagonal elements

and weight one on the diagonal elements. The linear system in the dual problem above can

be written as

t

⎡⎣A′ 0

I −V ′

⎤⎦⎡⎣svec(X)

α

⎤⎦ =

⎡⎣b

0

⎤⎦ , or equivalently,

⎡⎣A′ 0

I −V ′

⎤⎦⎡⎣svec(X)

α

⎤⎦ =
1

t

⎡⎣b

0

⎤⎦ .

Each basic feasible solution to this system with α ≥ 0 is the unique solution to one of its

nonsingular subsystems. Following the proof by Giles and Pulleyblank [171], it is possible

to find a rational number t∗ such that for all b ∈ Z, there exists an optimal solution that

satisfies svec(X) ∈ Z
1
2
(n2+n) and α ∈ Zk. When mapping svec(X) back to X ∈ Sn, it follows

that the SDP dual to max{b�x : t∗C −
∑m

i=1 t
∗Aixi � 0} for all b ∈ Z has an optimal

solution X satisfying

X =
∑
j∈[k]

αjVj , αj ≥ 0, j ∈ [k].

with α integer. Hence, property (PZ)V holds for X. We conclude that t∗C−
∑m

i=1 t
∗Aixi � 0

is a linear matrix inequality describing P that is totally dual integral on Z.

5.2.5 Strengthened Chvátal-Gomory cuts

Dash et al. [93] consider a strengthening of the CG cuts for rational polyhedra. We briefly

present here their approach that can be applied to general convex sets.

For all c ∈ Zm such that P ⊆ {x ∈ Rm : c�x ≤ d}, the corresponding CG cut

is c�x ≤ �d�. The validity of this cut follows from the inequality

�d� ≥ max
{
c�x : c�x ≤ d, x ∈ Zm

}
,

where equality holds if the entries in c are relatively prime. However, the gap between �d�
and max{c�x : x ∈ P∩Zm} can generally be very large. In order to reduce this gap, suppose

that we know that P ∩Zm is contained in some set S ⊆ Zm. Given a valid inequality c�x ≤ d

for P , we define

�d�S,c := max
{
c�x : c�x ≤ d, x ∈ S

}
. (5.23)
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By construction, c�x ≤ �d�S,c is valid for P ∩ Zm. We refer to these type of cuts as S-

Chvátal-Gomory (S-CG) cuts. These cuts are at least as strong as standard CG cuts, since

taking S = Zm provides the standard CG cut. The geometric interpretation of an S-CG cut

is that we shift the hyperplane {x ∈ Rm : c�x = d} in the direction of P ∩Zm until it hits a

point in S. An example for S is the set {0, 1}m in the case of binary optimization problems.

5.3 A CG-based branch-and-cut algorithm for ISDPs

Solving ISDPs is a relatively new field of research for which only a few general-purpose solu-

tion approaches have been proposed. Gally et al. [156] present a B&B algorithm called SCIP-

SDP for solving (M)ISDPs with continuous SDPs as subproblems. Alternatively, Kobayashi

and Takano [234] propose a B&C algorithm that initially relaxes the PSD constraint and

solves a mixed integer linear program (MILP), where the PSD constraint is imposed dynam-

ically via cutting planes. Numerical results in [234] show that the B&C algorithm of [234]

outperforms the B&B algorithm of [156]. The difference can be explained by the high per-

formance of the current MILP solvers compared to the much less robust conic interior-point

methods that are used in [156]. It has to be noted, however, that an older version of SCIP-

SDP with DSDP [41] as SDP solver was used in the computational results of [234]. The au-

thors of [270] also compare the two approaches and conclude that SCIP-SDP is much faster

on average than the approach by Kobayashi and Takano. However, they use Mosek [284] as

an SDP solver and an improved implementation of SCIP-SDP. Another project that encoun-

ters MISDPs is YALMIP [257], although its performance is inferior compared to the other

two methods [156, 234].

In this section we present a generic B&C algorithm for solving ISDPs that exploits CG

cuts of the underlying spectrahedron. This algorithm can be seen as an extension of the

works of [68, 234]. In Section 5.3.1 we provide a general B&C framework for ISDPs which

uses a cut generation routine based on S-CG cuts. Section 5.3.2 presents a separation routine

for the special class of binary SDPs.

5.3.1 Generic branch-and-cut framework

We start by presenting the B&C framework proposed by Kobayashi and Takano [234] for

ISDPs in standard dual form, see (5.5). However, the approach can be extended to problems

in primal form in a straightforward way. We define

F :=

{
x ∈ Rm : diag

(
C −

m∑
i=1

Aixi

)
≥ 0

}
, (5.24)

which can be seen as the polyhedral part of the spectrahedron P , see (5.6). We assume that

the problem of maximizing b�x over F is bounded, which is a nonrestrictive assumption

whenever the original ISDP is bounded.

The B&C algorithm of [234] is based on a dynamic constraint generation known as a lazy

constraint callback. The algorithm starts with optimizing over the set F ∩ Zm, i.e.,

max
{
b�x : x ∈ F ∩ Zm

}
, (5.25)

which can be solved using a B&B algorithm. Whenever an integer point x̂ is found in the

branching tree, it is verified whether C −
∑m

i=1 Aix̂i � 0 is satisfied. If so, the solution
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is feasible for (DISDP ) and provides a possibly better lower bound to prune other nodes

in the tree. If not, then 〈C −
∑m

i=1 Aix̂i, dd
�〉 < 0 where d is a normalized eigenvector

corresponding to the smallest eigenvalue of C−
∑m

i=1 Aix̂i. This leads to the following valid

constraint for (DISDP ):〈
C −

m∑
i=1

Aixi, dd
�

〉
≥ 0, or equivalently,

m∑
i=1

〈Ai, dd
�〉xi ≤ 〈C, dd�〉, (5.26)

which separates x̂ from P . Now, the algorithm adds to F a cut of type (5.26) to cut off

the current point and continues the branching scheme using this additional constraint. This

process is iterated until the optimality of a solution for (DISDP ) is guaranteed by the B&B

procedure.

It follows from the Rayleigh principle that 〈C −
∑m

i=1 Aix̂i, U〉 is minimized by tak-

ing U = dd� with d as defined above. In that sense, the cut (5.26) is the strongest cut with

respect to violation in the PSD constraint. However, this type of separator ignores the fact

that an optimal solution is also integer. We now propose an alternative stronger separator

based on the CG procedure that exploits both the PSD and the integrality constraint.

Let S ⊆ Zm be a set containing the feasible set of (DISDP ), with S = Zm in case

of no prior knowledge about the problem. If x̂ /∈ P , and consequently x̂ /∈ clCG(P ),

it follows from (5.9) that there exists a dual multiplier U ∈ Sn
+ with 〈Ai, U〉 ∈ Z for

all i ∈ [m], such that
∑m

i=1〈Ai, U〉x̂i > �〈C,U〉�. Taking such U and defining v(U) :=

(〈A1, U〉, . . . , 〈Am, U〉)�, we obtain the following S-CG cut:

m∑
i=1

〈Ai, U〉xi ≤ �〈C,U〉�S,v(U), (5.27)

see (5.23). The cut (5.27) exploits both the PSD and the integrality constraints in (DISDP )

by separating x̂ from clCG(P ) instead of only from P . As clCG(P ) ⊆ P for bounded spec-

trahedra, this type of cut is possibly stronger than the eigenvalue cut (5.26) for all S con-

taining P ∩ Zm. Figure 5.4 depicts a simplified example indicating the geometric difference

between the cuts (5.26) and (5.27).

It is not clear in general how to find an appropriate cut (5.27) separating x̂ from clCG(P ).

Indeed, this is closely related to the CG separation problem, which was proven to beNP-hard
even for polytopes contained in the unit hypercube, see Cornuéjols et al. [82]. Fischetti and

Lodi [139] show how to solve the separation problem for polyhedra using a mixed integer

programming problem. Extending their procedure to the class of spectrahedra, implies

solving a MISDP. Instead, we can adopt problem-specific separation routines that are efficient

and provide strong cuts. For instance, in the next subsection we present a separation routine

for binary SDPs in primal form. Moreover, we later provide various separation routines for

cuts of the form (5.27) for the quadratic traveling salesman problem.

Alongside extending the approach of Kobayashi and Takano [234], our framework also

continues on the work of Çezik and Iyengar [68]. In [68] CG cuts for binary conic programs are

introduced. It is noted that there is no method known for separating CG cuts from fractional

points, and consequently the CG cuts are not included in the numerical experiments of [68].

Since our approach separates on integer points only, we partly resolve this issue for certain

classes of problems by exploiting the underlying structure of the programs. As a result, we

present the first practical algorithm that utilizes CG cuts in conic problems.

We end this section by providing a pseudocode of the B&C framework, see Algorithm 5.1.
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Figure 5.4: Simplified example of strengthened separation routine on spectrahedron P from
Example 5.4. The dotted line shows an eigenvalue cut (5.26) separating x̂ from P , the solid
line shows a CG cut (5.27) separating x̂ from clCG(P ), where S = Zm.

Suppose SeparationRoutine is a routine for constructing CG cuts of the form (5.27), where

we assume this routine can generate multiple dual matrices at a time.

Algorithm 5.1 CG-based B&C algorithm for solving (DISDP )

Input: C,Ai, i ∈ [m] , S, ε > 0
1: Initialize F as defined in (5.24).
2: B&B procedure: Start or continue the branch-and-bound algorithm for solving the MILP

max
{
b�x : x ∈ F ∩ Zm

}
incorporating the callback function below at each node in the branching

tree.

Callback procedure:
3: if an integer point x̂ ∈ F is found then
4: if λmin

(
C −

∑m
i=1 Aix̂i

)
< −ε then

5: Call SeparationRoutine(C,A1, . . . , Am, S, x̂) which provides matrices Uj , j ∈ [K].
6: Add the cuts

∑m
i=1〈Ai, Uj〉xi ≤ �〈C,Uj〉�S,v(Uj)

for j ∈ [K] to F .

7: else
8: Use x̂ to cut off other nodes in the branching tree.
9: end if
10: end if
11: Return to Step 2
Output: x̂, OPT := b�x

5.3.2 A separation routine for binary SDPs

We now focus on binary semidefinite programming problems in primal form, i.e.,⎧⎪⎨⎪⎩
inf 〈C,X〉
s.t. 〈Ai, X〉 = bi for all i ∈ [m]

X � 0, X ∈ {0, 1}n×n.

(PBSDP )

In this section we present a separation routine for generating CG cuts for problems of the

form (PBSDP ) and provide two illustrative examples.
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Suppose we solve (PBSDP ) using the B&C algorithm presented in Section 5.3.1. In a

certain node in the branching tree we have obtained a symmetric matrix X̂ ∈ {0, 1}n×n

that satisfies 〈Ai, X̂〉 = bi for all i ∈ [m]. The separation oracle that we present below

distinguishes two types of certificates for X̂ not being positive semidefinite.

The first one is obtained by a so-called dominated diagonal, i.e., X̂ii = 0, while X̂ij = 1

for some j, which clearly implies that X̂ � 0. For the second certificate, we exploit a well-

known result on binary positive semidefinite matrices: a matrix X ∈ {0, 1}n×n is positive

semidefinite if and only ifX =
∑k

i=1 xixi
� for some xi ∈ {0, 1}n, i ∈ [k], see also Theorem 6.1

in this thesis. Each such vector xi may be thought of as the characteristic vector of a clique

in the complete graph Kn. In that sense, X represents the characteristic matrix of a set

of nonoverlapping cliques in Kn. Now, our second certificate considers the existence of a

so-called conflicting vertex, i.e., a vertex that is contained in two separate cliques implied

by X̂, which yields X̂ � 0. The mentioned certificates correspond to the existence of the

following induced submatrices in X̂ (up to a permutation of the rows and columns):

[ i j

i 0 1

j 1 �

]
and

⎡⎢⎢⎣
i j k

i 1 1 1

j 1 1 0

k 1 0 1

⎤⎥⎥⎦,
where � indicates a position that can be either 0 or 1. The following result shows that these

certificates are necessary and sufficient to characterize positive semidefiniteness.

Proposition 5.29. Let X̂ = (x̂ij) be binary and symmetric. Then, X̂ is positive semidefinite

if and only if X̂ contains no dominated diagonal or conflicting vertex.

Proof. Necessity follows from the discussion above. Conversely, letD(i) := {j ∈ [n] : x̂ij = 1}
for all i ∈ [n] with x̂ii = 1. If x̂ij = 1 and x̂ik = 1, it must follow that x̂jk = 1, otherwise i

would be conflicting. Hence, the sets D(i) for all i with X̂ii = 1 are cliques. Since i ∈ D(j)

if and only if j ∈ D(i), it follows that the collection D of all distinct sets D(i) is a set of

nonoverlapping cliques. Then, X̂ =
∑

D∈D D D
�, hence X̂ � 0.

In case of a dominated diagonal, i.e., indices i, j ∈ [n], i 	= j with x̂ii = 0 and x̂ij = 1, the

dual matrix U = (ei − ej)(ei − ej)
� separates X̂ from Sn

+. In case of a conflicting vertex,

say i, with x̂ij = 1, x̂ik = 1, but x̂jk = 0, the dual matrix U = (ej + ek − ei)(ej + ek − ei)
�

provides a separating hyperplane. Since dominated diagonals and conflicting vertices can

be found efficiently by enumeration, this approach defines an efficient separation routine for

binary SDPs in primal form.

The cuts 〈U,X〉 ≥ 0 can be further strengthened by exploiting the affine constraints in

a CG rounding step. We show how this can be done for two classes of binary semidefinite

programming problems that often appears in relaxations of combinatorial problems.

Example 5.30 (Binary SDPs over the elliptope). Suppose we have the following binary

SDP: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
inf 〈C,X〉
s.t. 〈Ai, X〉 = bi for all i ∈ [m]

diag(X) = 1

X � 0, X ∈ {0, 1}n×n.

(P1)
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The problem (P1) can be solved using the B&C algorithm of Section 5.3.1 by initially set-

ting F := {X ∈ Sn : 〈Ai, X〉 = bi, i ∈ [m], diag(X) = 1, 0 ≤ X ≤ J}. At a certain node in

the branching tree, a matrix X̂ ∈ F ∩ {0, 1}n×n is considered. If X̂ is not positive semidef-

inite, then an integer dual matrix U needs to be provided. Since diag(X) = 1 is included

in F , this dual matrix results from a conflicting vertex certificate. Suppose this dual matrix

is U = (ej + ek − ei)(ej + ek − ei)
� for some distinct i, j, k. We can now further strengthen

the cut 〈U,X〉 ≥ 0 using the constraint diag(X) = 1 and the fact that U is integral. Namely,

taking the linear combination of 〈U,X〉 ≥ 0, xii = 1, xjj = 1 and xkk = 1, each with

weight 1
2
, yields:

1

2
(〈U,X〉+ xii + xjj + xkk) ≥

1

2
(0 + 1 + 1 + 1)

⇐⇒
〈
1

2
U +

1

2
(Eii +Ejj +Ekk) ,X

〉
≥ 1

1

2
.

Since X ∈ Sn and all coefficients on the left-hand side are integral, we can strengthen the

cut using a CG rounding step:〈
1

2
U +

1

2
(Eii +Ejj +Ekk) , X

〉
≥

⌈
1
1

2

⌉
= 2.

This cut is equivalent to xjk+1 ≥ xik+xij , which is one of the triangle inequalities resulting

from the boolean quadric polytope [297]. These cuts are facet defining for the binary PSD

polytope [249].

Example 5.31 (Binary SDPs over the simplex). Many combinatorial optimization problems

have formulations including a constraint on the trace of the matrix variable, i.e.,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
inf 〈C,X〉
s.t. 〈Ai, X〉 = bi for all i ∈ [m]

tr(X) = K

X � 0, X ∈ {0, 1}n×n,

(P2)

for some K ∈ N. Using F := {X ∈ Sn : 〈Ai, X〉 = bi, i ∈ [m], tr(X) = K, 0 ≤ X ≤ J}, one
can solve (P2) by Algorithm 5.1. Assume that the separation routine provides a dual mat-

rix U = (ej + ek − ei)(ej + ek − ei)
� for some distinct i, j, k. Taking the linear combination

of 〈U,X〉 ≥ 0, tr(X) = K and xll ≥ 0 for all l /∈ {i, j, k}, each with weight 1
2
, yields:〈

1

2
U +

1

2
I+

1

2

∑
l/∈{i,j,k}

Ell, X

〉
≥ 1

2
K.

For K odd, we strengthen the cut by replacing the right-hand side by � 1
2
K�. This procedure

can be repeated for dual matrices resulting from a dominated diagonal certificate.

5.4 The Chvátal-Gomory procedure for ISDP formulations of the
QTSP

In this section we provide an in-depth study on solving the quadratic traveling salesman

problem using our B&C approach. We formally define the QTSP in Section 5.4.1. In
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Section 5.4.2 we derive two ISDP formulations of the QTSP. Our first ISDP model exploits

the algebraic connectivity of a directed tour. Our second formulation exploits the algebraic

connectivity of a directed tour and the distance two matrix that originates from the product

of a tour matrix with itself. Finally, in Section 5.4.3 we derive CG cuts for the two ISDPs

and show that we can obtain various classes of well-known cuts in this way.

5.4.1 The quadratic traveling salesman problem

Let G = (N,A) be a directed simple graph on n := |N | nodes and m := |A| arcs. A directed

cycle C in G that visits all the nodes exactly once is called a directed Hamiltonian cycle or

a directed tour in G. For the sake of simplicity, we often omit the adjective ‘directed’ in the

sequel.

A tour in G can be represented by a binary matrix X = (xij) ∈ {0, 1}n×n such

that xij = 1 if and only if arc (i, j) is used in the tour. We refer to such a matrix as a

tour matrix. The set of all tour matrices in G is defined as follows:

Tn(G) :=
{
XC ∈ {0, 1}n×n : xC

ij = 1 if and only if (i, j) ∈ C for tour C
}
. (5.28)

It follows from (5.28) that for all X ∈ Tn(G) we have xij = 0 if (i, j) /∈ A. In partic-

ular, diag(X) = 0n. Given a distance matrix D = (dij) ∈ Rn×n, the (linear) traveling

salesman problem (TSP) is the problem of finding a Hamiltonian cycle C of G that minim-

izes
∑

(i,j)∈C dij . As G is directed and D is not necessarily symmetric, this version of the

problem is sometimes referred to as the asymmetric traveling salesman problem. Using the

set defined in (5.28), we can state the TSP as follows:

TSP(D,G) := min

{
n∑

i=1

n∑
j=1

dijxij : X ∈ Tn(G)

}
. (5.29)

We now define the quadratic version of the TSP, where the total cost is given by the sum of

interaction costs between arcs used in the tour. In accordance with most of the literature,

we assume that a quadratic cost is incurred only if two arcs are placed in succession on the

tour, see e.g., [133, 134, 135, 224, 326]. To model this problem, we define the set of the

so-called 2-arcs of G, i.e.,

A := {(i, j, k) : (i, j), (j, k) ∈ A, |{i, j, k}| = 3} , (5.30)

which consists of all node triples of G that can be placed in succession on a cycle. Now,

let Q = (qijk) ∈ Rn×n×n be a cost matrix such that qijk = 0 if (i, j, k) /∈ A. Then the

quadratic traveling salesman problem (QTSP) is formulated as:

QTSP(Q,G) := min

{
n∑

i=1

n∑
j=1

n∑
k=1

qijkxijxjk : X ∈ Tn(G)

}
. (5.31)

Since the in- and outdegree of each node on a tour is exactly one, the equalities X1 = 1

and X�1 = 1 hold for all X ∈ Tn(G). The set of square binary matrices that satisfy this

property is known as the set of permutation matrices Πn, i.e.,

Πn :=
{
X ∈ {0, 1}n×n : X1 = 1, X�1 = 1

}
.
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Chapter 5. The Chvátal-Gomory procedure for ISDPs with applications in combinatorial
optimization 169

The permutation matrices that additionally satisfy diag(X) = 0n induce a disjoint cycle

cover in Kn.

Similar to the definition of Tn(G), we can also restrict Πn to the entries induced by G.

That is, Πn(G) has a zero on position (i, j) whenever (i, j) /∈ A.

5.4.2 ISDP based on algebraic connectivity in directed graphs

Cvetković et al. [86] derive an ISDP formulation of the symmetric linear TSP based on

algebraic connectivity. We now exploit the equivalent of this notion for directed graphs

to derive two ISDP formulations of the QTSP. Different from our approach, there was no

attempt in [86] to solve the ISDP itself, only its SDP relaxation.

Let DG be an n × n diagonal matrix that contains the outdegrees of the nodes of G on

the diagonal. Moreover, let AG denote the adjacency matrix of G. That is, (AG)ij = 1

if there exists an arc from i to j in G, and (AG)ij = 0 otherwise. We define the directed

out-degree Laplacian matrix of G as LG := DG − AG. The matrix LG can be asymmetric

and has a zero eigenvalue with corresponding eigenvector 1n. Observe that there exist also

other ways for defining the directed graph Laplacian of G, see e.g., [67]. Wu [375] generalized

Fiedler’s notion of algebraic connectivity of an undirected graph [132] to directed graphs, by

exploiting the out-degree Laplacian matrix.

Definition 5.32. The algebraic connectivity of a directed graph G is given by

a(G) := min
x∈S

x�LGx = min
x∈Rn

x �=0,x⊥1n

x�LGx

x�x
= λmin

(
1

2
W�

(
LG + LG

�
)
W

)
,

where S := {x ∈ Rn : x ⊥ 1n , ‖x‖2 = 1} and W ∈ Rn×(n−1) is a matrix whose columns

form an orthonormal basis for 1⊥
n .

The last equality in Definition 5.32 follows from the Courant-Fischer theorem. Observe

that a(G) is not necessarily equal to the second smallest eigenvalue of the directed Laplacian

matrix, which is the definition of its undirected counterpart. The algebraic connectivity a(G)

as defined in Definition 5.32 is a real number that can be negative.

A directed graph is called balanced if for each node its indegree is equal to its outdegree.

Let B ∈ {−1, 0, 1}n×m be the signed incidence matrix of G, i.e., Bi,e = −1 if arc leaves

node i, Bi,e = 1 if e enters node i and Bi,e = 0 otherwise. One can verify that G is

balanced if and only if LG + LG
� = BB�. This implies that for balanced graphs the

matrix 1
2
(LG + LG

�) is positive semidefinite. Wu [375] observes that if G is balanced, then

a(G) = λ2

(
1

2

(
LG + LG

�
))
≥ 0.

A directed graph is called strongly connected if for every pair of distinct nodes u, v ∈ N there

exists a directed path from u to v in G. The balanced graphs that are strongly connected

are characterized by their algebraic connectivity, see Proposition 5.33 below. Connectedness

of directed graphs is also studied in [67, 357].

Proposition 5.33 (Wu [375]). Let a directed graph G be balanced. Then, a(G) > 0 if and

only if G is strongly connected.

This characterization can be exploited to derive a certificate for a tour matrix via a

linear matrix inequality. In order to do so, we consider the spectrum of a Hamiltonian
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cycle on n nodes. Let C be a Hamiltonian cycle in G corresponding to the tour mat-

rix X ∈ Tn(G), see (5.28). We then have 1
2

(
LC + LC

�)
= In − 1

2
(X + X�). The mat-

rix X +X� with X ∈ Tn(G) has the same spectrum as the adjacency matrix of the standard

undirected n-cycle. As a result, the spectrum of 1
2
(X +X�) is given by cos

(
2πj
n

)
for j ∈ [n]

see e.g., [86]. From this, it follows that the spectrum of 1
2

(
LC + LC

�)
is given by

1− cos

(
2πj

n

)
for j ∈ [n],

and the algebraic connectivity of a directed Hamiltonian cycle C is a(C) = 1 − cos(2π/n).

We define:

kn := cos

(
2π

n

)
and hn := 1− kn. (5.32)

Next, we extend a result by Cvetković et al. [86] from undirected to directed Hamiltonian

cycles.

Theorem 5.34. Let H be a spanning subgraph of a directed graph G where the in- and

outdegree equals one for all nodes in H. Let X be its adjacency matrix and let α, β ∈ R be

such that α ≥ hn/n and kn ≤ β < 1, with kn, hn as defined in (5.32). Then, H is a directed

Hamiltonian cycle if and only if

Z := βIn + αJn −
1

2

(
X +X�

)
� 0.

Proof. Let LH be the Laplacian matrix of H and let W be as given in Definition 5.32.

Then, a(H) = λmin

(
1
2
W� (

LH + LH
�)

W
)
.

Let Z � 0. This implies that W�ZW � 0, i.e.,

W�ZW = W�
(
βIn + αJn −

1

2

(
X +X�

))
W

= βW�W + αW�JnW − 1

2
W�

(
X +X�

)
W

= βIn−1 −
1

2
W�

(
X +X�

)
W

= (β − 1)In−1 +
1

2
W�

(
LH + LH

�
)
W � 0,

where we used the fact that JnW = 0 and 1
2
(LH + LH

�) = In − 1
2
(X + X�). The linear

matrix inequality above can be rewritten as

1

2
W�

(
LH + LH

�
)
W � (1− β)In−1,

implying

a(H) = λmin

(
1

2
W�

(
LH + LH

�
)
W

)
≥ 1− β.

Since β < 1, we have α(H) > 0. Because H is balanced, it follows from Proposition 5.33

that H is strongly connected and, thus, H is a directed Hamiltonian cycle.

Conversely, let H be a directed Hamiltonian cycle. Then, a(H) = λmin

(
1
2
W�(

LH +
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LH
�)

W
)
= 1− kn. Since β ≥ kn, we have

1

2
W�

(
LH + LH

�
)
W − (1− β)In−1 � 0 ⇐⇒ W�ZW � 0,

following the same derivation as above. Now, let x ∈ Rn. Since the columns of W form a

basis for 1⊥
n , x can be written as x = Wy + δ1n for some y ∈ Rn−1 and δ ∈ R. This yields:

x�Zx = y�W�ZWy + 2δy�W�Z1n + δ21�
nZ1n

= y�W�ZWy︸ ︷︷ ︸
≥0

+2δy�W� ((β − 1)1n + αn1n)︸ ︷︷ ︸
=0

+ δ2n ((β − 1) + αn)︸ ︷︷ ︸
≥0

,

where we used the facts that W�ZW � 0,W�1n = 0 and β−1+αn ≥ kn−1+n 1−kn
n

= 0.

Thus, Z � 0.

In order to present our first ISDP formulation of the QTSP, we derive an explicit expres-

sion for the set Tn(G) and linearize the objective function. The former can be done using

Theorem 5.34. The set Tn(G) can be fully characterized by the permutation matrices that

satisfy a linear matrix inequality. That is,

Tn(G) = Πn(G) ∩
{
X ∈ Sn : βIn + αJn −

1

2
(X +X�) � 0

}
, (5.33)

for all α ≥ hn/n and kn ≤ β < 1. Recall that Πn(G) is the set of permutation matrices

implied by G, see Section 5.4.1.

To linearize the objective function, we follow the same construction as proposed by Fisc-

her et al. [135]. For all two-arcs (i, j, k) ∈ A, see (5.30), we define a variable yijk := xijxjk.

This equality can be guaranteed by the introduction of the following set of linear coupling

constraints:

xij =
∑
k∈N :

(k,i,j)∈A

ykij =
∑
k∈N :

(i,j,k)∈A

yijk for all (i, j) ∈ A and yijk ≥ 0 for all (i, j, k) ∈ A.

We define the following set:

F1 :=

⎧⎪⎪⎨⎪⎪⎩(y,X) ∈ {0, 1}A × Πn(G) : xij =
∑
k∈N :

(k,i,j)∈A

ykij =
∑
k∈N :

(i,j,k)∈A

yijk ∀(i, j) ∈ A

⎫⎪⎪⎬⎪⎪⎭ . (5.34)

Now, our first ISDP formulation of the QTSP is as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min
∑

(i,j,k)∈A

qijkyijk

s.t. βIn + αJn −
1

2

(
X +X�

)
� 0

(y,X) ∈ F1,

(ISDP1)

where α ≥ hn/n and kn ≤ β < 1. One can verify that setting α = hn/n and β = kn leads to

the strongest linear matrix inequality among all possible values for α and β. Thus, we use

these values in the computational results of Section 5.5.
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Remark 5.35. In fact, we do not need to enforce integrality on y explicitly. Namely,

if X ∈ Tn(G), it follows from the integrality of X and the coupling constraints that yijk = 1

if (i, j, k) ∈ A is used in the tour and 0 otherwise. Hence, when optimizing over F1 using a

B&B or B&C algorithm, we relax the integrality constraint on y and branch on X only.

In what follows, we further exploit properties of tour matrices to derive our second ISDP

formulation of the QTSP. Let X ∈ Tn(G) be a tour matrix and define X(2) = (x
(2)
ij ) := X ·X.

For i, k ∈ N we have x
(2)
ik =

∑n
j=1 xijxjk =

∑
j∈N :(i,j,k)∈A yijk, where the last equality

follows from the definition of y. Thus, X(2) is a binary matrix and x
(2)
ik = 1 if and only if

the length of the shortest directed path from i to k in the subgraph induced by X is equal

to two.

We can again characterize a tour matrix as in Theorem 5.34 by combining the vari-

ables X and X(2). Observe that the directed graph induced by X(2) is balanced with in-

and outdegree one, and circulant (but not strongly connected for even n). Moreover, the

circulant graph C(2) corresponding to X +X(2) is strongly connected and balanced with in-

and outdegree two.

The spectrum of 1
2
((X +X(2)) + (X +X(2))�) for any X ∈ Tn(G) and X(2) = X ·X is

given by

cos

(
2πj

n

)
+ cos

(
4πj

n

)
for j ∈ [n], (5.35)

which results in the algebraic connectivity of C(2) being a(C(2)) = 2−(cos(2π/n)+cos(4π/n)).

We define

k(2)
n := cos

(
2π

n

)
+ cos

(
4π

n

)
and h(2)

n := 2− k(2)
n . (5.36)

Now, we are ready to state the following theorem.

Theorem 5.36. Let H be a spanning subgraph of a directed graph G where the in- and out-

degree equals one for all nodes in H. Let X be its adjacency matrix and define X(2) := X ·X.

Let α(2), β(2) ∈ R be such that α(2) ≥ h
(2)
n /n and k

(2)
n ≤ β(2) < 2, with k

(2)
n , h

(2)
n as defined

in (5.36). Then, H is a directed Hamiltonian cycle if and only if

Z := β(2)In + α(2)Jn −
1

2

(
(X +X(2)) + (X +X(2))�

)
� 0.

Proof. Let H̃ be the subgraph of G that has adjacency matrix X +X(2). Observe that H̃ is

balanced, and thus, H̃ is strongly connected if and only if a(H̃) > 0.

Let Z � 0, which implies that W�ZW � 0. Now we can use a similar derivation as in

the proof of Theorem 5.34, which results in the following:

1

2
W�

(
LH̃ + LH̃

�
)
W �

(
2− β(2)

)
In−1

implying

a(H̃) = λmin

(
1

2
W�

(
LH̃ + LH̃

�
)
W

)
≥ 2− β(2).
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Chapter 5. The Chvátal-Gomory procedure for ISDPs with applications in combinatorial
optimization 173

Since β(2) < 2, we have a(H̃) > 0, and thus, H̃ is strongly connected. As H̃ is the union of

a directed cycle cover and its implied distance two graph, H̃ can only be strongly connected

if H is strongly connected. We conclude that H is a Hamiltonian cycle.

Conversely, let H be a Hamiltonian cycle. In that case, the algebraic connectivity of H̃

is a(H̃) = 2−k
(2)
n , i.e., λmin

(
1
2
W� (

LH̃ + LH̃
�)

W
)
= 2−k

(2)
n . Since β(2) ≥ k

(2)
n , this yields

1

2
W�

(
LH̃ + LH̃

�
)
W −

(
2− β(2)

)
In−1 � 0, or equivalently, W�ZW � 0.

Now we can use the same argument as in the proof of Theorem 5.34 to show that Z � 0

where β, α and kn are replaced by β(2), α(2) and k
(2)
n , respectively.

We define the set F2 as follows:

F2 :=

⎧⎪⎪⎨⎪⎪⎩
(
y,X,X(2)

)
∈ F1 × Πn(G

2) : x
(2)
ik =

∑
j∈N :

(i,j,k)∈A

yijk ∀(i, k) ∈ A2

⎫⎪⎪⎬⎪⎪⎭ , (5.37)

where

Πn(G
2) :=

{
X(2) ∈ {0, 1}n×n :

diag(X(2)) = 0, X(2)1 = 1,

(X(2))�1 = 1, x
(2)
ij = 0 ∀(i, j) /∈ A2

}
,

and A2 is the set of node pairs (i, j) for which there exists a directed path from i to j of

length 2. The set F2 and the result of Theorem 5.36 lead to our second ISDP formulation

of the QTSP:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∑

(i,j,k)∈A

Qijkyijk

s.t. βIn + αJn −
1

2

(
X +X�

)
� 0

β(2)In + α(2)Jn −
1

2

(
(X +X(2)) + (X +X(2))�

)
� 0

(y,X,X(2)) ∈ F2,

(ISDP2)

where α ≥ hn/n, kn ≤ β < 1, α(2) ≥ h
(2)
n /n and k

(2)
n ≤ β(2) < 2. Again the choice

of α, β, α(2) and β(2) equal to their lower bounds provides the strongest continuous relaxation.

It follows from Theorem 5.36 that one can remove the first linear matrix inequality

in (ISDP2) and still obtain an exact formulation of the QTSP. However, the bound obtained

from the SDP relaxation of (ISDP2) dominates the bound obtained from the SDP relaxation

of (ISDP1). In that sense, the formulation (ISDP2) can be seen as a level two formulation

of the QTSP, whose continuous relaxation is stronger than that of the first level formulation.

An additional advantage of the level two formulation is that both linear matrix inequalities

may be used to generate CG cuts, as we show in the following section.

In the same vein, one can construct level k formulations of the QTSP for k = 3, . . . , n.

This leads to a hierarchy of formulations, whose SDP relaxations are of increasing strength

and complexity.
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5.4.3 Chvátal-Gomory cuts for the ISDPs of the QTSP

In order to solve (ISDP1) and (ISDP2) using our B&C algorithm, we study various CG-

based separation routines for the QTSP. We first derive a general CG cut generator for

the formulations (ISDP1) and (ISDP2). Thereafter, we show how different types of well-

known inequalities for the QTSP can be derived as CG cuts of the formulations (ISDP1)

and (ISDP2).

Let us consider (ISDP1). The set F1, see (5.34), consists of all tuples (y,X) where X

represents a node-disjoint cycle cover in G. Our B&C algorithm starts with optimizing

over the set F1, where we are allowed to relax the integrality of y at no cost, see Re-

mark 5.35. If an integer point (ŷ, X̂) is found in the branching tree, it is verified whether

we have λmin

(
βIn + αJn − 1

2

(
X̂ + X̂�

))
≥ 0. If so, then X̂ ∈ Tn(G) and we have found a

possibly new incumbent solution. If not, then X̂ is the adjacency matrix of a node-disjoint

cycle cover that is not a Hamiltonian cycle. Therefore we have to generate dual matrices

that cut off the current point.

The first separation routine that we present is based on finding a set of integer eigenvectors

corresponding to a negative eigenvalue of βIn + αJn − 1
2

(
X̂ + X̂�

)
.

Proposition 5.37. Let X ∈ Πn(G) be the adjacency matrix of a directed node-disjoint cycle

cover consisting of k ≥ 2 cycles. Let {S1, . . . , Sk} be the partition of the nodes implied by

the cycle cover and define for each l ∈ [k] the vector

vli :=

{
n− |Sl| if i ∈ Sl

−|Sl| if i /∈ Sl.

Then,
〈
vl(vl)�, βIn + αJn − 1

2
(X +X�)

〉
< 0 for all l ∈ [k].

Proof. The vectors vl are eigenvectors of X and X� corresponding to eigenvalue 1. Therefore

we have:(
βIn + αJn −

1

2
(X +X�)

)
vl = βvl + α ((n− |Sl|)|Sl|+ (n− |Sl|)(−|Sl|))1−

1

2
vl − 1

2
vl

= (β − 1)vl,

from where it follows that vl is an eigenvector of βIn + αJn − 1
2
(X + X�) corresponding

to eigenvalue β − 1. Since we assume β < 1, this eigenvalue is negative, from which the

conclusion follows.

The result of Proposition 5.37 can be used within our B&C algorithm in the following

way. Let {S1, . . . , Sk} be the partition of the nodes implied by the current solution X̂ and

let U l := vl(vl)� where vl is as defined in Proposition 5.37. Then for each l ∈ [k] we

construct the following CG cuts:〈
U l,

1

2
(X +X�)

〉
≤

⌊
〈U l, βIn + αJn〉

⌋
, (5.38)

or equivalently, 〈
U l, X

〉
≤

⌊
〈U l, βIn + αJn〉

⌋
, (5.39)
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which cut off the current point. Observe that the choice α = hn/n and β = kn leads to

noninteger values for α and β, i.e., the CG rounding step provides a strengthened eigenvalue

cut.

Since the result of Proposition 5.37 can be repeated for the extended linear matrix in-

equality in Theorem 5.36, we also obtain the following CG cuts with respect to (ISDP2):〈
U l, X +X(2)

〉
≤

⌊
〈U l, β(2)In + α(2)Jn〉

⌋
∀l ∈ [k]. (5.40)

Next, we consider the class of subtour elimination constraints. It has been shown by

Çezik and Iyengar [68] that the ordinary subtour elimination constraints defined by Dantzig

et al. [91] can be obtained as CG cuts for the symmetric TSP, provided that α and β

equal their lower bounds. We extend the result from [68] and present five types of subtour

elimination constraints that are in fact (strengthened) CG cuts of (ISDP1) and/or (ISDP2),

see Table 5.1. Many of these constraints do not follow directly from the linear matrix

inequalities, but require the addition of a positive multiple of a subset of the affine constraints.

It is shown by Fischer [134] that the inequalities IV and V of Table 5.1 define facets of the

asymmetric quadratic traveling salesman polytope.

In Appendix A.3, we explicitly derive these inequalities as (strengthened) CG cuts.

5.5 Computational results

In this section we test our ISDP formulations of the QTSP, see Section 5.4. We solve the

ISDPs using various settings of our CG-based B&C framework, see Algorithm 5.1, where we

include different sets of cuts from Section 5.4.3 in the separation routines. We compare the

performance of our approach with the two other ISDP solvers from the literature.

5.5.1 Design of computational experiments

In total we compare seven different approaches, among which two from the literature and

five variants of our B&C approach. The former class consists of the following:

KT : The B&C algorithm of Kobayashi and Takano [234], see Section 5.3.1.

SCIP-SDP : The general ISDP solver of Gally et al. [156]. This approach is based on

solving continuous SDPs in a B&B framework.

Another project that is known for its ability to solve ISDPs is YALMIP [257]. Prelimin-

ary experiments show, however, that the solver of [257] is significantly outperformed by the

solvers from [156] and [234]. Therefore, we do not take the solver of YALMIP into account.

Another notable approach is the branch-and-bound LP outer approximation algorithm Pa-

jarito introduced in [78]. Pajarito is designed for solving mixed-integer convex programs,

hence also covering ISDPs. Numerical experiments in [157] indicate that SCIP-SDP beats

Pajarito in both time and number of solved instances on almost all of the tested data. An

argument for this observation given in [157] is that the considered instances are provided in

dual ISDP form instead of the primal form normally being used by Pajarito. For that reason,

we do not take this solver into account and only consider the tailor-made ISDP solvers.

On top of the approaches from the literature, we consider five variants of our B&C

procedure that differ in the initial feasible set and the type of cuts that we add in the

separation routine:
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Inequality Description

I
∑
i∈S
j∈S

xij ≤ |S| − 1, ∀S ⊂ N, 2 ≤ |S| < n
CG cut of βIn + αJn − 1

2

(
X + X�

)
� 0 with

dual multiplier U = S S
�.

II
∑
i∈S
j/∈S

xij ≥ 1, ∀S ⊂ N, 2 ≤ |S| < n

CG cut of βIn + αJn − 1
2

(
X + X�

)
� 0 with

dual multiplier U = S S
� and −X1 = −1

with dual multiplier S .

III

k∑
l=1

∑
i∈Sl
j∈Sl

xij −
∑
l �=p

∑
i∈Sl
j∈Sp

xij ≤ n − 2k

∀(S1, . . . , Sk),∪k
l=1Sl = N,Sl ∩ Sp = ∅ ∀l �= p

CG cut of βIn + αJn − 1
2

(
X + X�

)
� 0 with

dual multiplier U = 2
∑k

l=1 Sl Sl
� and

−X1 = −1 with dual multiplier 1.

IV

xij + xji +
∑

k∈N:
(i,k,j)∈A

yikj +
∑

k∈N:
(j,k,i)∈A

yjki ≤ 1

∀i, j ∈ N, i �= j, n ≥ 5

S-CG cut of β(2)In + α(2)Jn − 1
2

(
(X + X(2))

+(X + X(2))�
)
� 0 with dual multiplier U =

{i,j} {i,j}
� and

∑
k∈N:

(i,k,j)∈A
yikj − x

(2)
ij = 0,∑

k∈N:
(j,k,i)∈A

yjki − x
(2)
ji = 0, −xii = 0,

−xjj = 0, −x
(2)
ii = 0 and −x

(2)
jj = 0, each with

dual multiplier 1.

V

∑
i∈S
j∈S

xij +
∑
i∈S
j∈S

∑
k∈N\S:

(i,k,j)∈A

yikj ≤ |S| − 1

∀S ⊂ N, 2 ≤ |S| < 1
2n

S-CG cut of β(2)In + α(2)Jn − 1
2

(
(X + X(2))

+(X + X(2))�
)
� 0 with dual multiplier

U = S S
� and

∑
k∈N:(i,k,j)∈A yikj − x

(2)
ij = 0,

for all i, j ∈ S, each with dual multiplier 1,

and −yikj ≤ 0 for all (i, k, j) ∈ A with i, k, j ∈ S,

each with dual multiplier 1.

Table 5.1: Five types of subtour elimination constraints for the QTSP that can be obtained
as (strengthened) CG cuts of (ISDP1) and/or (ISDP2). The third column describes which
(in)equalities and dual multipliers are used to construct the inequality.

CG1 : In this setting we solve (ISDP1) where we initially optimize over F1, see (5.34).

In the separation routine we add the CG cut of the form (5.38) for each subtour present

in the current candidate solution.

CG2 : In this setting we solve the second QTSP formulation (ISDP2). We initially

optimize over F2, see (5.37), and in each callback iteration we add the CG cuts of the

form (5.38) and (5.40) for each subtour in the current candidate solution.

SEC-simple: In this setting we solve (ISDP1) by starting from optimizing over F1,

see (5.34). In the callback procedure, we add the ordinary subtour elimination con-

straints, see Type I in Table 5.1, for all subtours in the current candidate solution.

SEC : This setting solves (ISDP2) with subtour elimination constraints of Type I, IV

and V from Table 5.1. The latter type of constraint is added only for the subtours

of size less than 1
2
n. Since the order two variables X(2) in this setting do not appear
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directly in the cutting planes, we eliminate them also from the initial MILP based on

preliminary tests. That is, we start optimizing over F1, see (5.34). Moreover, based on

a result by Fischer et al. [135] we also add additional cuts to forbid subtours of three

nodes. For a triple i, j, k of distinct nodes, the following cut is valid for any tour:

yijk + ykij ≤ xij .

We add this cut for all distinct i, j, k ∈ S in the separation routine whenever a subtour

on S with |S| = 3 is present in the current candidate solution. Observe that there are

six of them for each triple of nodes.

SEC-CG: This setting solves (ISDP2), starting from F2, see (5.37). In the separation

routines, we add all the cuts that are included in the previous setting SEC. Moreover,

on top of that we also add the CG cuts (5.38) and (5.40) in the callback procedure.

Recall that the separation routines are only called at integer points, which represent cycle

covers of G. Therefore, the separation of all mentioned cuts boils down to identifying the

subtours in the cycle cover. Also, recall that the integrality of y is relaxed in all settings,

see Remark 5.35.

The setting SEC looks similar to the best exact QTSP solving strategy of Fischer et

al. [134]. However, there are two main differences between the methods. First, our separation

routine is only called on integer points, while the algorithm of [135] separates on fractional

points. The separation on integer points is computationally very cheap compared to the

fractional separation method applied by [135]. Consequently, the former separation can lead

to superior behavior, as observed by Aichholzer et al. [7] for the symmetric QTSP. Second,

our approach results from a more general B&C framework for solving integer SDPs, which

is not limited to the QTSP.

Notice that the derived CG cuts of Type II and III from Table 5.1 are not added in

the test settings. Preliminary experiments have shown that the cut-set subtour elimination

constraints (Type II of Table 5.1) have similar practical behaviour compared to the ordinary

subtour elimination constraints. Also, preliminary tests show that the addition of one merged

Type III cut instead of all separate Type I cuts leads to worse behaviour in terms of overall

computation time. We expect this difference to be caused by the sparsity of the Type I cuts,

compared to the very dense Type III cuts.

For our tests, we consider three types of instances:

Real instances from bioinformatics: Jäger and Molitor [224], Fischer [134] and

Fischer et al. [135, 136] consider an important application of the QTSP in computa-

tional biology. In order to recognise transcription factor binding sites or RNA splice

sites in a given set of DNA sequences, Permuted Markov (PM) models [123] or Per-

muted Variable Length Markov (PVLM) models [381] can be used. Finding the optimal

order two PM or PVLM model boils down to solving a QTSP instance. We consider

three classes of bioinformatics instances used in [133, 134], which are denoted by ‘bma’,

‘map’ and ‘ml’. Each class consists of 38 instances with n ∈ {3, . . . , 40}.

Reload instances: The reload instances are the same as the ones used by Rostami et

al. [326] and De Meijer and Sotirov [275]. The reload model [370] is inspired by logistics

and energy distribution, where a certain cost is incurred whenever the underlying

type of arc in a network changes, e.g., the means of transport. Let G be a directed

graph where each arc (i, j) is present with probability p. Each arc in G is randomly
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assigned a color from a color set L with cardinality c. If two successive arcs e and

f have colors s and t, respectively, the quadratic cost among e and f equals r(s, t),

where r : L× L→ R is a reload cost function such that r(s, s) = 0 for all s ∈ L. We

consider two types of reload classes:

– Reload class 1 : For each pair of distinct colors s, t ∈ L the reload cost is r(s, t) = 1;

– Reload class 2 : For each pair of distinct colors s, t ∈ L, the reload cost r(s, t) is

chosen uniformly at random from {1, . . . , 10}.

For each class, we consider 10 distinct instances for each possible combination of n ∈
{10, 15, 20, 25}, p ∈ {0.5, 1} and c ∈ {5, 10, 20}, except for the combination between n =

25 and p = 1 due to extremely large computation times. Thus, in total we consider

420 reload instances.

Turn cost instances: The special case of the QTSP where the nodes are points in

Euclidean space and the angle cost of a tour is the sum of the direction changes at the

points is called the angular-metric traveling salesman problem [6]. The angular-metric

TSP is motivated by VLSI design and proven to be NP-hard [6]. The problem is in

the literature also known as the minimum bends traveling salesman problem [348]. We

consider two classes of this type:

– TSPLIB instances: The TSP library (TSPLIB) [317] contains a broad set of TSP

test instances, among which a large number of Euclidean instances. We construct

a corresponding QTSP instance as follows: Given points v1, . . . , vn in R2, we

let G be the complete graph on n vertices. For i, j, k, i 	= j, j 	= k, i 	= k, we

define qijk to be proportional to the angle between edges {i, j} and {j, k}. More

precisely,

qijk :=

⌈
10 ·

(
1− 1

π
arccos

(
(vi − vj)

�(vk − vj)

‖vi − vj‖ · ‖vj − vk‖

))⌉
.

This cost structure is similar to the angle-distance costs considered in Fischer

et al. [135] and De Meijer and Sotirov [274]. In total, we consider 9 TSPLIB

instances with n ranging from 15 to 70. Figure 5.5a depicts one of the TSPLIB

instances including its optimal tour with respect to the defined quadratic cost

structure.

– Grid instances: Fekete and Krupke [127, 128] consider problems of computing

optimal covering tours and cycle covers under a turn cost model, see also Arkin

et al. [19]. These problems have many practical applications, such as pest control

and precision farming. Following this line, we consider the angular-metric TSP

on grid graphs. We construct a 2D connected grid graph using the Type II

instance generator of [128]. Given the vertex coordinate vectors v1, . . . , vn ∈
{0, . . . , N1} × {0, . . . , N2} for integers N1, N2, we include an edge between vertex

i and j if and only if (vi1 = vj1 and |vi2− vj2| = 1) or (vi2 = vj2 and |vi1− vj1| = 1). If

two edges {i, j} and {j, k} are present, the quadratic costs are computed similar

as for the TSPLIB instances. In total we consider 9 grid instances with N1 and N2

running from 20 to 80, corresponding to n ranging from 430 to 2646. An example

of a grid instance including its minimum bend tour is given in Figure 5.5b.
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Both types of turn cost instances are in fact instances of the symmetric QTSP, as they

are defined on undirected graphs. To account for this, we use symmetrized versions

of (ISDP1) and (ISDP2) instead. We refer to Appendix A.4 for the construction of

these formulations.

(a) Instance ‘kn57’ (b) Instance ‘grid1’

Figure 5.5: Optimal tours of two turn instances: the TSPLIB instance ‘kn57’ (n = 57) and
the instance ‘grid1’ (n = 430). Each square in (b) represents a vertex in the grid graph.

All our algorithms, including the algorithm of [234], are implemented in Julia 1.5.3 us-

ing JuMP v0.21.10 [113] to model the mathematical optimization problems. In particular,

we exploit the solver-independent lazy constraint callback option of JuMP to include the

separation routines. Solving the underlying MILP in the subproblems is done using Gur-

obi v9.10 [189] in the default settings including built-in cuts. Experiments are carried out

on a PC with an Intel(R) Core(TM) i7-8700 CPU, 3.20GHz, 8 GB RAM. To run SCIP-SDP,

we use SCIP-SDP version 3.2.0 on the NEOS Server [87], where the B&B framework of

SCIP 7.0.0 [159] and the SDP solver Mosek 9.2 [284] are combined in the default setting.

Observe that an older version of SCIP-SDP with DSDP [41] as SDP solver was used

in the numerical experiments of [234], which partly explains the poor behaviour of SCIP-

SDP compared to the B&C algorithm of [234]. However, our computational study that uses

SCIP-SDP with the state-of-the-art SDP solver Mosek [284] also shows superior behaviour

of the B&C algorithms.

We test all seven settings on the bioinformatics and reload instances. Since these instance

classes give a clear and consistent overview of the superior approaches, we restrict ourselves

to the best three settings for the turn cost instances. The maximum computation time for all

our approaches is set to 8 hours, which is in correspondence with the maximum computation

time on the NEOS Server [87].

5.5.2 Comparison of approaches

Table 5.2 and Figure 5.6 provide an overview of the performance on the instances from

bioinformatics. For each setting, the average values in Table 5.2 are only computed over

the instances that could be solved to optimality for that setting. An extended table on the

results per instance can be found in Appendix A.5. Observe that the percentage of instances

solved is quite similar over the three instance classes. This indicates that it is mainly the

size rather than the cost structure that determines whether a bioinformatics instance can

be solved or not. It is clear that our B&C settings significantly outperform the other two
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ISDP solvers SCIP-SDP and KT, which can solve at most 60% of the instances to optimality.

Since the separation routine of CG1 is based on the identification of an integer eigenvector

corresponding to a negative eigenvalue, the settings KT and CG1 are almost identical apart

from the CG rounding step. The large decrease in the number of branching nodes of CG1

compared to KT is remarkable. This indicates that the effect of deeper cuts as shown in

Figure 5.4 is not solely theoretical, but is also substantial from a practical point of view.

When comparing the five different separation routines of our B&C approach, we also see

a clear pattern. The settings SEC and SEC-CG turn out to be superior, being able to solve

all instances within short computation times. Although SEC generally provides the fastest

algorithm, it sometimes happens that SEC-CG solves the instance faster, see Figure 5.6,

due to the smaller number of B&C nodes. This shows that the additional CG cuts can

sometimes improve on the subtour elimination constraints. The two approaches are followed

by SEC-simple, which is able to solve instances up to n = 35 to optimality. This difference

is mainly due to the strengthened subtour elimination cuts (type IV and V in Table 5.1)

that work well for the bioinformatics instances, as also noted by Fischer et al. [135]. Finally,

the settings CG1 and CG2 are only able to solve instances up to n = 32 and n = 27,

respectively. Although the distance two CG cuts (5.40) significantly reduce the number of

needed branching steps, the overall computation time is larger due to the increase in the

number of variables and constraints in CG2.

Type Statistic SCIP-SDP KT CG1 CG2 SEC-simple SEC SEC-CG

bma Instances solved (%) 34.21 60.53 78.95 65.79 84.21 100 100

Average comp. time 1519 1581 846.1 639.40 817.43 28.31 182.3

Average B&C nodes 30308 854964 119144 42515 85984 200.4 142.5

Average time per node 0.025 0.001 0.002 0.006 0.005 0.184 1.158

map Instances solved (%) 34.21 57.89 78.95 65.79 81.58 100 100

Average comp. time 2247 1721 1768 806.6 911.4 25.83 199.6

Average B&C nodes 30385 896340 245732 56197 79869 244 173

Average time per node 0.037 0.001 0.002 0.009 0.004 0.496 2.094

ml Instances solved (%) 34.21 57.89 76.32 65.79 81.58 100 100

Average comp. time 2891 1315 460.9 805.6 520.2 27.34 221.7

Average B&C nodes 33185 658640 86743 44342 51495 252.0 186.3

Average time per node 0.034 0.001 0.002 0.007 0.005 0.096 0.961

Table 5.2: Summary table of the performance on the bioinformatics instances per setting
and per instance type. The best performing setting per row is given in bold.

Next, we discuss the results on the set of reload instances. For both class 1 and 2 and for

each value of n, p and c we consider 10 randomly generated instances. The averaged results

for each combination of parameters can be found in Appendix A.5, see Table A.10, A.11

and A.12. In general, we see that the computation times increase with the number of nodes n

and the graph density p. On the other hand, if the number of colors c increases, the instances

become easier to solve as the number of (optimal) solutions will decrease. Table 5.3 shows

a summary of the results accumulated over the number of colors c. Accordingly, Figure 5.7

shows the spread of the computation times, where we also accumulate both reload classes.

When comparing the different settings, we draw similar conclusions as before. Note that

SCIP-SDP performs very poorly on the reload instances. The difference between KT and

CG1 is not as significant as before, although CG1 is still favourable above KT on almost all

instance types. The settings that involve the variables X(2) in the root node, i.e., CG2 and

tel:001%200.002%200.006
tel:001%200.002%200.009
tel:001%200.002%200.007
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SEC-CG, are outperformed by SEC-simple and SEC. Apparently, the increase in the number

of variables does not contribute much to the pruning of the branching tree. In fact, the

results in Appendix A.5 even suggest that the number of branching nodes sometimes becomes

larger. The large spread in computation times for these settings, see Figure 5.7, also suggests

that (ISDP2) leads to a search process that is less robust and that this effect becomes more

visible as the instances become larger. However, the S-CG cuts resulting from (ISDP2)

do contribute to the pruning of the tree, as is suggested by the strong performance of

SEC. The settings SEC and SEC-simple overall perform best. None of the two algorithms

outperforms the other in terms of computation time, even when the problem size goes up,

see the additional numerical results in Table A.12 of Appendix A.5.

Figure 5.6: Computation times versus instance size for the bioinformatics classes ‘bma’ (top),
‘map’ (middle) and ‘ml’ (bottom). The computation times are given on a logarithmic scale.
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Figure 5.7: Boxplots showing the computation times for the reload instances for different
values of n and p, accumulated over the reload class and the number of colors c. We omit
the results of SCIP-SDP, since these computation times are several magnitudes larger.
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Finally, we consider the turn cost instances. From the class of bioinformatics and reload

instances it is clear that the settings SEC-simple, SEC and SEC-CG generally perform best.

Hence, we restrict the numerical results on the turn cost instances to these three settings.

Table 5.4 and 5.5 show the computation times and number of branching nodes for the

TSPLIB and grid instances, respectively.

The TSPLIB graphs are complete graphs, and hence we can only solve up to n = 70 for

this instance type. We are able to solve all TSPLIB instances in a time span 900 seconds.

Since the grid instances are more sparse, we can solve much larger instance sizes to optimality.

For this type, instances up to 2 646 nodes (!) can be solved to optimality within 15 seconds.

These are currently the largest solved QTSP instances in the literature.

When comparing the three settings, we see that SEC-simple and SEC perform slightly

better than SEC-CG on the turn cost instances. Since the different separation routines

lead to different relaxations, the branching strategy between the methods can differ. Not

surprisingly, the favourable setting is often the one with the smallest number of B&C nodes,

regardless of the time per branching node. Taking both the TSPLIB and grid instances into

account, this happens slightly more often for the setting SEC-simple.

Instance Average computation times (s)

Class n p OPT SCIP-SDP KT CG1 CG2 SEC-simple SEC SEC-CG

1 10 0.5 6.233 0.161 0.035 0.028 0.035 0.024 0.019 0.031

10 1 3.3 1.627 0.133 0.127 0.165 0.128 0.113 0.171

15 0.5 6.367 2.256 0.158 0.160 0.251 0.142 0.139 0.223

15 1 2.8 244.0 1.426 1.124 4.503 1.095 1.040 2.825

20 0.5 6.2 82.08 0.610 0.625 1.510 0.483 0.465 1.237

20 1 2.314 3908 183.8 91.56 1910 162.5 43.21 3278

25 0.5 6.6 - 76.20 35.70 1141 17.10 16.30 249.1

2 10 0.5 22.74 0.185 0.036 0.039 0.049 0.029 0.029 0.044

10 1 8.2 0.962 0.164 0.148 0.152 0.116 0.139 0.157

15 0.5 22.73 2.989 0.193 0.174 0.255 0.173 0.172 0.261

15 1 6.767 277.5 1.363 1.768 4.643 1.293 1.190 3.290

20 0.5 18.1 58.68 0.575 0.585 1.246 0.552 0.576 1.352

20 1 4.745 2689 43.99 20.88 1187 11.89 16.88 850.2

25 0.5 16.37 - 1298 315.1 5159 94.81 75.81 1701

Table 5.3: Overview of average computation times for the reload instances. Each row
provides averages of 30 instances, namely 10 random instances for each value of c = 5, 10, 20.
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SEC-simple SEC SEC-CG

Instance n m OPT
Comput.

time (s)

Number

of nodes

Comput.

time (s)

Number

of nodes

Comput.

time (s)

Number

of nodes

lau15 15 105 47 0.278 1 0.458 1 0.115 1

wg22 22 231 63 0.643 1 0.436 1 0.490 1

bays29 29 406 78 1.519 96 0.905 93 0.949 78

dantzig42 42 861 96 11.25 994 12.04 1059 21.20 1458

att48 48 1128 105 53.07 4104 47.64 3627 55.52 3375

berlin52 52 1326 118 702.9 36523 1115 49265 1070 41041

kn57 57 1596 120 153.1 2425 110.8 1539 138.6 1804

wg59 59 1711 121 391.2 10503 898.7 13627 650.1 10269

st70 70 2415 137 861.8 8596 838.1 4649 1862 12222

Table 5.4: Computation times and number of branching nodes for the TSPLIB instances.

SEC-simple SEC SEC-CG

Instance n m OPT
Comput.

time (s)

Number

of nodes

Comput.

time (s)

Number

of nodes

Comput.

time (s)

Number

of nodes

grid1 430 795 620 1.431 6 1.538 1 1.020 1

grid2 734 1393 460 14.86 2781 20.29 7942 19.33 2562

grid3 880 1672 590 3.303 30 5.019 78 5.945 207

grid4 960 1802 840 4.954 3 3.731 1 7.507 1

grid5 1038 1965 440 8.452 24 4.514 16 8.192 10

grid6 1214 2335 480 19.67 57 15.61 25 23.27 55

grid7 1302 2493 730 9.121 330 17.83 177 14.65 181

grid8 1788 3469 540 4.800 1 4.917 1 4.619 1

grid9 2646 5172 760 13.79 1 13.80 1 13.39 1

Table 5.5: Computation times and number of branching nodes for the grid instances.

5.6 Conclusions

In this chapter we study the Chvátal-Gomory cuts for spectrahedra and their strength in

solving integer semidefinite programs resulting from combinatorial optimization problems.

Accordingly, this chapter increases the theoretical understanding of integer semidefinite pro-

gramming, which in turn contributes to new solution techniques for this type of problems.

In Section 5.2 we study the elementary closure of spectrahedra and the hierarchy obtained

by iterating this procedure. Using an alternative formulation of the elementary closure,

see (5.9), we provide simple proofs of several properties, including a homogeneity property

for bounded spectrahedra, see Theorem 5.15. Although some of the here presented results

are already known in the literature, the proofs we present are considerably simpler and are

mainly based on concepts from mathematical optimization and number theory. We also

present the polyhedral description of the elementary closure of spectrahedra whose defining

linear matrix inequality is totally dual integral, see Theorem 5.20. To the best of our

knowledge, this is the first such description for the elementary closure of a nonpolyhedral

set. A full characterization of bounded LMIs that are TDI on Zm is given in Theorem 5.23.

Sufficient conditions for TDI-ness on a set Z ⊆ Zm are given in Theorem 5.26 and 5.28.

A generic B&C algorithm for ISDPs based on strengthened CG cuts is presented in

Section 5.3, see Algorithm 5.1. Our algorithm is a refinement of the algorithm from [234],
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where eigenvector-based inequalities are used to separate infeasible integer points. Moreover,

our approach can be seen as an extension of [68], in which the authors introduce CG cuts

for conic programs, but leave the separation of CG cuts as an open problem. Our numerical

results indicate the effectiveness of the use of deeper CG cuts. We also provide a separation

routine for binary SDPs originating from combinatorial problems, see Section 5.3.2.

In Section 5.4 we extensively study the application of our approach to the quadratic

traveling salesman problem. Based on a generalization of the notion of algebraic connectivity

to directed graphs, we present two exact ISDP formulations of the QTSP, see (ISDP1)

and (ISDP2). We show that the simplest CG separation routine boils down to finding integer

eigenvectors of the adjacency matrix of a node-disjoint cycle cover, see Proposition 5.37.

However, more intricate dual multipliers lead to some well-known families of cuts, e.g., the

ordinary and strengthened versions of the subtour elimination constraints, see Table 5.1. We

test several variants of our B&C procedure that involve different separation routines.

Numerical results on the QTSP show that our B&C algorithm significantly outperforms

the two alternative ISDP solvers of [156] and [234]. For the real instances from bioinform-

atics [135, 136], these solvers are able to solve instances up to only n = 15 and n = 25,

respectively, whereas our method can solve all instances up to n = 40 in a short timespan.

As one would expect, the extension to CG inequalities leads to deeper cuts, which success-

fully reduces the size of the branching tree compared to [234]. From all considered separation

routines, it turns out that the setting SEC, see page 176, is overall most effective. This set-

ting was able to solve almost all of the 552 tested QTSP instances to optimality within 5

minutes, where the largest instance contains m = 5172 arcs.

The contents in this chapter inspires several future research directions. It would be inter-

esting to study the performance of our B&C algorithm when applied to other optimization

problems that can be formulated as ISDPs. We expect the exploitation of CG cuts in the

branching scheme to be effective for such ISDPs. Moreover, as for the QTSP many known

classes of cuts turned out to be (strengthened) CG cuts with respect to the ISDP formulation,

it would be interesting to know whether this also holds for other problems.
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6
On integrality in semidefinite programming for

combinatorial optimization

Chapter summary

It is well-known that by adding integrality constraints to the semidefinite pro-
gramming (SDP) relaxation of the max-cut problem, the resulting integer semidefin-
ite program is an exact formulation of the problem. In this chapter we show similar
results for a wide variety of combinatorial optimization problems for which SDP re-
laxations have been derived. Based on a comprehensive study on discrete positive
semidefinite matrices, we follow a generic approach to derive mixed-integer semidef-
inite programming (MISDP) formulations for binary quadratically constrained quad-
ratic programs and binary quadratic matrix programs. Applying a problem-specific
approach, we derive more compact MISDP formulations for several problems, such
as the quadratic assignment problem, the graph partition problem and the integer
matrix completion problem. We also show that several structured problems allow for
novel compact MISDP formulations through the notion of algebraic connectivity. Al-
though solving mixed-integer semidefinite programs is still practically challenging, the
here presented formulations induce new bounds based on integer Lagrangian duality
that are at least as good as their continuous counterparts. By introducing a MISDP-
based projected subgradient algorithm, we show that the resulting Lagrangian dual
bounds for the max-cut problem are substantially stronger than the standard SDP
bound.

187
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6.1 Introduction

Semidefinite programming (SDP) deals with the optimization of a linear function over the

cone of positive semidefinite matrices under the presence of affine constraints. Over the last

decades, semidefinite programs (SDPs) have proven themselves particularly useful in provid-

ing tight relaxations of combinatorial optimization problems. Following the extension from

linear programming to integer linear programming initiated in the 1960s, a recent interest in

incorporating integer variables in SDPs has arisen. Indeed, many real-world decision prob-

lems are most naturally modeled by including integer variables in optimization problems.

When the variables in an SDP are required to be integer, we refer to the problem as an

integer semidefinite program (ISDP). When an SDP contains both integer and continuous

variables, we refer to the program as a mixed-integer semidefinite program (MISDP). As

mixed-integer linear programs (MILPs) form a subclass of MISDPs, mixed-integer semidef-

inite programming is in general NP-hard.
The combination of positive semidefiniteness and integrality induces a lot of structure in

matrices. Exploiting that fact, it has been shown that several structured combinatorial op-

timization problems allow for a formulation as a (M)ISDP. To the best of our knowledge, the

first ISDP formulation of a combinatorial optimization problem is derived for the symmetric

traveling salesman problem by Cvetković et al. [86]. Eisenblätter [122] derives an ISDP for-

mulation of the minimum k-partition problem, which asks for a partition of the vertex set

of a graph into at most k sets such that the total weight of the edges within the same set is

minimized. Anjos and Wolkowicz [16] show that the standard SDP relaxation of the max-cut

problem becomes exact when adding integrality constraints. As an immediate consequence,

also the SDP relaxation of the max-2-sat problem, i.e., the maximum satisfiability problem

where each clause has at most two literals, see e.g., [176], can be modeled as an ISDP. An

ISDP formulation of the chromatic number of a graph is derived by Meurdesoif [279]. The

quadratic traveling salesman problem (QTSP) is formulated as an ISDP in [276], see also

Chapter 5. Next to these classical textbook problems, integrality in SDPs has also been at

consideration in more applied problems. Yonekura and Kanno [376] formulate an optim-

ization problem in robust truss topology design as a MISDP, see also [71, 239, 267]. The

problem of computing restricted isometry constants also allows for a MISDP formulation,

see [155]. A MISDP formulation of the regularized cardinality constrained least squares

problem is derived in [305]. Gil-González et al. [170] use a MISDP to formulate an optimal

location problem in power system analysis. Zheng et al. [383] model a robust version of

a power system unit commitment problem using a mixture of semidefinite constraints and

integer variables. Finally, Duarte [109] exploits MISDPs to find exact optimal designs of

experiments in the domain of surface response modeling in statistics.

Despite the literature on these particular problems, a generic approach for deriving prob-

lem formulations based on mixed-integer semidefinite programming has not been followed.

Although there do exist several approaches in the literature where SDP relaxations are used

in a branching scheme, see e.g., [240, 364], the branching strategies are based on the problem

structure rather than on the matrix variables being integer. Accordingly, exploiting integ-

rality in the MISDP models itself has not been the method of choice so far. This might be

due to the fact that solving SDPs of large sizes is still practically challenging, discouraging

to look into the extension of adding hard integrality constraints to the model. Given that

many problems can be modeled as a MILP, why would one have an incentive to model the

problem in a form that is seemingly more complex to solve in practice?

In this chapter we refute these objections to consider MISDPs as a general modeling tech-
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nique, advocating that they have a great potential to be also numerically advantageous. We

particularly focus on binary quadratic programs (BQPs), which aim to optimize a quadratic

objective function g(x) over a feasible set X defined by quadratic or linear constraints, where

x is required to be binary, see Figure 6.1. A common approach to solve these programs is by

exploiting standard linearization techniques to model them as a MILP. This is often done in

a branch-and-bound setting, where the subproblems correspond to the linear programming

relaxations of the MILP. This research line is depicted in the top stream of Figure 6.1. An

alternative approach is to lift the vector variable x in a BQP to a matrix variable X = xx�

so as to model the problem as an SDP with a nonconvex rank constraint. After relaxing

this rank constraint, we obtain an SDP relaxation of the problem, see e.g., [15]. This relax-

ation approach corresponds to the bottom arrow in Figure 6.1. Apart from the particular

problems mentioned earlier, it is disregarded up to this point that this relaxation can also

be obtained via relaxing integrality in a MISDP model that is equivalent to the BQP. More

precisely, there exists a bijection between the elements in X and the integer points in the

feasible set of the SDP relaxation. Realizing that fact, this provides a systematic way of

approaching BQPs via mixed-integer semidefinite programming. Comparing the three equi-

valent formulations given in Figure 6.1, the MISDP formulation has the advantages to have

both a linear objective function (compared to the BQP formulation) and a convex relaxation

that is often stronger than standard linear programming relaxations. After reformulating the

mixed-integer nonlinear program as a convex mixed-integer nonlinear program possessing a

tight relaxation, all solution techniques from convex mixed-integer nonlinear programming

can be applied to tackle the problem. With the advancing state of the solution approaches

in this field, the perspectives of this generic solution approach are hopeful.

The focus of this chapter is primarily on the modeling aspect of combinatorial optimiza-

tion problems as (M)ISDPs, and less on the algorithmic aspects of solving these. With respect

to the computational side, several general-purpose solution approaches have been considered

recently. Gally et al. [156] propose a branch-and-bound framework for solving MISDPs, with

the characteristic that strict duality is maintained throughout the branching tree. Solver in-

gredients, such as dual fixing and branching rules, are also considered in [156]. Kobayashi

and Takano [234] propose a cutting-plane and a branch-and-cut algorithm for solving generic

MISDPs, where it is shown that the branch-and-cut algorithm performs best. This branch-

and-cut algorithm is strengthened in [276], where specialized cuts, such as Chvátal-Gomory

cuts, are incorporated in the approach. Presolving techniques for MISDPs have been stud-

ied by Matter and Pfetsch [270]. Hojny and Pfetsch [211] consider reduction techniques for

solving MISDPs based on permutation symmetries. The computational ingredients of the

above-mentioned approaches combined with the theoretical framework of modeling problems

as (M)ISDPs that we derive in this chapter, provide a balanced foundation of mixed-integer

semidefinite programming in combinatorial optimization.

Main results and outline

This chapter studies the theoretical role of mixed-integer semidefinite programming in com-

binatorial optimization. We show that many problems can be modeled as a (M)ISDP, either

by a generic approach for certain large problem classes, or by a more problem-specific ap-

proach. Gradually, we cover and exploit results from matrix theory, combinatorics, algebraic

graph theory and Lagrangian duality theory. Our approach is accompanied with a large

number of examples of various combinatorial optimization problems.

We start our approach with an extensive overview of results on the matrix theory of
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Binary
Quadratic

Programming

min g(x)

s.t. x ∈ X

Mixed-Integer
Linear

Programming

Mixed-Integer
Semidefinite
Programming

Linear
Programming
Relaxation

Semidefinite
Programming
Relaxation

Mixed-Integer
Nonlinear

Programming

Convex Mixed-
Integer Nonlinear

Programming

g(x) quadratic function
X integer quadratically

constrained set

min f(x, y)

s.t. (x, y) ∈ XMILP

f(x, y) linear function
XMILP integer poly-

hedral set

min h(x,X)

s.t. (x, X) ∈ XMISDP

h(x,X) linear function
XMISDP integer spectra-

hedral set

min f(x, y)

s.t. (x, y) ∈ XMILP

min h(x,X)

s.t. (x, X) ∈ XMISDP

lift x to X and relax rank-constraint

Figure 6.1: Overview of various exact formulations of binary quadratic program and their
relaxations. A double arrow (⇐⇒) denotes equivalence between the formulations, while a
solid arrow (→) denotes that the formulation is relaxed from the former to the latter. The
sets X , XMILP and XMISDP are defined by nonconvex integer constraints, while XMILP

and XMISDP are convex relaxations.

discrete positive semidefinite (PSD) matrices. Without considering explicit optimization

problems, we focus on the structure of PSD {0, 1}-, {±1}− and {0,±1}-matrices. This

overview reviews results from [42, 110, 249, 254], but also introduces new results and for-

mulations of these matrix sets, such as a combinatorial viewpoint of PSD {0, 1}-matrices of

rank at most r. We also extend results that are known for {0, 1}-matrices to the other two

matrix sets.

These matrix theoretical results are exploited when proving that many binary quadratic

problems allow for a formulation as a binary semidefinite program (BSDP). We establish this

result for binary quadratically constrained quadratic programs and, in particular, for binary

quadratic matrix programs. Problems that allow for a formulation as a binary quadratic

matrix program, e.g., quadratic clustering or packing problems, can be modeled as a compact

BSDP with a PSD matrix variable of relatively low order.
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After that, we treat several specific problem classes for which we obtain MISDP formu-

lations that do not follow from the above-mentioned framework or for which it is possible to

obtain a more efficient formulation. Among these are the quadratic assignment problem, in-

cluding its extensive number of special cases, see e.g., [62], several graph partition problems

and graph problems that can be modeled based on algebraic connectivity. Also, as most

formulations that we discuss include binary variables, we present several problems that have

a MISDP formulation where the variables are integer, but nonbinary. Among those are the

integer matrix completion problem [338], the graph coloring problem [279] and the sparse

integer least squares problem [303].

As explained before, the results in this chapter can be exploited in an algorithmic frame-

work for solving MISDPs, e.g., [156, 234, 276]. We finalize this chapter by considering an

alternative way of utilizing our formulations, namely in terms of Lagrangian dual bounds.

We derive several results with respect to integer Lagrangian duality theory for MISDPs and

show how this results in bounds that are at least as strong as the SDP relaxations obtained

from relaxing integrality. The obtained bounds are related to the so-called exact subgraph

approach, see e.g., [1, 146, 147, 318], and can, for example, be derived by a projected sub-

gradient algorithm. Several implementations of this algorithm are tested on the max-cut

problem. Although the presented experiments are only preliminary, the Lagrangian dual

bounds turn out to be significantly stronger than the standard SDP bounds, while they are

efficiently computable.

This chapter is structured as follows. In Section 6.2 we present results on the matrix

theory of discrete PSD matrices. These results are exploited in Section 6.3, where MISDP

formulations of generic quadratically constrained quadratic programs and quadratic matrix

programs are derived. In Section 6.4 we treat problem-specific MISDP formulations that

do not follow from the previous section. Lagrangian duality for MISDPs is the topic of

Section 6.5.

6.2 Theory on discrete PSD matrices

Most combinatorial optimization problems that we consider in this chapter are defined using

binary variables, i.e., variables taking values in {0, 1} or {±1}, or ternary variables, i.e.,

variables whose values are in {0,±1}. In this section we derive several useful results on these

matrix sets with respect to positive semidefiniteness. We start by considering the PSD {0, 1}-
matrices, after which we extend these results to PSD {±1}- and {0,±1}-matrices.

6.2.1 Theory on PSD {0,1}-matrices

In this section we consider the set of positive semidefinite {0, 1}-matrices. As these matrices

are the main objects in the remainder of the chapter, we study this set extensively. We derive

and recall several formulations of this matrix set, including a combinatorial, polyhedral and

a set-completely positive description.

Positive semidefinite {0, 1}-matrices are studied explicitly by Letchford and Sørensen [249].

They derive the following decomposition result on PSD {0, 1}-matrices.

Theorem 6.1 ([249]). Let X ∈ {0, 1}n×n be a symmetric matrix. Then X � 0 if and only

if X =
∑r

j=1 xjx
�
j for some xj ∈ {0, 1}n, j ∈ [r].
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Given a subset S ⊆ R+, a matrix X is called S-completely positive if X = PP� for

some P ∈ Sn×k. In case S = R+, we call X completely positive. It follows from Theorem 6.1

that any PSD {0, 1}-matrix is {0, 1}-completely positive, see also Berman and Xu [42].

The decomposition of PSD {0, 1}-matrices gives rise to a useful combinatorial interpret-

ation on the complete graph Kn. Viewing each vector xj ∈ {0, 1}n as an indicator vector on

the vertices of Kn, the matrix xjx
�
j can be seen as the characteristic matrix of a clique in Kn.

Given a decomposition X =
∑k

j=1 xjx
�
j , the cliques indexed by j ∈ [k] are pairwise disjoint,

since the diagonal of X is at most one. Therefore, each PSD {0, 1}-matrix can be seen as the

characteristic matrix of a set of pairwise disjoint cliques in Kn. This combinatorial structure

is in the literature also known as a clique packing.

As we will see in the next section, many {0, 1}-SDP formulations arise from a lifting PP�,

where P is an appropriate n×k {0, 1}-matrix. Consequently, the resulting PSD {0, 1}-matrix

has rank at most k. From that perspective, it makes sense to consider the set of PSD {0, 1}-
matrices that have an upper bound on the rank. For positive integers r, n with r ≤ n, let us

define the discrete set

Dn
r :=

{
X ∈ {0, 1}n×n : X � 0, rank(X) ≤ r

}
. (6.1)

Theorem 6.1 induces the following {0, 1}-completely positive description of Dn
r :

Dn
r =

{
PP� : P ∈ {0, 1}n×r, P1r ≤ 1n

}
. (6.2)

Next, we will derive another formulation of Dn
r , where the constraint rank(X) ≤ r is es-

tablished by an appropriate linear matrix inequality. To that end, we exploit the following

result that is implicitly proved in many sources and explicitly by Dukanovic and Rendl [110].

Proposition 6.2 ([110]). Let X ∈ {0, 1}n×n be a symmetric matrix. Then the following

statements are equivalent.

(i) diag(X) = 1n, rank(X) = r, X � 0.

(ii) There exists a permutation matrix Q such that QXQ� = Jn1 ⊕ · · · ⊕ Jnr with n =

n1 + · · ·+ nr.

(iii) diag(X) = 1n, rank(X) = r and X satisfies the triangle inequalities:

Xij +Xik −Xjk ≤ 1 ∀(i, j, k) ∈ [n]× [n]× [n].

(iv) diag(X) = 1n and (tX − J � 0⇐⇒ t ≥ r).

Proposition 6.2 establishes the equivalence between four useful characterizations of rank-r

PSD {0, 1}-matrices that have ones on the diagonal. In the following corollary we generalize

this result by relaxing the condition diag(X) = 1n.

Corollary 6.3. Let X ∈ {0, 1}n×n be a symmetric matrix. Then the following statements

are equivalent.

(i) rank(X) = r, X � 0.

(ii) There exists a permutation matrix Q such that QXQ� = Jn1 ⊕ · · · ⊕ Jnr ⊕ 0nz×nz

with n = n1 + · · ·+ nr + nz.
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(iii) rank(X) = r and X satisfies the triangle inequalities:{
Xij ≤ Xii ∀i 	= j

Xij +Xik ≤ Xii +Xjk ∀j < k, i 	= j, k

(iv) tX − diag(X)diag(X)� � 0 if and only if t ≥ r.

Proof. LetX ∈ {0, 1}n×n be symmetric. Throughout the proof, letN1 := {i ∈ [n] : Xii = 1}
and let N2 := [n]\N1. Moreover, let Q′ denote a permutation matrix corresponding to a per-

mutation of [n] that maps the ordered set (1, 2, . . . , n) to an ordered set where the elements

in N1 occupy the first N1 positions.

(i) ⇐⇒ (ii) : Let X be positive semidefinite with rank(X) = r. Then, the rows

and columns indexed by N2 only contain zeros. As a consequence, Q′X(Q′)� is of the

form Y ⊕ 0|N2|×|N2| with diag(Y ) = 1|N1| and Y � 0. By Proposition 6.2 there exists

a permutation matrix Q̄ such that Q̄Y Q̄� = Jn1 ⊕ · · · ⊕ Jnr with |N1| = n1 + · · ·+ nr.

Let Q := (Q̄⊕ I|N2|)Q
′, then QXQ� = Jn1 ⊕ · · · ⊕ Jnr ⊕ 0|N2|×|N2|.

Conversely, suppose that QXQ� = Jn1⊕ · · ·⊕Jnr⊕0nz×nz with n = n1 + · · ·+ nr + nz

for some permutation matrix Q. Then, obviously, QXQ� is positive semidefinite with

rank(QXQ�) = r, from which it follows that X � 0 with rank(X) = r.

(i) ⇐⇒ (iii) : For n = 2, the inequalities Xij ≤ Xii, i 	= j, are trivially necessary

and sufficient for X � 0. For n ≥ 3, the result follows from Letchford and Sørensen [249,

Proposition 3]

(i)⇐⇒ (iv) : Suppose X is PSD with rank(X) = r. Then Q′X(Q′)� = Y ⊕ 0|N2|×|N2|
with diag(Y ) = 1|N1| and Y � 0. This leads to the following sequence of equivalences:

tX − diag(X)diag(X)� � 0 ⇐⇒ tQ′X(Q′)� −Q′diag(X)diag(X)�(Q′)� � 0

⇐⇒ t
(
Y ⊕ 0|N2|×|N2|

)
−

⎛⎝1|N1|

0|N2|

⎞⎠⎛⎝1|N1|

0|N2|

⎞⎠�

� 0

⇐⇒ tY − J � 0

⇐⇒ t ≥ r,

where the last line follows from statement (iv) of Proposition 6.2.

Conversely, suppose that tX − diag(X)diag(X)� � 0 if and only if t ≥ r. If r = 0,

then t = 0 induces diag(X) = 0n, while t = 1 implies X − diag(X)diag(X)� = X � 0.

Hence,X must be the zero matrix, which is positive semidefinite with rank zero. Now, assume

that r ≥ 1. Then, rX−diag(X)diag(X)� � 0 can be written asX � 1
r
diag(X)diag(X)� � 0.

Let r∗ := rank(X). Then, it follows from the previously proven implication, (i) =⇒ (iv),

that r∗ = min{t : tX−diag(X)diag(X)� � 0}. By assumption the value equals r, so r∗ = r.

We conclude that X is positive semidefinite with rank(X) = r.

Corollary 6.3 can be exploited to prove the following result.

Corollary 6.4. Let X ∈ {0, 1}n×n be symmetric. If Y =

⎛⎝ r diag(X)�

diag(X) X

⎞⎠ � 0,

then X � 0 with rank(X) ≤ r.
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Proof. The assertion X � 0 is trivial, so it suffices to show that Y � 0 implies rank(X) ≤ r.

If r = 0, then diag(X) = 0n. SinceX � 0, X must be the zero matrix and, thus, rank(X) = 0.

Now, let r ≥ 1. The Schur complement lemma implies that rX − diag(X)diag(X)� � 0.

Let r∗ := min
{
t : tX − diag(X)diag(X)� � 0

}
≤ r. Since r∗X − diag(X)diag(X)� � 0

and X � 0, it follows that tX − diag(X)diag(X)� � 0 for all t ≥ r∗. Therefore, tX −
diag(X)diag(X)� � 0 if and only if t ≥ r∗. Corollary 6.3 then implies rank(X) = r∗ ≤ r.

Corollary 6.4 implies the following characterization of Dn
r , where the rank constraint is

merged into a lifted linear matrix inequality:

Dn
r =

⎧⎨⎩X ∈ {0, 1}n×n :

⎛⎝ r diag(X)�

diag(X) X

⎞⎠ � 0

⎫⎬⎭ . (6.3)

For some optimization problems, the upper bound constraint on the rank of X is not suf-

ficient, as we require that X is exactly of rank r. The max k-cut problem, for instance,

requires to partition the vertex set of a graph into exactly k nonempty and pairwise disjoint

subsets. The following two results show that the description given in (6.3) can be extended

to also include a lower bound on the rank of X.

Theorem 6.5. Let X ∈ {0, 1}n×n be symmetric. If there exists a matrix P ∈ {0, 1}n×r

with P�1 ≥ 1 such that Y =

⎛⎝Ir P�

P X

⎞⎠ � 0, then X � 0 with rank(X) ≥ r.

Proof. The assertion X � 0 is trivial. It suffices to show that rank(X) ≥ r. As Y � 0 and Y

has binary entries, it follows from Theorem 6.1 that

Y =
k∑

j=1

⎛⎝uj

xj

⎞⎠⎛⎝uj

xj

⎞⎠�

for some uj ∈ {0, 1}r and xj ∈ {0, 1}n, j ∈ [k]. Since
∑k

j=1 uju
�
j = Ir, we must have k ≥ r.

Moreover, the set {uj : j ∈ [k]} must contain e1, . . . , er and k − r copies of 0r. Without

loss of generality, let us assume that the first r vectors in {uj : j ∈ [k]} correspond to the

elementary vectors. Then, it follows that

P =

k∑
j=1

xju
�
j =

r∑
j=1

xje
�
j =

⎛⎜⎜⎝x1 . . . xr

⎞⎟⎟⎠ .

Since P�1 ≥ 1, it follows that the vectors xj , j ∈ [r] cannot be the zero vector. Since these

are moreover linearly independent, we have rank(X) ≥ rank(
∑r

j=1 xjx
�
j ) = r.

Theorem 6.5 and Corollary 6.4 together impose the following integer semidefinite char-

acterization of PSD {0, 1}-matrices of rank r.

Corollary 6.6. Let X ∈ {0, 1}n×n be symmetric. If there exists a matrix P ∈ {0, 1}n×r

with P�1 ≥ 1, P1 = diag(X), such that Y =

⎛⎝Ir P�

P X

⎞⎠ � 0, then X � 0 with rank(X) = r.
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Proof. It immediately follows from Theorem 6.5 that X � 0 with rank(X) ≥ r. Moreover,

since Y � 0, we also know that

(
1�
r ⊕ In

)
Y

(
1�
r ⊕ In

)�
=

⎛⎝1�
r Ir1r 1�

r P
�In

InP1r InXIn

⎞⎠ =

⎛⎝ r diag(X)�

diag(X) X

⎞⎠ � 0.

It then follows from Corollary 6.4 that rank(X) ≤ r.

The integer semidefinite characterization of Dn
r given in (6.3) shows that if a {0, 1}-matrix

satisfies a certain linear matrix inequality, then a rank condition is implied. For the case

of rank-one matrices, we can show that the converse implication does also hold, i.e., if a

rank-one matrix satisfies a certain linear matrix inequality, then its entries must be in {0, 1}.

Theorem 6.7. Let Y =

⎛⎝1 x�

x X

⎞⎠ � 0 with diag(X) = x. Then rank(Y ) = 1 if and only

if X ∈ {0, 1}n×n.

Proof. (=⇒) : If rank(Y ) = 1, then Y = x̄x̄� for some x̄ = [1 x�]� ∈ Rn+1 and X = xx�.

Since diag(xx�) = x, we have x2
i = xi for all i ∈ [n], so x ∈ {0, 1}n. We conclude

that X = xx� ∈ {0, 1}n×n.

(⇐=) : SinceX ∈ {0, 1}n×n and x = diag(X), it follows that Y ∈ {0, 1}(n+1)×(n+1). From

Theorem 6.1 it follows that Y =
∑k

j=1 xjx
�
j for some xj ∈ {0, 1}n+1, j ∈ [k], i.e., Y can be

decomposed in terms of cliques. Since Y11 = 1 and diag(Y ) = (1, x�)�, all indices i ∈ [n+1]

for which Yii = 1 must be in the same clique as the first index. Hence, the decomposition

consists of only one clique and rank(Y ) = 1.

Theorem 6.7 plays a central role in deriving integer SDP formulations of binary quadratic

problems defined over vectors of variables in Section 6.3.1. However, Theorem 6.7 cannot be

extended to matrices with a rank larger than one. For example, the matrix

Y =
1

2

⎛⎜⎜⎝
4 1 1

1 1 1

1 1 1

⎞⎟⎟⎠
satifies Y � 0, diag(Y ) = Y e1 and rank(Y ) = 2, but Y is not integer.

The characterizations given in (6.2) and (6.3) rely on conditions involving discreteness.

Let us now move on to continuous descriptions. Of course, since Dn
r is itself a discrete set,

a continuous description does not aim at describing Dn
r , but rather its convex hull, i.e.,

Pn
r := conv(Dn

r ). (6.4)

Observe that although the matrices inDn
r have an upper bound on the rank, the polytopes Pn

r

are full-dimensional, since 1
n
In ∈ Pn

r for all 1 ≤ r ≤ n. In order to gain more insight in the

structure of Pn
r , we introduce the notion of a so-called packing family.

Definition 6.8. Let T be a finite set of elements. A collection F of nonempty subsets of T

is called a packing of T if the subsets in F are pairwise disjoint. The family of all packings

of T is called the packing family of T , denoted by F(T ).
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Observe that F = ∅ also belongs to F(T ) for all sets T . Next, we define the notion of

an r-packing of T .

Definition 6.9. Let T be a finite set of elements. A packing F of T is called an r-packing

of T if |F| ≤ r. The family of all r-packings of T is called the r-packing family of T , denoted

by Fr(T ).

The r-packing family of [n] can be exploited to describe Pn
r . LetX ∈ Dn

r . By Theorem 6.1

we know that X is the sum of at most r rank-one PSD {0, 1}-matrices. From a combinatorial

point of view, this implies that X corresponds to an r-packing of [n]. In fact, there is a

bijection between the matrices in Dn
r and the r-packings in Fr([n]). For any r-packing F ,

let EF :=
∑

S∈F S
�
S . Then, we obtain the following polyhedral description of Pn

r for all

positive integers r ≤ n:

Pn
r =

⎧⎪⎨⎪⎩X ∈ Sn :

X =
∑

F∈Fr([n])

λFEF ,
∑

F∈Fr([n])

λF = 1,

λF ≥ 0 for all F ∈ Fr([n])

⎫⎪⎬⎪⎭ . (6.5)

We denote the description above by the packing description of Pn
r . Let us now consider the

cardinality of the vertices of Pn
r .

In the vein of Definition 6.9, we call F ⊆ P([n]) an r-partition of [n] if it is an r-packing

with
⋃

S∈F = [n]. Here, P([n]) denotes the power set of [n]. The number of partitions of the

set [n] into k nonempty subsets is in the literature known as the Stirling number of the second

kind, denoted by
{
n
k

}
. The total number of partitions of [n] equals the Bell number Bn [38],

for which we have

Bn =
n∑

k=0

{
n

k

}
.

We can now show the following result regarding the cardinality of Dn
r .

Theorem 6.10. For n ≥ 1 and 0 ≤ r ≤ n, we have |Dn
r | =

∑r+1
k=1

{
n+1
k

}
. In particu-

lar, |Dn
1 | = 2n and |Dn

n| = Bn+1.

Proof. It follows from the discussion above that |Dn
r | equals the number of r-packings

in Fr([n]). In order to count these, we count the number of packings that consist of ex-

actly k subsets, while k ranges from 0 to r.

Now, any packing of [n] into k subsets corresponds to a partition of [n + 1] into k + 1

subsets. To see this, observe that to each packing F of [n] into k subsets one can add

a (k+1)th set containing the element n+1 and the elements not covered by F . Conversely,
given a partition of [n+1] into k+1 subsets, dropping the set containing the element n+1

yields a packing of [n] consisting of exactly k subsets. Hence, the number of packings of [n]

consisting of exactly k subsets equals
{
n+1
k+1

}
and

|Dn
r | =

r∑
k=0

{
n+ 1

k + 1

}
=

r+1∑
k=1

{
n+ 1

k

}
.

For the special case r = 1, we obtain |Dn
1 | =

{
n+1
1

}
+
{
n+1
2

}
= 1+ 2n+1−2

2
= 2n. When r = n,

we exploit
{
n+1
0

}
= 0 to conclude that |Dn

n| =
∑n+1

k=1

{
n+1
k

}
=

∑n+1
k=0

{
n+1
k

}
= Bn+1.
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The polytope Pn
r has several relationships with other well-known polytopes from the liter-

ature. Letchford and Sørensen [249] study the polytope Pn
n , albeit in a different embedding,

and refer to it as the binary PSD polytope of order n. They emphasize its relationship with

the clique partitioning polytope that was introduced by Grötschel and Wakabayashi [186]

and later studied in [28, 293]. Given the complete graph G = (V,E), a clique partition is

a subset A ⊆ E such that there is a partition of V into nonempty disjoint sets V1, . . . , Vk

such that each Vj , j ∈ [k], induces a clique in G and A =
⋃

j∈[k]{{i, �} : i, � ∈ Vj , i 	= �}.
The incidence vectors of clique partitions are only defined on the edge set, and therefore the

clique partition polytope can be seen as a projection of Pn
n .

Among one of the first graph partition problems is the one considered by Chopra and

Rao [76]. Given an undirected graph G, the vertices need to be partitioned into at most k

subsets so as to minimize the total cost of edges cut by the partition. When we add to Pn
r

the additional constraint that diag(X) = 1n, we obtain the partition polytope P1 (r) of the

complete graph considered in [76] (apart from the embedding).

The polytope Pn
n can also be related to the stable set polytope. Let GP = (VP, EP)

be the power set graph, i.e., each vertex in VP corresponds to a nonempty subset of [n]

and EP := {{S, T} ∈ V
(2)
P : S ∩ T 	= ∅}. A set of vertices is stable in GP if and only if its

corresponding collection of subsets is a packing of [n]. Hence, the packing family Fn([n]) is

the collection of all stable sets in GP. It follows that there is a bijection between the elements

in Pn
n and the stable set polytope of GP.

Finally, for r = 1, the r-packings of [n] are subsets of [n], so the polytope Pn
1 reduces to

Rn
1 :=

⎧⎨⎩X ∈ Sn : X =
∑

S⊆[n]

θS S
�
S ,

∑
S⊆[n]

θS = 1, θS ≥ 0 for all S ⊆ [n]

⎫⎬⎭ . (6.6)

The polytope Rn
1 relates to the convex hull of the characteristic vectors of all cliques in

Kn, i.e., the clique polytope of Kn, which is in the literature also known as the complete

set packing polytope, see [58]. Finally, apart from the embedding, the polytope Rn
1 also

coincides with the Boolean quadric polytope [297], see also Section 3.3.

Another continuous formulation of the convex hull of PSD {0, 1}-matrices is given by a

conic description. The cone of completely positive matrices is defined as:

CPn := conv
({

xx� : x ∈ Rn
+

})
. (6.7)

An extension of the cone of completely positive matrices are the so-called set-completely

positive matrices, see e.g., [50, 254], where the membership condition x ∈ Rn
+ is replaced

by x ∈ K for a general convex cone K. Lieder et al. [254] considered the following set-

completely positive matrix cone:

SCPn := conv
({

xx� : x ∈ Rn
+, x1 ≥ xi for all i ∈ {2, . . . , n}

})
. (6.8)

We clearly have SCPn � CPn. Let us now consider the following set-completely positive

matrix set:

Cn1 :=

⎧⎨⎩X ∈ Sn :

⎛⎝1 x�

x X

⎞⎠ ∈ SCPn+1, diag(X) = x

⎫⎬⎭ . (6.9)
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The following result follows from Lieder et al. [254].

Theorem 6.11 ([254]). We have Pn
1 = Cn1 .

A natural question is whether the exact descriptions Rn
1 and Cn1 given in (6.6) and (6.9),

respectively, for Pn
1 can be extended to higher ranks. The rank extensions of these sets are

as follows:

Rn
r :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩X ∈ Sn :

X =
∑

S⊆[n]

θS S
�
S ,

∑
S⊆[n]

θS = r

∑
S:i∈S

θS ≤ 1 ∀i ∈ [n], θS ≥ 0 ∀S ⊆ [n]

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (6.10)

Cnr :=

⎧⎨⎩X ∈ Sn :

⎛⎝ r diag(X)�

diag(X) X

⎞⎠ ∈ SCPn+1, diag(X) ≤ 1n

⎫⎬⎭ . (6.11)

The extension from Cn1 to Cnr follows from the intersection of the Minkowski sum of r copies

of Cn1 with the upper bound constraint X ≤ Jn. Since Xii ≥ Xij for all i, j ∈ [n] if X ∈ Cn1 , it
suffices to add diag(X) ≤ 1n. The extension from Rn

1 to Rn
r is derived as follows. If X ∈ Pn

r ,

then X =
∑

F∈Fr([n]) λFEF for some nonnegative weights λF . By splitting each r-packing

into its separate subsets, we obtain

X =
∑

F∈Fr([n])

λFEF =
∑

F∈Fr([n])

λF
∑
S∈F

S
�
S =

∑
S⊆[n]

∑
F∈Fr([n]):

S∈F

λF S
�
S =

∑
S⊆[n]

θS S
�
S ,

where θS :=
∑

F∈Fr([n]):S∈F λF . Moreover,∑
S⊆[n]

θS =
∑

F∈Fr([n])

λF |F| ≤ r
∑

F∈Fr([n])

λF = r.

By increasing θ∅, we obtain
∑

S⊆[n] θS = r. Finally, since Xii ≤ 1 for all i ∈ [n], we

have
∑

S:i∈S θS ≤ 1. We conclude that Pn
r ⊆ Rn

r .

Unfortunately, for r ≥ 2, the sets Rn
r and Cnr do no longer exactly describe Pn

r . Namely,

consider the matrix

X =

⎛⎜⎜⎜⎜⎜⎝
1
2

0 1
2

1
2

0 1 1
2

1
2

1
2

1
2

1 1
2

1
2

1
2

1
2

1

⎞⎟⎟⎟⎟⎟⎠ =
1

2

⎛⎜⎜⎜⎜⎜⎝
1 0 0

0 1 1

1 1 0

1 0 1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
1 0 0

0 1 1

1 1 0

1 0 1

⎞⎟⎟⎟⎟⎟⎠

�

.

For this matrix one can verify that X ∈ R4
2 and X ∈ C42 , while X /∈ P4

2 . For r ≥ 2, the

following relationship between Pn
r , Cnr , Rn

r holds.

Theorem 6.12. We have Pn
r ⊆ Cnr = Rn

r , while for r = 1 the three sets are equal.

Proof. Since Pn
r = conv(Dn

r ), it suffices to consider membership of the elements in Dn
r in Cnr .

Let X ∈ Dn
r , then X =

∑r
j=1 xjx

�
j for some xj ∈ {0, 1}n, j ∈ [r]. Let Y j := xjx

�
j for
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all j ∈ [r]. We clearly have⎛⎝ 1 diag(Y j)

diag(Y j) Y j

⎞⎠ ∈ SCPn+1 for all j ∈ [r],

from where it follows that

r∑
j=1

⎛⎝ 1 diag(Y j)

diag(Y j) Y j

⎞⎠ =

⎛⎝ r diag(X)

diag(X) X

⎞⎠ ∈ SCPn+1.

Moreover, X ∈ {0, 1}n×n, so diag(X) ≤ 1n. We conclude that X ∈ Cnr .
To prove Cnr = Rn

r , let X ∈ Cnr . We define the matrix Y as

Y :=
1

r

⎛⎝ r diag(X)�

diag(X) X

⎞⎠ =

⎛⎝ 1 diag( 1
r
X)�

diag( 1
r
X) 1

r
X

⎞⎠ . (6.12)

From the fact that X ∈ Cnr , it follows that Y ∈ SCPn+1. Applying Theorem 6.11 to the

matrix Y implies that 1
r
X is a convex combination of rank one binary PSD matrices, i.e.,

there exist θ′S ≥ 0 for all S ⊆ [n] with
∑

S⊆[n] θ
′
S = 1, such that

1

r
X =

∑
S⊆[n]

θ′S S
�
S or equivalently, X =

∑
S⊆[n]

rθ′S S
�
S .

Now, let θS := rθ′S for all S ⊆ [n], from where it follows
∑

S⊆[n] θS = r. Moreover, since

diag(X) ≤ 1n, it follows that Xii =
∑

S:i∈S θS ≤ 1. We conclude that X ∈ Rn
r .

Finally, observe that the argument above can also be followed in the converse direction.

That is, given X ∈ Rn
r with corresponding weights θS for all S ⊆ [n], we define θ′S := 1

r
θS ,

S ⊆ [n], from where it follows that 1
r
X ∈ Pn

1 . By Theorem 6.11, we know that Y , see (6.12),

is contained in SCPn+1 and, consequently, X ∈ Cnr .

6.2.2 Theory on PSD {±1}-matrices

In this section we present several results for PSD matrices that have entries in {±1}. Let us
first state the following well-known result.

Proposition 6.13 ([16]). Let X be symmetric. Then, X � 0, X ∈ {±1}n×n if and only if

X = xx� for some x ∈ {±1}n.

A simple necessary condition for X ∈ {±1}n×n to be positive semidefinite is that

diag(X) = 1. Next result establishes the equivalence between {0, 1}- and {±1}-PSD matrices

by exploiting their rank.

Proposition 6.14. Let X ∈ {±1}n×n be symmetric and Y := 1
2
(X+J) ∈ {0, 1}n×n. Then,

X � 0 if and only if diag(Y ) = 1, Y � 0 and rank(Y ) ≤ 2.

Proof. (=⇒): Let X � 0. Since J � 0, it follows that Y � 0. Moreover, since diag(X) =

diag(J) = 1, we also have that diag(Y ) = 1. Finally, by Proposition 6.13 we know

that X = xx� for some x ∈ {±1}n. Therefore Y is the weighted sum of two rank one

matrices, so rank(Y ) ≤ 2.
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(⇐=): Let Y = 1
2
(X + J) � 0, diag(Y ) = 1 and rank(Y ) ≤ 2 for some symmetric

matrix X ∈ {±1}n×n. Since Y is binary positive semidefinite with rank at most two, it

follows from Theorem 6.1 that Y = x1x
�
1 + x2x

�
2 for some x1, x2 ∈ {0, 1}n. By diag(Y ) = 1

and x1 + x2 = 1,

X = 2Y − J = 2(x1x
�
1 + x2x

�
2 )− (x1 + x2)(x1 + x2)

� = (x1 − x2)(x1 − x2)
�,

which implies that X � 0.

Note that the matrix Y from the previous theorem has rank one if and only if Y = X = J.

Similar to (6.1), we define the discrete set of all {±1}-matrices as

D̂n :=
{
X ∈ {±1}n×n : X � 0

}
, (6.13)

where the subscript r is not present anymore, as all matrices in D̂n have rank one. Based

on Proposition 6.13, we can easily establish that |D̂n| = 2n−1. Next, we summarize known

results on sets related to {±1}-matrices. The convex hull of all PSD {±1}-matrices is known

as the (matrix) cut polytope:

P̂n := conv(D̂n), (6.14)

see e.g., [245]. Also, we define the following set-completely positive matrix cone:

SCP̂n := conv
({

xx� : x ∈ Rn, x1 + xi ≥ 0, x1 − xi ≥ 0 for all i ∈ {2, . . . , n}
})

. (6.15)

The cone SCP̂n is considered in [254], where the authors show that SCP̂n and SCPn,

see (6.8), are related as follows:

T (SCPn) = SCP̂n and T −1(SCP̂n) = SCPn,

where T is an appropriate linear mapping. Lieder et al. [254] consider the following set-

completely positive matrix set:

Ĉn :=

⎧⎨⎩X ∈ Sn :

⎛⎝1 x�

x X

⎞⎠ ∈ SCP̂n+1, diag(X) = 1n

⎫⎬⎭ , (6.16)

which is the analogue of the set Cn1 for {0, 1}-matrices, see (6.9).

Theorem 6.15 ([254]). We have P̂n = Ĉn.

This theorem is the analogue of Theorem 6.11 that provides a result for {0, 1}-matrices.

For the equivalence transformation between {±1}- and {0, 1}-representations of SDP relax-

ations of binary quadratic optimization problems, we refer the interested reader to [200].

6.2.3 Theory on PSD {0,±1}-matrices

In the sequel we generalize several results from the previous sections to PSD {0,±1}-matrices.

The following result shows that a PSD {0,±1}-matrix is block-diagonalizable, and it is the

analogue of Proposition 6.2 for {0, 1}-matrices.

Proposition 6.16. Let X ∈ {0,±1}n×n be a symmetric matrix. Then the following state-

ments are equivalent.
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(i) diag(X) = 1n, rank(X) = r, X � 0.

(ii) There exists a permutation matrix Q such that QXQ� = Bn1⊕ · · · ⊕Bnr , where Bni =

bib
�
i , bi ∈ {±1}ni for i ∈ [r], n = n1 + · · ·+ nr.

Proof. Suppose that QXQ� is in the block form given in (ii), then it trivially satisfies the

conditions given in (i). Conversely, let X ∈ {0,±1}n×n satisfy (i). Let us consider the ith

row in X. Suppose j and k are two distinct indices not equal to i in the support of this row,

i.e., Xij , Xik 	= 0. For the sake of contradiction, suppose that Xjk = 0. Then, the submatrix

of X induces by i, j and k is either one of the following matrices:

⎛⎜⎜⎝
i j k

i 1 1 1

j 1 1 0

k 1 0 1

⎞⎟⎟⎠,

⎛⎜⎜⎝
i j k

i 1 −1 −1
j −1 1 0

k −1 0 1

⎞⎟⎟⎠,

⎛⎜⎜⎝
i j k

i 1 1 −1
j 1 1 0

k −1 0 1

⎞⎟⎟⎠, or

⎛⎜⎜⎝
i j k

i 1 −1 1

j −1 1 0

k 1 0 1

⎞⎟⎟⎠.

One easily checks that the determinants of these matrices are all negative, contradicting

that X � 0. Hence, Xjk 	= 0. This argument can be repeated to conclude that the submatrix

of X indexed by the support of row i has entries in {±1}. Since it is also positive semidefinite,

it follows from Proposition 6.13 that the submatrix is of the form bb� with b ∈ {±1}ni for

some positive integer ni.

By the same argument, it follows that the other indices in the submatrix induced by row i

have the same support as row i. Indeed, if this would not be the case, one of the four matrices

above should be a submatrix of X. We conclude that X can be fully constructed from

nonoverlapping submatrices of the form bb� with b ∈ {±1}ni for some positive integer ni.

Since its rank equals r, there must be r of those submatrices. From here the claim follows.

Proposition 6.16 extends easily to the following result.

Corollary 6.17. Let X ∈ {0,±1}n×n be a symmetric matrix. Then the following statements

are equivalent.

(i) rank(X) = r, X � 0.

(ii) There exists a permutation matrix Q such that QXQ� = Bn1 ⊕ · · · ⊕Bnr ⊕ 0nz×nz

where Bni = bib
�
i , bi ∈ {±1}ni for i ∈ [r], n = n1 + · · ·+ nr + nz.

Proof. See the first part of the proof of Corollary 6.3.

Let X ∈ {0,±1}n×n be given as in Corollary 6.17, then

QXQ� = Bn1 ⊕ · · · ⊕Bnr ⊕ 0nz×nz = b1b
�
1 ⊕ · · · ⊕ brb

�
r ⊕ 0nz×nz =

r∑
i=1

x̄ix̄
�
i ,

where x̄�
1 = [b�1 0�

n−n1
], x̄�

2 = [0�
n1

b�2 0�
n−n1−n2

], and so on. Let xi := Qx̄i for i ∈ [r], then

X =

r∑
i=1

xix
�
i ,

where xi ∈ {0,±1}n. This construction yields the following decomposition of PSD {0,±1}-
matrices.
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Theorem 6.18. Let X ∈ {0,±1}n×n be a symmetric matrix. Then X � 0 if and only

if X =
∑r

j=1 xjx
�
j for some xj ∈ {0,±1}n, j ∈ [r].

The previous result is an extension of a similar result that is derived for PSD {0, 1}-
matrices, see Theorem 6.1. We now consider an equivalence between a PSD {0,±1}-matrix

of rank one and an extended linear matrix inequality, i.e., the analogue of Theorem 6.7.

Proposition 6.19. Let Y =

⎛⎝1 x�

x X

⎞⎠ ∈ Sn+1 be a symmetric matrix with supp(diag(X)) =

supp(x). Then Y ∈ {0,±1}(n+1)×(n+1), Y � 0 if and only if X = xx� for some x ∈ {0,±1}n.

Proof. Let Yij ∈ {0,±1} for all i, j ∈ [n + 1] and Y � 0. Then x ∈ {0,±1}n and it follows

from the Schur complement lemma that X−xx� � 0. If Xii = 0 then xi = 0, and if Xii = 1

then xi = 1 or xi = −1. Thus diag(X − xx�) = 0, from where it follows that X = xx�.

The converse direction is trivial.

Clearly, the condition supp(diag(X)) = supp(x) can be replaced by diag(X)ii = |xi| for
all i ∈ [n], where | · | denotes the absolute value. Finally, we prove the following result.

Proposition 6.20. Let X ∈ {0,±1}n×n be a symmetric matrix that can be written in the

block form X = Bn1 ⊕ · · · ⊕ Bnr ⊕ 0nz×nz where Bni = bib
�
i , bi ∈ {±1}ni for i ∈ [r]

with n = n1 + · · ·+ nr + nz. Then,

tX − xx� � 0 if and only if t ≥ r

where x� = [b�1 . . . b�r 0�
nz

], bi ∈ {±1}ni , i ∈ [r].

Proof. Suppose that X is the given block matrix. We introduce the rank-one matrices

Xi :=

⎛⎜⎜⎜⎜⎜⎝
1

0n1+···+ni−1

bi

0ni+1+···+nz

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
1

0n1+···+ni−1

bi

0ni+1+···+nz

⎞⎟⎟⎟⎟⎟⎠

�

∈ {0,±1}n×n for all i ∈ [r].

After summing them, we obtain:

r∑
i=1

Xi =

⎛⎝r x�

x X

⎞⎠ � 0, or equivalently, rX − xx� � 0,

where x� = [b�1 . . . b�r 0�
nz

], bi ∈ {±1}ni , i ∈ [r]. Now, the statement clearly follows when

we replace r by t such that t ≥ r. To verify that the linear matrix inequality is not valid

for t < r, it suffices to consider principal submatrices of tX −xx� indexed by elements from

different blocks except for the zero block. That submatrix is of the form tIk−Z where k ≤ r

and Z ∈ {±1}k×k, Z � 0, diag(Z) = 1. Since the nonzero eigenvalue of such rank-one

matrix Z is equal to k where k ≤ r, we have that tIk − Z � 0 if and only if t ≥ r.
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6.3 Binary quadratic optimization problems

In this section we exploit the theoretic results on discrete PSD matrices from the previous

section to derive exact reformulations of binary quadratic programs (BQPs) as binary semi-

definite programs. In Section 6.3.1 we consider the general class of quadratically constrained

quadratic programs. In Section 6.3.2 we consider a subclass of these programs that allow for

a formulation as a quadratic matrix program.

6.3.1 Binary quadratically constrained quadratic programs

A quadratically constrained quadratic program (QCQP) is an optimization problem with a

quadratic objective function under the presence of quadratic constraints. Many combinat-

orial optimization problems can be formulated as QCQPs.

Let Q0, Qi ∈ Sn, c0, ci ∈ Rn for all i ∈ [m], and ai ∈ Rn, bi ∈ R for all i ∈ [p],

where m, p ∈ N. We consider binary programs of the following form:

min x�Q0x+ c�0 x

s.t. x�Qix+ c�i x ≤ di ∀i ∈ [m]

ai
�x = bi ∀i ∈ [p]

x ∈ {0, 1}n.

(QCQP )

The quadratic terms in (QCQP ) can be written as 〈Qi, X〉+ c�i x for all i, where we substi-

tute X for xx�. This yields the following exact formulation of (QCQP ):

min 〈Q0, X〉+ c�0 x

s.t. 〈Qi, X〉+ c�i x ≤ di ∀i ∈ [m]

ai
�x = bi ∀i ∈ [p]

diag(X) = x

Y =

⎛⎝1 x�

x X

⎞⎠ � 0, rank(Y ) = 1.

Here we used the conventional notion of exactness, i.e., the nonconvex constraint rank(Y ) = 1.

However, one can utilize an alternative notion of exactness in terms of integrality, namely

by exploiting Theorem 6.7. This leads to the following BSDP:

min 〈Q0, X〉+ c�0 x

s.t. 〈Qi, X〉+ c�i x ≤ di ∀i ∈ [m]

ai
�x = bi ∀i ∈ [p]

diag(X) = x⎛⎝1 x�

x X

⎞⎠ � 0, x ∈ {0, 1}n.

(BSDPQCQP )

Observe that it is sufficient to impose integrality on the diagonal of X. Namely, it follows
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from the determinants of the 3× 3 principal submatrices of the matrix Y that Xij ∈ {0, 1}
whenever Xii, Xjj ∈ {0, 1} for all i and j, see e.g., [201, Section 3.2]. Hence, a matrix X

that is feasible for (BSDPQCQP ) is an element of Dn
1 , see (6.3). The next result follows

directly from the previous discussion and Theorem 6.7.

Theorem 6.21. (BSDPQCQP ) is equivalent to (QCQP ).

To provide a more compact BSDP formulation of (QCQP ), we prove the following result.

Lemma 6.22. Let S =

p∑
i=1

⎛⎝−bi
ai

⎞⎠⎛⎝−bi
ai

⎞⎠�

and Y =

⎛⎝1 x�

x X

⎞⎠ � 0, where diag(X) = x

and X ∈ {0, 1}n×n. Then, the following statements are equivalent:

(i) a�
i x = bi for all i ∈ [p];

(ii) 〈S, Y 〉 = 0.

Proof. It follows from Theorem 6.7 that Y =

⎛⎝1

x

⎞⎠⎛⎝1

x

⎞⎠�

. Assume that a�
i x = bi for

all i ∈ [p]. Then it is not difficult to verify that 〈S, Y 〉 = 0. Conversely, let 〈S, Y 〉 = 0. Then,

0 =

p∑
i=1

〈⎛⎝−bi
ai

⎞⎠⎛⎝−bi
ai

⎞⎠�

,

⎛⎝1

x

⎞⎠⎛⎝1

x

⎞⎠�〉
=

p∑
i=1

(bi − a�
i x)

2,

from where it follows that a�
i x = bi for all i ∈ [p].

Lemma 6.22 induces the following compact BSDP that is equivalent to (QCQP ):

min 〈Q0, X〉+ c�x

s.t. 〈Qi, X〉+ c�i x ≤ di ∀i ∈ [m]

p∑
i=1

〈⎛⎝−bi
ai

⎞⎠⎛⎝−bi
ai

⎞⎠�

,

⎛⎝1 x�

x X

⎞⎠〉
= 0

diag(X) = x⎛⎝1 x�

x X

⎞⎠ � 0, x ∈ {0, 1}n.

There are various equivalent formulations of the binary quadratic program (QCQP ) in the

literature. We finalize this subsection by mentioning below only those that are closely related

to our approach.

Assume that Qi = 0, ci = 0, and di = 0 for all i ∈ [m] in (QCQP ). Burer [60] proved

that the resulting optimization problem with a quadratic objective and linear constraints is
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equivalent to the following completely positive program:

min 〈Q0, X〉+ c�x

s.t. ai
�x = bi ∀i ∈ [p]

〈aiai
�, X〉 = b2i ∀i ∈ [p]

diag(X) = x⎛⎝1 x�

x X

⎞⎠ ∈ CPn+1,

provided that the inequalities 0 ≤ xi ≤ 1 for i ∈ [n] are implied by the constraints of the

original problem. Here CPn+1 is the cone of completely positive matrices, see (6.7).

On the other hand, Lieder et al. [254] proved the following equivalent formulation of the

BQP:

min 〈Q0, X〉+ c�x

s.t. ai
�x = bi ∀i ∈ [p]

diag(X) = x⎛⎝1 x�

x X

⎞⎠ ∈ SCPn+1,

where the cone SCPn+1 is defined in (6.8). The authors of [254] also proved that, under

mild assumptions, the binary quadratic problem (QCQP ) with also quadratic constraints

can be equivalently reformulated as an optimization problem over the set-completely positive

matrix cone SCPn+1.

Example 6.23 (The stable set problem). Let G = (V,E) be a simple graph on n vertices.

A stable set in G is a subset S ⊆ V such that no two vertices in S are adjacent in G. The

stable set problem (SSP) asks for the largest size of a stable set in G. To model this problem,

let x ∈ {0, 1}n be such that xi = 1 if i ∈ S and xi = 0 otherwise. Then, x is the characteristic

vector of a stable set in G if x�(Eij + Eij
�)x = 0 for all {i, j} ∈ E. The cardinality of the

stable set equals x�x, hence the SSP is of the form QCQP . Applying Theorem 6.21, the

following binary SDP models the SSP:

α(G) := max 〈In, X〉
s.t. Xij = 0 ∀{i, j} ∈ E

diag(X) = x⎛⎝1 x�

x X

⎞⎠ � 0, x ∈ {0, 1}n.

(6.17)

The doubly nonnegative relaxation of the SSP obtained after replacing x ∈ {0, 1}n in (6.17)

by X ≥ 0, is well-studied in the literature, see e.g., [184]. It is equivalent to a strengthened

version of the Lovász theta number, known as the Schrijver ϑ′-number [328].
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6.3.2 Binary quadratic matrix programs

A quadratic matrix program (QMP) [37] is a programming formulation where the objective

and constraints are quadratic functions of the form

tr(P�QiP ) + 2tr(B�
i P ) + di (6.18)

for some Qi ∈ Sn, Bi ∈ Rn×k and ci ∈ R, where P is an n × k matrix variable. QMPs are

a special case of QCQPs and are particularly useful to model optimization problems where

the matrix P has entries in {0, 1} and represents a classification of n objects over k classes,

i.e., Pij = 1 if and only if object i is assigned to class j. For example, if each object needs to

be assigned in exactly (resp. at most) one class, we call P a partition (resp. packing) matrix.

In this section we consider two different binary QMPs of increasing generality and show

how these can be reformulated as BSDPs. For both QMPs, we consider some well-known

problems that fit in the framework.

Our first QMP incorporates a specific objective and constraint structure, while optimizing

over the packing or partition matrices. Let Q0, Qi ∈ Sn, di ∈ R for all i ∈ [m], ai ∈ Rn

and bi ∈ R+ for all i ∈ [p]. We consider the binary quadratic matrix program

min tr(P�Q0P )

s.t. tr(P�QiP ) + di ≤ 0 ∀i ∈ [m]

P�ai ≤ bi1k ∀i ∈ [p]

P1k ≤ 1n

P ∈ {0, 1}n×k.

(QMP1)

Observe that P1k ≤ 1n implies that P is a packing matrix. This constraint is replaced

by P1k = 1n in case we deal with partition matrices. The constraints tr(P�QiP ) + di ≤ 0

and P�ai ≤ bi1k might follow from the structure of the problem under consideration. Ob-

serve that these constraints differ from the general form (6.18) in the sense that the linear

part tr(B�
i P ) is only included in a very specific form.

A possible way to deal with the quadratic terms in (QMP1) is by lifting the variables

in a higher-dimensional space. By vectorizing the matrix P , the problem (QMP1) can be

written in the form (QCQP ), after which we can follow the approach of Section 6.3.1. This

results in a BSDP where the matrix variable is of order nk+1. Since the resulting program

is obtained from a lifting of the vectorization of P , we say that we applied a vector-lifting

approach. To obtain a more compact problem formulation where the matrix variable is of

lower order, we here consider a matrix-lifting approach. In particular, the objective function

can be written as follows:

tr(P�Q0P ) = tr(Q0PP�) = tr(Q0X),
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where X = PP�. By doing so, we obtain the following BSDP:

min 〈Q0, X〉
s.t. 〈Qi, X〉+ di ≤ 0 ∀i ∈ [m]

Xai ≤ bix ∀i ∈ [p]

diag(X) = x⎛⎝k x�

x X

⎞⎠ � 0, X ∈ {0, 1}n×n.

(BSDPQMP1)

If a QMP is defined over the partition matrices, then P1k ≤ 1n is replaced by P1k = 1n

in (QMP1), and consequently diag(X) = x is replaced by diag(X) = 1n in (BSDPQMP1).

By exploiting theory from Section 6.2.1, we show the following equivalence.

Theorem 6.24. (BSDPQMP1) is equivalent to (QMP1).

Proof. Let P be feasible for (QMP1) and define X = PP� and x = P1k. Since P represents

a packing matrix, we have X ∈ {0, 1}n×n, where x is a {0, 1}-vector indicating whether

object i is packed in one of the classes or not. Then, 〈Qi, X〉 + di = 〈Qi, PP�〉 + di =

tr(P�QiP ) + di ≤ 0 for all i ∈ [m]. Moreover, we have Xai = PP�ai ≤ biP1k = bix. To

show that diag(X) = x, observe that

Xii =

k∑
j=1

P 2
ij =

k∑
j=1

Pij = ei
�P1k = xi.

Finally, we can decompose the matrix

⎛⎝k x�

x X

⎞⎠ into

⎛⎝k x�

x X

⎞⎠ =

⎛⎝1�
k

P

⎞⎠⎛⎝1�
k

P

⎞⎠�

,

showing that it is PSD. We conclude that X and x are feasible for (BSDPQMP1).

To show the converse inclusion, let X and x = diag(X) be feasible for (BSDPQMP1).

It follows from Corollary 6.4 that X can be decomposed as the sum of at most k rank-one

symmetric {0, 1}-matrices. By adding copies of the zero matrix in case rank(X) < k, we

may assume that there exist x1, . . . , xk ∈ {0, 1}n such that

X =

k∑
j=1

xjx
�
j .

Now, let P = [x1 . . . xk]. Then, P ∈ {0, 1}n×k with P1k =
∑k

j=1 xj = diag(X) ≤ 1n. To

prove that P�ai ≤ bi1k, consider column j∗ of P . Either all entries in Pej∗ (= xj∗) are

zero, implying that e�
j∗P

�ai = 0 ≤ bi, since bi ∈ R+. Otherwise, there exists a row i∗ such
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that Pi∗j∗ = 1. For the i∗th row of X, we know

e�
i∗X =

k∑
j=1

(xj)i∗x
�
j = x�

j∗ .

The i∗th row of the system Xai ≤ bix then reads x�
j∗ai ≤ bixi∗ = bi. Hence, P�ai ≤ bi1k.

Finally, the constraint tr(P�QiP ) + di ≤ 0 follows immediately from 〈Qi, X〉 + di ≤ 0 for

all i ∈ [m]. Thus, P is feasible for (QMP1).

As the objective functions of (QMP1) and (BSDPQMP1) clearly coincide with respect to

the given mapping between P and X, we conclude that the two programs are equivalent.

The matrix P does no longer appear explicitly in (BSDPQMP1), and therefore we will

not be able to write all quadratic problems over the packing or partition matrices in this

form. The typical problems that can be modeled this way, are the ones that are symmetric

over the classes [k], i.e., we do not add constraints for one specific class. Below we discuss

two examples from the literature that fit in the framework of (QMP1).

Example 6.25 (The maximum k-colorable subgraph problem). Let G = (V,E) be a simple

graph with n := |V | and m := |E|. Given a positive integer k, a graph is called k-colorable if

it is possible to assign to each vertex in V a color in [k] such that any two adjacent vertices

get assigned a different color. The maximum k-colorable subgraph (MkCS) problem, see

e.g., [241, 287], asks to find an induced subgraph G′ = (V ′, E′) of G that is k-colorable such

that |V ′| is maximized.

The MkCS problem can be modeled as (QMP1) where P ∈ {0, 1}n×k is such that Pij = 1

if and only if vertex i ∈ [V ] is in color class j ∈ [k]. In order to model that P induces a

coloring in G, we include the constraints tr(P�(Eij + Eji)P ) = 0 for all {i, j} ∈ E, which

takes care that if two adjacent vertices i and j are included in the subgraph, then i and j

must be in different color classes. The objective function can be modeled as tr(P�InP ).

Additional constraints of the form P�ai ≤ bi1k do not appear in the formulation.

Now, it follows from Theorem 6.24 that the MkCS problem can be modeled as the

following integer SDP:

max 〈In, X〉
s.t. Xij = 0 ∀{i, j} ∈ E

diag(X) = x⎛⎝k x�

x X

⎞⎠ � 0, X ∈ {0, 1}n×n.

(6.19)

The induced doubly nonnegative relaxation of (6.19) obtained after replacing X ∈ {0, 1}n×n

by 0 ≤ X ≤ J, equals the formulation θ3k(G) derived in [241].

The next example shows that the parameter k in (BSDPQMP1) can also be used as a

variable in order to quantify the number of classes in the solution.
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Example 6.26 (The quadratic bin packing problem). Let a set of n items be given, each with

a positive weight wi ∈ R+, i ∈ [n]. Assume an unbounded number of bins is available, each

with total capacity W ∈ R+ and cost c ∈ R+. Moreover, let D ∈ Sn denote a dissimilarity

matrix, where dij equals the cost of packing item i and j in the same bin. The goal of the

quadratic bin packing problem (QBPP), see e.g., [72], is to assign each item to exactly one

bin, under the condition that the total sum of weights for each bin does not exceed W , such

that the sum of the total dissimilarity and the cost of the used bins is minimized.

Let us first consider the related problem where the number of available bins equals k. This

problem can be modeled in the form (QMP1), where P ∈ {0, 1}n×k is a matrix with Pij = 1

if and only if item i is contained in bin j. Since all items need to be packed, we require P

to be a partition matrix, i.e., P1k = 1n. Moreover, the capacity constraints can be modeled

as P�w ≤ W1k. Theorem 6.24 shows that this problem can be modeled as a binary SDP

where the number of bins k appears as a parameter. If we replace k by a variable z, we

obtain the following formulation of the QBPP:

min

〈⎛⎝ z 1�
n

1n X

⎞⎠ , c⊕D

〉
s.t. Xw ≤W1n

diag(X) = 1n⎛⎝ z 1�
n

1n X

⎞⎠ � 0, X ∈ {0, 1}n×n, z ∈ R.

(6.20)

The variable z is not explicitly restricted to be integer, since at an optimum solution it will

always be equal to rank(X).

The quadratic matrix program (QMP1) only includes specific types of constraints of the

form (6.18). We now consider a generalization of (QMP1). Let Q0, Qi ∈ Sn, B0, Bi ∈ Rn×k

and d0, di ∈ R for all i ∈ [m] and consider the quadratic matrix program

min tr(P�Q0P ) + 2tr(B�
0 P ) + d0

s.t. tr(P�QiP ) + 2tr(B�
i P ) + di ≤ 0 ∀i ∈ [m]

P1k ≤ 1n

P ∈ {0, 1}n×k.

(QMP2)

Again, the constraint P1k ≤ 1n can be replaced by P1k = 1n when optimizing over partition
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matrices. Now, let us consider the binary SDP

min

〈⎛⎝ d0
k
Ik B�

0

B�
0 Q0

⎞⎠ ,

⎛⎝Ik P�

P X

⎞⎠〉

s.t.

〈⎛⎝ di
k
Ik B�

i

B�
i Qi

⎞⎠ ,

⎛⎝Ik P�

P X

⎞⎠〉
≤ 0 ∀i ∈ [m]

diag(X) = P1k⎛⎝Ik P�

P X

⎞⎠ � 0, X ∈ {0, 1}n×n, P ∈ {0, 1}n×k,

(BSDPQMP2)

which is equivalent to (QMP2), as shown below.

Theorem 6.27. (BSDPQMP2) is equivalent to (QMP2).

Proof. Let P be feasible for (QMP2) and define Y ∈ {0, 1}(n+k)×(n+k) as

Y =

⎛⎝Ik

P

⎞⎠⎛⎝Ik

P

⎞⎠�

=

⎛⎝Ik P�

P X

⎞⎠ ,

where X := PP�. Clearly, we have Y � 0 and Xii =
∑k

j=1 P
2
ij =

∑k
j=1 Pij = e�

i P1k for

all i ∈ [n], showing that diag(X) = P1k. Moreover, we have

tr(P�QiP ) + 2tr(B�
i P ) + di = tr(QiX) + 2tr(B�

i P ) + di

=

〈⎛⎝ di
k
Ik B�

i

B�
i Qi

⎞⎠ ,

⎛⎝Ik P�

P X

⎞⎠〉

for all i ∈ [m] and i = 0. Hence, X and P are feasible for (BSDPQMP2) and the objective

functions coincide.

Conversely, let P ∈ {0, 1}n×k and X ∈ {0, 1}n×n be feasible for (BSDPQMP2). Following

the proof of Theorem 6.5, it follows that there exist x1, . . . , xk′ ∈ {0, 1}n with k′ ≥ k such

that

P =
[
x1 . . . xk

]
and X =

k′∑
j=1

xjx
�
j .

Since diag(X) = P1k, it follows that for all i ∈ [n] we have

Xii = e�
i P1k implying that

k′∑
j=1

(xj)
2
i =

k∑
j=1

(xj)i.

Since (xj)i ∈ {0, 1}, the equality above only holds if (xj)i = 0 for all j = k + 1, . . . , k′.

As this is true for all i ∈ [n], we have xj = 0n for all j = k + 1, . . . , k′, implying

that X =
∑k

j=1 xjx
�
j = PP�. We can now follow the derivation of the first part of the

proof in the converse order to conclude that P is feasible for (QMP2).
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Typical problems that fit in the framework of (QMP2) and (BSDPQMP2) are quadratic

matrix programs over the packing or partition matrices that require constraints for specific

classes, see e.g., Example 6.28. Another important feature of (BSDPQMP2) is that it is

possible to impose a condition on the rank of X. Corollary 6.6 implies that if we add the

constraint P�1n ≥ 1k to (BSDPQMP2), the resulting matrix X has rank exactly k. This

makes this formulation suitable for quadratic classification problems that require an exact

number of classes, see e.g., Example 6.29.

Example 6.28 (The quadratic multiple knapsack problem). Let a set of n items be given,

each with a weight wi ∈ R+ and a profit pi ∈ R+, i ∈ [n]. We are also given a set of k

knapsacks, each with a capacity cj ∈ R+, j ∈ [k]. Finally, let R = (ri�) denote a revenue

matrix, where ri� denotes the revenue of including items i and � in the same knapsack. The

quadratic multiple knapsack problem (QMKP) aims at allocating each item to at most one

knapsack such that we maximize the total profit of the included items and their interac-

tion revenues. The QMKP is introduced in [206] and has applications in manufacturing,

scheduling and resource allocation.

Let P ∈ {0, 1}n×k be a packing matrix where Pij = 1 if and only if item i is allocated to

knapsack j. The capacity constraint can be modeled as P�w ≤ c, where w ∈ Rn
+ and c ∈ Rk

+

denote the vector of item weights and knapsack capacities, respectively. The total profit can

be computed as 〈R,PP�〉+ p�P1k, where p ∈ Rn denotes the vector of item profits. Both

the capacity constraints and the objective fit in the framework of (QMP2). It then follows

from Theorem 6.27 that we can model the QMKP as the following integer SDP:

max

〈⎛⎝ 0 1
2
1kp

�

1
2
p1�

k R

⎞⎠ ,

⎛⎝Ik P�

P X

⎞⎠〉

s.t. P�w ≤ c, diag(X) = P1k⎛⎝Ik P�

P X

⎞⎠ � 0, X ∈ {0, 1}n×n, P ∈ {0, 1}n×k.

(6.21)

Example 6.29 (The capacitated max-k-cut problem). Let G = (V,E) be an undirected

simple graph on n := |V | vertices with edge weights wij for all {i, j} ∈ E and let c1, . . . , ck
denote k positive integers such that c1 + · · ·+ ck ≥ n. The capacitated max-k-cut problem

(CMkC), see e.g., [167], asks for a partition of the vertex set into k nonempty subsets, each

subset j of cardinality at most cj , such that the total weight of edges with both endpoints

in different sets is maximized. The CMkC is related to the graph partition problem and has

applications in, e.g., transportation.

Let P ∈ {0, 1}n×k denote the packing matrix where Pij = 1 if and only if vertex i is

included in subset j. In order to make sure that all vertices are covered and each subset

contains at least one vertex, we add the constraints P1k = 1n and P�1n ≥ 1k. Moreover,

the capacity constraints can be modeled as P�1n ≤ c, where c ∈ Rk denotes the vector of

capacities. Finally, since one would like to add up all the edge weights that are cut by the

partition, the objective function reads

1

2
〈W,Jn − PP�〉 = 1

2
〈Diag(W1n), PP�〉 − 1

2
〈W,PP�〉 = 1

2
〈L,PP�〉,
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where W ∈ Rn×n is the matrix of edge weights and L := Diag(W1n) − W denotes the

weighted Laplacian matrix ofG. Applying Theorem 6.27, the CMkC problem can be modeled

as follows:

max
1

2
〈L,X〉

s.t. 1k ≤ P�1n ≤ c, diag(X) = 1n⎛⎝Ik P�

P X

⎞⎠ � 0, X ∈ {0, 1}n×n, P ∈ {0, 1}n×k.

(6.22)

6.4 Problem-specific formulations

In this section we consider MISDP formulations of problems that do not belong to the class

of binary quadratic problems or for which the reformulation technique differs from the ones

discussed in Section 6.3.

6.4.1 The QAP as a MISDP

We present a MISDP formulation of the quadratic assignment problem (QAP) that is derived

by a matrix-lifting approach. To the best of our knowledge, our QAP formulation provides

the most compact convex mixed-integer formulation of the problem in the literature. The

formulation is motivated by the matrix-lifting SDP relaxations of the QAP derived in [101].

The quadratic assignment problem is an optimization problem of the following form:

min
X∈Πn

tr(AXBX�) + tr(CX�), (6.23)

where A,B ∈ Sn, C ∈ Rn×n and Πn is the set of n× n permutation matrices. The QAP is

among the most difficult NP-hard combinatorial optimization problems to solve in practice.

The QAP is introduced in 1957 by Koopmans and Beckmann [238] as a model for location

problems. Nowadays, the QAP is known as a generic model for various (real-life) problems.

By exploiting properties of the Kronecker product and Theorem 6.7, one can lift the

QAP into the space of (n2 + 1) × (n2 + 1) {0, 1}-matrix variables and obtain a BSDP

formulation of the QAP, see Section 6.3.1. Since this vector-lifting approach results in a

problem formulation with a large matrix variable, we consider here a matrix-lifting approach

for the QAP. Ding and Wolkowicz [101] introduce several matrix-lifting SDP relaxations of

the QAP with matrix variables of order 3n. By imposing integrality on the matrix variable

X in one of these SDP relaxations, i.e., the relaxation MSDR0 in [101], we obtain:

min 〈A, Y 〉+ 〈C,X〉

s.t.

⎛⎜⎜⎝
In X� R�

X In Y

R Y Z

⎞⎟⎟⎠ � 0

R = XB, X ∈ Πn, R ∈ Rn×n, Y, Z ∈ Sn.

(6.24)
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Note that if B is an integer matrix, then R is also an integer matrix. However, we do not

have to impose integrality on R explicitly.

The Schur complement lemma implies that the linear matrix inequality in (6.24) is equi-

valent to ⎛⎝In Y

Y Z

⎞⎠−
⎛⎝XX� XR�

RX� RR�

⎞⎠ � 0. (6.25)

Now, we are ready to prove the following result.

Proposition 6.30. The MISDP (6.24) is equivalent to (6.23).

Proof. Let (X,Y, Z,R) be feasible for (6.24). Then XX� = In and⎛⎝In −XX� Y −XR�

Y −RX� Z −RR�

⎞⎠ � 0

imply that Y = XR�. Thus, Y = XB�X� = XBX�, meaning that the two objectives

coincide.

Conversely, let X be feasible for (6.23). Define R := XB, Y := XR� and Z := RR�.

It trivially follows that the constraints in (6.24) are satisfied and that the two objective

functions coincide.

Many combinatorial optimization problems can be formulated as the QAP, see e.g., [62].

We provide an example below.

Example 6.31 (The traveling salesman problem). We are given a complete undirected

graph Kn = (V,E) with n := |V | vertices and a nonnegative matrix D = (dij) ∈ Sn,

where dij is the cost of edge {i, j} ∈ E. The goal of the traveling salesman problem (TSP)

is to find a Hamiltonian cycle of minimum cost in Kn.

Let B be the adjacency matrix of the standard circuit on n vertices, i.e., B is a symmetric

Toeplitz matrix whose first row is [0 1 0�
n−3 1]. It is well-known that (6.23) with this matrix B

and A = D is a formulation for the TSP. Following Proposition 6.30, a MISDP formulation

of the TSP is:

min
1

2
〈D,Y 〉

s.t. R = XB⎛⎜⎜⎝
In X� R�

X In Y

R Y Z

⎞⎟⎟⎠ � 0

X ∈ Πn, R ∈ Rn×n, Y, Z ∈ Sn.

Another MISDP formulation of the TSP is given in Section 6.4.3, see also (6.33). The

latter formulation is, to the best of our knowledge, the most compact formulation of the

TSP.
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6.4.2 MISDP formulations of the graph partition problem

We present here various MISDP formulations of the graph partition problem (GPP). Several

of the here derived formulations cannot be obtained by using results from Section 6.3.1 and

Section 6.3.2.

The GPP is the problem of partitioning the vertex set of a graph into a fixed number

of sets, say k, of given sizes such that the sum of weights of edges joining different sets is

optimized. If all sets are of equal size, then the corresponding problem is known as the k-

equipartition problem (k-EP). The case of the GPP with k = 2 is known as the graph

bisection problem (GBP). To formalize, let G = (V,E) be an undirected graph on n := |V |
vertices and let W := (wij) ∈ Sn denote a weight matrix with wij = 0 if {i, j} /∈ E. The

graph partition problem aims to partition the vertices of G into k (2 ≤ k ≤ n − 1) disjoint

sets S1, . . . , Sk of specified sizes m1 ≥ · · · ≥ mk ≥ 1,
∑k

j=1 mj = n such that the total

weight of edges joining different sets Sj is minimized.

For a given partition of V into k subsets, let P = (Pij) ∈ {0, 1}n×k be the partition

matrix, where Pij = 1 if and only if i ∈ Sj for i ∈ [n] and j ∈ [k]. The total weight of the

partition equals:

1

2
tr

(
W (Jn − PP�)

)
=

1

2
tr(LPP�), (6.26)

where L := Diag(W1n) − W is the weighted Laplacian matrix of G. The GPP can be

formulated as the following quadratic matrix program:

min
1

2
〈L,PP�〉

s.t. P1k = 1n,

P�1n = m

P ∈ {0, 1}n×k,

(6.27)

where m = [m1 . . . mk]
�. The formulation (6.27) is a special case of the quadratic matrix

program (QMP2). Therefore, applying Theorem 6.27, the GPP can be modeled as follows:

min
1

2
〈L,X〉

s.t. P1k = 1n

P�1n = m

diag(X) = 1n⎛⎝Ik P�

P X

⎞⎠ � 0, X ∈ {0, 1}n×n, P ∈ {0, 1}n×k.

(6.28)

For the k-EP and the GBP, we can derive more simple MISDP formulations by removing P

from the model.

In the case of the k-EP, the QMP (6.27) is a special case of (QMP1), and therefore k-EP
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can be modeled as follows:

min
1

2
〈L,X〉

s.t. diag(X) = 1n

X1n =
n

k
1n

kX − Jn � 0, X ∈ Sn, X ∈ {0, 1}n×n.

(6.29)

This result follows from Theorem 6.24. An alternative proof is provided below.

Proposition 6.32. Let m = n
k
1k. Then, the QMP (6.27) for the k-EP is equivalent to the

BSDP (6.29).

Proof. Let P be feasible for (6.27) where m = n
k
1k. We define X := PP�. The first and

second constraint in (6.29), as well as X ∈ {0, 1}n×n follow by direct verification. Let pi be

the ith column of P for i ∈ [k], then

kX −Jn = kPP�−1n1
�
n = k

k∑
i=1

pip
�
i −

(
k∑

i=1

pi

)(
k∑

i=1

pi

)�

=
∑
i<j

(pi− pj)(pi− pj)
� � 0.

Conversely, letX be feasible for (6.29). Then it follows from Theorem 6.1 and Proposition 6.2

that there exist xi ∈ {0, 1}n, i ∈ [r], k ≥ r such that X =
∑r

i=1 xix
�
i where

∑r
i=1 xi = 1n.

Since the constraintX1n = n
k
1n is invariant under permutation of rows and columns ofX, we

have that the sum of the elements in each row and column of the block matrix Jn1⊕· · ·⊕Jnr

equals n/k. From this it follows that r = k and 1�
n xi = n/k for i ∈ [k]. It is not difficult

to verify that P := [x1 . . . xk] ∈ {0, 1}n×k is feasible for (6.27). Since the two objectives

coincide, the result follows.

Next result shows that the MISDP (6.28) also simplifies for the GBP. It has to be noted,

however, that the GBP is not a special case of (QMP1).

Proposition 6.33. Let m = [m1 n−m1]
�, 1 ≤ m1 ≤ n/2. Then, the QMP (6.27) for the

GBP is equivalent to the following BSDP:

min
1

2
〈L,X〉

s.t. diag(X) = 1n

〈Jn, X〉 = m2
1 + (n−m1)

2

2X − Jn � 0, X ∈ Sn, X ∈ {0, 1}n×n.

(6.30)

Proof. Let P be feasible for (6.27). We define X := PP�. The first and second constraint

in (6.30) follow by direct verification. Let pi be the ith column of P for i ∈ [2], then

2X − Jn = 2PP� − 1n1
�
n = 2

2∑
i=1

pip
�
i −

(
2∑

i=1

pi

)(
2∑

i=1

pi

)�

= (p1 − p2)(p1 − p2)
� � 0.

Conversely, let X be feasible for (6.30). Then, it follows from Theorem 6.1 and Proposi-

tion 6.2 that there exist x1, x2 ∈ {0, 1}n such that X = x1x
�
1 + x2x2

� where x1 + x2 = 1n.

Note that X cannot have rank one or zero for 1 ≤ m1 < n. From 〈Jn, X〉 = m2
1 + (n−m1)

2
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it follows that 1�
n x1 = m1 or 1�

n x1 = n − m1. Without loss of generality we assume

that 1�x1 = m1. Clearly, P := [x1 x2] ∈ {0, 1}n×2 is feasible for (6.27). Moreover, the two

objective functions coincide.

In the remainder of this section, we derive yet another alternative MISDP formulation

of the GPP, different from (6.28). For that purpose we notice that the GPP can also be

formulated as a QMP of the following form:

min tr(P�Q0P ) + tr(PC0P
�) + 2tr(B�

0 P ) + d0

s.t. tr(P�QiP ) + tr(PCiP
�) + 2tr(B�

i P ) + di ≤ 0 ∀i ∈ [m]

P ∈ Rn×k,

(QMP3)

where Qi ∈ Sn, Ci ∈ Sk, Bi ∈ Rn×k, di ∈ R for i = 0, 1, . . . ,m. Note that (QMP2) is a

special case of (QMP3). Examples of problems that are of this form are quadratic problems

with orthogonality constraints, see e.g., [17]. The GPP can be formulated as follows, see

e.g., [100]:

min
1

2
〈L,PP�〉

s.t. P�1n = m

P�P = Diag(m)

diag(PP�) = 1n

P ≥ 0, P ∈ Rn×k.

(6.31)

To reformulate (6.31) as a MISDP we first introduce a matrix X1 ∈ Sn such that X1 = PP�

Now, we relax X1 = PP� and Diag(m) = P�P to the following linear matrix inequalities

(LMIs):

X1 − PP� � 0, or equivalently,

⎛⎝Ik P�

P X1

⎞⎠ � 0,

and

Diag(m)− P�P � 0, or equivalently,

⎛⎝ In P

P� Diag(m)

⎞⎠ � 0.

After introducing the constraint diag(X1) = 1n, we obtain the following MISDP:

min
1

2
〈L,X1〉

s.t. P1k = 1n

diag(X1) = 1n⎛⎝Ik P�

P X1

⎞⎠ � 0,

⎛⎝ In P

P� Diag(m)

⎞⎠ � 0

X1 ∈ Sn, P ∈ {0, 1}n×k.

(6.32)

We prove below that (6.32) is an exact formulation of the GPP.
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Proposition 6.34. The MISDP (6.32) is an exact formulation of the GPP.

Proof. We prove the result by showing the equivalence between (6.31) and (6.32).

Let P ∈ Rn×k be feasible for (6.31). Then, it follows from diag(PP�) = 1n that we

have (PP�)ii =
∑k

j=1 P
2
ij = 1 for i ∈ [n]. From this and P ≥ 0, we obtain 0 ≤ Pij ≤ 1

for all i ∈ [n], j ∈ [k]. From P�1n = m it follows
∑

i,j Pij = n and from P�P = Diag(m)

that tr(P�P ) = n, and thus
∑

i,j P
2
ij = n. Therefore, Pij ∈ {0, 1} for all i ∈ [n], j ∈ [k].

The equality diag(PP�) = 1n then implies that P1k = 1n. It follows from the discussion

prior to the proposition that P and X1 := PP� are feasible for (6.32).

Conversely, let X1 and P be feasible for (6.32). From P ∈ {0, 1}n×k and P1k = 1n it

follows that diag(PP�) = 1n. From Diag(m)− P�P � 0 and 1�
k (Diag(m)− P�P )1k = 0

it follows that (Diag(m)−P�P )1k = 0 and thus P�1n = m. Moreover, we have (P�P )ii =∑n
j=1 P

2
ji =

∑n
j=1 Pji = mi for i ∈ [k], implying that diag(P�P ) = m. Finally, we

have Diag(m) − P�P � 0, where it follows from above that the latter matrix has a di-

agonal of zeros. Thus, we must have P�P = Diag(m), which concludes the proof.

The MISDP (6.32) has two LMIs and requires integrality constraints only on a matrix of

size n×k, while (6.28) has only one LMI and asks for integrality on a matrix of size of n×n

and a matrix of size n× k.

6.4.3 MISDP formulations based on algebraic connectivity

In this section we show how the concept of algebraic connectivity of graphs can be exploited

to obtain compact MISDP formulations of several graph optimization problems.

LetG = (V,E) be an undirected graph and define L := diag(X1n)−X as its (unweighted)

Laplacian matrix. Fiedler [132] defined the algebraic connectivity of a graph as the second

smallest eigenvalue of L, i.e., a(G) := λ2(L) ≥ 0. Fiedler [132] showed that a(G) > 0 if and

only if G is connected.

A lower bound on the algebraic connectivity of a graph can be established by the use of

a linear matrix inequality, as stated by the following result.

Proposition 6.35 ([273]). Let G be a simple graph on n ≥ 3 vertices and let L be the

Laplacian matrix of G. Then λ2(L) ≥ β if and only if L+ β
n
Jn − βIn � 0.

Proof. The eigenvalues of L + β
n
Jn are β and λ2(L) ≤ · · · ≤ λn(L). If λ2(L) ≥ β, then

all eigenvalues of L + β
n
Jn are greater or equal than β and therefore L + β

n
Jn − βIn � 0.

Conversely, if L+ β
n
Jn − βIn � 0, then all eigenvalues of L+ β

n
Jn greater or equal to β and

therefore λ2(L) ≥ β.

In some graph optimization problems, algebraic connectivity in combination with Pro-

position 6.35 can be usefully applied. To model that a graph is connected, we typically

require that for any partition (S, V \ S) of the vertex set, there must exist an edge crossing

the cut. For example, this can be done using the cut-set constraints, see Section 1.4.1. Since

there exist exponentially many of these cuts, we need to include a large number of (linear)

constraints to model connectivity of the graph. Algebraic connectivity serves as a compact

alternative to this approach.

Assume we consider an optimization problem on a graph G where the constraints include

connectivity constraints, e.g., cut-set or subtour elimination constraints, see Section 1.4.1.
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More precisely, the feasible set of the problem consist of subgraphs of G that are all con-

nected, e.g., Hamiltonian cycles, trees or connected regular subgraphs. Depending on the

structure of the problem, let β̂ > 0 denote a lower bound on the algebraic connectivity of all

feasible subgraphs. In order to model the connectivity constraints, we apply Proposition 6.35

with β = β̂.

Below, we follow this approach for two well-known combinatorial problems and show how

this results in a MISDP formulation of the corresponding problems.

Example 6.36 (The traveling salesman problem). Let us reconsider the traveling sales-

man problem (TSP), see Example 6.31. A tour can be modeled by an adjacency mat-

rix X ∈ {0, 1}n×n, where Xij = 1 if edge {i, j} is in the tour and Xij = 0 otherwise. One

easily verifies that in order for X to be feasible for the TSP, X should be an element of the

following matrix set:

Πn(G) :=
{
X ∈ {0, 1}n×n ∩ Sn : X1n = 2 · 1n, Xij = 0 if {i, j} /∈ E

}
,

which is the undirected equivalent of the set Πn(G) defined in Section 5.4.1, see also Ap-

pendix A.4. Indeed, each X ∈ Πn(G) is the adjacency matrix of a vertex-disjoint cycle

cover of G, i.e., a set of cycles such that each vertex is on exactly one cycle. In order

to manage that X corresponds to a single cycle, the induced subgraph should be connec-

ted. It is well-known that the algebraic connectivity of the cycle graph Cn on n vertices

equals a(Cn) = 2− 2 cos
(
2π
n

)
. Applying Proposition 6.35 with β = 2− 2 cos

(
2π
n

)
yields the

following ISDP formulation of the TSP:

min
1

2
〈D,X〉

s.t X1n = 2 · 1n

Xij = 0 ∀{i, j} /∈ E

2 cos

(
2π

n

)
In −X +

2

n

(
1− cos

(
2π

n

))
Jn � 0

X ∈ {0, 1}n×n, X ∈ Sn.

(6.33)

This compact ISDP formulation of the TSP is introduced by Cvetković et al. [86]. A similar

procedure for the quadratric traveling salesman problem has been followed in [276].

Example 6.37 (The quadratic minimum spanning tree problem). Let G = (V,E) be an

undirected graph with n := |V | and m := |E| and let Q = (qef ) ∈ Rm×m denote a symmetric

cost matrix on the set of edges. The quadratic minimum spanning tree problem (QMST)

asks for a spanning tree T in G such that the total quadratic costs among the edges used in

T , i.e.,
∑

e,f∈T,e �=f qef , are minimized.

To model the problem, we fix an ordering of E = {e1, . . . , em} and let Y = (Yef ) ∈ Sm

denote a matrix such that Yef = 1 if edges e and f are both in T and Yef = 0 otherwise.

Similarly, let X = (Xij) ∈ Sn be such that Xij = 1 if edge {i, j} is in T and Xij = 0

otherwise. We also define the linear mapping T : Sn → Rm, where T (X) maps X to a

column vector containing the entries of X corresponding to E with respect to the fixed

ordering of the edge set, i.e., T (X)i := Xjk, where ei = {j, k}.
Assad and Xu [22] derive the following formulation of the quadratic minimum spanning
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tree problem:

min
1

2
〈Q,Y 〉

s.t. Y 1m = (n− 1)T (X)

diag(Y ) = T (X)

0 ≤ Y ≤ Jn

Y ∈ Sm, X ∈ Ψn(G),

(6.34)

where Ψn(G) denotes the set of adjacency matrices of spanning trees inG. One can check that

the constraints in combination with the binarity of X are sufficient to obtain the coupling

between the matrices Y and X.

In order for the subgraph induced by X to be a spanning tree, it suffices to require that it

has exactly n−1 edges and that it is connected. It is well-known that the algebraic connectiv-

ity of a tree Tn on n ≥ 3 vertices is always within the bounds 2
(
1− cos

(
π
n

))
≤ a(Tn) ≤ 1,

see e.g., [181]. Therefore, we can explicitly model the set Ψn(G) as follows:

Ψn(G) :=

⎧⎨⎩X ∈ {0, 1}n×n ∩ Sn :
〈X,Jn〉 = 2(n− 1), Xij = 0 if {i, j} /∈ E

Diag(X1n)−X +
β

n
Jn − βIn � 0

⎫⎬⎭ ,

where β = 2
(
1− cos

(
π
n

))
. This leads to the following ISDP formulation of the QMSTP:

min
1

2
〈Q,Y 〉

s.t. Y 1m = (n− 1)T (X)

diag(Y ) = T (X)

0 ≤ Y ≤ Jn

〈X,Jn〉 = 2(n− 1)

Xij = 0 ∀{i, j} /∈ E

Diag(X1n)−X +
β

n
Jn − βIn � 0

Y ∈ Sm, X ∈ {0, 1}n×n, X ∈ Sn.

(6.35)

This formulation is derived and analyzed in [273].

6.4.4 MISDP formulations beyond binarity

Almost all problem formulations that have been discussed before involve matrix variables

with entries in {0, 1}. In this section we consider several problems that allow for semidef-

inite formulations where (some of) the variables are integers, but not necessarily restricted

to {0, 1}.

Example 6.38 (The integer matrix completion problem). A well-known problem in data

analysis is the problem of low-rank matrix completion. Suppose a partially observed data

matrix is given, i.e., let Ω ⊆ [n]× [m] denote the set of observed entries and let D ∈ Rn×m

denote a given data matrix that has its support on Ω. The goal of the low-rank matrix

completion problem is to find a minimum rank matrix X ∈ Rn×m such that X coincides
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with D on the set Ω. The intuition behind this problem is that the observed entries in D

are outcomes of a multiplicative model X = AB�, where A ∈ Rn×k, B ∈ Rm×k represent

exogenous features that explain the dependent matrix variable X. As the number of features

is preferred to be small for the sake of simplicity, we would like to fit a model with a low

value of k.

Since minimizing rank(X) leads to a nonconvex and therefore hard problem, a related but

tractable alternative is given by minimizing the nuclear norm ofX, i.e., ||X||∗ :=
∑n

i=1 σi(X),

where σi denotes the ith singular value of X. Hence, a near-optimal solution to the low-rank

matrix completion problem can be obtained by solving the following program:

min
X∈Rn×m

||X||∗

s.t. Xij = Dij for all (i, j) ∈ Ω.

As shown by Recht et al. [316], the optimization problem above is equivalent to the following

semidefinite programming program

min 〈In, Z1〉+ 〈Im, Z2〉
s.t. Xij = Dij for all (i, j) ∈ Ω⎛⎝ Z1 X

X� Z2

⎞⎠ � 0.

Now, suppose additionally that the model X = AB� is such that the values of the dependent

variables in X are always integers. For instance, this is the case in the famous Netflix

problem [338], where Xij represents the score that movie i receives from user j on an integer

scale from 1 to 5. The underlying model reads Xij =
∑k

�=1 Ai�B�j , where Ai� and B�j

represent movie- and user-specific values of feature �, respectively. Since not all movies are

watched by all users, only a part of the given scores are available, which are represented

in D. The goal of the problem is to learn from the data a low-rank model X = AB� such

that the values in X are predictions of the movie-user scores that are missing in Ω. Since the

scores in X are restricted to be integer, one can solve the SDP above and round its values to

integers afterwards. Alternatively, a more precise approach adds integrality in the problem

itself. This yields the following integer matrix completion problem:

min 〈In, Z1〉+ 〈Im, Z2〉
s.t. Xij = Dij for all (i, j) ∈ Ω

Xij ∈ S for all (i, j) /∈ Ω⎛⎝ Z1 X

X� Z2

⎞⎠ � 0.

where S ⊆ Z is a discrete set, e.g., S = {1, . . . , 5} in the case of the Netflix problem.

Example 6.39 (The chromatic number of a graph). Let G = (V,E) be a simple graph

with n := |V |. The chromatic number of G, denoted by χ(G), is the minimum number of

colors needed to color the vertices of G such that adjacent vertices receive distinct colors.
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Meurdesoif [279] derived the following formulation for χ(G):

χ(G) = min k

s.t. diag(X) = (k − 1)1n

Xij = −1 ∀{i, j} ∈ E

X � 0, Xij ∈ {−1, k − 1} ∀i, j ∈ [n].

As the domain of the entries in X depend on the variable k, the problem formulation above

does not immediately fit in our framework. We can resolve this by introducing an auxiliary

variable Yij for each {i, j} /∈ E, which has entries in {−1, 0} and is completely entangled

with Xij . Let M denote a given upper bound on χ(G), e.g., M = n. Now, we consider

χ(G) = min k

s.t. diag(X) = (k − 1)1n

Xij = −1 ∀{i, j} ∈ E

Xij ≥MYij + k − 1

Xij ≥ −1
Xij ≤M + (M + 1)Yij

Xij ≤ k − 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ∀{i, j} /∈ E

X � 0, X ∈ Sn, Yij ∈ {−1, 0} ∀{i, j} /∈ E.

One can verify that the inequalities imply that if Yij = −1, then Xij = −1 and if Yij = 0,

then Xij = k − 1. Note that the integrality of X follows from the integrality of Y .

Example 6.40 (The sparse integer least squares problem). In the integer least squares

problem we are given a matrix M ∈ Rn×k and a column b ∈ Rn and we seek the closest

point to b in the lattice spanned by the columns of M . Del Pia and Zhou [303] consider

the related sparse integer least squares problem (SILS), where the aimed vector of integer

weights x is required to have entries in {0,±1} and the number of nonzero elements in x

may not exceed a given positive integer K. Thus, the SILS problem can be formulated as

min
1

n
||Mx− b||22

s.t. x ∈ {0,±1}k, ||x||0 ≤ K.
(6.36)

The SILS problem has applications in, among other, multiuser detection and sensor networks,

see [303] and the references therein. Now, consider the following ternary SDP:

min
1

n

〈⎛⎝1 x�

x X

⎞⎠ ,

⎛⎝ b�b −b�M
−M�b M�M

⎞⎠〉
s.t. tr(X) ≤ K, diag(X) = y1 + y2, x = y1 − y2, y1, y2 ∈ Rn

+⎛⎝1 x�

x X

⎞⎠ � 0,

⎛⎝1 x�

x X

⎞⎠ ∈ {0,±1}(k+1)×(k+1).

(6.37)
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It is easy to verify that if x is a solution to (6.36), then x, X = xx�, y1 = max(x,0)

and y2 = max(−x,0) is feasible for (6.37) with the same objective value. Conversely, let

the tuple (x,X, y1, y2) be feasible for (6.37). Since x = y1 − y2 and y1, y2 ∈ Rn
+, it follows

that diag(X) = y1 + y2 = |x|. Hence,
(

1 x�
x X

)
is PSD, has entries in {0,±1} and is such

that supp(diag(X)) = supp(x). It then follows from Proposition 6.19 that
(

1 x�
x X

)
is of

the form ( 1
x )(

1
x )

�
, from where the result follows. We finally mention that it is sufficient

to impose the integrality constraints only on x. Namely, the nonnegative determinants of

the 3× 3 principal submatrices of
(

1 x�
x X

)
then imply that X ∈ {0,±1}(k+1)×(k+1).

6.5 Bounds by integer semidefinite programming duality

The ISDP formulations derived in Section 6.3 and 6.4 can be used to derive exact solu-

tions for the considered problems using generic MISDP solvers, e.g., branch-and-bound al-

gorithms [156, 270] or branch-and-cut algorithms [234, 276]. In this section we show that

we can also exploit the MISDP formulations in order to obtain bounds for the problems

that have the potential to be tighter than the SDP relaxations obtained by dropping the

integrality constraints. These bounds are based on Lagrangian duality. We show how such

bounds can be computed for general binary SDPs and, in particular, for the max-cut prob-

lem. The resulting bounds are related to the so-called exact subgraph approach considered

in [1, 146, 147, 148].

We first extend the Lagrangian duality theory from integer linear programming to the

case of integer semidefinite programming. After that, we derive a projected subgradient

algorithm that can be used to compute Lagrangian dual bounds. We finalize the section by

a preliminary experimental study of our algorithm on the ISDP formulation of the max-cut

problem.

6.5.1 Lagrangian duality theory for mixed-integer semidefinite program-
ming

Let C ∈ Sn, b ∈ Rm and let A : Sn → Rm be a linear operator defined by A(X)i := 〈Ai, X〉
with Ai ∈ Sn for all i ∈ [m]. We define A∗ : Rm → Sn to be its adjoint. Moreover, we

let J ⊆ [n] × [n] be a symmetric index set of the discrete variables in the program. For

each (i, j) ∈ J , the set Bij ⊆ Z denotes the discrete solution space of the variable indexed

by (i, j). Finally, for all (i, j) ∈ J , let lij , uij ∈ Z denote the lower and upper bound,

respectively, with respect to the set Bij . We assume these lower and upper bounds to be

finite, implying that the sets Bij are finite. We consider a MISDP in the following general

form:

zMISDP := min 〈C,X〉
s.t. A(X) = b, X � 0

Xij ∈ Bij for all (i, j) ∈ J .

(6.38)

By relaxing the integrality constraints, we obtain the continuous SDP relaxation of (6.38):

zSDP := min 〈C,X〉
s.t. A(X) = b, X � 0

lij ≤ Xij ≤ uij for all (i, j) ∈ J .

(6.39)
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The inequality zSDP ≤ zMISDP clearly holds. Throughout this section, we make the follow-

ing assumption.

Assumption 6.41. The feasible set of (6.38) is bounded.

Assumption 6.41 is natural for the MISDPs that follow from combinatorial optimization

problems and that we have derived in Section 6.3 and 6.4. Since all integer variables are

bounded by lij and uij , respectively, Assumption 6.41 furthermore implies that bounds on the

continuous variables are enforced by the constraints of (6.38). Observe that the boundedness

assumption on (6.38) also implies that a solution to the continuous SDP (6.39) is attained.

Namely, if the feasible set of (6.39) would be unbounded, then there exists a ray R ∈ Sn

with A(R) = 0 and R � 0. Since all bounds on variables in J are finite, Rij = 0 for

all (i, j) ∈ J . Therefore, R would also be a ray of the feasible set of (6.38), contradicting

Assumption 6.41.

The Lagrangian dual of (6.38) is obtained by dualizing (a part of) the constraints that

are intractable in combination with the integrality constraints. In our setting, it is natural

to dualize the constraint X � 0. Moreover, we can distinguish between the equalities

in A(X) = b that are tractable with the integrality constraints and the equalities that are

not. Consequently, we split A(X) = b into A1(X) = b1 and A2(X) = b2 where b1 ∈ Rm1

and b2 ∈ Rm2 with m1 +m2 = m. Here we assume that the equalities A1(X) = b1 are not

tractable in combination with the integrality constraints. We define the Lagrangian L after

dualizing the constraints X � 0 and A1(X) = b1 as

L(X,S, λ) := 〈C,X〉 − 〈S,X〉+ λ� (A1(X)− b1) ,

where S � 0 and λ ∈ Rm1 are the corresponding Lagrange multipliers. Moreover, we let P

denote the mixed-integer set of matrices induced by the remaining constraints, i.e.,

P := {X ∈ Sn : A2(X) = b2, Xij ∈ Bij for all (i, j) ∈ J } . (6.40)

Without loss of generality, we may assume that P is bounded. Namely, if not, we can

add to A2(X) = b2 the variable bounds on the continuous variables (which exist due to

Assumption 6.41). Now, we define the Lagrangian dual function g : Sn
+ × Rm1 → R as

follows:

g(S, λ) := min {L(X,S, λ) : X ∈ P} . (6.41)

Obviously, for all S ∈ Sn
+, λ ∈ Rm1 we have g(S, λ) ≤ L(X∗, S, λ) ≤ 〈C,X∗〉 = zMISDP ,

where X∗ is an optimal solution to (6.38). To obtain the best lower bound for zMISDP , we

take the supremum of g(S, λ) with respect to the dual variables S and λ. This leads to the

Lagrangian dual problem of (6.38):

zLD := sup g(S, λ)

s.t. S � 0, λ ∈ Rm1 .
(6.42)

The following result follows from construction.

Theorem 6.42 (Weak duality). zLD ≤ zMISDP

To increase understanding of the Lagrangian dual, we show that it is possible to ob-
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tain zLD as the solution of a continuous semidefinite programming problem. We consider

min 〈C,X〉
s.t. X ∈ conv (P )

A1(X) = b1

X � 0.

(6.43)

Since the feasible set of (6.43) is contained in the feasible set of (6.39) and the latter one

is compact, it follows that an optimal solution to (6.43) is attained. We now show that

the problem (6.43) is equivalent to the Lagrangian dual under Assumption 6.41, based on a

similar result for MILP by Geoffrion [169].

Theorem 6.43. Let ẑ denote the optimal objective value to (6.43), then zLD = ẑ.

Proof. Since L(·, S, λ) is linear on Sn for all fixed S ∈ Sn
+ and λ ∈ Rm1 , we have

zLD = sup
S�0,λ

min
X

{
〈C,X〉 − 〈S,X〉+ λ� (A1(X)− b1) : X ∈ P

}
= sup

S�0,λ
min
X

{
〈C,X〉 − 〈S,X〉+ λ� (A1(X)− b1) : X ∈ conv(P )

}
.

Since L(X, ·, ·) is also linear on Sn
+×Rm1 for all fixed X ∈ conv(P ), and conv(P ) is compact,

Sion’s minimax theorem [340] implies that we are allowed to interchange the order of taking

the minimum and the supremum, yielding

zLD = min
X

sup
S�0,λ

{
〈C,X〉 − 〈S,X〉+ λ� (A1(X)− b1) : X ∈ conv(P )

}
= min

X
{〈C,X〉 : X ∈ conv(P ), A1(X) = b1, X � 0} .

The final equality follows from the fact that if A1(X) 	= b1 or X � 0, then the inner

supremum is unbounded.

Combining the results from Theorem 6.42 and 6.43 leads to the following sandwich result,

that we include for future reference.

Corollary 6.44 (Sandwich theorem). Under Assumption 6.41, zSDP ≤ zLD ≤ zMISDP .

We briefly describe conditions under which equality holds in the chain of Corollary 6.44.

Let FMISDP ,FSDP and FLD denote the feasible sets of (6.38), (6.39) and (6.43), respectively.

Moreover, for any convex set K ⊆ Sn, its normal cone at X ∈ K is defined as

NK(X) := {G ∈ Sn : 〈G,X〉 ≥ 〈G, Y 〉 for all Y ∈ K} .

Theorem 6.45. Let χ∗
MISDP and χ∗

LD denote the set of optimizers to (6.38) and (6.43),

respectively. Then,

(i) zLD = zMISDP if and only if −C ∈ NFLD (X∗) for all X∗ ∈ χ∗
MISDP ;

(ii) zSDP = zLD if and only if −C ∈ NFSDP (X
∗) for all X∗ ∈ χ∗

LD.
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Proof. (i) Let X∗ ∈ χ∗
MISDP . Since X∗ ∈ FLD, zMISDP = zLD if and only if X∗ is also

an optimizer to (6.43). The latter holds if and only if X∗ is such that 〈C,X∗〉 ≤ 〈C, Y 〉 for
all Y ∈ FLD, which is equivalent to −C ∈ NFLD (X∗).

(ii) The proof of the second statement is very similar, replacing χ∗
MISDP by χ∗

LD and

FLD by FSDP .

It follows from Theorem 6.45 that a sufficient condition for zLD = zMISDP is that

conv (P ∩ {X ∈ Sn : A1(X) = b1, X � 0}) = conv(P ) ∩ {X ∈ Sn : A1(X) = b1, X � 0},

whereas a sufficient condition for zSDP = zLD is

conv(P ) = {X ∈ Sn : A2(X) = b2, lij ≤ Xij ≤ uij for all (i, j) ∈ J }.

6.5.2 A projected subgradient method for solving the Lagrangian dual

Although the optimum to the Lagrangian dual (6.42) is theoretically the same as the solution

to (6.43), an explicit description of conv(P ) is in most cases unavailable. Therefore, we need

other techniques to obtain the optimum to the Lagrangian dual problem. The problem (6.42)

boils down to solving a nonsmooth convex optimization problem. Although many approaches

for these problems have been proposed [289], a natural first candidate to be considered is

the classical projected subgradient algorithm.

Since the function g(S, λ) is a piecewise-linear concave function, its first-order conditions

rely on the use of subgradients. A subgradient of g(·, ·) at a point (S∗, λ∗) ∈ Sn
+ × Rm1 is a

pair (Γ, γ) ∈ Sn × Rm1 such that

g(S, λ) ≤ g(S∗, λ∗) + 〈Γ, S − S∗〉+ γ�(λ− λ∗) for all S, λ ∈ Sn
+ × Rm1 . (6.44)

Now, let X∗ := argmin{L(X,S∗, λ∗) : X ∈ P}. Then,

g(S, λ) = min
X∈P

{
〈C,X〉 − 〈S,X〉+ λ� (A1(X)− b1)

}
≤ 〈C,X∗〉 − 〈S,X∗〉+ λ�(A1(X

∗)− b1)

= 〈C,X∗〉 − 〈S∗, X∗〉+ (λ∗)�(A1(X
∗)− b1)

+ 〈−X∗, S − S∗〉+ (A1(X
∗)− b1)

�(λ− λ∗)

= g(S∗, λ∗) + 〈−X∗, S − S∗〉+ (A1(X
∗)− b1)

�(λ− λ∗).

This shows that (Γ, γ) = (−X∗,A1(X
∗)− b1) is a subgradient of g(·, ·) at (S∗, λ∗).

Based on this description of the subgradient, we can now solve the Lagrangian dual (6.42)

as follows. We start with an initial set of dual multipliers (S0, λ0) ∈ Sn
+ × Rm1 . Then,

we iteratively obtain g(Sk, λk) by minimizing L(X,Sk, λk) over X ∈ P , yielding an op-

timal solution Xk. By the choice of incorporating only the constraints A2(X) = b2 in P ,

we assume that this minimization is tractable. We now compute the subgradient vec-

tor (Γ k, γk) := (−Xk,A1(X
k) − b1). The dual multipliers are updated by a step update

in the direction (Dk, dk) ∈ Sn × Rm1 , where this direction is based on the subgradient

vector (Γ k, γk). This can be done in several ways, as we discuss below. Then, we set

Sk+1 ← PSn
+
(Sk + αkDk) and λk+1 ← λk−1 + βkdk, (6.45)
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where αk and βk are appropriate stepsize parameters. The resulting dual matrix Sk +αkDk

is projected onto the PSD cone in order to stay dual feasible. A pseudo-code of the projected

subgradient algorithm is given in Algorithm 6.1.

Algorithm 6.1 Projected subgradient algorithm for solving (6.42)

Input: C,A1,A2, b1, b2, Bij for all (i, j) ∈ J
1: Initialize dual pair (S0, λ0) ∈ Sn

+ × Rm1 and set k = 0, ẑ = −∞
2: while stopping criteria are not met do
3: Compute g(Sk, λk) and obtain Xk := argmin{L(X,Sk, λk) : X ∈ P}.
4: if ẑ < g(Sk, λk) then

5: ẑ ← g(Sk, λk).
6: end if
7: Update subgradient Γk := −Xk, γk = A1(X

k) − b1.

8: Update stepsize parameters αk, βk and dual updates Dk, dk. � Dual updates can be based
on pure subgradient, deflected
subgradient or conditional sub-
gradient.

9: Update Sk+1 ← PSn
+
(Sk−1 + αkDk), λk+1 ← λk−1 + βkdk.

10: k ← k + 1
11: end while
Output: ẑ

Different strategies for the choice of the dual updates (Dk, dk) and the stepsize paramet-

ers αk and βk are proposed in the literature for the case of integer linear programming. For

an overview of such strategies, we refer the reader to Guta [190]. Below we discuss several

different update strategies, which we alter to the case of mixed-integer semidefinite program-

ming. These strategies are compared in the computational experiments in Section 6.5.4.

1. Subgradient: In the (pure) subgradient update step we setDk = Γ k and dk = γk. For

the stepsize parameters, the most commonly used update scheme is due to Polyak [307],

which reads

αk :=
μk
1(UB − g(Sk, λk))

||Γ k||2F
and βk :=

μk
2(UB − g(Sk, λk))

||γk||2 .

Here UB is an upper bound on the optimal Lagrangian dual value zLD, which can be

obtained by a heuristic on the primal problem, and 0 < μ1, μ2 ≤ 2 are stepsize para-

meters. The justification for this step length is its theoretical convergence when UB

is set equal to zLD [307]. A possible choice for μk
1 and μk

2 proposed by Held and

Karp [198] is to choose initial parameters μ0
1, μ

0
2 and halve its value whenever the dual

function g(Sk, λk) did not increase for Nstep subsequent iterations.

2. Deflected Subgradient: A common issue in the practical use of subgradient methods

(for integer linear programming) is the possibility of poor convergence. One typical

cause is the fact that two consecutive update directions form an obtuse angle [64, 335],

i.e., 〈Dk, Dk+1〉 < 0 and/or (dk)�dk+1 < 0. As a result, the dual multipliers form a

zigzagging pattern, which force the next dual multiplier to be very close to the current

one. To prevent this behaviour from happening, the deflected subgradient algorithm

constructs the dual update vector as a linear combination between the subgradient

vector and the previous dual update vector, i.e.,

Dk = Γ k + δk1D
k−1 and dk = γk + δk2d

k−1,
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where δk1 , δ
k
2 ≥ 0 are deflection parameters. With respect to the choice of these para-

meters, the following is proposed:

Based on an approach by Camerini et al. [64], we set

δk1 =

⎧⎨⎩−τk 〈Γk,Dk−1〉
||Dk−1||2

F
if 〈Γ k, Dk−1〉 < 0,

0 otherwise,

δk2 =

{
−τk (γk)�dk−1

||dk−1||2 if (γk)�dk−1 < 0,

0 otherwise.

Here τk ≥ 1 is a fixed parameter to be determined by preliminary testing.

Sherali and Ulular [335] propose to take

δk1 =
||Γ k||F
||Dk−1||F

and δk2 =
||γk||
||dk−1|| ,

in order to let the new dual update vector bisect the angle between the current

subgradient Γ k (resp. γk) and the previous dual update Dk−1 (resp. dk−1).

The stepsize parameters αk and βk in these implementations can be chosen according

to the Polyak update [307].

3. Conditional Subgradient: Another practical burden in applying the subgradient

algorithm in integer linear programming can be caused by the subgradient vector being

almost orthogonal to the face of the dual feasible region, in our case Sn
+, containing

the current point Sk. In that case the projection of Sk−1 + αkDk onto Sn
+ is a point

very close to Sk, leading to a poor convergence. To overcome this, the conditional

subgradient algorithm is proposed in the integer linear programming literature, see

e.g., [243]. In our conditional subgradient algorithm, we let

Dk = Γ k − V k

where V k ∈ NSn
+
(Sk) is a point in the normal cone of Sn

+ at Sk. For instance, one can

take the orthogonal projection of Γ k onto NSn
+
(Sk) as the point V k. Since we do not

project the update of λk, we apply a pure subgradient step for this dual multiplier.

For the stepsize parameters, we can again apply the Polyak update [307].

As stopping criteria, we use the subgradient vector (Γ k, γk) having only zero entries and

the difference between consecutive dual multipliers to be small, i.e., ||Sk − Sk−1||F < ε1
and ||λk − λk−1|| < ε2 for some predefined parameters ε1, ε2 > 0. Moreover, we implement

a stagnation criterion: we stop the algorithm if there has been no improvement for the

last Nstag iterations.

6.5.3 Lagrangian dual bounds for binary SDPs and the max-cut problem

In this section we apply Algorithm 6.1 to two particular cases: general binary SDPs and

the max-cut problem. In these implementations, we particularly focus on the construction

of P , see (6.40). On the one hand, the set P should be chosen such that conv(P ) is a proper

subset of {X : A2(X) = b2, lij ≤ Xij ≤ uij for all (i, j) ∈ J } in order for the Lagrangian

https://resp.xn--k-2lb/
https://resp.dk/
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dual to be stronger than its continuous SDP relaxation, while its structure should be simple

enough to optimize over it.

6.5.3.1 Binary semidefinite programs

Consider the problem (6.38) with Bij = {0, 1} for all (i, j) ∈ [n] × [n]. Without prior

knowledge about the problem, it is difficult to induce a splitting of A(X) = b based on

its complexity. When dualizing all constraints A(X) = b, the set P becomes {0, 1}n×n.

Although optimizing L(X,S, λ) over this set is tractable, we have conv(P ) = [0, 1]n×n.

Therefore, the program (6.43) is equivalent to the continuous SDP relaxation (6.39), leading

to zLD = zSDP .

In order to obtain bounds that are stronger than (6.39), one would like to tighten the

set P . The only generic option is to exploit the fact that X ∈ Sn
+ is a constraint in the

original problem. Taking P = Sn
+ ∩ {0, 1}n×n = Dn

n boils down to solving a binary SDP in

the subproblem itself, and is therefore practically infeasible. However, it is inexpensive to

optimize over Dr
r for a small value of r, e.g., by a complete enumeration, see Section 6.2.1.

Therefore, instead of defining P to be the full set of n × n PSD {0, 1}-matrices, we can

impose a condition on certain submatrices to be an r × r PSD {0, 1}-matrix. To that end,

assume that K = {K1, . . . ,KN} denotes a packing on the set [n] and define r� := |K�| for
all K� ∈ K. We restrict r� ≤ p for all K� ∈ K for some given positive integer p. Now, we

consider the following equivalent binary SDP:

min 〈C,X〉
s.t. A(X) = b

X[K�] ∈ Dr�
r� ∀K� ∈ K

X � 0, X ∈ {0, 1}n×n.

(6.46)

After dualizing X � 0 and A(X) = b, we obtain the following feasible set of remaining

constraints, which we denote by P (K):

P (K) :=
{
X ∈ Sn ∩ {0, 1}n×n : X[K�] ∈ Dr�

r� , for all K� ∈ K
}
. (6.47)

Let us now check whether this set P (K) can be effectively applied as the feasible set of

the dual function (6.41). Let X∗ denote the optimal solution of minimizing L(X,Sk, λk)

over X ∈ P (K). Since the index sets in K are mutually disjoint, the submatrices {X[K�] :

K� ∈ K} do not intersect. Hence, the optimal submatrices X∗[K�] can be obtained via a

complete enumeration over Dr�
r� for all K� ∈ K independently. It was shown in Section 6.2.1

that this set contains Br+1 elements, see Theorem 6.10. Moreover, any element X∗
ij where

i and j do not belong to the same set in K is set to 1 if (C − Sk +A∗
1(λ

k))ij < 0 and to 0

otherwise. We conclude that the optimization over P (K) is feasible.
Next, let us consider the strength of the corresponding bound. It follows from The-

orem 6.43 that the optimal Lagrangian dual value of (6.46) equals

min 〈C,X〉
s.t. A(X) = b

X[K�] ∈ Pr�
r� ∀K� ∈ K

X � 0, 0 ≤ X ≤ J,

(6.48)
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where Pr�
r� = conv(Dr�

r� ), see (6.4). Semidefinite relaxations including constraints of the

form X[K�] ∈ conv (Dr�
r� ) are studied by Adams et al. [1] and Gaar and Rendl [146, 147],

in which these are referred to as exact subgraph constraints (ESC). The latter works have

shown the quality of including ESCs in SDP relaxations of the max-cut, stable set and col-

oring problem. To the best of our knowledge, we are the first to realize that such bounds are

in fact Lagrangian dual bounds resulting from an appropriate binary SDP. This observation

leads to new computational perspectives by solving it as an ISDP, e.g., using the projected

subgradient algorithm introduced in Section 6.5.2. The relaxations in [146, 147, 148] are

solved by interior-point methods and bundle approaches and overall require lots of compu-

tation time.

The value of p, i.e., the maximum size of the sets in K, has an impact on the quality

of (6.48). If p increases, the proportion of entries that is required to be binary and positive

semidefinite in the subproblems becomes larger, leading to improved bounds. However, this

comes at the cost of computation time, as the size of Dr�
r� grows exponentially at the rate of

the Bell number. For a given value of p, we denote the Lagrangian dual bound obtained by

the procedure above as a level-p Lagrangian dual bound.

Another ingredient that has a significant impact on the Lagrangian dual bound is the

choice of the packing K. As a measure of the strength of set K� in K, we can consider the

violation of the constraint X[K�] ∈ Pr�
r� when this constraint is left out of (6.48). This would,

however, ask for a total description of the facets of Pr�
r� . A relaxation of this measure can be

obtained by considering the following description of Dr�
r� , following from Corollary 6.3:

Dr�
r� =

{
X ∈ Sr� ∩ {0, 1}r�×r� :

Xij ≤ Xii ∀i 	= j

Xij +Xik ≤ Xii +Xjk ∀j < k, i 	= j, k

}
. (6.49)

The polytope induced by these inequalities is a relaxation of Pr�
r� and contains O(r3� ) facets.

Now, let us solve the continuous SDP relaxation (6.48) with K = ∅ and let X∗ denote

its optimal solution. Then, we introduce the following violation measure for each tuple of

distinct elements in [n]:

c(i, j, k) := (X∗
ij −X∗

ii)
+ + (X∗

ij −X∗
jj)

+ + · · ·+ (X∗
ij +X∗

ik −X∗
ii −X∗

jk)
+, (6.50)

where (·)+ := max(·, 0). Hence, we measure the total violation of the nine inequalities

in (6.49) with K� = {i, j, k}. Moreover, for each subset K ⊆ [n], |K| ≥ 3, we define the total

violation measure as

c(K) :=
∑

i,j,k∈K
|{i,j,k}|=3

c(i, j, k). (6.51)

If c(K) is large, the addition of K to K is likely to contribute to the strength of the resulting

bound. Since the sets in K must be mutually disjoint, we cannot just enumerate over all

sets K of size at most p and take the most violated ones. Instead, we apply a greedy heuristic

for this selection. The idea behind this heuristic is to first enumerate all subsets of size 3

and take the subset K that maximizes c(K). If p > 3, we iteratively check whether there

exist an index i /∈ K such that c(K ∪ {i})− c(K) > 0. If so, we add i to K and repeat this

procedure until |K| = p or until no such index can be found. We add K to K and repeat

the entire procedure on the remaining indices.
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6.5.3.2 The max-cut problem

We now apply the procedure followed in the previous section to the max-cut problem. Given

an undirected graph G = (V,E) with n := |V | and a weight matrix W := (wij) ∈ Sn

with wij = 0 if {i, j} /∈ E, the aim is to cut V into two subsets such that the total weight of

the edges in the cut is maximized. Let L := Diag(W1n)−W denote the weighted Laplacian

of G. Then, the max-cut problem can be modeled as the following ISDP on {±1}-matrices:

max
1

4
〈L,X〉

s.t. diag(X) = 1n

X � 0, X ∈ {±1}n×n.

(6.52)

After relaxing the integrality constraints in (6.52), the resulting problem is equivalent to

the basic SDP relaxation for the max-cut problem, see [95, 306]. Lagrangian duality can

again be used to obtain strengthened bounds for (6.52). Similar to the approach followed in

Section 6.5.3.1, we consider the following ISDP that is equivalent to (6.52):

max
1

4
〈L,X〉

s.t. diag(X) = 1n

X[K�] ∈ D̂r� ∀K� ∈ K
X � 0, X ∈ {±1}n×n.

(6.53)

where K is a collection of subsets of [n], each of size at most p. Observe that we now require

the subgraphs to be in the discrete set of PSD {±1}-matrices, see (6.13).

We construct the Lagrangian dual by dualizing the constraints X � 0. The subproblem

can be solved efficiently for moderate sizes of r. With respect to the structure of K, there
is a subtle difference compared to the case of general binary SDPs. Since we additionally

know that diag(X) = 1n, we always fix the diagonal entries of X to one in the subproblem.

Therefore, the exact submatrix constraint X[K�] for some set K� only concerns the off-

diagonal elements of X[K�]. Consequently, the submatrix constraints for two sets K1 and K2

that intersect on a single index, i.e., |K1 ∩K2| = 1, can be evaluated independently. Thus,

we no longer require K to consist of mutually disjoint sets, it is sufficient to require that

the elements in K do not pairwise intersect in more than one index. We call a collection of

subsets satisfying this property an edge-packing of [n].

Due to the different structure of K, we finalize this section by explaining how we can

greedily construct an edge-packing K that is likely to provide a strong Lagrangian dual

bound. In order to measure the violation of a certain submatrix constraint, let us consider

the following description of the set D̂r� :

D̂r� =

⎧⎪⎨⎪⎩X ∈ Sr� ∩ {±1}r�×r� :

Xii = 1 ∀i
Xij −Xik −Xjk ≥ −1 ∀i < j, k 	= i, j

Xij +Xik +Xjk ≥ −1 ∀i < j < k

⎫⎪⎬⎪⎭ . (6.54)

It is easy to check that the inequalities in (6.54) forX ∈ Sr� ∩ {±1}r�×r� imply thatX = xx�

for some x ∈ {±1}r. In fact, these inequalities, known as the triangle inequalities, are well-

studied, see e.g., [318], and are related to the metric polytope [244].
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Let X∗ denote an optimal solution of the SDP relaxation of the max-cut problem,

i.e., (6.52) after dropping the integrality constraints. For each tuple of distinct i, j, k ∈ [n],

we now define the following violation measure:

c(i, j, k) := (X∗
ik +X∗

jk −X∗
ij − 1)+ + (X∗

ij +X∗
jk −X∗

ik − 1)+

+ (X∗
ij +X∗

ik −X∗
jk − 1)+ + (−X∗

ij −X∗
ik −X∗

jk − 1)+.
(6.55)

Moreover, for each set K ⊆ [n] we define c(K) :=
∑

i,j,k∈K,|{i,j,k}|=3 c(i, j, k). Now, similar

to the approach described in Section 6.5.3.1, we construct an edge-packing K in a greedy

way. The only difference is that, instead of requiring that an index i may not be included in

more than one set of K, we require that a pair of distinct indices {i, j} may not be included

in more than one set.

6.5.4 Preliminary computational results for the max-cut problem

In this section we provide a preliminary computational study on the strength of the Lag-

rangian dual bounds obtained from the ISDP formulation of the max-cut problem discussed

in Section 6.5.3.2.

6.5.4.1 Design of computational experiments

In Section 6.5.2 we introduced several variants of the classical projected subgradient al-

gorithm to obtain the Lagrangian dual for MISDPs. We compare these Lagrangian dual

bounds with two semidefinite programming bounds for the max-cut problem. This leads to

the following approaches:

SDP: This refers to solving the basic SDP relaxation of the max-cut problem, i.e., (6.52)

after dropping the integrality constraints.

LD: This refers to the Lagrangian dual approach presented in Section 6.5.3.2, i.e., the

Lagrangian dual of (6.53) after dualizing X � 0. The edge-packing K that is used in

the computations is derived after obtaining a solution X∗ to the basic SDP relaxation,

constructing the violation values c(i, j, k), see (6.55), and applying the greedy heuristic

described at the end of Section 6.5.3.2. Lagrangian dual bounds for p ∈ {3, . . . , 10}
are computed. To obtain these bounds, we consider the following implementations of

our projected subgradient algorithm, see Section 6.5.2:

– SG: The standard subgradient algorithm using Polyak’s step update [307]. We

take μ0
1 = 1 and Nstep = 80. Observe that μ0

2 is not used in the method, as we

only dualize the PSD constraint.

– DSG1: The deflected subgradient algorithm using the update strategy from

Camerini et al. [64]. Here, we take τk = 1.99 for all k and use Polyak’s step-

size with the same parameters as mentioned above.

– DSG2: The deflected subgradient algorithm using the update scheme from Sher-

ali and Ulular [335], again using the same stepsize update parameters.

– CSG: The conditional subgradient algorithm. It is well-known that the normal

coneNSn
+
(Sk) is the set of negative semidefinite matrices V with SkV = 0. In each

iteration, we construct V k = λ1u1u
�
1 + · · ·+ λkuku

�
k , where {u1, . . . , uk} denotes

an orthonormal basis for Nul(Sk) and the weights λ1, . . . , λk are chosen uniformly
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at random from the interval [−1, 0]. After this construction, we normalize V k.

The stepsize update parameters are the same as in the other settings.

For the stopping criteria of the projected subgradient algorithm, we use ε1 = 10−4

and Nstag = 150.

SDP + Cuts: We know that the optimal Lagrangian dual bound is equivalent to

the basic SDP relaxation including the constraints X[K�] ∈ conv(D̂r�), K� ∈ K, see
Theorem 6.43. Since the polytope enclosed by the triangle inequalities in (6.54) forms a

relaxation of conv(D̂r�), it is natural to compare our approach to solving the following

SDP relaxation:

max
1

4
〈L,X〉

s.t. diag(X) = 1n

Xij −Xik −Xjk ≥ −1 ∀i, j, k ∈ K�, i < j, k 	= i, j, K� ∈ K
Xij +Xik +Xjk ≥ −1 ∀i, j, k ∈ K�, i < j < k, K� ∈ K
X � 0.

(6.56)

The values of the parameters are derived based on preliminary testing.

We compare our approaches on instances from the Biqmac Library [364], which contain

a large number of max-cut benchmark instances. In our computational experiments, we

include the following instance classes:

Rudy instances: These instances are randomly generated using the graph generator

rudy [322]. The instances ‘g05 n’ are unweighted graphs on n vertices, where each edge

is included with probability 1
2
. The instance classes ‘pm1d n’ and ‘pm1s n’ contain

graphs on n vertices with edge densities 0.9 and 0.1, respectively, having edge weights

chosen uniformly at random from {0,±1}. The graphs ‘pwd n’ are defined on n vertices

with edge density d ∈ {0.1, 0.5, 0.9}, where the weights are integers from {0, . . . , 10}
chosen uniformly at random. Finally, the class ‘wd n’ is defined similarly, except for

the weights being chosen as integers from {−10, . . . , 10}. Each instance class consists

of 10 randomly generated instances, resulting in a test set of 130 instances. Optimal

values of these max-cut instances are given in [364].

Beasley instances: These instances are introduced in [36]. The graphs ‘beasley n’

contain n vertices, have edge density 0.1 and integer edge weights chosen uniformly at

random from {−100, . . . , 100}. Originally, these instances correspond to unconstrained

binary quadratic minimization problems. However, we view them directly as max-cut

instances, meaning that we view each data matrix directly as a weighted adjacency

matrix of a graph. Consequently, we cannot compare our results to the optima given

in [364]. Each instance class consists of 10 randomly generated instances, leading to a

total of 30 instances.

We implemented the projected subgradient algorithms in Matlab [221]. The SDP bounds

on graphs with n ≤ 100 are computed via the interior-point solver of Mosek [284] in the

default settings, where Yalmip [257] is used to define the models. For the larger instances

with n = 250, we exploit a simple implementation of the Alternating Direction Method

of Multipliers (ADMM) tailor-made for the max-cut problem. Experiments are run on an

Intel(R) Core(TM) i5-8500 CPU, 3.00 GHz with 8 GB memory.
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6.5.4.2 Discussion of computational results

The results on the rudy instances are displayed in Table 6.1, where the Lagrangian dual

bounds are computed for p = 5. Each row corresponds to the average results over 10 ran-

domly generated instances of a certain class. The second and third column correspond to the

average bound values of the semidefinite programming bound (‘SDP’) and the Lagrangian

dual value (‘LD’), respectively. Since all implementations of the subgradient algorithms con-

verge to the same bound value, only the best found value is presented in the column ‘LD’.

Moreover, the value of the semidefinite program including cuts implied by K, i.e., (6.56), is
often very close or equal to (but not better than) the Lagrangian dual value, and is therefore

omitted from the table. The column ‘Imp (%)’ shows the relative improvement of the level-5

Lagrangian dual bound compared to the SDP bound, while ‘Rel gap closed (%)’ denotes

the average percentage of the original gap between the SDP bound and the optimum that is

closed by the Lagrangian dual. The column ‘OPT’ corresponds to the average optimal values

reported in the Biqmac Library [364]. The remaining columns correspond to the total clock-

time needed to obtain the semidefinite programming and Lagrangian dual bounds. Among

the different implementations of the projected subgradient algorithm, the most efficient one

per instance class is presented in bold.

We observe from Table 6.1 that the relative improvement of the LD values compared to

the SDP value is on average between 0.5% and 7.5%. The largest improvements correspond

to the classes ‘pm1d n’, ‘pm1s n’ and ‘wd n’, which are exactly the classes where negative

edge weights are included. Moreover, considering the evolvement of the improvements over n

for a fixed instance class, it can be seen that the improvements diminish when the number of

vertices increases. This can be explained by the lower percentage of entries that is included

in a submatrix constraint. The average percentage of the gap between the SDP bound and

the optimum closed by the Lagrangian dual bound is considerable, and ranges from 41.67%

to 55.71%.

As one would expect, the simple pure subgradient method often takes the longest time to

converge, shortly thereafter followed by the conditional subgradient method. The deflected

methods are significantly faster, where the approach DSG2 provides the most efficient im-

plementation for all the instance classes. The method is often a couple of seconds faster than

the alternative approaches. Moreover, although the semidefinite programming bound (6.56)

provides bounds that are very close to the Lagrangian dual value, the computation times are

clearly outperformed by our best subgradient algorithm. This might not be very surprising,

as interior-point methods have difficulties with the handling of a large number of polyhedral

cutting planes, see e.g., [124]. Since the Lagrangian dual bound is equal to the optimal value

of (6.53) and thus theoretically stronger than (6.56), the deflected subgradient algorithm

DSG2 is both preferred in terms of strength and efficiency.

Similar experiments as summarized in Table 6.1 are performed for p ∈ {3, . . . , 10}. Fig-

ure 6.2 shows the main characteristics of the analysis with respect to p. Figure 6.2a shows

the evaluation of the Lagrangian dual bound over p for the 13 instance classes. In order to

compare these bounds, we normalized all values with respect to the level-3 Lagrangian dual

bound. As one would expect, the bounds become stronger for larger values of p, although the

improvement is diminishing when p gets larger. Indeed, the largest marginal improvement

is obtained for p = 3.

Figure 6.2b and 6.2c show the average computation times of the approach DSG2 and the

SDP bound (6.56) with respect to p, respectively. Here we observe a somewhat unexpected

effect. When p increases, the computation time of the Lagrangian dual reduces. This
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Average bound values Average computation times (s)

Instance

Class
SDP LD

Imp

(%)

Rel gap

closed (%)
OPT SDP SG DSG1 DSG2 CG

SDP

+ Cuts

g05 60 545.79 538.33 1.37 55.71 532.4 1.05 6.60 5.91 4.91 6.50 6.61

g05 80 950.30 939.88 1.10 49.15 929.1 2.83 13.33 11.06 10.61 13.46 14.26

g05 100 1463.39 1449.79 0.93 42.51 1431.4 7.45 21.17 17.06 15.42 21.29 28.22

pm1d 80 297.15 275.68 7.22 50.34 254.5 2.89 13.34 11.45 9.72 13.69 14.28

pm1d 100 441.76 414.59 6.15 42.28 377.5 7.27 22.99 19.14 16.77 23.15 28.83

pm1s 80 91.20 84.53 7.31 55.12 79.1 2.86 13.54 11.28 9.76 13.75 14.67

pm1s 100 139.45 131.73 5.54 45.82 122.6 7.45 22.81 19.65 15.66 23.27 28.90

pw01 100 2143.68 2095.65 2.24 49.07 2045.8 7.95 26.43 21.82 17.79 26.28 28.95

pw05 100 8364.64 8273.99 1.08 41.67 8147.1 8.63 24.26 21.33 17.55 25.66 29.07

pw09 100 13765.73 13677.68 0.64 42.78 13559.9 9.08 24.52 20.24 18.54 24.87 28.66

w01 100 790.63 742.20 6.13 53.38 699.9 7.45 32.51 27.37 22.79 31.54 28.80

w05 100 1917.26 1796.25 6.31 44.24 1643.7 8.19 25.37 20.95 18.33 25.71 28.92

w09 100 2544.81 2382.73 6.37 44.05 2176.9 8.30 26.67 22.51 19.30 26.89 28.58

Table 6.1: Average Lagrangian dual bounds and average computation times of various im-
plementations of the projected subgradient algorithm for the rudy instances of the Biqmac
Library [364]. Lagrangian dual bounds are shown for p = 5. Each instance class consists
of 10 randomly generated instances of the given type.

behaviour can be explained after a more thorough analysis into the deflected subgradient

algorithm. As p increases, the sets D̂r� grow exponentially, leading to more exhausting

enumerations. At the same time, since the elements in K are overlapping in at most one

index, the number of subsets in K decrease over p. Since the enumerations in the subproblem

are performed one after another, a larger number of subsets will increase the computation

time. Hence, when p increases, two opposite effects are taking place, where apparently

the reduction in the number of subsets has a larger effect. When we would hypothetically

increase p further, the total computation time should go up at some point, since for p = n we

would enumerate all possible cuts in the graph. Figure 6.2c clearly shows that the complexity

of solving (6.56) increases with p, due to the larger number of cutting planes.

Finally, we consider the Beasley instances in Table 6.2. The structure of this table is

similar to that of Table 6.1, except for the fact that the optimal values for these instances are

unknown (recall that we interpret these instances differently than in [364]). Moreover, for

each instance class we show the average results for p ∈ {3, . . . , 6}. The improvements with re-

spect to the basic SDP relaxation are between 5% and 6.5% for the instances with n = 50, 100.

For the larger instances, we see that the improvements are smaller, due to the reasons ex-

plained above. Moreover, we again observe that the bound values increase with p, while the

computation times for the subgradient algorithms in general diminishes.

We observe that DSG2 is in most cases again the favorable subgradient approach with

respect to efficiency, although for some instances we observe that DSG1 and CG are also

performing very well or even a bit better than DSG2. Especially for larger n, the update

scheme of Camerini et al. [64] outperforms the one from Sherali and Ulular [335]. For the

instances with n = 250, we see that (6.56) cannot be computed anymore due to memory

issues.
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(a) Overview of average relative improvements of Lagrangian dual over p.

(b) Overview of average computation time of
‘DSG2’ over p.

(c) Overview of average computation time of
‘SDP + Cuts’ over p.

Figure 6.2: Overview of average characteristics of Lagrangian dual bounds for 13 rudy
instance classes of Biqmac Library [364].

6.6 Conclusions

In this chapter we show that the class of mixed-integer semidefinite programs embodies a rich

structure, allowing for compact formulations of many well-known combinatorial optimization

problems. These formulations follow from generic matrix theoretical and algebraic notions.

Due to the recent progress in computational methods for solving MISDPs [156, 211, 234,

270, 276], these formulations can be exploited to obtain alternative methods for solving the

problems to optimality.

As most problems are naturally encoded using binary or ternary variables, we start

our research with a study on the general theory related to PSD {0, 1}-, {±1}- and {0,±1}-
matrices. Section 6.2 provides a comprehensive overview on this matter, including known and

new results. In particular, we provide a combinatorial, polyhedral, set-completely positive

and integer hull description of the set of PSD {0, 1}-matrices bounded by a certain rank,

see Section 6.2.1. Several of these results are extended to matrices having entries in {±1}
and {0,±1}.

Based on these matrix results, in particular Theorem 6.1–6.7 and Corollary 6.6, we follow

a generic approach to model binary quadratic problems as BSDPs. We provide a BSDP for

the class of binary quadratically constrained quadratic programs, see (BSDPQCQP ), and for
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Average bound values Average computation times (s)

Instance

Class
p SDP LD

Imp

(%)
SDP SG DSG1 DSG2 CG

SDP

+ Cuts

beasley 50 3 2089.93 1979.83 5.27 2.11 24.20 22.24 18.50 19.69 4.24

4 1964.37 6.01 2.32 16.98 15.97 12.80 13.66 5.91

5 1956.08 6.40 2.48 14.21 14.33 12.68 12.09 7.01

6 1955.18 6.45 2.64 12.31 11.91 10.27 10.65 8.41

beasley 100 3 6961.49 6589.04 5.35 9.61 56.17 46.50 33.26 53.26 18.67

4 6535.52 6.12 9.93 42.82 33.96 29.61 40.84 26.85

5 6527.45 6.23 9.97 34.93 29.23 23.68 36.01 31.96

6 6515.68 6.40 10.28 31.75 26.87 25.60 32.14 38.64

beasley 250 3 31043.38 30405.21 2.06 16.63 311.16 206.33 253.70 286.59 -

4 30259.20 2.53 17.36 250.91 133.69 180.04 222.14 -

5 30138.47 2.91 17.41 220.23 129.78 127.11 203.49 -

6 30021.53 3.29 17.40 206.03 119.47 121.95 198.61 -

Table 6.2: Average Lagrangian dual bounds and average computation times of various imple-
mentations of the projected subgradient algorithm for the Beasley instances of the Biqmac
Library [364]. Each instance class consists of 10 randomly generated instances of the given
type.

two types of binary quadratic matrix programs, see (BSDPQMP1) and (BSDPQMP2). These

results are widely applicable to a large number of combinatorial optimization problems, see

also the examples in Section 6.3.

We moreover consider problem-specific MISDP formulations that are derived in a different

way than through this generic approach. We provide compact MISDP formulations for the

quadratic assignment problem, see (6.24), and various variants of the graph partition prob-

lem, see (6.28), (6.29) and (6.30). We derive several MISDP formulations for combinatorial

optimization problems that can be modeled using algebraic connectivity, see Section 6.4.3.

We also consider problems that have matrix variables that are nonbinary, such as the integer

matrix completion problem and the sparse integer least squares problem, see Example 6.38

and 6.40, respectively.

The chapter is finalized by considering a computational application of exploiting a MISDP

formulation of a problem in terms of Lagrangian duality. Inspired by similar work in integer

linear programming, we show the potential of integer Lagrangian dual bounds for MISDPs.

These bounds, wherein both positive semidefiniteness and integrality are exploited, are ob-

tained by solving a nonsmooth convex optimization problem. As a first step towards studying

the potential of this approach, we apply a standard projected subgradient algorithm to ob-

tain these bounds, see Algorithm 6.1. We propose several implementations of this algorithm

for the ISDP formulation of the max-cut problem. The resulting bounds are closely related to

the approach followed in [1, 146, 147, 148]. Preliminary computational results on benchmark

instances show that our approach leads to an average improvement up to 7.5% compared to

the standard SDP relaxation of the max-cut problem. The Lagrangian dual bound closes

on average roughly 50% of the gap between the SDP bound and the optimum. We also

compare our approach to the value of the SDP relaxation with additional cutting planes.

While the bounds are competitive, the computation times of our best performing algorithm,

i.e., a deflected subgradient algorithm inspired by [335], are substantially smaller than those
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of a state-of-the-art interior-point method that solves the SDP with cutting planes. We

expect further improvements are possible by considering more advanced approaches from

nonsmooth convex optimization, see e.g., [289].

Given the wide range of combinatorial optimization problems for which we derived a

MISDP formulation, we expect more problems to allow for such a formulation. It is also

interesting to study the behaviour of MISDP solvers on the presented formulations to see

whether this leads to competitive solution approaches for the considered problems. For

several problems, we introduced more than one MISDP formulation. It is part of future

research to investigate which MISDP formulations are practically more beneficial. Finally,

given the attractive behaviour of the introduced Lagrangian dual bounds, we expect them

to be beneficially applicable in a branching framework.
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7
Exploiting symmetries in optimal quantum circuit design

Chapter summary

A physical limitation in quantum circuit design is the fact that gates in a quantum
system can only act on qubits that are physically adjacent in the architecture. To
overcome this problem, SWAP gates need to be inserted in the quantum circuit to
make the circuit physically realizable. The nearest neighbour compliance problem
(NNCP) asks for an optimal embedding of qubits in a given architecture such that
the total number of SWAP gates to be inserted is minimized. In this chapter we study
the NNCP on general quantum architectures. Building upon the linear programming
formulation of Matsuo and Yamashita [269], we show how the model can be reduced
by exploiting the symmetries of the graph underlying the formulation. Based on an
in-depth analysis of the automorphism group of specific Cayley graphs, we derive a
symmetry-reduced NNCP algorithm that involves solving a generalized network flow
problem. As a byproduct of our approach, we show that the NNCP is polynomial time
solvable for several classes of highly symmetric quantum architectures. Numerical
tests on various architectures indicate that the reductions in the number of variables
and constraints on average is at least 90%. In particular, NNCP instances on the star
architecture can be solved for quantum circuits up to 100 qubits and more than 1000
quantum gates within a very short computation time. These results are far beyond
the computational capacity when solving the instances without the exploitation of
symmetries.

239
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7.1 Introduction

Quantum theory embraces the mathematical model that can describe quantum mechanisms:

the behaviour of our universe at the scale of atoms and subatomic particles. These mechan-

isms can be exploited in specialized hardware to perform computations that we previously

believed not to be possible. This realization provides the framework of quantum computing

(QC), that since the 1980s has attracted lots of attention from both academic and corporate

societies.

As the physical rules that guide quantum computers are completely different than their

classical counterparts, QC has been able to provide algorithms with a complexity scaling

that often significantly outperform the state-of-the-art algorithms. Among the most vibrant

achievements of QC are more efficient algorithms for database search [187, 188], graph prob-

lems [114] and factoring integers into primes in the seminal work by Shor [337]. Given

its recent advances, experts expect that QC can potentially play a groundbreaking role in

many areas, such as optimization [8], finance [294] and molecular biology [296]. For a more

extensive overview of the advances and applications of quantum computing, see e.g., [282].

The most commonly used model for quantum computation is that of the gated quantum

computer, where a calculation is performed by executing so-called quantum circuits. A

quantum circuit acts on multiple quantum bits, i.e., qubits, which are the physical particles

embedded in a quantum system. Whereas classical bits exclusively take the Boolean values

zero or one, qubits can be in a superposition state, which upon measurement are displayed

as zero or one with a certain probability. A quantum circuit sequentially acts on the qubits

via quantum gates, which are unitary transformations that sequentially adjust the state of

one or more qubits to perform an operation. Quantum circuits extend on the gate model

for classical computing, and hence, a quantum computer can perform any computation

that a classical computer can perform [291]. However, based on quantum phenomena such

as superposition and entanglement, a quantum system is able to perform a much broader

spectrum of operations.

Given the current state of technology, most physical implementations of quantum gates

operate on only one or two qubits at a time [192, 291, 312]. In this setting, gates that act on

more than two qubits therefore need to be realized as a sequence of gates of size at most two,

which, fortunately, is possible for any quantum gate [291]. For instance, the set of one-qubit

gates and two-qubit controlled-NOT gates is universal [31], meaning that this set is sufficient

to perform any quantum computation.

The qubits in a quantum system are physically embedded in a certain design, i.e., the

quantum architecture. This architecture is commonly represented as a coupling graph, where

the vertices represent the qubits and an edge is drawn between two qubits whenever the

qubits can communicate in the quantum system. With “communicate”, we refer to the

possibility to apply a gate to the two qubits and consequently affect their simultaneous

state. Among the special coupling graphs considered in the literature are the linear array,

see e.g., [45, 73, 207, 235, 286], the two-dimensional grid, see e.g., [9, 44, 75], the three-

dimensional grid [126], the IBM QX architecture, see e.g., [366], but also general coupling

graphs [46, 83, 222, 251, 341, 358].

A physical limitation of the architecture is that two-qubit gates can only be applied when

the qubits are physically adjacent to each other in the coupling graph. These restrictions are

known as nearest neighbour constraints and have been subject of interest in the design of

quantum realizations of specific circuits, see e.g., [142], or the design of quantum architectures

itself, see [286] and the references therein. Instead of research on quantum realizations that



623138-L-sub01-bw-deMeijer623138-L-sub01-bw-deMeijer623138-L-sub01-bw-deMeijer623138-L-sub01-bw-deMeijer
Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023 PDF page: 261PDF page: 261PDF page: 261PDF page: 261

Chapter 7. Exploiting symmetries in optimal quantum circuit design 241

comply with the nearest neighbour constraints, we can also disregard these constraints at

first and alter existing quantum circuits to make them feasible, which will be the followed

approach in this chapter.

A quantum circuit can be made compliant with respect to the nearest neighbour con-

straints by the insertion of SWAP gates. A SWAP gate acts on two adjacent qubits by

interchanging their location in the coupling graph1. If the coupling graph is connected, any

quantum circuit can be made compliant by the insertion of a finite number of SWAP gates

and there are often many ways to do so. However, due to a qubit’s interaction with its

environment [102], quantum systems currently still suffer from physical instability of qubit

states after some period of time. This raises the desire for quantum circuits with as few

gates as possible. We therefore prefer to add the minimum number of SWAP gates in order

to make a circuit compliant.

Given a quantum circuit and a coupling graph, the nearest neighbour compliance problem

(NNCP) asks for an optimal sequential allocation of the qubits over the quantum architecture

such that the total number of SWAP gates to be inserted is minimized. With “sequential”,

we refer to the decision variables to not only concern the initial allocation, but also the

actual SWAP operations that take place over time. The NNCP was proven to be NP-hard
via a reduction from the token swapping problem [341].

Most research on the NNCP has been on heuristic methods, such as greedy meth-

ods [9, 207], harmony search [9], optimal linear arrangement [299] and receding horizon

methods [207, 235, 332, 368]. Exact approaches to tackle the NNCP include exhaustive

search [99, 207], explicit cost enumeration [369] and linear programming (LP) based meth-

ods on the adjacent transposition graph [269, 285]. All these methods embrace an implicit

factorial scaling in the number of qubits, due to the inherited total number of possible assign-

ments of the qubits. Recently, also polynomial sized models have been considered that are

based on mixed-integer linear programming [286, 356]. The construction considered in [286]

is based on the linear array coupling graph, while the models in [356] consider ordering

problems for distributed quantum computing. Other research focuses on a related version

of the NNCP, where an initial qubit ordering has to be realized that minimizes the (approx-

imated) number of SWAP operations, without actually considering the exact insertions into

the quantum circuit, see [236, 237, 333].

Building upon the LP formulation considered in [269, 285], a main feature of our approach

concerns the exploitation of symmetries in the model. The literature on symmetry reduction

methods in mathematical optimization is extensive, and we refer the reader to [253, 266]

for comprehensive overviews in this direction. It is well-known that symmetries in integer

linear programming (ILP) problems lead to poor behaviour of numerical algorithms, due

to the costly duplication of computational effort in branching approaches. To reduce this

negative effect, symmetries need to be broken, e.g., by perturbation, symmetry-breaking

inequalities (e.g., [265]) or specialized branching techniques (e.g., [334]). The literature

on symmetry reduction for integer linear programs (ILPs) can be distinguished between

problem-based approaches, whose symmetry groups are known a priori (see e.g., [247]), or

generic techniques. The latter class on one hand contains methods based on branching tree

reductions, which was mainly pioneered by Margot [263, 264] in his work on isomorphism

pruning. The idea behind isomorphism pruning is to detect whenever multiple child nodes in

the branching tree are isomorphic, and hence, only one of them needs to be considered. In the

1Strictly speaking, a SWAP gate does only interchange the state of the involved qubits, while the actual
hardware entities remain unchanged in the architecture.
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same vein, orbital branching [295] exploits the orbits of the symmetry group in the branching

tree in order to partition the feasible region while taking care of symmetries. Alternative

methods mainly consider symmetry-handling constraints to restrict the feasible region of an

optimization problem by eliminating symmetric solutions. Two well-known streams in this

direction are the utilization of so-called orbitopes [230], which is the convex hull of solutions

that are lexicographically maximal in their orbit, and fundamental domains [145], where

the feasible region is expressed as the image of an affine transformation induced by a finite

group. Branching tree reductions and symmetry-handling constraints can also be combined,

see e.g., [105].

When considering symmetry reduction methods for linear programs, a major research

line considers the study of symmetric polyhedra, see [266, Section 6] and the references

therein. Another research line considers the exploitation of symmetries in the simplex

algorithm [353, 354]. Bödi et al. [49] consider the exploitation of symmetries in linear pro-

grams by restricting to the subspace of fixed points under a linear map induced by the

symmetries in the program. This approach can be generalized to convex programs and is

closely related to the invariant-based symmetry reduction approaches applied to conic and

semidefinite programs, see e.g., Gatermann and Parrilo [166], to which our reduction method

also belongs.

Main results and outline

In this chapter we consider the nearest neighbour compliance problem on general coupling

graphs. Following the linear programming (LP) formulation derived in [269], we analyse the

group symmetry of the underlying graph, which is a sequence of connected Cayley graphs.

By exploiting these symmetries, we reduce the LP model in the number of variables and

constraints, leading to a symmetry-reduced algorithm for solving the NNCP. We show the

theoretical and practical strength of our approach for several classes of symmetric coupling

graphs for which the reduction is most significant, namely the graphs that embrace a large

automorphism group.

The LP formulation of [269] can be viewed as a single-pair shortest path problem on a

directed graph that we refer to as the graph X = (V,A). As a first step in our approach, we

consider the automorphism group of the subgraphs of X. Each subgraph is a Cayley graph

of the symmetric group Sn generated by the edges in the coupling graph of the quantum

architecture. We derive the full automorphism group of such Cayley graphs in the case

that it is normal, and review some conditions on the coupling graph under which normality

holds. Afterwards, we extend these automorphism results of the subgraphs to derive the

automorphism group of X. In particular, we derive an explicit group description of a sub-

group GX of the automorphism group of X, which is the full automorphism group of X

when normality holds. We also study the orbit and orbital structure of the group action of

GX on X. The results on the group structure of these Cayley graphs are in itself interesting,

as such graphs are of main importance in interconnection networks [164, 204].

By averaging over each orbital of the action of GX on X via the Reynolds operator, we

show how the LP formulation can be reduced following the approach of [49]. We show that

the resulting reduced LP formulation is equivalent to a generalized network flow problem

on an auxiliary graph following from our construction. For symmetric coupling graphs, this

reduced LP formulation is significantly smaller in size. As a byproduct of our approach, we

show that the NNCP is polynomial time solvable for coupling graph whose automorphism

group scales factorially in the number of qubits, e.g., the star graph or complete bipartite
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graphs with one of the sizes fixed. Our reduction leads to a symmetry-reduced NNCP

algorithm, where all steps follow from the in-depth analysis of the algebraic structure of X

and do not rely on the use of any external algebraic software.

Although the ingredients of our approach are presented generally, we explicitly show how

the reduced LP can be constructed for four special graph types: the cycle graph, the star

graph, the biclique and the two-dimensional lattice graph. For each of these classes, we show

how the orbital structure unfolds by analyzing a specific subgroup of the automorphism

group of the coupling graphs.

Finally, we test our symmetry-reduced NNCP algorithm on real and randomly generated

quantum circuits defined on the above-mentioned coupling graphs. Our numerical tests

confirm that the effort spent in the algebraic analysis pays off, as computation times to solve

an instance are several orders of magnitude smaller compared to the nonreduced model.

Whereas the model from [269] can only solve instances up to 8 qubits, the largest instances

we solve contain up to 100 (resp. 40) qubits and several hundreds of quantum gates on the

star (resp. biclique) coupling graph. Observe that such instances are far out of reach for the

nonreduced model, as this would require the use of at least 100! ≈ 9.33 · 10157 constraints

and even more variables.

This chapter is structured as follows. Section 7.2 formally introduces the NNCP and

reviews the shortest path formulation of [269]. In Section 7.3 we analyse the automorphism

group of the graph underlying the formulation, as well as its orbit and orbital structure.

These algebraic properties are exploited in Section 7.4, where we present our symmetry-

reduced NNCP algorithm. In Section 7.5 we apply our approach to several specific types of

coupling graphs. Computational results are discussed in Section 7.6.

Preliminaries on quantum computation

In this section we briefly provide some background on the basic ingredients of quantum

computing. Since we consider the problem from a mathematical point of view, any knowledge

that goes beyond this introduction is not needed to understand the contents of this chapter.

The state of a single qubit can be represented as a unit vector in C2, which is a linear

combination between the computational basis states |0〉 := ( 1
0 ) ∈ C2 and |1〉 := ( 0

1 ) ∈
C2 (using Dirac notation). These states can be viewed as the Boolean values of classical

bits. Hence, the state of a qubit can be displayed as |φ〉 = α|0〉 + β|1〉 with α, β ∈ C and

|α|2 + |β|2 = 1. Whenever |φ〉 is not in one of the basis states, we say that the qubit is in

superposition. A qubit in superposition cannot be observed in that way, as the qubit upon

measurement will always be in one of the basis states. The probability that |φ〉 is in state

|0〉 upon measurement is |α|2, whereas the state |1〉 is obtained with probability |β|2.
A quantum computer typically contains multiple qubits. The state of the quantum system

is determined by the combination of the individual qubit states. Extending on the notation

above, the state of an n-qubit quantum system is displayed by a vector in C2n . When two

qubits are in states |φ1〉 = α1|0〉 + β1|1〉 and |φ2〉 = α2|0〉 + β2|1〉, respectively, then the

combined state |ω〉 is the tensor product these states, i.e.,

|ω〉 = |φ1〉 ⊗ |φ2〉 = α1α2|00〉+ α1β2|01〉+ β1α2|10〉+ β1β2|11〉,

where |00〉, |01〉, |10〉 and |11〉 denote the computational basis vectors of C4. Any unit vector

in C4 denotes a state of a 2-qubit quantum system. If this state can be written as a single

tensor product of two single-qubit states, e.g., the state |ω〉 displayed above, we call the state
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pure. Sometimes this is not possible, e.g.,

|ω〉 = 1√
2
|00〉+ 1√

2
|11〉

cannot be written as a single tensor product of single-qubit states. Such a state is called

entangled. Upon measurement, each of the states |00〉 and |11〉 is obtained with probability 1
2
.

That implies that if we would measure the state of only one of the qubits, we have gained

information about the other qubit’s state instantly. This quantum phenomenon is a necessary

ingredient for the success of many applications of quantum computing.

A quantum gate can adjust the state of a quantum system by applying a unitary trans-

formation to its state vector. More precisely, a quantum gate that acts on system in state |φ〉
is displayed as a complex unitary matrix U , and the state after applying the gate is given

by the matrix vector product U |φ〉. For instance, a simple elementary quantum gate is the

Pauli-X-gate, also referred to as the classical NOT gate. Its matrix representation is

X =

⎛⎝0 1

1 0

⎞⎠
and applying the gate on a single qubit in state |φ〉 = ( α

β ) results in

X|φ〉 =

⎛⎝0 1

1 0

⎞⎠⎛⎝α

β

⎞⎠ =

⎛⎝β

α

⎞⎠ .

The only quantum gates that can be directly applied are the gates that act on at most two

qubits. Gates that act on more than two qubits therefore need to be decomposed into one-

or two-qubit gates in order to be physically applicable. In Appendix A.6 we provide an

overview of the most commonly used gates and their quantum realizations.

A quantum circuit can be represented in a common way by a set of parallel lines that

represent the qubits, where the gates are drawn as vertical segments spanned between the

qubits they act on. An example quantum circuit is provided in Figure 7.1, where each

quantum gate is presented in a simplified way using empty squares. Typically, these gates

are of different types and their functionality is presented by the symbols in the circuit. The

quantum circuit in Figure 7.1a acts on four qubits q1, . . . , q4 and has four quantum gates.

Suppose the communication in the quantum system is given by the coupling graph G given

in Figure 7.1b. This coupling graph implies that gates can only be applied to pairs of

qubits that are adjacent in G. The labels q1, . . . , q4 displayed next to the horizontal lines in

Figure 7.1a denote the initial allocation of the qubits in the coupling graph G. We see that

the first gate can be applied, since q2 and q3 are adjacent in G. However, this is not the

case for the second gate. In order to apply it, we need to bring q1 and q4 adjacent to one

another in the architecture. This can be done by inserting a SWAP gate, which interchanges

the location of two qubits in the architecture. Either a SWAP gate between q1 and q2 or a

SWAP gate between q2 and q4 can be inserted to apply the second gate of the architecture.

One can check that if we adopt the first option, we do not need any more SWAP gates to

compile the circuit, whereas this is not the case for the other option. The resulting quantum

circuit that can be physically compiled is displayed in Figure 7.1c. The functionality of the

circuit remains unchanged by the insertion of the SWAP gate. Observe, however, that the

allocation of the qubits over the architecture before and after applying the circuit is different.
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q1 q1

q2 q2

q3 q3

q4 q4

(a) Quantum circuit

q1 q2

q3

q4

(b) Coupling graph G

q1 × q2

q2 × q1

q3 q3

q4 q4

(c) Feasible quantum circuit

Figure 7.1: Example of an (abstract) quantum circuit (left) with four gates that acts on
four qubits. The quantum circuit cannot be compiled on the coupling graph G (middle). By
inserting an appropriate SWAP gate, the circuit can be compiled on G (right).

The example of Figure 7.1 shows a very small instance of the nearest neighbour compli-

ance problem (NNCP), which will be formally introduced in the next section.

7.2 Nearest neighbour compliance problem

A given quantum circuit can be made feasible with respect to the adjacent interaction con-

straints by inserting SWAP gates. Although these do not interfere with the functionality of

the quantum circuit, the total number of gates is favoured to be as small as possible. The

nearest neighbour compliance problem (NNCP) aims at finding an embedding of the qubits

over a given architecture such that the number of SWAP gates needed to make the final

circuit feasible with respect to the adjacent interaction constraints is minimized.

In this section we formally introduce the nearest neighbour compliance problem as a

shortest path problem.

7.2.1 Mathematical formulation of the NNCP

We make two model assumptions about the quantum circuits under consideration. First,

quantum gates that act on a single qubit always comply with the adjacent interaction con-

straints and are therefore not taken into consideration. Second, it only makes sense to talk

about adjacency in the context of two-qubit quantum gates. If a quantum gate acts on more

than two qubits, we first decompose it into two-qubit gates. This is always possible [291]

and there exist a large variety of ways for doing this. Throughout this chapter, we assume

without loss of generality that quantum circuits consist of a sequence of two-qubit gates.

Let Q = [n] denote the set of qubits of the quantum system. The qubits need to be

embedded in a certain topology, that we refer to as the architecture of the quantum system.

This architecture is fixed and can be modeled as a graph (L,E). Here L = [n] denotes a set

of physical locations and E ⊆ L(2) is the adjacency structure of the architecture. That is,

if {i, j} ∈ E, then locations i and j are physically adjacent to each another and can therefore

directly share information. The graph is denoted as the coupling graph of the quantum

system and denoted by Coup(E) := (L,E). We assume that (L,E) is connected, which

implies that all pairs of locations can indirectly share information.

Each qubit in Q needs to be assigned to a physical location in L. A bijection τ : L→ Q

is called a qubit order. To present a qubit order, we use one-line notation with respect to
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the images in Q. For example, the order

τ = (τ(1), τ(2), τ(3), τ(4)) = (2, 3, 1, 4)

corresponds to the assignment where qubit 2 is on location 1, qubit 3 on location 2, qubit 1

on location 3 and qubit 4 on location 4. The set of all qubit orders on n qubits is equal

to Sn.

A SWAP gate interchanges the qubits on two locations in the embedding. It can also be

modeled as an element σ ∈ Sn, where σ is a transposition. Using cycle notation, the SWAP

gate σ = (i j) applied on the qubit order τ interchanges the qubits τ(i) and τ(j). Applying

this SWAP gate can be seen as a right action of σ on Sn, i.e.,

τ ◦ σ = (τ(1), τ(2), . . . , τ(i), . . . , τ(j), . . . , τ(n)) ◦ (i j)
= (τ(1), τ(2), . . . , τ(j), . . . , τ(i), . . . , τ(n)),

for all τ ∈ Sn. To simplify notation, we omit the ◦ in group actions and just write τσ in the

sequel.

Remark 7.1. Although both elements of Sn, τ represents a qubit order, while σ represents

a SWAP gate. To discriminate between these objects, we always use one-line notation for

qubit orders and cycle notation for SWAP gates throughout the chapter.

A SWAP gate can only be applied to qubits on locations that are adjacent in Coup(E).

Whenever there is an edge {i, j} ∈ E, the SWAP gate (i j) acts on adjacent locations. Let

T := {(i j) ∈ Sn : {i, j} ∈ E} (7.1)

denote the set of transpositions that correspond to a SWAP gate in the quantum system.

Observe that E and T are related, although E is a graph-theoretical and T is an algebraic

concept.

Given two qubit orders τ1, τ2 ∈ Sn, we are interested in the minimum number of SWAP

gates that need to be applied to τ1 to obtain τ2 by only using SWAP gates from T .

Let JT : Sn × Sn → Z+ be defined as

JT (τ1, τ2) := min{k : τ2 = τ1σ1σ2 . . . σk, σ1, . . . , σk ∈ T},

which forms a metric on all qubit orders and depends on the quantum architecture T .

Observe that this metric is left-invariant, i.e., JT (τ1, τ2) = JT (πτ1, πτ2) for all π ∈ Sn,

implying that JT (τ1, τ2) equals the length of the shortest sequence of transpositions of T

needed to generate τ−1
2 τ1. It is known that finding such minimum-length sequence is in

general PSPACE -complete [226]. For special types of coupling graphs, however, the metric

JT is computationally tractable, e.g., when Coup(E) is a path or the complete graph. For

these cases, JT coincides with the Kendall tau distance and the Cayley distance, respectively.

Let i, j ∈ Q be two qubits such that i 	= j. Then the unordered pair gij = {i, j} is a two-

qubit quantum gate that acts on qubits i and j. Whenever the specific qubits on which the

gate acts are irrelevant, we sometimes omit the subscripts. A finite sequence C = (g1, . . . , gm)

of gates g1, . . . , gm is called a gate sequence of size m. Given a set of qubits Q and a gate

sequence C, the tuple Γ = (Q,C) is called a quantum circuit.

We say that a qubit order τ complies with a gate gij if qubits i and j are adjacent in τ

with respect to the coupling graph Coup(E), i.e., if τ−1(gij) = {τ−1(i), τ−1(j)} ∈ E. We

now formulate the NNCP.
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Definition 7.2 (NNCP). Let Γ = (Q,C) be a quantum circuit with n qubits and m gates,

and let Coup(E) = (L,E) be the coupling graph of the underlying architecture. Then, the

nearest neighbor compliance problem asks for a sequence of qubit orders τk, k ∈ [m], each

one corresponding to an order prior to applying a gate of C, such that
∑m−1

k=1 JT (τ
k, τk+1)

is minimized and such that τk complies with gk for all k ∈ [m].

The NNCP as presented in Definition 7.2 is known to be NP-hard in general [341].

We end this section by introducing the notion of the so-called gate graph, which captures

the underlying qubit dependencies imposed by the gates in the circuit.

Definition 7.3. Let Γ = (Q,C) be a quantum circuit. The gate graph (Q,U) is an undir-

ected graph that has vertex set Q and edge set U = {g : g ∈ C}.

The gate graph (Q,U) will be exploited in Section 7.3.2.

7.2.2 The NNCP as a shortest path problem

In this section we show how the NNCP can be modeled as a shortest path problem in a

directed graph following the construction of [269, 285].

Let an instance of the NNCP as defined in Section 7.2.1 be given. Of key importance in

the reduction to a shortest problem is the notion of a Cayley graph.

Definition 7.4 (Cayley graph). Let G be a finite group and let S be a subset of G such

that idG /∈ S and S = S−1 := {s−1 : s ∈ S}. The Cayley graph Cay(G,S) on G with respect

to S is defined as the (directed) graph with vertex set G and arc set {(g, gs) : g ∈ G, s ∈ S}.

Observe that Cay(G,S) as in Definition 7.4 contains an arc if and only if it also contains

the reversed arc. Although this suggests that any Cay(G,S) is undirected, we stick to the

setting of two reversed directed arcs, since we will employ the Cayley graphs as subgraphs

of a larger directed graph.

Let H := Cay(Sn, T ), where T is given by (7.1). More precisely, the vertex and arc set

of H are given by

V (H) := Sn and A(H) := {(τ, τσ) : τ ∈ Sn, σ ∈ T} ,

respectively. Each vertex in V (H) represents a qubit order, while an arc in A(H) represents

a SWAP gate that translates a qubit order into another qubit order with respect to the

coupling graph. Now, we define the subgraphs Hk for k ∈ [m] as disjoint copies of H, one

for each gate in the circuit.

The m subgraphs Hk are merged to obtain a graph X = (V,A). The vertex set V

of X consists of the union of all V k, k ∈ [m], as well as a source s and sink t, i.e., V =

{s}∪V 1∪· · ·∪V m∪{t}. Since the subgraphs H1, . . . , Hm are identical, we use superscripts

to indicate to which subgraph a vertex belongs. For example, τk and τk+1 correspond to

the same qubit order in subgraph k and k + 1, respectively.

The arc set A of X contains the union of all Ak, k ∈ [m]. Moreover, the arcs between

different subgraphs are introduced by the following sets:

D0 := {(s, τ1) : τ1 ∈ V 1}
Dk := {(τk, τk+1) : τk ∈ V k, τk+1 ∈ V k+1, (τk)−1(gk) ∈ E}, k ∈ [m− 1]

Dm := {(τm, t) : τm ∈ V m, (τm)−1(gm) ∈ E}.
(7.2)
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These sets can be interpreted as follows. The set D0 contains an arc from s to all nodes

in H1. For all k ∈ [m − 1], Dk contains the connecting arcs from Hk to Hk+1. Suppose

the gate gk acts on qubits i and j. Then we include an arc from a qubit order τk in Hk to

the same qubit order τk+1 in Hk+1 if and only if i and j are adjacent in τk with respect

to Coup(E). That is, whenever (τk)−1(gk) = {(τk)−1(i), (τk)−1(j)} ∈ E. Similarly, Dm

contains all arcs from τm with this property to the sink node t. Now, the arc set A of X is

given by

A = A1 ∪ · · · ∪Am ∪D0 ∪D1 ∪ · · · ∪Dm.

We set the cost of each arc in Ak, k ∈ [m], equal to one, as traversing these arcs corresponds

to applying one SWAP gate. The cost of the arcs in Dk, k = 0, . . . ,m, is equal to zero, as

no SWAP gates are applied when moving from a subgraph to the next.

We are now ready to state the main result of this section.

Theorem 7.5 ([285]). Any (s, t)-path in X corresponds to a sequence (τ1, . . . , τm) of qubit

orders that all comply with the adjacent interaction constraints. A shortest (s, t)-path in X

corresponds to an optimal solution of the NNCP.

Proof. Follows immediately from the construction.

There are many algorithms in the literature for solving the shortest path instance, e.g.,

Dijkstra’s algorithm with Fibonacci heaps [144]. Alternatively, we can solve it as a linear

programming (LP) problem. For all k ∈ [m] and e ∈ Ak, let xe denote a variable that is one

if arc e is used on a path, and zero otherwise. Similarly, for all k ∈ {0} ∪ [m] and e ∈ Dk,

let ye denote a variable that is one if arc e is used on a path, and zero otherwise. Then the

shortest (s, t)-path in X can be found by solving the following LP:

min

m∑
k=1

∑
e∈Ak

xe

s.t.
∑
e∈D0

ye = 1,
∑

e∈Dm

ye = 1

∑
e∈δ−(τ,Dk−1)

ye +
∑

e∈δ−(τ,Ak)

xe =
∑

e∈δ+(τ,Dk)

ye +
∑

e∈δ+(τ,Ak)

xe ∀τ ∈ V k, k ∈ [m]

0 ≤ xe ≤ 1 ∀e ∈ Ak, k ∈ [m],

0 ≤ ye ≤ 1 ∀e ∈ Dk, k ∈ {0} ∪ [m].

(SPP)

7.3 Symmetries in X = (V,A)

The graph X constructed in Section 7.2.2 contains Θ(mn!) vertices and Θ(|E|mn!) arcs. The

bottleneck in solving the NNCP to optimality is clearly the factorial scaling in the number

of qubits. Fortunately, for many structured quantum system architectures, the problem can

be reduced by exploiting the symmetries in X. In this section we study these symmetries in

terms of its automorphism group.

In Section 7.3.1 and 7.3.2 we study the automorphism group of Cayley graphs generated

by transpositions and the automorphism group of X, respectively. In Section 7.3.3 we study

the orbit and orbital structure induced by this group action on X. The results in this section

are the key ingredients of the symmetry reduction explained in Section 7.4.
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7.3.1 Automorphism group of Aut(Cay(Sn, T ))

For a directed graph X with vertex set V and arc set A, a permutation ρ ∈ Sym(V ) is called

an automorphism of X if (ρ(i), ρ(j)) ∈ A if and only if (i, j) ∈ A. We also say that such ρ

acts on X. The automorphism group of X is the group of all automorphisms of X and is

denoted by Aut(X).

In order to determine the automorphism group of the graphX introduced in Section 7.2.2,

we start by considering the automorphism group of the subgraphs Hk, k ∈ [m]. Recall that

all Hk are identical and equal to Cay(Sn, T ), where T is a set of transpositions, see (7.1).

Hence, the goal of this subsection is to study Aut(Cay(Sn, T )).

There exist several works in the literature on the automorphism group of Cayley graphs

generated by transpositions. As indicated by Feng [130], we can show that Sn acts on

Cay(Sn, T ) by left multiplication. That is, for any a ∈ Sn the mapping τ #→ aτ defines an

automorphism of Cay(Sn, T ). All such automorphisms form a subgroup of Aut(Cay(Sn, T )).

We can also show that the group Aut(Coup(E)) acts on Cay(Sn, T ) by right multiplic-

ation via the mapping τ #→ τb−1, which is an automorphism of Cay(Sn, T ) for all b ∈
Aut(Coup(E)). To verify this, let (τ1, τ2) be an arc in Cay(Sn, T ). Then τ2 = τ1σ1 for some

σ1 ∈ T . The image of this arc under the action of an element b ∈ Aut(Coup(E)) is

(τ1b
−1, τ2b

−1) = (τ1b
−1, τ1σ1b

−1) = (τ1b
−1, τ1b

−1bσ1b
−1).

It is well-known that if a permutation maps i to j, then the conjugate of this permutation

by b maps b(i) to b(j). Therefore, if σ1 = (i j), then σ2 := bσ1b
−1 = (b(i) b(j)). Since b

is an automorphism of Coup(E), σ2 ∈ T , which implies that (τ1b
−1, τ2b

−1) is again an arc

of Cay(Sn, T ). Since τ #→ τb−1 is bijective, it follows that Aut(Coup(E)) indeed acts on

Cay(Sn, T ) by right multiplication.

We now show how both group actions are combined in order to obtain a subgroup of

Aut(Cay(Sn, T )). Let us define the mapping θ : Sn × Aut(Coup(E)) → Aut(Cay(Sn, T ))

given by

θ(a, b) := (τ #→ aτb−1). (7.3)

Indeed, θ(a, b) is the composition of an action by left multiplication by an element a ∈ Sn

and a right multiplication by an element b ∈ Aut(Coup(E)) (in arbitrary order). So, for

all (a, b) in its domain, θ(a, b) is indeed an automorphism of Cay(Sn, T ). We can show that

the map θ is a group homomorphism that is injective.

Theorem 7.6. For n ≥ 3, the mapping θ is a group homomorphism from Sn×Aut(Coup(E))

to Aut(Cay(Sn, T )) that is injective.

Proof. We start by showing that θ is indeed a group homomorphism. Let (a1, b1), (a2, b2) ∈
Sn ×Aut(Coup(E)). Then, for all τ ∈ Sn:

θ ((a1, b1)(a2, b2)) (τ) = θ ((a1a2, b1b2)) (τ) = a1a2τ(b1b2)
−1 = a1a2τb

−1
2 b−1

1

θ((a1, b1))θ((a2, b2))(τ) = θ(a1, b1)(a2τb
−1
2 ) = a1a2τb

−1
2 b−1

1 .

Hence, θ is a group homomorphism. To prove injectivity, assume that (a1, b1), (a2, b2) ∈
Sn × Aut(Coup(E)) are such that θ((a1, b1)) = θ((a2, b2)). Then, a1τb

−1
1 = a2τb

−1
2 for

all τ ∈ Sn. In particular, this must hold for τ = id, from which it follows that a1b
−1
1 = a2b

−1
2 ,
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and hence, a2 = a1b
−1
1 b2. Substituting this into a1τb

−1
1 = a2τb

−1
2 , yields

a1τb
−1
1 = a1b

−1
1 b2τb

−1
2 ∀τ ∈ Sn, or equivalently, τb−1

1 b2 = b−1
1 b2τ ∀τ ∈ Sn.

This implies that b−1
1 b2 ∈ Z(Sn) := {g ∈ Sn : gh = hg ∀h ∈ Sn}. It is well-known that

the center Z(Sn) is trivial for n ≥ 3, hence b1 = b2. From this, it simply follows that also

a1 = a2, hence θ is injective.

Theorem 7.6 shows that the image of Sn × Aut(Coup(E)) under θ is a subgroup of

Aut(Cay(Sn, T )). It follows from the injectivity of θ that this subgroup is isomorphic to the

direct product Sn ×Aut(Coup(E)). To simplify notation, we will from now on identify this

subgroup as Sn ×Aut(Coup(E)), although in fact we mean its image under θ.

The map θ is in general not a bijection, which means that Sn×Aut(Coup(E)) is not the

full automorphism group of Cay(Sn, T ). However, in many of the cases that are interesting

for our application, the subgroup turns out to be the full automorphism group. We now

present a series of sufficient conditions for this to be true.

We call the Cayley graph Cay(Sn, T ) normal if the subgroup of all automorphisms by

left multiplication by elements of Sn, i.e., {(τ #→ aτ) : a ∈ Sn}, is a normal subgroup of

Aut(Cay(Sn, T )).

Theorem 7.7 ([163]). The graph Cay(Sn, T ) is normal if and only if Aut(Cay(Sn, T )) ∼=
Sn ×Aut(Coup(E)).

The following theorem states some known sufficient conditions for Cay(Sn, T ) to be

(non)normal. Recall that the girth of a graph is the length of its shortest cycle. Trees

have infinite girth.

Theorem 7.8. The graph Cay(Sn, T ) is normal if:

Coup(E) is a tree;

Coup(E) is a graph with girth at least 5.

The graph Cay(Sn, T ) is nonnormal if:

Coup(E) is the 4-cycle C4;

Coup(E) is the complete graph Kn.

Proof. The normality of Cay(Sn, T ) when Coup(E) is a tree is first shown by Feng [130].

Ganesan [161] shows the more general condition on the girth of Coup(E). The nonnormality

results implied by Coup(E) to be C4 or Kn are obtained by Ganesan [161] and Ganesan [162],

respectively.

In [164] it is conjectured that the two latter cases from Theorem 7.8 are the only con-

nected coupling graphs for which its corresponding Cayley graph Cay(Sn, T ) is nonnormal.

If this conjecture is true, it follows from Theorem 7.7 that Sn × Aut(Coup(E)) is the full

automorphism group for almost all quantum architectures. In case Coup(E) is C4 or Kn, the

automorphism group of Cay(Sn, T ) is known, see [161, Section 3] and [162, Theorem 1.1],

respectively.
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7.3.2 Automorphism group of X

Now that we established either the full automorphism group of Cay(Sn, T ) or a subgroup of

it, we focus on the automorphism group of the entire graph X. Indeed, we need to take the

arc structure in-between the subgraphs Hk into account. We start by showing how these

arcs restrict the automorphism group of a single subgraph, after which we combine these

results to obtain Aut(X).

Each Hk corresponds to a gate gk acting on two qubits in Q. The set of outgoing arcs Dk

consists of arcs leaving qubit orders τ where τ−1(gk) ∈ E, see (7.2). Since this arc structure

needs to be preserved, the automorphisms of interest must setwise fix the qubit orders with

this property. For all k ∈ [m], let

F k := {τ ∈ Sn : τ−1(gk) ∈ E}. (7.4)

Instead of the automorphism group of Cay(Sn, T ), we are only interested in its subgroup

that setwise fixes F k. That is,

Aut(Cay(Sn, T ), F
k) :=

{
ρ ∈ Aut(Cay(Sn, T )) : ρ(F k) = F k

}
.

For each S ⊆ [n], let Sn(S) = {τ ∈ Sn : τ(S) = S}, which is clearly a subgroup of Sn. Now,

if Coup(E) = Kn, it follows that F
k = Sn and Aut(Cay(Sn, T ), F

k) = Aut(Cay(Sn, T )). The

following results establish a characterization of Aut(Cay(Sn, T ), F
k) when Coup(E) 	= Kn.

Theorem 7.9. Let Coup(E) be connected. Aut(Cay(Sn, T ), F
k) has a subgroup that is

isomorphic to Sn(g
k) × Aut(Coup(E)). If Cay(Sn, T ) is normal, then this subgroup equals

Aut(Cay(Sn, T ), F
k).

Proof. Let θ be the group homomorphism defined in (7.3). We now consider its restriction

to the subgroup Sn(g
k)×Aut(Coup(E)), which we denote by θr. Then its image θr(Sn(g

k)×
Aut(Coup(E))) is clearly a subgroup of Aut(Cay(Sn, T )). Since θ is injective by Theorem 7.6,

so is θr, and thus θr(Sn(g
k)×Aut(Coup(E))) is isomorphic to Sn(g

k)×Aut(Coup(E)).

We now prove that θr(Sn(g
k) × Aut(Coup(E))) is a subgroup of Aut(Cay(Sn, T ), F

k).

Let a ∈ Sn(g
k) and b ∈ Aut(Coup(E)). Then θr(a, b) is the mapping τ #→ aτb−1. Now,

let τ ∈ F k, i.e., τ−1(gk) ∈ E. Using the fact that a(gk) = gk and b maps pairs in E to pairs

in E, we obtain

(aτb−1)−1(gk) = (bτ−1a−1)(gk) ∈ E,

which implies aτb−1 ∈ F k. So, θr(a, b) ∈ Aut(Cay(Sn, T ), F
k), from where it follows

that θr(Sn(g
k)×Aut(Coup(E))) is a subgroup of Aut(Cay(Sn, T ), F

k).

Next, we show that if Cay(Sn, T ) is normal, then it is actually the full automorphism

group. It suffices to show that any element in Aut(Cay(Sn, T ), F
k) is of the form θr(a, b) for

some a ∈ Sn(g
k) and b ∈ Aut(Coup(E)). Let ρ ∈ Aut(Cay(Sn, T ), F

k). By Theorem 7.6,

we know that ρ : τ #→ aτb−1 for some a ∈ Sn, b ∈ Aut(Coup(E)). Suppose a /∈ Sn(g
k).

Let gk be the pair {i, j}. Then there exist k1, k2 such that a(k1) = i and a(k2) = j,

with {k1, k2} 	= {i, j}. Now, we select two pairs of vertices e ∈ E and f /∈ E as follows.

If |{k1, k2, i, j}| = 3, take e and f such that they share one vertex, otherwise take e and f

disjoint. The only cases in which such selection is not possible, is when the subgraph induced

by any three distinct vertices is a clique or for each edge in E the graph resulting from

deleting the edge is a clique. The only connected coupling graphs that satisfy either of these
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properties are C4 and Kn. However, by Theorem 7.8, Coup(E) cannot be these graphs due

to the normality of the Cayley graph.

Now, take any τ̂ ∈ Sn such that

τ̂(e) = {i, j} and τ̂(f) = {k1, k2}.

As τ̂−1({i, j}) = e ∈ E, it follows that τ̂ ∈ F k. However,

ρ(τ̂)−1({i, j}) = (aτ̂b−1)−1({i, j}) = bτ̂−1a−1({i, j}) = bτ̂−1({k1, k2}) = b(f) /∈ E,

since b maps non-edges to non-edges in Coup(E). We conclude that ρ(τ̂) /∈ F k, which

implies that ρ /∈ Aut(Cay(Sn, T ), F
k). Since this is a contradiction, each automorphism in

Aut(Cay(Sn, T ), F
k) is in θr(Sn(g

k)×Aut(Coup(E))).

Let Gk
sub denote the subgroup of Aut(Cay(Sn, T ), F

k) that is isomorphic to Sn(g
k) ×

Aut(Coup(E)). Suppose X consists of one subgraph. Then, X has vertex set {s} ∪ V 1 ∪ {t}.
One can verify that in that case id{s} ×G1

sub × id{t} is a subgroup of Aut(X), which is the

entire automorphism group in case Cay(Sn, T ) is normal. Now, supposeX has two subgraphs.

Then, H1 corresponds to gate g1 and H2 corresponds to a possibly different gate g2. In the

sequel, we study how this affects the automorphism group of X.

To that end, we need two intermediate results. For a set S ⊆ [n], let C(Sn(S)) denote

the centralizer subgroup of Sn(S) which is defined as

C(Sn(S)) = {τ ∈ Sn : τπ = πτ for all π ∈ Sn(S)} . (7.5)

When n ≤ 2, we know that Sn is abelian and thus C(Sn(S)) = Sn. Otherwise, we show that

the centralizer subgroup is contained in Sn(S).

Lemma 7.10. Let n ≥ 3. Then, we have C(Sn(S)) ⊆ Sn(S) for all S ⊆ [n].

Proof. Since Sn(S) = Sn([n] \ S), we may assume that |S| ≥ 2. Now, let τ ∈ C(Sn(S))

and assume for the sake of contradiction that τ /∈ Sn(S). Then there exist distinct i, j ∈ S

such that τ(i) /∈ S. Now, consider the transposition (i j). We have (i j)τ(i) = τ(i),

while τ(i j)(i) = τ(j). Hence, τ and (i j) do not commute, while (i j) ∈ Sn(S). There-

fore, τ /∈ C(Sn(S)), which is a contradiction.

Exploiting Lemma 7.10, we can show the following result for general sets F of the

form (7.4).

Theorem 7.11. Let i, j ∈ [n], n ≥ 3, and let F = {τ ∈ Sn : {τ−1(i), τ−1(j)} ∈ E}.
Let a, b ∈ Sn and suppose that aτb−1 = τ for all τ ∈ F . Then a = b = id.

Proof. Observe that for all τ1, τ2 ∈ F we have:

τ1bτ
−1
1 = a = τ2bτ

−1
2 .

Now, let us fix an edge e ∈ E. We can write any element π ∈ Sn(e) in the form π = τ−1τ ′

for some τ, τ ′ ∈ F . To verify this, observe that since e ∈ E there exist elements in F that

map e to {i, j}. By combining two such elements τ and τ ′, the composition τ−1τ ′ always

maps e back to e. On the complement [n] \ e we find all possible permutations in F , so we

can always find τ, τ ′ ∈ F such that τ−1τ ′ acts like π on the set [n] \ e.
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Let τ1, τ2 ∈ F be such that π = τ−1
1 τ2. Then we know τ1bτ

−1
1 = τ2bτ

−1
2 , or equival-

ently, (τ−1
1 τ2)

−1bτ−1
1 τ2 = b, which can be rewritten as π−1bπ = b. As π ∈ Sn(e) was chosen

arbitrarily, it follows that π−1bπ = b for all π ∈ Sn(e), and thus b ∈ C(Sn(e)). We now apply

Lemma 7.10 with S = e. Since n ≥ 3, it follows that b ∈ Sn(e).

By repeating this argument for all e ∈ E, it follows that b ∈
⋂

e∈E Sn(e). As Coup(E)

is connected, we conclude that b = id, from which it immediately follows that a = id as

well.

Let ρ ∈ Aut(X) where X consists of two subgraphs. The case n ≤ 2 leads to a trivial

NNCP instance. Therefore, we may assume that n ≥ 3. Then the restriction of ρ to H1 is

an element of G1
sub. In particular, each τ1 ∈ F 1 is mapped to ρ(τ1) (here the superscript 1 is

added to indicate that τ1 is a vertex of H1). In order to maintain the arc structure of D1, it

follows that the restriction of ρ to H2 should not only be an element of G2
sub, it should also

pointwise fix the elements ρ(τ2) for all τ2 ∈ F 1. Applying the result of Theorem 7.11, the

restriction of ρ to H2 should be the same automorphism as the restriction to H1. On top

of that, this restriction must also be in G2
sub. Thus, ρ is of the form (id{s}, π, π, id{t}) with

π ∈ G1
sub ∩G2

sub. Extending this argument to larger k, let us define the following groups:

Gsub :=

m⋂
k=1

Gk
sub
∼=

m⋂
k=1

Sn(g
k)×Aut(Coup(E)), (7.6)

GX :=

{
(id{s}, ρ, . . . , ρ, id{t}) ∈ id{s} ×

m∏
k=1

Aut(Hk)× id{t} : ρ ∈ Gsub

}
. (7.7)

By construction, GX is a subgroup of Aut(X). If follows from the results above that it is

the full automorphism group whenever Cay(Sn, T ) is normal.

To get rid of of the intersection in the definition of Gsub, we exploit the notion of the

gate graph (Q,U) of a quantum circuit Γ , see Definition 7.3. Recall that the gate graph

contains an edge between two qubits whenever there is a gate in Γ acting on this pair of

qubits. If gk1 is in C with gk1 = {i, j}, this implies that the set {i, j} must be setwise fixed

by all permutations in the group Sn(g
k1). If also gk2 ∈ C with gk2 = {j, �}, there is no

other option than fixing i, j and � elementwise in the group intersection Sn(g
k1) ∩ Sn(g

k2).

From this observation, we can partition all qubits in Q based on whether they belong to a

connected component of size one, two or at least three. This leads to the introduction of the

fixing pattern of Γ .

Definition 7.12. Let Γ = (Q,C) be a quantum circuit on n qubits. We define the fixing

pattern of Γ as the partition F := {S1, . . . , Sl} of Q such that each Si is either:

a single qubit contained in a connected component of the gate graph (Q,U) of size at

least 3;

a pair of qubits {i, j} that forms a connected component in the gate graph (Q,U);

the set of all singletons in the gate graph (Q,U), which we denote by the free set in F .

Moreover, we define f to be size of the free set in F , p to be the number of pairs in F
and c (= n −2p−f) to be the number of qubits in a connected component of size at least 3

in (Q,U).
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Observe that F can be easily constructed by a scan of the connected components of (Q,U).

The extreme cases are F = {Q} if Γ contains no gates, whereas F = {{1}, . . . , {n}} if (Q,U)

is connected.

The group ∩m
k=1Sn(g

k) consists of all permutations that setwise fix the elements in F .
To simplify notation, we define

Sn(F) := {a ∈ Sn : a(Si) = Si for all i ∈ [l]}.

It is not difficult to determine the order of Sn(F).

Theorem 7.13. |Sn(F)| = 2pf !.

Proof. Each qubit belongs to exactly one set in F . If this set is not a pair or the free set, the

qubit must be mapped to itself by all permutations in Sn(F). For all pairs {i, j} ∈ F , there
are exactly two possibilities, namely mapping i to i and j to j, or mapping i to j and j to i.

Since we have p pairs, this leads to 2p possibilities. Finally, the qubits in the free set can

be permuted freely between themselves, leading to another f ! possibilities. The total order

then becomes 2pf !.

By construction, we know that Gsub
∼= Sn(F)×Aut(Coup(E)), from which it also follows

that

GX
∼= Sn(F)×Aut(Coup(E)). (7.8)

Recall that GX = Aut(X) when Cay(Sn, T ) is normal.

7.3.3 Orbit and orbital structure of group action on X

The elements of GX act on the vertices and arcs of X. In this section we study this group

action in terms of its induced orbit and orbital structure, which will become of key importance

in the symmetry reduction explained in Section 7.4.

Each automorphism in GX maps the vertex set of X to itself. Given a vertex τ ∈ V ,

the orbit of τ is the set of vertices to which τ is mapped by the elements in GX , i.e., all

vertices ρ(τ) with ρ ∈ GX . The set of orbits forms a partition of V , which is written as the

quotient V/GX .

Similarly, GX acts on the arc set A by ρ((τ1, τ2)) = (ρ(τ1), ρ(τ2)) for all ρ ∈ GX . We

denote the set of orbitals by A/GX . Note that arcs in the same orbital have their initial

vertices in the same orbit. It is therefore natural to first understand the orbit structure of

the action of GX on V .

Let Orb(τ) denote the orbit of vertex τ ∈ V . It follows from the construction of GX that

Orb(s) = {s} and Orb(t) = {t}. Moreover, the subgraphs Hk, k ∈ [m], are invariant under

the action of GX on X. For that reason, we can restrict ourselves to identifying the orbits

within each subgraph Hk under the action of Gsub. Since all subgraphs are identical, this

provides the orbit description for the entire graph GX .

Similar as before, we use τ to denote a vertex, as each vertex represents a qubit order

in Sn. For all k ∈ [m] and all τ ∈ V k, we obtain

Orb(τ) = {ρ(τ) : ρ ∈ Gsub} =
{
aτb−1 : a ∈ Sn(F), b ∈ Aut(Coup(E))

}
. (7.9)
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We also define the stabilizer subgroup with respect to τ under the action of Gsub as

Stab(τ) := {ρ ∈ Gsub : ρ(τ) = τ}
∼=

{
(a, b) ∈ Sn(F)×Aut(Coup(E)) : aτb−1 = τ

}
.

(7.10)

The condition given in (7.10) for (a, b) to act as a stabilizer can be rewritten as a = τbτ−1.

Thus, a pair (a, b) ∈ Sn(F)×Aut(Coup(E)) corresponds to an element in Stab(τ) if and only

if the permutation τbτ−1 is in Sn(F) and a = τbτ−1. This implies that for all Si ∈ F we

must have τbτ−1(Si) = Si, or equivalently, b(τ
−1(Si)) = τ−1(Si). Hence, b setwise fixes the

inverse fixing pattern in F with respect to τ . Let us define the subgroup Bτ of Aut(Coup(E))

that consists of all such elements, i.e.,

Bτ :=
{
b ∈ Aut(Coup(E)) : b

(
τ−1(Si)

)
= τ−1(Si) ∀i ∈ [l]

}
. (7.11)

Observe that for each b ∈ Bτ , there exists exactly one element a ∈ Sn(F) such that aτb−1 = τ ,

namely a = τbτ−1. Therefore,

Stab(τ) ∼= {(a, b) : b ∈ Bτ , a = τbτ−1}, (7.12)

in particular, we have |Stab(τ)| = |Bτ |.
As Bτ is a subgroup of Aut(Coup(E)), it acts on the edge set of Coup(E). The orbital

of an edge {i, j} ∈ E under this group action is the set of all edges {b(i), b(j)} with b ∈ Bτ .

We denote by the quotient E/Bτ the set of orbitals under this group action.

We can show that if τ1 and τ2 belong to the same orbit, then the subgroups Bτ1 and Bτ2

are conjugate subgroups. Moreover, the quotients of their actions on E have the same

cardinality.

Lemma 7.14. Let τ1 and τ2 be two qubit orders with τ2 = aτ1b
−1 for some a ∈ Sn(F)

and b ∈ Aut(Coup(E)). Then,

(i) Bτ2 = bBτ1b
−1;

(ii) there exists a bijection from E/Bτ1 to E/Bτ2 given by left multiplication with b.

Proof. (i) Exploiting the fact that a−1(Si) = Si for all i ∈ [l], we obtain

Bτ2 =
{
b2 ∈ Aut(Coup(E)) : b2

(
τ−1
2 (Si)

)
= τ−1

2 (Si) ∀i ∈ [l]
}

=
{
b2 ∈ Aut(Coup(E)) : b2

(
(aτ1b

−1)−1(Si)
)
= (aτ1b

−1)−1(Si) ∀i ∈ [l]
}

=
{
b2 ∈ Aut(Coup(E)) : b2bτ

−1
1 a−1(Si) = bτ−1

1 a−1(Si) ∀i ∈ [l]
}

=
{
b2 ∈ Aut(Coup(E)) : b−1b2b

(
τ−1
1 (Si)

)
= τ−1

1 (Si) ∀i ∈ [l]
}

=
{
bb1b

−1 ∈ Aut(Coup(E)) : b1
(
τ−1
1 (Si)

)
= τ−1

1 (Si) ∀i ∈ [l]
}

= bBτ1b
−1.

(ii) This fact follows directly from (i), by observing that

b OrbBτ1
(i) =

{
bb1b

−1(b(i)) : b1 ∈ Bτ1

}
= {b2(b(i)) : b2 ∈ Bτ2} = OrbBτ2

(b(i)).

One easily verifies that left multiplication by b gives a bijection.
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As a consequence of the well-known orbit-stabilizer theorem, we establish the following

relation between Orb(τ) and Stab(τ):

|Orb(τ)| = |Gsub|
|Stab(τ)| =

2pf ! · |Aut(Coup(E))|
|Bτ |

. (7.13)

Of course, Orb(τ) does not depend on the particular choice of the representative τ in the

orbit. Indeed, it follows from Lemma 7.14 that the orders of the subgroups Bτ for all τ

within an orbit are the same.

To increase our understanding of Orb(τ), we rewrite (7.9) as follows:

Orb(τ) = Sn(F)τAut(Coup(E)) =
⋃

τ̃∈Sn(F)τ

τ̃Aut(Coup(E)). (7.14)

In other words, if Sn(F) is trivial, then the orbit partition of V k is given by the left

cosets of Aut(Coup(E)) in Gsub. Otherwise, each orbit is the union of several left cosets

of Aut(Coup(E)) in Gsub, where the union is determined by the elements in the right cosets

of Sn(F) in Gsub.

It follows from the discussion above that the size of an orbit containing τ increases when

the subgroups Sn(F) and Aut(Coup(E)) increase, while it decreases with the order of Bτ . Of

particular importance in the symmetry reduction is the number of orbits in each subgraph.

We let V k/GX denote the set of orbits of vertices in V k under the action of GX , although

we formally refer to the action of GX restricted to V k. We allow for this slight abuse of

notation, in order to simplify the terminology in Section 7.4.

Theorem 7.15. The number of orbits of V k under GX is |V k/GX | =
∑

τ∈Sn
|Bτ |

2pf ! · |Aut(Coup(E))| .

Proof. Let (V k)ρ denote the set of vertices in V k that are (pointwise) fixed by ρ ∈ GX .

Then, Burnside’s lemma implies that

|V k/GX | =
∑

ρ∈GX
|(V k)ρ|

|GX |
.

The sum in the numerator counts for every group element the number of vertices that are

fixed. Alternatively, we can also sum over all vertices and count the number of group elements

that stabilize the vertex. This leads to

|V k/GX | =
∑

τ∈Sn
|Stab(τ)|

|Sn(F)×Aut(Coup(E))| =
∑

τ∈Sn
|Bτ |

2pf ! · |Aut(Coup(E))| .

We now shift our focus to the analysis of the orbital structure of the arcs of X under

the action of GX . Recall that A consists of two types of arcs: arcs within a subgraph

(the sets Ak, k ∈ [m]) and the arcs between the subgraphs (the sets Dk, k ∈ {0} ∪ [m]).

Since the sets A1, . . . , Ak are identical and each set is invariant under the group action GX ,

we can restrict our focus to the action of Gsub on a single subgraph. The orbital of an

arc (τ, τσ) ∈ Ak corresponding to transposition σ = (i j) ∈ T is given by

Orb((τ, τσ)) := {(ρ(τ), ρ(τσ)) : ρ ∈ Gsub}
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τ1σ2
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τ1σ4 τ1

τ2
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τ1σ3
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τ1
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Orb(τ1)Orb(τ1)

Orb(τ1)

Figure 7.2: Graphical overview of orbital structure within a subgraph Hk. Each line type
(solid, dotted, dashed and curled) corresponds to another orbital. Case I (left): Bτ1 is trivial.
Case II (middle): Bτ1 is nontrivial and the orbital of σ1 under Bτ1 contains σ2. Case III
(right): Bτ1 is nontrivial, but the orbital of σ1 under Bτ1 only consists of σ1.

=
{
(aτb−1, aτσb−1 : a ∈ Sn(F), b ∈ Aut(Coup(E))

}
=

{
(aτb−1, aτb−1(b(i) b(j)) : a ∈ Sn(F), b ∈ Aut(Coup(E))

}
,

where the last line follows from the fact that b(i j)b−1 = (b(i) b(j)). This expression of

Orb((τ, τσ)) implies that all arcs within the same orbital start at vertices within the same

orbit and end at vertices within the same orbit (where the start- and end-orbits can differ).

Moreover, the transpositions to which the arcs in Orb((τ, τσ)) correspond are related via the

elements of Aut(Coup(E)). It follows from above that all such transpositions in Orb((τ, τσ))

belong to the same orbital in the coupling graph Coup(E), namely the orbital of the edge

corresponding to σ.

When the group Bτ is trivial, the stabilizer subgroup of τ in Gsub is trivial. This implies

that the arcs within the same orbital all start at different vertices, and consequently, the

orbital has cardinality |Sn(F)| · |Aut(Coup(E))|. When Bτ is not trivial, there exist non-

trivial (a, b) in Stab(τ), see (7.12). If such b maps the edge corresponding to σ in Coup(E)

to a different edge, then there exist multiple distinct arcs in Orb((τ, τσ)) that start from the

same vertex. However, if b maps this edge to itself, then the stabilizer subgroup of (τ, τσ) is

nontrivial and the orbital has a smaller cardinality. Figure 7.2 provides a graphical overview

of these three cases.

The observations above lead to the following result regarding the cardinality of the set

of orbitals of Ak under the action of GX restricted to Ak. By slight abuse of notation, we

again denote this set by the quotient Ak/GX .

Theorem 7.16. The number of orbitals of Ak under GX is |Ak/GX | =
∑

τ∈Sn
|Bτ | · |E/Bτ |

2pf ! · |Aut(Coup(E))| .

Proof. Since the arcs belonging to an orbital all start from vertices in the same orbit, we

restrict ourselves to the orbitals starting from a single orbit. We then enumerate over all

orbits and count the number of orbitals starting from vertices belonging to each orbit.

Let τ ∈ Sn and let δ+(τ, Ak) = {(τ, τσ) : σ ∈ T}. Each automorphism in GX maps

the arcs in δ+(τ, Ak) to the arcs in δ+(τ ′, Ak) for some τ ′ ∈ Orb(τ). Therefore, to count

the number of orbitals starting from Orb(τ), it suffices to consider to how many distinct

orbitals the arcs in δ+(τ, Ak) belong. In the extreme case these arcs all belong to distinct

orbitals, leading to a total number of |E| orbitals. Two arcs in δ+(τ, Ak), say (τ, τσ1)
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and (τ, τσ2) with σ1 (:= (i j)), σ2 ∈ T , belong to the same orbital if and only if there exists a

mapping ρ ∈ GX such that τ = ρ(τ) and τσ2 = ρ(τσ1). Equivalently, if there exist a ∈ Sn(F)
and b ∈ Aut(Coup(E)) such that{

τ = aτb−1

τσ2 = aτσ1b
−1

⇐⇒
{

b ∈ Bτ and a = τbτ−1

τσ2 = aτb−1(b(i) b(j))
⇐⇒

{
b ∈ Bτ and a = τbτ−1

σ2 = (b(i) b(j))

where we used that b(i j)b−1 = (b(i) b(j)). Thus, any arc starting from τ that is induced by

a transposition of the form (b(i) b(j)) with b ∈ Bτ is in the same orbital as arc (τ, τ(i j)).

The orbital partition of δ+(τ, Ak) is therefore corresponding to the orbit partition implied

by the group action of Bτ on the edge set E of the coupling graph. The number of distinct

orbitals in δ+(τ, Ak) equals |E/Bτ |. Let τ ′ ∈ Orb(τ) be any other vertex in Orb(τ). Since

the arcs in δ+(τ, Ak) are mapped to arcs in δ+(τ ′, Ak), it then follows that the number of

distinct orbitals in δ+(τ ′, Ak) is at least |E/Bτ |. From the same analysis, it follows that

this cardinality must be |E/Bτ ′ |, which equals |E/Bτ | by Lemma 7.14. Thus, the number

of distinct orbitals starting from vertices in Orb(τ) is |E/Bτ |, where the choice of τ in the

orbit is arbitrary.

We now obtain the total number of orbitals by adding the quantities |E/Bτ | over all

Orb(τ) ∈ V k/GX :

|Ak/GX | =
∑

Orb(τ)∈V k/GX

|E/Bτ |

=
∑

Orb(τ)∈V k/GX

2pf ! · |Aut(Coup(E))|
|Bτ |

· |Bτ | · |E/Bτ |
2pf ! · |Aut(Coup(E))|

=
∑

Orb(τ)∈V k/GX

|Orb(τ)| · |Bτ | · |E/Bτ |
2pf ! · |Aut(Coup(E))|

=

∑
τ∈Sn

|Bτ | · |E/Bτ |
2pf ! · |Aut(Coup(E))| .

In the third equality we used (7.13), as well as the fact that the sum of |Orb(τ)| · |Bτ | · |E/Bτ |
over all orbits equals the sum of |Bτ | · |E/Bτ | over all vertices, since |Bτ | · |E/Bτ | is constant
for all τ within an orbit, see Lemma 7.14.

To study the orbital representation of Dk under the action of GX , we distinguish between

the case k = 0 and k ∈ [m]. For k = 0, Dk contains all arcs between s and V 1. Therefore,

each orbital of D0 under GX consists of all arcs starting from s and ending at vertices in

an orbit of V 1. The arcs in Dk, k ∈ [m], correspond to ordered pairs (τk, τk+1), where τ

represents the same qubit order inHk andHk+1. Such an arc exists inDk whenever τk ∈ F k,

see (7.4). The orbital of (τk, τk+1) is the set

Orb((τk, τk+1)) = {(ρ(τk), ρ(τk+1) : ρ ∈ Gsub}
= {(aτkb−1, aτk+1b−1) : a ∈ Sn(F), b ∈ Aut(Coup(E))}.

Let Dk/GX denote the set of orbitals of the group action of GX restricted to Dk. Since τk

and τk+1 represent the same qubit orders in Hk and Hk+1, respectively, all arcs within

Orb((τk, τk+1)) start and end at vertices in the same orbit. This leads to the following

result.
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Theorem 7.17. The number of orbitals of D0 under GX is |D0/GX | =
∑

τ∈Sn
|Bτ |

2pf ! · |Aut(Coup(E))| .

For k 	= 0, the number of orbitals of Dk under GX is |Dk/GX | =
∑

τ∈Fk |Bτ |
2pf ! · |Aut(Coup(E))| .

Proof. The first part follows directly from Theorem 7.15. For the second part, observe that

we have Dk = {(τk, τk+1) : τk ∈ V k, τk+1 ∈ V k+1, τk ∈ F k}, where F k is defined in (7.4).

The cardinality of Dk/GX is equal to the number of orbits of F k under the action of GX

restricted to the vertices in F k. Observe that this restriction is well-defined, since each vertex

in F k is always mapped to another vertex in F k. The cardinality of the quotient F k/GX

can be derived in the same way as done in the proof of Theorem 7.15, which leads to

|Dk/GX | = |F k/GX | =
∑

τ∈Fk |Bτ |
2pf ! · |Aut(Coup(E))| .

The results of Theorems 7.15, 7.16 and 7.17 are summarized in Table 7.1. Moreover,

we simplify the cardinalities of the quotients for the special case where Bτ is trivial for

all τ ∈ Sn.

Quotient Order
Order when Bτ is

trivial for all τ ∈ Sn

V k/GX , k ∈ [m]

∑
τ∈Sn

|Bτ |
2pf ! · |Aut(Coup(E))|

n!

2pf ! · |Aut(Coup(E))|

Ak/GX , k ∈ [m]

∑
τ∈Sn

|Bτ | · |E/Bτ |
2pf ! · |Aut(Coup(E))|

n! · |E|
2pf ! · |Aut(Coup(E))|

D0/GX

∑
τ∈Sn

|Bτ |
2pf ! · |Aut(Coup(E))|

n!

2pf ! · |Aut(Coup(E))|

Dk/GX , k ∈ [m]

∑
τ∈Fk |Bτ |

2pf ! · |Aut(Coup(E))|
2|E|(n − 2)!

2pf ! · |Aut(Coup(E))|

Table 7.1: Overview of the orders of quotients V k/GX , Ak/GX and Dk/GX in terms of the
cardinality of Bτ .

In practical situations, it is often appropriate to possess an orbit (resp. orbital) repres-

entation of some set under a group action. Such representation contains exactly one element

from each orbit (resp. orbital). In the sequel, we let R(V k/GX) ⊆ V k denote an orbit

representation of Sn under the group action Gsub. We can obtain R(V k/GX) by exploit-

ing (7.14). First, one can efficiently obtain a representation of left cosets of Aut(Coup(E))

in Sn, see e.g., Dixon and Majeed [103]. This coset representation can be compressed to

an orbit representation by a merge operation of multiple left cosets. For each representat-

ive τ , we enumerate the elements of the right coset of Sn(F) containing τ . This provides the

representatives of left cosets that belong to the same orbit.

An orbital representation R(Ak/GX) can be obtained by exploiting the proof of The-

orem 7.16. We know that each orbital can be represented by the orbit from where the arcs in

the orbital start, combined with a representative element from the quotient E/Bτ , where τ
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belongs to the orbit. Hence, R(Ak/GX) = {(τ, σ) : τ ∈ R(V k/GX), σ ∈ R(E/Bτ )},
where R(E/Bτ ) is an orbital representation of the edges in E under the action of Bτ . As

the coupling graph is typically small, R(E/Bτ ) can be obtained by enumeration.

Finally the orbital representation R(Dk/GX) follows from the subset of R(V k/GX) as-

sociated with the orbits in F k, i.e., R(Dk/GX) = {(τk, τk+1) : τk ∈ R(V k/GX), τk ∈ F k}.
The orbit and orbital representations can be found more easily when the underlying

coupling graph is known, see Section 7.5.

7.4 Symmetry reduction for the NNCP

In this section we show how the automorphism results derived in Section 7.3 can be exploited

to reduce the size of the NNCP introduced in Section 7.2.2.

In Section 7.4.1 we exploit the subgroup GX , see (7.8), in order to reduce the linear

programming formulation (SPP) in terms of the number of variables and constraints. In

Section 7.4.2 we show how this reduced LP can be rewritten as a new and equivalent shortest

path instance.

7.4.1 Reduced LP formulation

The elements in GX act on the vertex set V of G. In a similar way, GX also acts on the arc

set A of G. For any arc e ∈ A and any ρ ∈ GX , let ρ(e) denote the ordered pair to which e

is mapped to by ρ, which is again in A since ρ is an automorphism. Now, let x ∈
∏m

k=1 R
Ak

and y ∈
∏m

k=0 R
Dk

be feasible for (SPP). We define the Reynolds operator ψ that maps x

(resp. y) to the average of the images of x (resp. y) under the action of GX on A. That is,

ψ(x) :=
1

|GX |
∑

ρ∈GX

xρ and ψ(y) :=
1

|GX |
∑

ρ∈GX

yρ, (7.15)

where xρ and yρ are defined as xρ
e = xρ(e) and yρ

e = yρ(e) for all arcs e. As Ak for

all k ∈ [m] and Dk for all k ∈ {0} ∪ [m] are invariant under the action of GX on A, it

follows that ψ(x) ∈
∏m

k=1 R
Ak

and ψ(y) ∈
∏m

k=0 R
Dk

. We can now prove the following

result, which was proven for general linear programs by Bödi et al. [49].

Theorem 7.18. Let (x, y) ∈
∏m

k=1 R
Ak ×

∏m
k=0 R

Dk

be feasible (resp. optimal) for (SPP).

Then, (ψ(x), ψ(y)) is also feasible (resp. optimal) for (SPP).

Proof. As the flow conservation constraints hold for (x, y) and ρ preserves the arc structure

of X, the pair (xρ, yρ) also satisfies these constraints for all ρ ∈ GX . It follows that (xρ, yρ) is

feasible for (SPP) for all ρ ∈ GX . Observe that the pair (ψ(x), ψ(y)) is a convex combination

of (xρ, yρ) over the elements of GX . Because the feasible set of (SPP) is convex, it follows

that (ψ(x), ψ(y)) is also feasible for (SPP).

The objective function of (SPP) can be written as f(x, y) :=
∑

e∈A xe. Since arcs are

mapped to arcs by all ρ ∈ GX , we have f(xρ, yρ) = f(x, y). We then obtain:

f(ψ(x), ψ(y)) =
∑
e∈A

ψ(x)e =
1

|GX |
∑

ρ∈GX

∑
e∈A

xρ
e =

1

|GX |
|GX |

∑
e∈A

xe = f(x, y).

Thus, if (x, y) is optimal for (SPP), then so is (ψ(x), ψ(y)).



623138-L-sub01-bw-deMeijer623138-L-sub01-bw-deMeijer623138-L-sub01-bw-deMeijer623138-L-sub01-bw-deMeijer
Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023 PDF page: 281PDF page: 281PDF page: 281PDF page: 281

Chapter 7. Exploiting symmetries in optimal quantum circuit design 261

An implication of Theorem 7.18 is that we may restrict the feasible set of (SPP) to the

subspace

HGX :=

{
(ψ(x), ψ(y)) : (x, y) ∈

m∏
k=1

RAk

×
m∏

k=0

RDk

}
, (7.16)

which is also denoted as the fixed point subspace in [49]. By construction of the Reynolds

operator (7.15), the entries in ψ(x) belonging to the same orbital are equal. Therefore, the

subspace HGX is spanned by the incidence vectors of orbitals of X. In Section 7.3.3 we

derived the orbital structure of the action of GX on X. Recall that Ak/GX denotes (the

index set of) the collection of orbitals of Ak under the action of GX . Now, if we denote the

ith orbital of Ak by W k
i , we obtain

Ak =
⊔

i∈Ak/GX

W k
i for all k ∈ [m]. (7.17)

In a similar fashion, the arc sets Dk, k ∈ {0} ∪ [m] can be partitioned into its collection of

orbitals. If Zk
i denotes the ith orbital of Dk, then

Dk =
⊔

i∈Dk/GX

Zk
i for all k ∈ {0} ∪ [m]. (7.18)

Now, the subspace HGX can be rewritten as:

HGX =

m∏
k=1

(
Span{ Wk

i
: i ∈ Ak/GX}

)
×

m∏
k=0

(
Span{ Zk

i
: i ∈ Dk/GX}

)
, (7.19)

which implies that the characteristic vectors of the orbitals form a basis for HGX .

Also the orbits of each of the vertex sets V k under the action of GX induce a partition

of V k. Let V k/GX denote (the index set of) the collection of orbits of V k under GX . The

uth orbit of V k is denoted by Ok
u, with u ∈ V k/GX . Then,

V k =
⊔

u∈V k/GX

Ok
u ∀k ∈ [m]. (7.20)

To write the symmetry-reduced equivalent of (SPP) explicitly, we need some further termin-

ology. Let the out-degree d+(τ,W k
i ) (resp. in-degree d−(τ,W k

i )) denote the number of arcs

in orbital W k
i that start (resp. end) at vertex τ , i.e.,

d+(τ,W k
i ) :=

∣∣∣{(τ, τσ) ∈W k
i : σ ∈ T

}∣∣∣ and d−(τ,W k
i ) :=

∣∣∣{(τσ, τ) ∈W k
i : σ ∈ T

}∣∣∣ ,
for all i ∈ Ak/GX and k ∈ [m]. Since d+(τ1,W

k
i ) = d+(τ2,W

k
i ) for all orbitals i when τ1

and τ2 belong to the same orbit, it makes sense to define d+(W k
i ) (:= d+(τ,W k

i ) for

any (τ, τσ) ∈W i
k) as the orbital out-degree in W k

i . In a similar fashion we define d−(W k
i ).

From the discussion prior to Theorem 7.16 we know that there is a single case in

which d+(τ,W k
i ) > 1. Namely, two distinct arcs (τ, τσ1) and (τ, τσ2) with σ1 = (i j) are

both in the same orbital W k
i if and only if there exists a b ∈ Bτ such that σ2 = (b(i) b(j)).
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This corresponds to case II in Figure 7.2. Hence, we have

d+(τ,W k
i ) = |{b({i, j}) : b ∈ Bτ}| for some (τ, τ(i j)) ∈W k

i ,

d−(τ,W k
i ) = |{b({i, j}) : b ∈ Bτ}| for some (τ(i j), τ) ∈W k

i .

Indeed, these equal the number of elements in an orbital of Coup(E) under the action

of Bτ . Moreover, we also define d+(Z0
i ) (resp. d−(Zm

i )) as the number of arcs in or-

bital Z0
i (resp. Zm

i ) starting from s (resp. ending at t). For these degrees one can verify

that d+(Z0
i ) = |Z0

i | and d−(Zm
i ) = |Zm

i |.
For any vertex τ , we let δ+(τ, Ak/GX) (resp. δ−(τ, Ak/GX)) denote the set of orbitals

that contain an arc starting (resp. ending) at vertex τ . That is,

δ+(τ, Ak/GX) :=
{
i ∈ Ak/GX : (τ, τσ) ∈W k

i for some σ ∈ T
}
,

δ−(τ, Ak/GX) :=
{
i ∈ Ak/GX : (τσ, τ) ∈W k

i for some σ ∈ T
}
.

Similar definitions hold for δ+(τ,Dk/GX) and δ−(τ,Dk/GX). Again, observe that if τ1
and τ2 belong to the same orbit Ok

u, then δ+(τ1, A
k/GX) = δ+(τ2, A

k/GX). For that reason,

it makes sense to define δ+(Ok
u, A

k/GX), which is equal to δ+(τ, Ak/GX) for any τ ∈ Ok
u.

Stated differently, the set δ+(Ok
u, A

k/GX) contains all orbitals whose arcs start at a vertex

belonging to orbit Ok
u. In a similar fashion, we define δ−(Ok

u, A
k/GX), δ+(Ok

u, D
k/GX)

and δ−(Ok
u, D

k/GX) for all u ∈ V k/GX and k ∈ [m].

The symmetry reduced equivalent formulation of (SPP) is obtained by replacing every

variable xe in Hk by a variable λk
i corresponding to the orbital W k

i to which arc e belongs.

Similarly, we replace every variable ye in Dk by a variable θki corresponding to the orbital Zk
i

to which arc e belongs. As a consequence, the flow conservation constraint corresponding to

vertices that belong to the same orbit becomes equivalent, hence we only keep one per orbit.

The remaining linear programming problem we denote by (RSPP) and is given by

min
m∑

k=1

∑
i∈Ak/GX

|W k
i |λk

i

s.t.
∑

i∈D0/GX

d+(Z0
i )θ

0
i = 1,

∑
i∈Dm/GX

d−(Zm
i )θmi = 1

∑
i∈δ−(Ok

u,

Dk−1/GX )

θk−1
i +

∑
i∈δ−(Ok

u,

Ak/GX )

d−(W k
i )λ

k
i =

∑
i∈δ+(Ok

u,

Dk/GX )

θki +
∑

i∈δ+(Ok
u,

Ak/GX )

d+(W k
i )λ

k
i ∀u ∈ V k/GX , k ∈ [m]

0 ≤ λk
i ≤ 1 ∀i ∈ Ak/GX , k ∈ [m]

0 ≤ θki ≤ 1 ∀i ∈ Dk/GX , k ∈ {0} ∪ [m].

(RSPP)

Observe that |W k
i |, d+(Z0

i ) and d−(Zm
i ) for all appropriate k and i are proportional to the

size of an orbit in one of the subgraphs, which is in turn proportional to |Aut(Coup(E))|,
see (7.13). For highly symmetric coupling graphs, the size of this automorphism group

becomes very large, leading to enormous coefficient values in (RSPP). Since all known
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LP-solvers run in weakly polynomial time (as opposed to strongly polynomial time), their

running times depend on the binary encoding of the numerical values in the program. Be-

sides, since other coefficients do not grow with |Aut(Coup(E))|, the condition number of the

constraint matrix of (RSPP) can become very large, leading to numerical instability when

solving the program.

To improve practical performance, we apply a scaling operation prior to solving the

program. We first multiply both sides of the flow conservation constraints by |Aut(Coup(E))|
for all u ∈ V k/GX and k ∈ [m]. After that, we apply the following substitution:

λ
k
i := |Aut(Coup(E))|λk

i for all i ∈ Ak/GX , k ∈ [m],

θ
k
i := |Aut(Coup(E))|θki for all i ∈ Dk/GX , k ∈ {0} ∪ [m].

This leads to the equivalent linear program (RSPP′). Observe that the new upper bound

of |Aut(Coup(E))| on λ
k
i and θ

k
i can be omitted in this program. To verify this, observe

that the out-degree of s and in-degree of t needs to be 1, which implicitly enforces an upper

bound of 1 on all θ
0
i and θ

m
i . Since all variables are nonnegative and flow conservation holds

for all orbits in the construction, any increase of a variable needs to be accounted for by a

cycle over the orbits. As all objective coefficients are nonnegative, this leads to a possible

increase of the objective value. Because we are minimizing, we can without loss of generality

omit the upper bounds on the variables. Hence, the coefficients of this program no longer

depend on |Aut(Coup(E))|.

min
m∑

k=1

∑
i∈Ak/GX

|Wk
i |

|Aut(Coup(E))|λ
k
i

s.t.
∑

i∈D0/GX

d+(Z0
i )

|Aut(Coup(E))|θ
0
i = 1,

∑
i∈Dm/GX

d−(Zm
i )

|Aut(Coup(E))|θ
m
i = 1

∑
i∈δ−(Ok

u,

Dk−1/GX )

θ
k−1
i +

∑
i∈δ−(Ok

u,

Ak/GX )

d−(W k
i )λ

k
i =

∑
i∈δ+(Ok

u,

Dk/GX )

θ
k
i +

∑
i∈δ+(Ok

u,

Ak/GX )

d+(W k
i )λ

k
i ∀u ∈ V k/GX , k ∈ [m]

0 ≤ λ
k
i ∀i ∈ Ak/GX , k ∈ [m]

0 ≤ θ
k
i ∀i ∈ Dk/GX , k ∈ {0} ∪ [m]

(RSPP′)

Recall that the NNCP is in generalNP-hard [341]. Based on the LP formulation (RSPP′),

we are able to unfold some special cases where the problem turns out to be polynomial time

solvable. The condition that provides the key to this complexity result is the order of the

automorphism group of the coupling graph.

Since all permutations in Bτ should setwise stabilize the sets τ−1(Si) for all i ∈ [l],

it follows that Bτ is a subgroup of Sn(G), where G := {τ−1(S1), . . . , τ
−1(Sl)}. The order

of Sn(G) is 2pf !, which implies that |Bτ | ≤ 2pf !. This leads to the following complexity

result.

Theorem 7.19. The NNCP is polynomial time solvable on coupling graphs with automorph-

ism groups of order Ω((n− b)!), where n is the number of vertices in the coupling graph and
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b is a constant independent of n.

Proof. The number of variables in (RSPP) equals m|A1/GX |+|D0/GX |+m|D1/GX |. Based
on Table 7.1 and the inequalities |Bτ | ≤ 2pf !, |E/Bτ | ≤ |E| and |F k| ≤ 2|E|(n− 2)! for

all τ ∈ Sn and k ∈ [m], we have

m
∑

τ∈Sn
|Bτ | · |E/Bτ |

2pf ! · |Aut(Coup(E))| +
∑

τ∈Sn
|Bτ |

2pf ! · |Aut(Coup(E))| +
m

∑
τ∈F1 |Bτ |

2pf ! · |Aut(Coup(E))|

≤ m 2pf !|E|n!
2pf ! · |Aut(Coup(E))| +

2pf !n!

2pf ! · |Aut(Coup(E))| +
m 2|E|(n− 2)!2pf !

2pf ! · |Aut(Coup(E))|

= O

(
m |E| n!

|Aut(Coup(E))|

)
.

Whenever |Aut(Coup(E))| = Ω((n−b)!), the number of variables in (RSPP) isO
(

m |E| n!
(n−b)!

)
=

O
(
m|E|nb

)
. Since b does not depend on the input, the number of variables in the reduced

instance is polynomial in n, m and |E|.

The implication of Theorem 7.19 does not solely restrict to trivial NNCP classes, such

as the ones with a coupling graph that is complete. An example of a less trivial class of

coupling graphs having a sufficiently large automorphism group are the bicliques, i.e., the

complete bipartite graphs.

Corollary 7.20. The NNCP is polynomial time solvable on the biclique KN,M with N of

fixed size. In particular, the NNCP on the star K1,N is polynomial time solvable.

7.4.2 Reduced combinatorial formulation

Similar to (SPP) being an LP formulation of a shortest path problem, we show in this section

that (RSPP) and (RSPP′) also have a combinatorial interpretation. Such combinatorial

approaches often have the potential to induce efficient algorithms that are favoured over

solving their LP formulation. In order to simplify notation, we work with (RSPP) in this

section, although the construction for (RSPP′) is similar.

To view (RSPP) as a combinatorial problem, we consider the so-called quotient graph

of X under the action of GX . In its most general form, a quotient graph of a graph X is

induced by an equivalence relation on the vertices of X. We below provide the formal defin-

ition for the particular case where the equivalence relation is induced by an automorphism

group of X.

Definition 7.21 (Quotient graph implied by automorphisms). Let X = (V,A) be a directed

graph and let G be a subgroup of Aut(X). Then the quotient graph of X under G is the

graph X = (V,A) with V := V/G and A := A/G ⊆ V × V.

Since all arcs within an orbital of X start at vertices in the same orbit and end at vertices

in the same orbit, the quotient graph is well-defined. Observe that X can contain loops and

multi-arcs, even if X is simple.

Let X = (V,A) be the quotient graph of X under GX . Since the source vertex s and the

sink vertex t are in isolated orbits, the vertices s and t are again in V. By abuse of notation,

we again denote these vertices as s, t ∈ V. Since the constraints and variables in (RSPP)

correspond to orbits and orbitals of X under GX , respectively, the problem (RSPP) is an
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optimization problem on the quotient graph X . Now, for all (j, �) ∈ A we define the following

flow variable fj�:

fj� :=

⎧⎪⎨⎪⎩
d+(Z0

i )θ
0
i if (j, �) corresponds to Z0

i ,

θki if (j, �) corresponds to Zk
i , k ∈ [m],

d+(W k
i )λ

k
i if (j, �) corresponds to W k

i , k ∈ [m].

(7.21)

Moreover, we define for all (j, �) ∈ A a cost vector

wj� :=

⎧⎨⎩
|Wk

i |
d+(Wk

i )
if (j, �) corresponds to W k

i , k ∈ [m],

0 otherwise,
(7.22)

and an upper bound vector

uj� :=

⎧⎪⎨⎪⎩
d+(Z0

i ) if (j, �) corresponds to Z0
i ,

1 if (j, �) corresponds to Zk
i , k ∈ [m],

d+(W k
i ) if (j, �) corresponds to W k

i , k ∈ [m].

(7.23)

Finally, for all (j, �) ∈ A we define a multiplier pj�:

pj� :=

⎧⎪⎪⎨⎪⎪⎩
d−(Wk

i )

d+(Wk
i )

if (j, �) corresponds to W k
i , k ∈ [m],

d−(Zm
i ) if (j, �) corresponds to Zm

i ,

1 otherwise.

(7.24)

We now substitute fj�, wj� and pj� for all orbitals (j, �) ∈ A into (RSPP). This yields an

equivalent linear programming problem that has the structure of a minimum cost generalized

network flow problem:

min
∑

(j,�)∈A

wj�fj�

s.t.
∑

(j,�)∈δ+(s)

fj� = 1,
∑

(j,�)∈δ−(t)

pj�fj� = 1

∑
(j,�)∈δ+(v)

fj� =
∑

(j,�)∈δ−(v)

pj�fj� ∀v ∈ V \ {s, t}

0 ≤ fj� ≤ uj� ∀(i, j) ∈ A.

(GNFP)

A generalized flow is a flow starting from a sink s, conserving the flow at each vertex and

ending at a source t, where along each arc (j, �) only a fraction of pj� of flow is moved from j

to �. This fraction, called the multiplier, can also be larger than one, which means that the

flow is increased along the arc. The problem (GNFP) aims to send a generalized flow of one

from s to t that has a minimal cost with respect to the cost vector w.

The minimum cost generalized network flow problem is solvable in weakly polynomial

time by the algorithm of Wayne [362]. This is the only known combinatorial algorithm for

this problem in the literature. It is still an open problem whether the problem is also solvable

in strongly polynomial time, see e.g., [208].
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In the special case where Bτ is trivial for all τ ∈ Sn, the problem (GNFP) can be

solved more efficiently. In that case we have d+(W k
i ) = d−(W k

i ) = 1 for all orbitals W k
i ,

hence pj� = 1 for all W k
i . Now, for all (j, �) ∈ δ−(t) we replace pj�fj� by a new variable,

say gj�, that is upper-bounded by d−(Zm
i ). After these modifications, the resulting problem

equals the LP formulation of a shortest path problem, for which strongly-polynomial time

algorithms exist, e.g., Dijkstra’s algorithm with Fibonacci heaps [144].

7.4.3 Symmetry-reduced NNCP algorithm

In this section we show how an optimal solution to (RSPP), (RSPP′) or (GNFP) can be

used to find an optimal sequence of qubit orders for the NNCP. Moreover, we briefly present

an overview of the entire solution approach in terms of a pseudo-code.

By construction, solving (RSPP) or (GNFP) provides the optimal cost of a shortest

path in X. However, because of the reduction, the solutions of (RSPP) or (GNFP) do

no longer correspond itself to paths. Let (λ, θ) be an optimal solution to (RSPP) (in case

of solving (GNFP), we can obtain (λ, θ) from the flow variable f by (7.21)). Now, we

define (x, y) ∈
∏m

k=1 R
Ak ×

∏m
k=0 R

Dk

as follows:

x :=

⎛⎝ ∑
i∈Ak/GX

λk
i Wk

i

⎞⎠m

k=1

and y :=

⎛⎝ ∑
i∈Dk/GX

θki Zk
i

⎞⎠m

k=1

. (7.25)

It follows from the construction that the pair (x, y) corresponds to an optimal solution

of (SPP). Hence, it is a convex combination of characteristic vectors of (s, t)-paths in X.

Let Xsup denote the subgraph of X induced by the support of (x, y). Then, Xsup is an acyclic

graph. Namely, if there would exist a cycle in Xsup, due to the orientation of the arcs in X,

it can only consist of arcs within one subgraph. Since these arcs all have a positive cost,

the solution (x, y) can be improved by excluding the cycle from it. By a similar argument,

it follows that any (s, t)-path in Xsup must be optimal. Namely, if there is an (s, t)-path

in the support with a larger cost than the optimum, we can improve the solution (x, y) by

excluding this (s, t)-path and update the weights in the convex combination.

These observations make the identification of an optimal (s, t)-path simple: just find

any (s, t)-path in Xsup. This can be done without actually constructing Xsup. Starting

from s, we select an arbitrary arc from an orbital in D0/GX that is in the support of θ0.

This arc leads to a new vertex τ . From the orbit where τ belongs to, we again select an

orbital leaving this orbit that has a support in the optimal solution (λ, θ). Within this

orbital, there is at least one arc starting from τ and we select such an arc arbitrarily if there

are multiple. We continue doing this, which will eventually lead to the sink vertex t. It

follows from the discussion above that this (s, t)-path provides an optimal qubit ordering for

the NNCP.

We end this section by giving an overview of the symmetry-reduced NNCP algorithm.

The approach is given in pseudo-code in Algorithm 7.1.

7.5 Special coupling graphs

Of key importance in the algorithm discussed in Section 7.4 are the orbit and orbital repres-

entation of the subgraphs, which rely on the subgroups Bτ . These objects heavily depend on

the specific coupling graph. In this section we demonstrate how these objects are obtained
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Algorithm 7.1 Symmetry-reduced NNCP algorithm

Input: NNCP instance Γ = (Q,C) and coupling graph Coup(E) = (L,E).
1: Construct gate graph (Q,U) and fixing pattern F .
2: Construct orbit representation R of Sn under the action Gsub.
3: Initialize quotient subgraph Hsub = (Vsub, Asub) with Vsub indexed by R and Asub = ∅.
4: for τ ∈ R do
5: Determine Bτ and R(E/Bτ )
6: for {i, j} ∈ R(E/Bτ ) do

7: Construct an arc in H between τ and the orbit to which τ(i j) belongs, and add it to Asub.
8: Compute the size of Orb((τ, τ(i j))) and its out- and in-degree in, resp., Orb(τ) and Orb(τ(i j)).
9: end for
10: end for
11: Initialize the quotient graph X = (V,A) where V consists of m copies of Vsub, a source s and a sink

t, and A consists of all arcs within the subgraphs Asub. Add to A all arcs between s and the first
subgraph.

12: for gk ∈ C do
13: Determine R(Dk/GX).
14: if g is the mth quantum gate then
15: For all orbit representatives τ ∈ R(Dk/GX), add arcs from Orb(τ) to sink vertex t.
16: else
17: For all orbit representatives τ ∈ R(Dk/GX), add arcs from Orb(τ) to same orbit in Hk+1.
18: end if
19: end for
20: Obtain optimal (λ, θ) pair via solving either (RSPP), (RSPP′) or the generalized network flow prob-

lem (GNFP).

21: Find an optimal sequence of qubit orders τk, k ∈ [m] by identifying any (s, t)-path in the support of
(x, y), where (x, y) are defined as in (7.25).

Output: τk, k ∈ [m]

for four specific structured coupling graphs: the cycle graph, the biclique graph, the star

graph and the square lattice graph.

Table 7.2 provides an overview of certain important characteristics of each of the con-

sidered coupling graphs. Details are provided in the subsections below.

7.5.1 Cycle graph CN

Let CN = (L,E) denote the undirected cycle on N vertices, i.e., L = [N ] and E = {{i, i+1} :

i ∈ [N − 1]} ∪ {N, 1}. Then n = |L| = N . It is well-known that the automorphism group

of CN is given by D2n, the dihedral group of order 2n, see e.g., Godsil and Royle [175]. This

group consists of all reflections and rotations of the regular polygon of order n. It follows

from Theorem 7.8 that Cay(Sn, T ) is normal when N ≥ 5 and, as a consequence, its full

automorphism group is isomorphic to Sn ×D2n. The Cayley graph Aut(Cay(Sn, T )) with T

induced by CN is in the literature known as the modified bubble-sort graph, see e.g., [242].

The first step in studying the orbit and orbital structure of X under GX is the iden-

tification of Bτ . It can be proven that Bτ is trivial under a very mild condition. Recall

that c is the number of qubits in a connected component of size at least three in (Q,U), see

Definition 7.12.

Theorem 7.22. Suppose c ≥ 3. Then Bτ is trivial for all τ ∈ Sn.

Proof. Let τ ∈ Sn. If the gate graph (Q,U) contains a connected component of size at

least three, then the fixing pattern F contains at least three single-element sets, say {i}, {j}
and {�}. Since Bτ is the subgroup of D2n that setwise stabilizes the sets τ−1(S1), . . . , τ

−1(Sl),

it follows that any b ∈ Bτ must pointwise fix τ−1(i), τ−1(j) and τ−1(�). However, the only
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Architecture n |E| Graph

structure
Aut(Coup(E)) |Bτ |

Cycle CN N N

Example of C6

D2n
1 (unless the NNCP instance

is trivial, see Theorem 7.22)

Biclique

KM,N

M + N MN

Example of K2,3

SM × SN

(if M �= N)

2p−p̂f1!f2!, where p̂, f1 and f2

follow from Theorem 7.23

Star K1,N N + 1 N

Example of K1,6

Sn−1
2p−p̂f1!f2!, where p̂, f1 and f2

follow from Theorem 7.23

Lattice

GN,N

N2 2N(N − 1)

Example of G3,3

D8

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 if 3 ≤ c ≤ N and τ is sym-

metrically paired around an

axis zi,

1 otherwise.

Table 7.2: Summary of NNCP symmetry reduction characteristics for a set of special coupling
graphs.

element in D2n that fixes more than two elements is the identity element. Thus, Bτ is

trivial.

Observe that the condition of Theorem 7.22 is not restrictive. Namely, when c < 3, the

quantum circuit does not have overlapping quantum gates. This implies that a trivial qubit

assignment is possible without the need of any inserted SWAP gates, making the NNCP

instance trivial.

7.5.2 Biclique graph KM,N and star graph K1,N

The biclique graph (or complete bipartite graph) KM,N is defined on L = [M ] � [N ] and E =

{{i, j} : i ∈ [M ], j ∈ [N ]}. The induced partition of the vertex set L we denote by the sets

LM and LN . We assume here that M < N . Any independent setwise permutation of vertices

in LM and LN forms an automorphism of the graph, hence Aut(Coup(E)) ∼= SM × SN . The

corresponding Cayley graph Cay(Sn, T ) is in the literature known as the generalized star

graph, see e.g., [164]. With respect to the structure of the subgroups Bτ , we prove the

following result.
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Theorem 7.23. Let τ ∈ Sn. Let F ′ denote the fixing pattern obtained from F by replacing

any S ∈ F with |S| ≥ 2 by

S1 = {i ∈ S : τ−1(i) ∈ LM} and S2 = {i ∈ S : τ−1(i) ∈ LN}.

Then Bτ
∼= Sn(F ′). Moreover, let p̂ denote the number of pairs {i, j} for which τ−1(i) ∈ LM

and τ−1(j) ∈ LN , let f1 denote the number of elements in the free set that are mapped to LM

by τ−1, and let f2 = f − f1. Then,

|Bτ | = 2p−p̂f1!f2!.

Proof. Let G := {τ−1(S1), . . . , τ
−1(Sl)} be the partition of [n] defined by F shifted over τ−1.

Then, Bτ is the subgroup of Sn(G) which are also automorphisms of KM,N . Since any

automorphism of KM,N setwise fix the vertices in LM and LN , we obtain Bτ by splitting

each set of G into its subset in LM and its subset in LN , leading to the partition G′. The

partition F ′ is exactly G′ shifted over τ , leading to Bτ
∼= Sn(F ′). The second part of the

statement follows from counting the number of elements in Sn(F ′).

The special case where M = 1 is commonly known as the star graph K1,N . Its induced

Cayley graph is studied in [242]. Since we consider this coupling graph extensively in the

numerical results of Section 7.6, we add this case explicitly to Table 7.2.

7.5.3 Lattice graph GN,N

Let GN,N = (L,E) denote the lattice graph on N2 vertices, i.e., L = [N ] × [N ] and E =

{{(i, j), (i + 1, j)} : i ∈ [N − 1], j ∈ [N ]} ∪ {{(i, j), (i, j + 1)} : i ∈ [N ], j ∈ [N − 1]}.
Then, n = N2. Its automorphisms are equal to the automorphisms of the square, which

means that Aut(Coup(E)) = D8, the dihedral group of order 8. Although this group is

typically small, the case of the lattice is interesting from a practical point of view.

z3

z4

z2

z1

Figure 7.3: Four axes of reflection in
GN,N .

An important quantity for studying Bτ is again c.

As discussed before, all instances with c < 3 are

trivial. When c ≥ 3, the elements in Bτ should at

least fix 3 elements. This is not possible for any ro-

tation in D8, so the only possible elements in Bτ are

reflections. Figure 7.3 shows the four reflection axes

in GN,N , which we denote by z1, . . . , z4. We denote

by rj ∈ Aut(GN,N ) the corresponding reflection in zj
as element in the automorphism group of GN,N . We

now introduce the notion of symmetrical parity.

Definition 7.24. A qubit ordering τ on the lat-

tice GN,N is called symmetrically paired around

the zj-axis if for all singletons Si ∈ F the

preimages τ−1(Si) are on the zj-axis and for all

pairs Si = {q, �} ∈ F we have q = rj(�), where rj
is the reflection in the zj-axis.

If τ is symmetrically paired around zj , then τ−1(Si) is also automatically symmetrized

with respect to zj for the free set Si. Hence, informally speaking, τ is symmetrically paired

around zj if the preimage of the fixing pattern is fully symmetrized w.r.t. the zj-axis.

We can now prove the following result on Bτ for all relevant NNCP instances.
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Theorem 7.25. If c ≥ N + 1, then Bτ is trivial for all τ ∈ Sn. If 3 ≤ c ≤ N ,

then Bτ = {id, rj} if τ is symmetrically paired around the zj-axis and Bτ = {id} otherwise.

Proof. As stated above, besides the identity element, Bτ can only consist of reflections in

the axes z1, . . . , z4. Each of these reflections fixes either no or N positions. If c ≥ N + 1,

at least N + 1 positions should be fixed by elements in Bτ , so Bτ is trivial for all τ ∈ Sn.

If 3 ≤ c ≤ N , Bτ possibly contains reflections rj , where the condition rj(τ
−1(Si)) = τ−1(Si)

for all Si ∈ F is equivalent to τ being symmetrically paired around zj . Observe that Bτ can

never contain two or more reflections in {r1, . . . , r4}, since its composition fixes at most one

position. Therefore, Bτ = {id, rj} for some j or Bτ is trivial.

7.6 Computational results

In this section we test the symmetry-reduced NNCP algorithm, see Algorithm 7.1, on a set

of instances for several of the coupling graphs discussed in Section 7.5. We compare the

result against the nonreduced shortest path formulation (SPP).

We first describe the design of our numerical tests in Section 7.6.1, after which we discuss

the results on real and random instances in Section 7.6.2 and 7.6.3, respectively.

7.6.1 Design of computational experiments

For our experiments we consider both realistic as well as randomly generated quantum

circuits on different coupling graphs. As described in Section 7.2, we are justified to make

two assumptions on the quantum circuits under consideration, imposing a preprocessing

strategy in case these assumptions are not met:

1. Single-qubit gates can be ignored for the NNCP, since these do always comply with

the adjacent interaction constraints. Without loss of generality, we therefore remove

the single-qubit gates from the circuits in the preprocessing phase.

2. All gates that act on more than two qubits are decomposed into gates that act on one

or two qubits. Nielsen and Chuang [291] have shown that these gates are universal,

and that any quantum gate can therefore be decomposed into one- or two-qubit gates.

There exists a large number of different decomposition strategies, leading to possibly

different quantum gates (with the same functionality, however). As the choice of the

optimal decomposition strategy is outside the scope of our research, we always choose

the same strategy, namely the method considered in [285, 286].

The quantum circuits that we consider in this chapter consist of general one- or two-qubit

gates, multiple-control Toffoli gates up to size five, Peres gates and multiple-control Fredkin

gates up to size four. In Appendix A.6 we consider the decomposition of these gates into

one- or two qubit gates, following the approach from [285, 286]. After that, we remove

all single-qubit gates from the circuit. The preprocessed circuit that remains, will be the

quantum circuit Γ = (Q,C) that we take as an input to our algorithm.

We consider the following two instance classes:

Real data: Realistic quantum circuits that we consider are obtained from the Re-

vLib library [367]. This dataset consists of quantum gates of (well-known) reversible

functions considered in the quantum literature. Due to the assumptions of the prepro-

cessing phase, we only consider instances consisting of the above-mentioned gates, see
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Appendix A.6 for an overview. This leads to a set of 84 instances with n ∈ {5, . . . , 17}
and m ∈ {7, . . . , 112}.

Random data: We also consider synthetic quantum gates in order to also test our

approach on circuits consisting of more qubits and gates. We apply two strategies:

– Random Class I : Given n andm, we create a random circuit on n qubits consisting

of m two-qubit gates. Each gate acts on two qubits that are chosen uniformly at

random from [n] without replacement, independently from the other gates.

For each combination of n ∈ {20, 30, . . . , 100} and m = {2n, 4n}, we consider 5

randomly generated instances of this type. This leads to a test set of 90 instances.

– Random Class II : Given n and m, we first create a random circuit on n qubits

consisting of m gates selected from: Toffoli gate (on 3, 4 or 5 qubits), Fredkin gate

(on 3 or 4 qubits), Peres gate, or a general two-qubit gate. The latter class includes

the CNOT, SWAP and controlled-V or -V † gates. Each gate type is selected with

equal probability, and the qubits on which each gate acts, is chosen uniformly

at random from [n] without replacement. After that, we apply the preprocessing

approach explained above to convert each circuit to an equivalent circuit of two-

qubit gates. This leads to quantum gates with possibly more realistic patterns

than Random Class I.

For each combination of n ∈ {20, 30, . . . , 100} and m ∈ {n, 2n}, we consider 5 ran-

domly generated instances of this type, leading to a test set of 90 instances. After

the preprocessing step, the values of m increase and are within 117 ≤ m ≤ 1872.

We solve the NNCP for each quantum circuit on the following coupling graphs:

Cycle graph: The undirected cycle CN on N = n qubits, see Section 7.5.1.

Star graph: The star graph K1,N with N = n− 1, see Section 7.5.2.

Biclique graph: The biclique graph KM,N with M = 2 and N = n − 2, see Sec-

tion 7.5.2.

Observe that we do not consider the biclique graphs with M > 2 or the Lattice graphs.

The reason is that the automorphism groups of such graphs are rather small. Although

the resulting reductions in the number of variables and constraints are still substantial,

preliminary tests have shown that the difference in performance between the unreduced and

reduced variant is less significant than for the other coupling graphs.

For each combination of quantum circuit and coupling graph, we solve the unreduced LP-

formulation (SPP) and the reduced scaled formulation (RSPP′). The unreduced formulation

is implemented by a full construction of the graph X = (V,A). The reduced formulation

is implemented as described in Algorithm 7.1. We emphasize that our symmetry reduction

entirely follows from the analysis in Sections 7.3, 7.4 and 7.5, and that it does not rely

on the use of algebraic software, nor does it require a construction of the full graph X.

Preliminary experiments have shown that the performance between the nonscaled and scaled

formulations, (RSPP) and (RSPP′), respectively, is very similar. However, as the size of the

coefficients in (RSPP) grows with the order of the automorphism group of Coup(E), the

LP formulation becomes unstable for the star and biclique graphs when n ≥ 11 or n ≥ 12,

respectively. Therefore, we only use the more robust scaled version (RSPP′) in our tests.
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Experiments are carried out on a PC with an Intel(R) Core(TM) i7-8700 CPU, 3.20GHz

and 8 GB RAM. Our algorithms are implemented in Julia 1.8.4 using JuMP v1.6.0 [113] to

model the mathematical optimization problems. We use the LP solver of Mosek 10.0 [18] to

solve our models in the default configuration. The maximum computation time (including

the construction time of the program) is set to 2 hours.

7.6.2 Results on RevLib instances

Table 7.3, 7.4 and 7.5 show the results for the RevLib instances on the cycle, star and biclique

graph, respectively. The columns ‘n’ and ‘m’ show the number of qubits and quantum gates

in the preprocessed circuit. The column ‘OPT’ shows the optimal value of the NNCP in-

stance, i.e., the minimum number of inserted SWAP gates in order to make the quantum cir-

cuit compliant. The columns ‘time (RSPP ′)’ and ‘time (SPP )’ show the computation time

(i.e., clocktimes) in seconds to solve the reduced model (RSPP′) and the base model (SPP),

respectively. The values are rounded to three decimals. The columns ‘#var (RSPP ′)’ and

‘#const (RSPP ′)’ denote the total number of variables and constraints after the symmetry

reduction. Finally, the column ‘reduction #var (%)’ shows the relative reduction in the num-

ber of variables compared to the base model, i.e., #var (SPP )−#var (RSPP ′)
#var (SPP )

· 100%, rounded

to two decimal places. The final column shows the same relative reduction for the number

of constraints. Whenever a given instance is not solvable (including construction) within the

time limit of 2 hours, or whenever an instance leads to a shortage of memory, we report a ‘-’

in the tables.

It turned out that the 62 instances with n = 5 are very easy to compute for both

models (SPP ) and (RSPP ′). For that reason, results on these instances are not depicted

in Tables 7.3, 7.4 and 7.5. The total relative reduction in the number of variables and

constraints on the instances with n = 5 turns out to be at least 90% and 89.8%, respectively.

For the cycle graph, one can clearly see that the bottleneck in the computational limit

is the number of qubits n. It follows from Table 7.3 that our algorithm is able to solve

instances up to roughly 8 qubits, while the base model can only solve instances up to 7

qubits. The total computation time of (RSPP′) is often negligible and below 30 seconds

for the instances that can be solved. For the base model the total computation times are

significantly higher, with a maximum difference of about a factor 100. This can be explained

by the large reduction in the total number of variables and constraints, which are both

above 91% for all instances.

For the star graph, we conclude from Table 7.4 that the reduced model can easily handle

the full set of RevLib instances. The computation times are negligible for almost all instances

and always below 0.2 seconds. This can be explained by the order of Aut(Coup(E)) being

factorial in n, implying that the model (RSPP′) scales linearly in both m and n. The relative

reductions with the base model are enormous, i.e., above 99% in terms of the number of

variables and constraints on all instances. For the unreduced model, the largest instance we

can solve has n = 8 and m = 36, which could not be solved on the cycle coupling graph.

This can be explained by the fact that the star graph on n vertices has one edge less than the

cycle graph on n vertices, resulting in the Cayley graph containing significantly fewer edges.

The computational frontier, however, is reached already at the next instance, for which the

base model runs into memory issues.

Finally, the results on the biclique coupling graph look very similar to the results of the

star graph, see Table 7.5. The total relative reduction between the models is extremely large,

leading to all instances to be solvable within 0.25 seconds using (RSPP′). The computation
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times are slightly larger than in the case of the star graph, which can be explained by the

smaller size of the automorphism group of the biclique. For the unreduced formulation we

can only solve up to n = 7, while the reduction in computation times for the largest instance

that can be solved using (SPP) is about a factor 4700.

Benchmark n m OPT
time

(RSPP ′)
time

(SPP )

#var

(RSPP ′)
#const

(RSPP ′)
reduction

#var (%)

reduction

#const (%)

graycode6 47 6 5 0 0.000 0.172 1980 3602 91.67 91.62

graycode6 48 6 5 0 0.016 0.172 1980 3602 91.67 91.62

decod24-enable 124 6 21 5 0.047 0.937 8124 15122 91.67 91.65

decod24-enable 125 6 21 4 0.047 0.906 8124 15122 91.67 91.65

decod24-bdd 294 6 24 8 0.062 1.203 9276 17282 91.67 91.66

mod5adder 129 6 71 27 0.157 4.563 27324 51122 91.67 91.66

mod5adder 128 6 77 32 0.172 4.250 29628 55442 91.67 91.66

decod24-enable 126 6 86 34 0.188 5.500 33084 61922 91.67 91.66

xor5 254 6 5 3 0.016 0.188 1980 3602 91.67 91.62

ex1 226 6 5 3 0.016 0.187 1980 3602 91.67 91.62

4mod5-bdd 287 7 23 8 0.469 36.203 61080 115922 92.86 92.86

alu-bdd 288 7 28 7 0.641 51.031 74280 141122 92.86 92.86

ham7 106 7 49 20 1.172 91.672 129720 246962 92.86 92.86

ham7 105 7 65 32 1.485 135.625 171960 327602 92.86 92.86

ham7 104 7 83 38 1.984 181.734 219480 418322 92.86 92.86

rd53 137 7 66 33 3.750 146.811 174600 23762 92.24 92.86

rd53 139 8 36 14 22.672 - 754200 90722 93.75 93.75

rd53 138 8 44 20 26.266 - 921240 110882 93.75 93.75

mini alu 305 10 57 - - - - - - -

sys6-v0 144 10 62 - - - - - - -

rd73 141 10 64 - - - - - - -

parity 247 17 16 - - - - - - -

Table 7.3: Results on the ‘RevLib’ instances on the cyclic coupling graph. We compare
the performance of the base model (SPP ) with the reduced model (RSPP ). Times are
clocktimes given in seconds.

7.6.3 Results on random instances

From Table 7.4 and 7.5 we observe that the RevLib instances can be easily solved by our

symmetry reduced formulation. To test the performance on larger instances, we consider the

random data set, consisting of quantum circuits with up to 100 qubits and 1837 quantum

gates. For the cycle coupling graph, we have seen that we could only solve instances up

to n = 8. Therefore, we do not include the cycle coupling graph anymore for the random

data set. For the same reason, we do no longer consider the base model (SPP).

Table 7.6 and 7.7 show the performance of our symmetry-reduced NNCP algorithm on

Random Class I and Random Class II for both the star and biclique coupling graph. Next

to the total solution time, which is given in the column ‘time (RSPP )’, we show in the

column ‘time constr.’ the time that is required to construct the LP-instance, i.e., the time

spent in lines 1–21 of Algorithm 7.1. Each row in the tables corresponds to the average

value over 5 randomly generated instances of that type. In Figure 7.4 we plot the averaged

total computation time, i.e., construction and solution time, compared to n and m for both

coupling graphs and random classes.
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For the star coupling graph, we see that we can easily solve all instances from Random

Class I within on average 25 seconds, while at most 90 seconds are needed to construct the

model. For Random Class II, we can solve up to n = 100, however, when m is too large, the

PC runs out of memory. For the biclique coupling graph on Random Class I, we can solve

instances up to n = 40 within the time span of 2 hours, whereas for Random Class II the

instances with large m cannot be solved anymore.

The sum of solution and construction times on the biclique graphs is significantly higher

than on the star graphs, see Figure 7.4. The tables reveal that the solution times on the

former are an order of magnitude 2 higher. This can be explained by the difference in the

order of Aut(Coup(E)), as explained in Section 7.6.2. The construction times, however,

heavily deviate among the instances on the star and the biclique coupling graph. Indeed,

the smaller automorphism group increases the number of orbits, and thus, the number of

orbit representatives inR. For each of these representatives, one needs to enumerate over the

orbits of the group action of Bτ on E. Moreover, in line 7 of Algorithm 7.1 a subroutine needs

to identify to which orbit τ(i j) belongs. Since the number of orbits is larger, an enumerative

search along the orbit list takes more time. Hence, the negative effects of having a smaller

number of symmetries and a larger number of edges, strengthen one another and result in

large construction times when n and m increase.

Benchmark n m OPT
time

(RSPP ′)
time

(SPP )

#var

(RSPP ′)
#const

(RSPP ′)
reduction

#var (%)

reduction

#const (%)

graycode6 47 6 5 2 0.000 0.125 166 32 99.17 99.11

graycode6 48 6 5 2 0.000 0.125 166 32 99.17 99.11

decod24-enable 124 6 21 4 0.016 0.609 678 128 99.17 99.15

decod24-enable 125 6 21 5 0.000 0.594 678 128 99.17 99.15

decod24-bdd 294 6 24 8 0.000 0.672 774 146 99.17 99.16

mod5adder 129 6 71 19 0.000 2.343 2278 428 99.17 99.16

mod5adder 128 6 77 18 0.000 2.953 2470 464 99.17 99.16

decod24-enable 126 6 86 19 0.016 2.718 2758 518 99.17 99.16

xor5 254 6 5 0 0.000 0.109 166 32 99.17 99.11

ex1 226 6 5 0 0.000 0.125 166 32 99.17 99.11

4mod5-bdd 287 7 23 5 0.000 14.875 1019 163 99.86 99.86

alu-bdd 288 7 28 11 0.000 16.141 1239 198 99.86 99.86

ham7 106 7 49 20 0.015 28.328 2163 345 99.86 99.86

ham7 105 7 65 18 0.000 36.157 2867 457 99.86 99.86

ham7 104 7 83 18 0.015 57.516 3659 583 99.86 99.86

rd53 137 7 66 10 0.000 38.521 2911 464 99.86 99.86

rd53 139 8 36 15 0.047 7 031.828 2096 290 99.98 99.98

rd53 138 8 44 12 0.000 - 2560 354 99.98 99.98

mini alu 305 10 57 16 0.016 - 5254 572 100.00 100.00

sys6-v0 144 10 62 26 0.015 - 5714 622 100.00 100.00

rd73 141 10 64 27 0.000 - 5898 642 100.00 100.00

parity 247 17 16 0 0.000 - 4401 274 100.00 100.00

Table 7.4: Results on the ‘RevLib’ instances on the star coupling graph. We compare
the performance of the base model (SPP ) with the reduced model (RSPP ). Times are
clocktimes given in seconds.
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Benchmark n m OPT
time

(RSPP ′)
time

(SPP )

#var

(RSPP ′)
#const

(RSPP ′)
reduction

#var (%)

reduction

#const (%)

graycode6 47 6 5 1 0.015 0.250 655 77 97.92 97.86

graycode6 48 6 5 1 0.000 0.235 655 77 97.92 97.86

decod24-enable 124 6 21 4 0.016 1.500 2703 317 97.92 97.90

decod24-enable 125 6 21 4 0.000 1.297 2703 317 97.92 97.90

decod24-bdd 294 6 24 5 0.015 1.485 3087 362 97.92 97.91

mod5adder 129 6 71 15 0.032 5.031 9103 1067 97.92 97.91

mod5adder 128 6 77 14 0.031 5.016 9871 1157 97.92 97.91

decod24-enable 126 6 86 16 0.031 5.844 11023 1292 97.92 97.91

xor5 254 6 5 1 0.000 0.266 655 77 97.92 97.86

ex1 226 6 5 1 0.000 0.265 655 77 97.92 97.86

4mod5-bdd 287 7 23 4 0.016 72.110 5081 485 99.58 99.58

alu-bdd 288 7 28 5 0.016 83.844 6181 590 99.58 99.58

ham7 106 7 49 8 0.031 143.265 10801 1031 99.58 99.58

ham7 105 7 65 14 0.031 217.359 14321 1367 99.58 99.58

ham7 104 7 83 8 0.078 282.453 18281 1745 99.58 99.58

rd53 137 7 66 10 0.047 223.981 14541 1388 98.14 99.58

rd53 139 8 36 8 0.063 - 12556 1010 99.93 99.93

rd53 138 8 44 10 0.062 - 15340 1234 99.94 99.94

mini alu 305 10 57 14 0.218 - 41997 2567 100.00 100.00

sys6-v0 144 10 62 13 0.141 - 45677 2792 100.00 100.00

rd73 141 10 64 14 0.095 - 47149 2882 100.00 100.00

parity 247 17 16 1 0.108 - 65896 2178 100.00 100.00

Table 7.5: Results on the ‘RevLib’ instances on the biclique coupling graph. We compare
the performance of the base model (SPP ) with the reduced model (RSPP ). Times are
clocktimes given in seconds.

Figure 7.4: Overview of total average computation times (construction + solution time) of
random instances with respect to n and m. Each data point displays the average over 5
randomly generated instances of that type.

When comparing Random Class I and II, we do not observe significant structural differ-

ences. It seems to be primarily the magnitude of n and m that influences the complexity
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of the instance. Due to the construction, m grows more rapidly with respect to n for Ran-

dom Class II than for Random Class I. This effect can be observed from Figure 7.4, where

we observe that for fixed n, an instance from Random Class II on average requires more

computation time.

The largest quantum circuit that we can successfully solve contains 100 qubits and 1047

quantum gates. Observe that the unreduced model of this instance would embrace subgraphs

of 100! vertices, hence solving this model is infeasible.

Random Class I Random Class II

n m OPT
time

(RSPP ′)
time

constr.
n m OPT

time

(RSPP ′)
time

constr.

20 40 29.6 0.031 0.088 20 125.6 35.0 0.119 1.425

20 80 65.2 0.056 0.134 20 365.6 80.8 0.334 0.712

30 60 52.4 0.106 0.274 30 255 59.6 0.544 1.189

30 120 101.2 0.243 0.551 30 564.6 126.4 1.350 2.940

40 80 72.4 0.282 0.820 40 302.2 76.6 1.150 2.482

40 160 144.4 0.631 1.556 40 652.4 159.8 3.150 8.081

50 100 91.2 0.569 1.971 50 441.4 104.6 3.272 7.223

50 200 184.6 1.312 3.336 50 854.8 203.8 8.091 16.474

60 120 112.8 1.025 3.349 60 471 122.8 5.737 13.121

60 240 222.4 2.447 6.162 60 1027.4 247.6 16.903 44.061

70 140 132.0 1.769 6.135 70 589.4 145.2 10.838 26.888

70 280 264.6 4.662 14.194 70 1223 292.8 31.875 149.451

80 160 151.0 3.313 10.704 80 722.4 171.6 23.634 97.156

80 320 304.2 7.775 21.305 80 1372.8 333.6 32.600 307.844

90 180 172.0 4.809 24.524 90 750 184.8 22.312 162.915

90 360 343.8 14.681 42.293 90 1602.8 - - -

100 200 191.8 9.106 31.802 100 921.2 218.8 36.966 363.073

100 400 385.0 21.066 85.295 100 1709.6 - - -

Table 7.6: Results on the random instances on the star coupling graph. Each row shows the
average values over 5 randomly generated instances. Times are clocktimes given in seconds.

Random Type I Random Type II

n m OPT
time

(RSPP ′)
time

constr.
n m OPT

time

(RSPP ′)
time

constr.

20 40 20.6 1.588 12.029 20 125.6 27.6 4.188 17.270

20 80 43.4 2.590 14.217 20 365.6 66.8 15.113 30.584

30 60 38.4 9.675 374.035 30 255 50.0 49.175 413.975

30 120 71.2 18.322 390.226 30 564.6 107.2 115.350 829.710

40 80 54.2 44.053 3 872.272 40 302.2 61.7 168.276 2 800.738

40 160 109.4 66.884 3 989.450 40 652.4 - - -

Table 7.7: Results on the random instances on the biclique coupling graph. Each row shows
the average values over 5 randomly generated instances. Times are clocktimes given in
seconds.
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7.7 Conclusions

In this chapter we study an exact method for solving the NNCP in the gated quantum

computing model by exploiting symmetries in the underlying formulation.

Starting from the shortest path formulation introduced by [269], see (SPP), we study

the algebraic structure of the underlying graph in Section 7.3. This graph is composed of

a series of Cayley graphs of the symmetric group Sn generated by the transpositions in the

coupling graph of the quantum system. We show that Sn ×Aut(Coup(E)) is a subgroup of

the automorphism group of such Cayley graph, which turns out to be the full automorphism

group in case the Cayley graph is normal as shown by [163]. Although the automorphism

groups of specific Cayley graphs generated by transpositions has been studied before in the

literature, we do not make any assumption on the underlying coupling graph apart from

being connected. Next, we show how these subgroups are merged into a subgroup GX of

the automorphism group of the entire graph, see (7.8). One component of this subgroup

is determined by the algebraic structure of the coupling graph, while the other component

relies on a so-called fixing pattern F following from the quantum gates in the circuit, see

Definition 7.12. The orbit and orbital structures of the action of this group on the graph are

also studied, leading in particular to an overview of the cardinalities of the corresponding

quotients, see Table 7.1.

By exploiting the convexity of (SPP), we reduce the symmetries in the formulation by

averaging over all symmetric solutions using the Reynolds operator, see (7.15). This leads

to a more compact equivalent formulation (RSPP) and its scaled variant (RSPP′). We show

that this formulation is equivalent to a generalized network flow problem (GNFP). Due to

the in-depth analysis on the orbit and orbital structure, these formulations can be explicitly

constructed from scratch without the need to first construct the exponentially large Cayley

graphs. This leads to our symmetry-reduced NNCP algorithm, see Algorithm 7.1. A direct

theoretical implication of our approach are the complexity results of Theorem 7.19 and

Corollary 7.20, which reveal a class of polynomial time solvable special cases of the NNCP.

The gain of using our approach compared to the base model (SPP) is most vibrant in case

the fixing pattern is less restrictive and the coupling graph is (highly) symmetric. We test our

approach on four types of coupling graphs, for which we explicitly derive the key ingredients

of our algorithm, see Table 7.2. Our numerical results show that the gain in efficiency due

to the exploitation of symmetries is very large. For each of the 84 real and 180 random

instances, the total reduction in the number of variables and constraints is at least 90%

and 89.8%, respectively, and this number grows with n and m. The computation times are

significantly reduced compared to the unreduced model, resulting in solving NNCP instances

that are much larger than the ones considered so far in the literature. The largest instance

we can solve contains 100 qubits and 1047 quantum gates.

Given that we are only at the beginning of the quantum era, related optimization prob-

lems such as the NNCP are likely to remain important in the near future. Based on the

successful implementation of our symmetry-reduced NNCP algorithm, it would be interesting

to consider the NNCP on other quantum architectures having a large symmetry group.
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A
Appendices

A.1 Dykstra’s parallel projection algorithm

In Section 3.5.4 Dykstra’s cyclic algorithm is presented to iteratively project onto the poly-

hedra induced by the BQP cuts. Instead of projecting on each polyhedron one after another,

it is also possible to project on all polyhedra simultaneously. This method is refered to as

parallel Dykstra. Gaffke and Mathar [150] were the first who proposed this fully simultan-

eous method. The convergence of this algorithm in Euclidean spaces was shown by Iusem

and De Pierro [223] using a construction by Pierra [304]. The approach was later generalized

to Hilbert spaces, see e.g., [34].

The idea of the parallel Dykstra algorithm is to project onto each set simultaneously

and monitor the sequence of weighted averages of these projections. We present here a

tailor-made version of this approach by giving each triangle inequality an equal weight.

Let θ ∈ (0, 1). At the start, we set X0
Y = X0

eifigi
= M for all (ei, fi, gi) ∈ T , R0

Y = 0 and

R0
eifigi

= 0. Moreover, we set X̄0 = M . Now, for each k ≥ 1 we iterate:

Xk
Y := PY

(
X̄k−1 +Rk−1

Y

)
Rk

Y := X̄k−1 +Rk−1
Y −Xk

Y

Xk
eifigi := PHeifigi

(
X̄k−1 +Rk−1

eifigi

)
Rk

eifigi := X̄k−1 +Rk−1
eifigi

−Xk
eifigi

⎫⎬⎭ for all (ei, fi, gi) ∈ T

X̄k := θXk
Y + (1− θ)

1

T

∑
(ei,fi,gi)∈T

Xk
eifigi

(ParDyk)

Note that the projections in (ParDyk) can be performed simultaneously, as each projection

solely uses information resulting from the previous iterate. Under some regularity conditions,

the sequence (X̄k)k≥1 in (ParDyk) converges strongly to the solution of the best approxim-

ation problem, see [34, 223]. One of the sufficient conditions for convergence is that YT 	= ∅,

279
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which always holds in our setting.

Based on a construction by Pierra [304], it follows that the algorithm (ParDyk) is equi-

valent to the cyclic Dykstra algorithm performed to the following two convex sets in the

higher dimensional space (Sm+1)T+1 := Sm+1 × · · · × Sm+1:

S1 := Y ×
∏

(e,f,g)∈T

Hefg and S2 :=
{
(X,X, ...,X) ∈ (Sm+1)T+1 : X ∈ Sm+1

}
,

using the inner product 〈·, ·〉θ defined as

〈(X0, X1, . . . , XT ), (Y0, Y1, . . . , YT )〉θ := θ 〈X0, Y0〉+ (1− θ)
1

T

T∑
i=1

〈Xi, Yi〉.

Preliminary experiments show that the convergence of (ParDyk) in general takes more iter-

ations than the convergence of (CycDyk), where we use the semi-parallel implementation of

the latter. This is what one might expect, since in the cyclic version each iterate directly

builds on the output of the previous iterates. However, since the projections can be per-

formed simultaneously, the total computation time can still be smaller when implemented

on parallel machines. Table A.1 shows a comparison of both methods within the CP-ALM

on a test set of Erdős-Rényi instances implemented on nonparallel machines. Results are

presented for different values of θ. In all cases the lower bound obtained by the CP-ALM

using (ParDyk) in the subproblem at the moment the iteration limit is reached is weaker

than the lower bound obtained from using (CycDyk) in the subproblem. Moreover, since the

parallel version takes more iterations to converge, the computation times are significantly

larger. We conclude that the use of (CycDyk) is favoured above the use of (ParDyk) within

the CP-ALM in both quality and computation time. For that reason, we only use (CycDyk)

in the numerical experiments of Section 3.7.

CP-ALM using

cyclic Dykstra

CP-ALM using parallel Dykstra

PRSM θ = 0.5 θ = 0.85 θ = 0.95

p n m value times value times value times value times value times

0.3 20 119 319 0.331 319 0.384 319 0.415 319 0.378 319 0.389

25 177 386 1.822 386 5.437 386 26.61 386 24.35 386 24.01

30 280 333 20.75 339 96.27 335 7426 333 7036 333 1433

0.5 20 195 227 10.15 234 92.89 229 4203 227 2923 227 733.7

25 327 169 35.68 173 92.13 170 6640 169 5623 169 1852

30 442 198 91.71 202 130.8 199 12437 198 10815 198 3677

Table A.1: Performance of CP-ALM using cyclic and parallel Dykstra on a test set of 6
Erdős-Rényi instances with maxIter = 1000, maxTotalIter = 5000, numCuts = 150 and
all other parameters the same as given in Section 3.7.

In order to reduce the number of iterations to converge, we can perform a preprocessing

step before the Y -subproblem is solved using (ParDyk). Suppose this subproblem involves

the projection of a matrix M onto YT . Since this projection is done iteratively, the length

of the sequence before convergence depends on the initial distance between M and YT .

This distance can be shortened using a simple preprocessing step. This step involves the
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Chapter A. Appendices 281

projection onto all affine constraints of YT . We define:

Yaff :=
{
Y ∈ Sm+1 : Y11 = 1, diag(Y ) = Y e1, tr(Y ) = n+ 1, Yef = 0 ∀(e, f) ∈ Z

}
.

Since Yaff is an affine subspace, the projection PYaff(·) onto Yaff can be found explicitly. Now,

instead of projecting M onto YT , we can equivalently project the ‘closer’ matrix PYaff(M)

onto YT , as shown by the following lemma.

Lemma A.1. PYT (M) = PYT (PYaff(M)).

Proof. Let M̄ := PYT (M) and M̂ := PYaff(M). We have to show that PYT (M̂) = M̄ . Using

the Kolmogorov conditions, the projection of M̂ onto YT is the unique solution s.t.:

PYT (M̂) ∈ YT and 〈Y − PYT (M̂), M̂ − PYT (M̂)〉 ≤ 0 for all Y ∈ YT .

Clearly, M̄ satisfies the first condition. Moreover,

〈Y − M̄, M̂ − M̄〉 = 〈Y − M̄,M − M̄〉︸ ︷︷ ︸
≤0

+ 〈Y − M̄, M̂ −M〉︸ ︷︷ ︸
=0

≤ 0,

for all Y ∈ YT . Here 〈Y − M̄,M − M̄〉 ≤ 0 follows from the Kolmogorov conditions for

the projection of M onto YT and the equality 〈Y − M̄, M̂ − M〉 = 0 follows from the

fact that Y, M̄ ∈ Yaff and M̂ − M is orthogonal to the affine space Yaff. We conclude

that M̄ = PYT (M̂).

Observe that the projection onto the unconstrained simplex Δ̄(a) := {x ∈ Rm : 1�x = a}
is given by PΔ̄(a)(x) = x − 1�x−a

1�1
1. Thus the projection of M onto Yaff is explicitly given

by:

PYaff(M) = E11 + Tinner(M) + T ∗
arrow

(
3 · PΔ̄(n)

(
Tarrow(M)

))
.

Solving the Y -subproblem is now equivalent to performing the projection onto Yaff once

and apply (ParDyk) to project PYaff(M) onto YT . Further experiments show that this step

indeed reduces the number of iterations, but this reduction is not enough to exceed the

performance of (CycDyk).

A.2 Additional computational results for Chapter 4

In this section we report additional numerical results. Table A.2 serves to evaluate a quality

of the DNN relaxation (4.11) with additional cuts for large graphs obtained after adding at

most 3n cuts in each outer while-loop of Algorithm 4.1. In Table 4.4, Section 4.5 we report

the results when the number of added cuts in each outer while-loop is at most 5n. Our

numerical results show that lower bounds might significantly improve when adding more

cuts. Therefore, our final choice for adding cuts for large graphs is 5n.

We furthermore give in Table A.3 additional numerical results for the relaxation (4.11)

with additional cuts and k = 2 for (rather small) instances from the literature. All these

instances have been considered in [193]. The first group of instances are grid graphs of

Brunetta et al. [57]. These graphs are as follows:

https://a.1.py/


623138-L-sub01-bw-deMeijer623138-L-sub01-bw-deMeijer623138-L-sub01-bw-deMeijer623138-L-sub01-bw-deMeijer
Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023 PDF page: 302PDF page: 302PDF page: 302PDF page: 302

282 Integrality and cutting planes in SDP approaches for CO

Planar grid instances: To represent instances of equicut on planar grid graphs we assign

a weight from 1 to 10, drawn from a uniform distribution, to the edges of a h×k planar

grid, and a 0 weight to the other edges. The names of those graphs are formed by the

size followed by the letter ‘g’.

Toroidal grid instances: Same as planar grid instances but for toroidal grids. The

names of those graphs are formed by the size followed by the letter ‘t’.

Mixed grid instances: These are dense instances with all edges having a nonzero weight.

The edges of a planar grid receive weights from 10 to 100 uniformly generated and all

the other edges a weight from 1 to 10, also uniformly generated. The names of those

graphs are formed by the size followed by the letter ‘m’.

The second group of instances are randomly generated graphs from [193]: for a fixed density,

the edges are assigned integer weights uniformly drawn from [1,10]. Graphs’ names begin

with ‘v’, ‘t’, ‘q’, ‘c’, and ‘s’.

Table A.3 also includes results on instances constructed with de Bruijn networks by [193],

of which the data arise in applications related to parallel computer architecture [79, 129].

Graphs’ names begin with ‘db’. Finally, we test some instances from finite element meshes

from [193], graphs’ names begin with ‘m’.

There are 64 instances in Table A.3, and we prove optimality for 53 instances. The

longest time required to compute a lower bound is 2.5 minutes, and computation of upper

bounds is negligible.
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A.3 Derivation of subtour elimination constraints as CG cuts

In this appendix we elaborate on the construction of the five types of subtour elimination

constraints given in Table 5.1 as (S-)CG cuts.

A.3.1 Ordinary subtour elimination constraint

Let S ⊆ N with |S| < n. The well-known subtour elimination constraint corresponding to S

can be obtained as a CG cut, see also [68]. Let S be the indicator vector of the set of

nodes S. Then, 〈
S S

�, βIn + αJn −
1

2

(
X +X�

)〉
≥ 0

is a valid cut. Applying the CG procedure to this cut, yields〈
S S

�,
1

2
(X +X�)

〉
≤

⌊〈
S S

�, βIn + αJn

〉⌋
or equivalently, ∑

i∈S,j∈S

xij ≤ �|S| (β + α|S|)� .

If β = kn and α = hn/n, then for all S with |S| < n we have β + α|S| < 1. Hence, the CG

cut above implies ∑
i∈S,j∈S

xij ≤ |S| − 1. (A.1)

The cut (A.1) is the common subtour elimination constraint introduced by Dantzig et al. [91].

A.3.2 Cut-set subtour elimination constraints

The cut-set subtour elimination constraints are known to be equivalent to the ordinary

subtour elimination constraints of [91]. It is therefore no surprise that these cuts can be

obtained similarly as the ordinary subtour elimination constraints.

Let U = S S
� be the dual multiplier of the LMI βIn + αJn − 1

2

(
X +X�)

� 0 and

let S be the dual multiplier of the constraints −X1 = −1. The sum of these constraints

yields 〈
S S

�,
1

2
(X +X�)

〉
− S

�X1 ≤
⌊〈

S S
�, βIn + αJn

〉
− S

�1
⌋
,

or equivalently,

−
∑

i∈S,j /∈S

xij ≤ �|S| (β + α|S|)� − |S|.

If β = kn and α = hn/n, then the right-hand side becomes |S| − 1− |S| = −1, which yields

the desired cut.
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A.3.3 Merged subtour elimination constraint

Let (S1, . . . , Sk) be a partition of the node set of G, i.e.,
⋃k

l=1 Sl = N and Sl ∩ Sp = ∅ for

all l 	= p. We can obtain a merged subtour elimination constraint via the CG procedure in

the following way.

Let U = 2
∑k

l=1 Sl Sl
� be the dual multiplier for βIn +αJn− 1

2

(
X +X�)

. Since each

dual multiplier Sl Sl
� leads to a CG cut of Type I in Table 5.1, its weighted sum also

belongs to the elementary closure and looks as follows:

2
k∑

l=1

∑
i∈Sl
j∈Sl

xij ≤ 2
k∑

l=1

(|Sl| − 1) = 2(n− k).

Now we add to this cut the equality −X1 = −1 with dual multiplier 1, which yields the

desired merged cut

2
k∑

l=1

∑
i∈Sl
j∈Sl

xij − 1�X1 ≤ 2(n− k)− 1�1

which is equivalent to

k∑
l=1

∑
i∈Sl
j∈Sl

xij −
∑
l �=p

∑
i∈Sl
j∈Sp

xij ≤ n− 2k.

A.3.4 Strengthened subtour elimination constraints of size two

Let i 	= j and define U = {i,j} {i,j}
�. Taking U as the dual multiplier with respect

to β(2)In + α(2)Jn − 1
2

(
(X +X(2)) + (X +X(2))�

)
� 0, provides the following valid cut:〈

{i,j} {i,j}
�, β(2)In + α(2)Jn −

1

2

(
(X +X(2)) + (X +X(2))�

)〉
≥ 0.

By adding the coupling constraints
∑

k∈N :(i,k,j)∈A yikj − x
(2)
ij = 0 and

∑
k∈N :(j,k,i)∈A yjki −

x
(2)
ji = 0, each with dual multiplier 1, and the constraints −xii = 0, −xjj = 0, −x(2)

ii = 0

and −x(2)
jj = 0, also each with dual mulitplier 1, we obtain

xij + xji +
∑
k∈N :

(i,k,j)∈A

yikj +
∑
k∈N :

(j,k,i)∈A

yjki ≤ 2β(2) + 4α(2).

We now take β(2) = k
(2)
n and α(2) = h

(2)
n /n. Applying the standard CG procedure to this

inequality results in the cut

xij + xji +
∑
k∈N :

(i,k,j)∈A

yikj +
∑
k∈N :

(j,k,i)∈A

yjki ≤
⌊
2k(2)

n + 4
h
(2)
n

n

⌋
. (A.2)

The right-hand side of this cut equals one if 5 ≤ n ≤ 7, two if 8 ≤ n ≤ 12 and three if n ≥ 13.
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For n ≥ 5, we can strengthen this cut by applying the S-CG procedure as explained in

Section 5.2.5. Since the cut (A.2) only involves variables y and X, we can restrict the set S

to the space corresponding to these variables. Let S = F1 ∩
(
{0, 1}A × Tn(G)

)
and let c1 be

the coefficient vector of the left-hand side in (A.2). Then the strengthened rounding looks

as follows:

⌊
2k(2)

n + 4
h
(2)
n

n

⌋
S,c1

:= max

⎧⎪⎪⎨⎪⎪⎩xij + xji +
∑
k∈N :

(i,k,j)∈A

yikj +
∑
k∈N :

(j,k,i)∈A

yjki : (A.2), (y,X) ∈ S

⎫⎪⎪⎬⎪⎪⎭ .

One can verify that the value of this maximization is equal to 1 for n ≥ 5. Namely, if it

would be greater than 1, this implies a subtour of size two (if xij = xji = 1), size three (e.g.,

if xij = 1 and yjki = 1 for some k ∈ N \ {i, j}) or size four (e.g., if yikj = 1 and yjli = 1

for some distinct k, l ∈ N \ {i, j}), which contradicts the fact that X ∈ Tn(G). We conclude

that
⌊
2k

(2)
n + 4h

(2)
n
n

⌋
S,c1

= 1. Thus, we obtain the strengthened CG cut

xij + xji +
∑
k∈N :

(i,k,j)∈A

yikj +
∑
k∈N :

(j,k,i)∈A

yjki ≤ 1.

A.3.5 Strenghtened subtour elimination constraints

Let S ⊂ N with 2 ≤ |S| < 1
2
n and define U = S S

�. Taking U as the dual multiplier with

respect to β(2)In + α(2)Jn − 1
2

(
(X +X(2)) + (X +X(2))�

)
� 0 provides the inequality〈

S S
�, β(2)In + α(2)Jn −

1

2

(
(X +X(2)) + (X +X(2))�

)〉
≥ 0.

For all i, j ∈ S we now add the coupling constraints
∑

k∈N :(i,k,j)∈A yikj −x
(2)
ij = 0 with dual

multiplier 1. Moreover, for all (i, k, j) ∈ A with i, k, j ∈ S we add the constraint −yikj ≤ 0

with multiplier 1. This yields the following valid cut∑
i∈S
j∈S

xij +
∑
i∈S
j∈S

∑
k∈N\S:
(i,k,j)∈A

yikj ≤ |S|β(2) + |S|2α(2).

Again, we take β(2) = k
(2)
n and α(2) = h

(2)
n /n. The standard CG rounding step yields

∑
i∈S
j∈S

xij +
∑
i∈S
j∈S

∑
k∈N\S:
(i,k,j)∈A

yikj ≤
⌊
|S|

(
k(2)
n + |S|h

(2)
n

n

)⌋
. (A.3)

Since |S| < 1
2
n, we know⌊

|S|
(
k(2)
n + |S|h

(2)
n

n

)⌋
≤

⌊
|S|

(
k(2)
n +

1

2
n
2− k

(2)
n

n

)⌋
=

⌊
|S|

(
1 +

1

2
k(2)
n

)⌋
≤ 2|S| − 1.

However, similar to the approach in Appendix A.3.4, we obtain a tighter bound if we apply

the strengthened CG procedure. Let T = F1∩
(
{0, 1}A × Tn(G)

)
and let c2 be the coefficient
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vector of the left-hand side of (A.3). Then,

⌊
|S|

(
k(2)
n + |S|h

(2)
n

n

)⌋
T,c2

:= max

⎧⎪⎪⎨⎪⎪⎩
∑
i∈S
j∈S

xij +
∑
i∈S
j∈S

∑
k∈N\S:
(i,k,j)∈A

yikj : (A.3), (y,X) ∈ T

⎫⎪⎪⎬⎪⎪⎭ .

It can be verified that this maximum is equal to |S| − 1 for all S with |S| < 1
2
n. Namely,

if (y,X) ∈ T , we cannot have both xij = 1 and yikj = 1 for some k ∈ N . There-

fore, xij +
∑

k∈N\S:(i,k,j)∈A yikj ≤ 1 for all i, j ∈ S. If we now sum over all i, j ∈ S, the

result must be at most |S| − 1, otherwise a subtour would exist. The strengthened CG cut

corresponding to (A.3) becomes∑
i∈S
j∈S

xij +
∑
i∈S
j∈S

∑
k∈N\S:
(i,k,j)∈A

yikj ≤ |S| − 1.

A.4 The symmetric quadratic traveling salesman problem

In this appendix we briefly consider the symmetric quadratic traveling salesman problem

(SQTSP). Although this problem is very related to the asymmetric version (that we continue

to denote by QTSP), the underlying model is different. We show how to construct this model

and how all cuts for the QTSP can be extended to the symmetric case.

LetG = (V,E) be an undirected graph, where E consists of undirected pairs of nodes {i, j}.
We define E = {〈i, j, k〉 = 〈k, j, i〉 : i, j, k ∈ V, |{i, j, k}| = 3} to be the set of two-edges in G,

where a two-edge is a sequence of three distinct nodes where the reverse sequence is regarded

as identical. Given is a cost matrix Q = (qijk), where a cost is zero if 〈i, j, k〉 /∈ E .
The goal of the SQTSP is to find an undirected Hamiltonian cycle in G such that the

total quadratic cost is minimized. To model this problem, let x̄ ∈ {0, 1}E and ȳ ∈ {0, 1}E
denote indicator vectors that are 1 if and edge, respectively two-edge, is present in the

solution and 0 otherwise. We aim to find a tuple (x̄, ȳ) with ȳijk = x̄ij x̄jk, representing a

Hamiltonian cycle such that
∑

〈i,jk〉∈E qijkyijk is minimized.

The symmetric equivalent of the set F1, see (5.34), is now given by:

Fs
1 :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩(ȳ, x̄) ∈ {0, 1}E × {0, 1}E :

∑
e∈δ(i)

x̄e = 2 ∀i ∈ V

x̄ij =
∑
k∈V

〈i,j,k〉∈E

ȳijk =
∑
k∈V

〈k,i,j〉∈E

ȳkij ∀{i, j} ∈ E

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

where δ(i) ∈ V denotes the set of edges that are incident to i. The formulation used in Fs
1 is

introduced by Fischer and Helmberg [137] where it is shown that the equation ȳijk = x̄ij x̄jk

is indeed established for all 〈i, j, k〉 ∈ E . Moreover, similar to the asymmetric case, we

can relax the integrality of y, since it is enforced by the integrality of x̄ and the coupling

constraints, see Remark 5.35. It follows that the tuples in Fs
1 are characteristic vectors of

node-disjoint cycle covers in G, where the smallest cycles have size 3 due to the definition

of E .
The B&C algorithm presented in Section 5.3 can now be applied to the SQTSP, starting

from optimizing over Fs
1 . In order to cut off solutions that do not correspond to a Hamilto-
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nian cycle in G, we need separation routines for the symmetric version. Instead of providing

symmetric equivalents to all QTSP cutting planes derived in Section 5.4.3, we present a

transformation that maps any valid cut for the asymmetric version to a cut for the SQTSP.

To that end, we introduce a directed graph H = (V,A) that is defined on the same set of

nodes as the undirected graph G, where A is such that it contains both pairs (i, j) and (j, i)

whenever the corresponding edge {i, j} is contained in G. Moreover, we define the cost of

each two-arc (i, j, k) in H to be equal to q〈i,j,k〉 for the corresponding two-edge 〈i, j, k〉 in G.

Let IS denote the original SQTSP instance and let IA denote the corresponding asymmetric

instance.

The variables in the two programs can now be related as follows: Let (y,X) be variables

in IA and define the tuple (ȳ, x̄) by

x̄ij = xij + xji for all {i, j} ∈ E

ȳijk = yijk + ykji for all 〈i, j, k〉 ∈ E .

From the constraints in F1 and Fs
1 , it follows that any solution (y,X) in IA leads to a

solution (ȳ, x̄) in IS with the same objective value. Conversely, any solution (ȳ, x̄) in IS
leads to a solution (or actually two solutions, one for each direction) (y,X) in IA with the

same objective value. As a result, any valid cut for IA is also valid for IS.
This implies that all cuts defined in Section 5.4.3 can be converted to cuts for the SQTSP.

Namely, given a cut for IA, we define the coefficient on x̄ij to be the sum of the coefficients

on xij and xji for all edges {i, j} ∈ E. Similarly, we define the coefficient on ȳijk to be the

sum of the coefficients on yijk and ykji for all two-edges 〈i, j, k〉 ∈ E . If no more violated

cuts can be found in IA, the corresponding solution in IS is also optimal. This proves the

validity of the B&C algorithm for the symmetric version of the problem.

A.5 Additional computational results for Chapter 5

In this appendix we present a complete overview of the computational results from which

the summarized results in Section 5.5 follow. We consider the instances from bioinformatics

and the reload instances. No additional results are presented for the turn instances, since

for these instances the complete overview is already given in Section 5.5.

In all tables showing computation times, the setting that provides the shortest time is

presented in bold for each instance. Moreover, a ‘-’ indicates that a given algorithm could

not solve the instance within 8 hours.

The computation times and the number of branching nodes for the class of ‘bma’ instances

from bioinformatics are given in Table A.4 and A.5, respectively. Table A.6 and A.7 provide

computation times and number of branching nodes for the ‘map’ instances, respectively. The

computation times and the number of branching nodes for the ‘ml’ instances are presented

in Table A.8 and A.9, respectively.

Finally, we present a more elaborate overview of the reload instances. For each of the

two classes and for different values of n, p and c, average results over 10 randomly generated

instances are presented. Table A.10 and A.11 present the computation times and number of

branching nodes, respectively. Table A.12 shows the computation times on 72 additional re-

load instances on both reload classes with n ∈ {21, . . . , 26}, p ∈ {0.5, 0.8} and c ∈ {5, 10, 20}
in order to further investigate the difference between the settings SEC-simple and SEC. As

indicated in Section 5.5, the results in Table A.12 are still not decisive on which of the two

settings performs better.
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Instance Average computation times (s)

Class n (p, c) OPT SCIP-SDP KT CG1 CG2 SEC-simple SEC SEC-CG

1 10 (0.5,5) 5.2 0.131 0.049 0.025 0.029 0.018 0.020 0.030

10 (0.5,10) 5.8 0.135 0.034 0.038 0.042 0.029 0.020 0.031

10 (0.5,20) 7.7 0.218 0.022 0.023 0.035 0.024 0.017 0.033

10 (1,5) 2 2.135 0.177 0.160 0.210 0.163 0.152 0.236

10 (1,10) 3.4 1.888 0.121 0.135 0.176 0.129 0.121 0.182

10 (1,20) 4.5 0.857 0.100 0.086 0.108 0.092 0.065 0.095

Average 4.8 0.894 0.084 0.078 0.100 0.076 0.066 0.101

15 (0.5,5) 4.1 3.187 0.211 0.202 0.386 0.185 0.185 0.280

15 (0.5,10) 6.5 2.131 0.160 0.182 0.197 0.146 0.134 0.235

15 (0.5,20) 8.5 1.450 0.102 0.097 0.171 0.095 0.098 0.153

15 (1,5) 0.4 450.1 2.657 1.720 9.566 1.884 1.835 5.209

15 (1,10) 2.9 204.4 1.065 1.064 2.697 0.887 0.788 2.243

15 (1,20) 5.1 77.44 0.557 0.587 1.246 0.514 0.497 1.022

Average 4.583 123.1 0.792 0.642 2.377 0.619 0.589 1.524

20 (0.5,5) 3.2 169.6 0.869 0.938 2.521 0.690 0.629 1.994

20 (0.5,10) 6.1 19.67 0.543 0.541 1.111 0.424 0.473 0.957

20 (0.5,20) 9.3 56.92 0.419 0.396 0.897 0.335 0.294 0.759

20 (1,5) 0 1985 496.3 235.2 5464 458.0 102.1 9648

20 (1,10) 2.143 6549 48.71 32.95 245.7 24.89 23.69 174.2

20 (1,20) 4.8 3189 6.223 6.422 19.26 4.733 3.808 12.04

Average 4.257 1995 92.19 46.09 955.7 81.51 21.83 1639

25 (0.5,5) 2.6 - 218.6 97.39 3390 42.47 41.41 727.6

25 (0.5,10) 6.4 - 6.876 6.253 22.05 6.361 5.287 14.56

25 (0.5,20) 10.8 - 3.029 3.356 11.725 2.544 2.127 5.156

Average 6.6 - 76.19 35.66 1141 17.12 16.27 249.1

2 10 (0.5,5) 16.1 0.185 0.036 0.038 0.061 0.028 0.031 0.043

10 (0.5,10) 22 0.117 0.031 0.038 0.043 0.025 0.023 0.040

10 (0.5,20) 30.11 0.252 0.040 0.042 0.044 0.034 0.033 0.048

10 (1,5) 4.6 1.316 0.260 0.227 0.166 0.110 0.201 0.200

10 (1,10) 8.4 0.833 0.111 0.106 0.151 0.108 0.117 0.136

10 (1,20) 11.6 0.736 0.120 0.110 0.141 0.131 0.098 0.136

Average 15.46 0.573 0.100 0.094 0.101 0.073 0.084 0.101

15 (0.5,5) 17.7 1.967 0.160 0.182 0.256 0.164 0.141 0.263

15 (0.5,10) 23.3 2.476 0.198 0.150 0.241 0.183 0.169 0.259

15 (0.5,20) 27.2 4.525 0.221 0.191 0.269 0.173 0.206 0.260

15 (1,5) 2.1 660.9 2.440 3.639 10.80 2.430 2.051 7.077

15 (1,10) 6.5 118.2 0.925 0.911 1.697 0.829 0.855 1.590

15 (1,20) 11.7 53.32 0.723 0.753 1.427 0.621 0.664 1.203

Average 14.75 140.2 0.778 0.971 2.449 0.733 0.681 1.775

20 (0.5,5) 8.3 72.89 0.661 0.646 1.377 0.593 0.641 1.580

20 (0.5,10) 19.2 68.31 0.544 0.528 1.057 0.545 0.517 1.289

20 (0.5,20) 26.8 34.82 0.521 0.582 1.304 0.517 0.571 1.186

20 (1,5) 0 1313 103.2 38.98 3452 16.93 33.99 2472

20 (1,10) 4.125 5659 23.31 17.48 95.82 13.71 12.45 68.51

20 (1,20) 10.11 1094 5.451 6.179 13.59 5.029 4.203 9.496

Average 11.42 1374 22.28 10.73 594.2 6.223 8.730 425.7

25 (0.5,5) 8.3 - 3886 935.3 15452 276.2 219.9 5077

25 (0.5,10) 17.7 - 5.649 5.672 17.37 4.408 4.231 13.89

25 (0.5,20) 23.1 - 4.142 4.364 9.869 3.760 3.280 10.88

Average 16.4 - 1298 315.1 5159 94.80 75.81 1701

Table A.10: Computation times of the reload instances averaged over 10 generated instances
for given values of n, p and c.
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Instance Number of branching nodes

Class n (p, c) SCIP-SDP KT CG1 CG2 SEC-simple SEC SEC-CG

1 10 (0.5,5) 19.7 1.1 1.7 1.4 0.7 0.7 0.8

10 (0.5,10) 16.6 2.2 2.1 3.8 0.8 0.7 0.8

10 (0.5,20) 43.4 4.3 3.9 0.7 0.7 1.8 2.6

10 (1,5) 132 125.9 173.1 168.6 74.6 69.4 99.4

10 (1,10) 115 79 82.4 72.3 43.2 32.5 43.4

10 (1,20) 46.5 15.4 15.4 11.6 9.5 4.6 7.1

Average 62.2 37.98 46.433 43.06 21.58 18.28 25.68

15 (0.5,5) 155.9 99.4 92.9 111 73.5 67 53.2

15 (0.5,10) 91.8 70.9 105.1 76.9 45.7 28.4 46.8

15 (0.5,20) 48.3 34.9 17.3 28.3 11.6 12.9 7.6

15 (1,5) 3001 3606 2506 3607 2643 2215 2084

15 (1,10) 1692 1223 1176 1293 921.2 533.8 618.6

15 (1,20) 405.1 279.4 170.5 241.1 157.1 140.1 108.5

Average 899.3 885.8 678.1 893.2 642.0 499.5 486.5

20 (0.5,5) 1929 1312.8 1522 1534 991 637.5 685.4

20 (0.5,10) 293.6 336 369.1 266.7 159.9 148.5 152

20 (0.5,20) 459.4 188.4 175.6 165.9 97.7 50.3 75.7

20 (1,5) 13529 65622 54077 44724 125560 27878 67724

20 (1,10) 18062 29287 21583 18798 15521 10308 12110

20 (1,20) 4749 3114 3400 3312 2499 1525 1507

Average 6503 16643 13521 11467 24138 6758 13709

25 (0.5,5) - 131626 73671 106956 45480 34390 40735

25 (0.5,10) - 6051 5405 6423 5548 4605 3778

25 (0.5,20) - 3123 3280 3827 2352 1823 1500

Average - 46933 27452 39069 17793 13606 15337

2 10 (0.5,5) 19 5.6 5.6 0.9 3.7 4.2 0.9

10 (0.5,10) 7.778 2.667 1.5556 2.333 1.556 0.778 2.444

10 (0.5,20) 29.56 3.889 3.556 3.333 3.222 3.888 2.667

10 (1,5) 88.6 63.4 68.1 76.6 46.9 22.2 68.1

10 (1,10) 35.6 27.2 35 35.4 18 17 16.7

10 (1,20) 28.5 27.3 21.6 19.5 16.2 18.1 20.3

Average 34.84 21.68 22.59 23.01 14.93 11.03 18.52

15 (0.5,5) 81.2 73.7 105.1 75.3 58.2 43.1 46

15 (0.5,10) 93.5 67.6 50.5 81.6 63.3 49.1 65.4

15 (0.5,20) 188.1 67.7 65.8 65.1 48.7 38.6 50.3

15 (1,5) 5588 3306 5257 4394 4016 2734 2594

15 (1,10) 715.2 1052 861.3 778.3 669 619.9 502.4

15 (1,20) 317.8 442.3 393.3 451.3 349 307.7 315.8

Average 1164 834.9 1122 974.4 867.4 632.1 595.6

20 (0.5,5) 664.2 689.6 596.8 469.2 335.9 335.2 426.1

20 (0.5,10) 746.9 317 218.8 240.3 237.3 195.1 153.7

20 (0.5,20) 372.8 374 474.4 320.6 258.9 340.2 328.6

20 (1,5) 7213 23766 16086 44835 8717 9182 20919

20 (1,10) 13725 15129 11001 10907 8124 6421 5870

20 (1,20) 2091 2995 2789 3253 2564 1753 1667

Average 4136 7212 5195 10004 3373 3038 4894

25 (0.5,5) - 353522 222429 311712 100967 86978 107318

25 (0.5,10) - 4673 3975 4156 3335 2965 3421

25 (0.5,20) - 2766 2973 2779 2583 2537 2533

Average - 120320 76459 106216 35628 30827 37757

Table A.11: Number of branching nodes for the reload instances averaged over 10 generated
instances for given values of n, p and c.
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n p c Class OPT SEC-simple SEC

21 0.5 5 1 2 0.787 0.771

2 4 0.738 0.751

10 1 8 2.767 2.342

2 13 0.521 0.543

20 1 9 0.501 0.841

2 31 0.395 0.407

0.8 5 1 2 169.1 231.1

2 4 198.8 249.6

10 1 4 4.973 7.479

2 8 6.993 9.556

20 1 6 2.479 1.680

2 13 2.157 3.265

22 0.5 5 1 2 2.469 8.384

2 9 0.681 0.851

10 1 8 1.530 1.143

2 19 0.481 0.782

20 1 10 0.890 0.808

2 27 1.289 1.193

0.8 5 1 2 399.4 764.4

2 0 17.18 11.65

10 1 3 8.797 7.626

2 8 62.52 24.11

20 1 6 6.435 7.146

2 17 13.23 8.686

23 0.5 5 1 2 8.852 8.528

2 10 27.23 20.34

10 1 7 3.754 2.791

2 10 7.896 4.142

20 1 11 0.460 0.395

2 19 1.128 0.870

23 0.8 5 1 0 84.41 27.89

2 4 3655 2366

10 1 3 52.55 59.89

2 8 153.8 63.12

20 1 7 19.18 10.07

2 14 12.80 12.12

n p c Class OPT SEC-simple SEC

24 0.5 5 1 3 37.95 29.45

2 10 13.90 17.00

10 1 8 1.947 2.045

2 22 1.295 2.501

20 1 11 1.636 1.631

2 28 5.907 9.120

0.8 5 1 - - -

2 2 8249 10517

10 1 3 101.8 132.4

2 6 168.2 143.9

20 1 7 6.754 8.559

2 13 31.22 44.26

25 0.5 5 1 2 88.49 57.76

2 8 1.701 1.367

10 1 8 18.29 18.18

2 18 18.21 17.08

20 1 11 2.821 1.554

2 18 1.431 1.838

0.8 5 1 0 9479 273.1

2 4 14175 8042

10 1 2 68.52 94.96

2 8 30.53 55.61

20 1 6 35.54 49.12

2 13 68.26 67.23

26 0.5 5 1 2 491.6 562.8

2 6 13.74 11.77

10 1 6 18.41 16.05

2 18 6.667 8.945

20 1 9 1.877 1.800

2 26 8.740 8.587

26 0.8 5 1 - - -

2 - - -

10 1 3 127.6 159.1

2 8 3327 3104

20 1 7 183.3 86.4

2 12 115.7 92.15

Table A.12: Computation times of SEC-simple and SEC on 72 additional reload instances
for given values of n, p and c.

A.6 Quantum gates and their two-qubit decompositions

Since the NNCP is only well-defined when a quantum circuit consists solely of one- or

two-qubit gates, we have to decompose all gates that act on more than two gates. As

indicated in Section 7.6, this task can be completed in lots of ways and performing this

decomposition optimally can be seen as a research problem in itself. In Chapter 7 we apply

the decomposition method used in [286], although the authors of [286] already indicated that

this method might be open for improvement.

The quantum circuits that we consider in our experiments consist of the following types

of quantum gates: one-qubit gates, two-qubit gates, three-qubit Peres gates, three- and four-
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qubit Fredkin gates and three-, four- and five-qubit Toffoli gates. Commonly used one-qubit

gates are the Hadamard gate and the Pauli-gates, e.g., the Pauli-X-gate. When applying the

Hadamard gate to a qubit in any state, it brings the qubit in a superposition state where it

has an equal probability to be 0 or 1 upon measurement. The Hadamard gate in a quantum

circuit is depicted as H . The Pauli-X-gate is also known as the NOT gate and can be

seen as its quantum analog. The NOT-gate is depicted as .

The most commonly used two-qubit gates are depicted in Figure A.1. The controlled-

NOT gate, also known as CNOT or Feynman gate, acts on a control qubit and a target qubit.

If the control qubit is in state |1〉, a NOT-gate is applied to the target qubit, otherwise

nothing happens. The SWAP gate swaps the states of the two qubits where it acts on.

The controlled-V and controlled-V † act similarly to the controlled-NOT gate, with the only

difference that the unitary operation V or V † is applied to the target qubit. The operation V

and V † are the square root of the NOT-gate and its Hermitian conjugate, respectively. That

is, if two controlled-V gates are placed in succession, the result is similar to a controlled-NOT

gate, while the identity gate is obtained when applying a controlled-V and a controlled-V †

gate in succession.

•

(a) Controlled-NOT

×

×

(b) SWAP

•

V

(c) Controlled-V

•

V †

(d) Controlled-V †

Figure A.1: Overview of commonly used two-qubit quantum gates.

A Toffoli gate [352] is the multiple-control NOT gate. Acting on several control qubits

and a single target qubit, a NOT gate is applied to the target qubit if all the control qubits

are in state |1〉. The three-qubit Toffoli gate is depicted in Figure A.2, along with a possible

decomposition into two-qubit gates, following the approach of [31].

• • • •

• = • •

V V † V

Figure A.2: Decomposition of multiple-control Toffoli gate with two controls and a single
target qubit.

The Peres gate [301] is obtained from a combination of a two-qubit controlled-NOT gate

and standard controlled-NOT gate. Following the approach from [219], the Peres gate can

be decomposed into four two-qubit gates, as shown in Figure A.3.



623138-L-sub01-bw-deMeijer623138-L-sub01-bw-deMeijer623138-L-sub01-bw-deMeijer623138-L-sub01-bw-deMeijer
Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023Processed on: 9-11-2023 PDF page: 318PDF page: 318PDF page: 318PDF page: 318

298 Integrality and cutting planes in SDP approaches for CO

• •

• =

• •

• •

V † V † V

Figure A.3: Decomposition of Peres gate on three qubits.

The Fredkin gate [143] operates on three qubits as a controlled-SWAP gate. If the state

of the control qubit is |1〉, then a SWAP gate on the two target qubits is performed. The

decomposition into two-qubit gates that we adapt here is the same as the one considered

in [286, 367], see Figure A.4

•

×

×

=

• • •

• •

• V † V † V •

Figure A.4: Decomposition of Fredkin gate (controlled swap gate) with one control qubit.

Finally, we consider the four- and five qubit variants of the Fredkin and Toffoli gate. The

functionality of these gates is similar to their three-qubit implementation, only the number

of control qubits is larger. The four-qubit Fredkin gate can be decomposed as shown by [10],

see Figure A.5. Fredkin gates on a larger number of qubits do not appear in our experiments.

•

•

×

×

=

• • • • •

• • • •

• • • •

• V V † V V † V V † V •

Figure A.5: Decomposition of Fredkin gate (controlled swap gate) with two control qubits.

Finally, the four- and five-qubit Toffoli gates are shown in Figure A.6 and A.7. The

decompositions shown here follow from the construction derived in [31]. Toffoli gates on

more than five qubits do not appear in our experiments.
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Scientific summary

Semidefinite programming is the subfield of mathematical optimization that deals with the

optimization of a linear function over the cone of positive semidefinite matrices under the

presence of affine constraints. Capturing linear programs as a subclass, semidefinite pro-

gramming is regarded as a natural generalization to the well-established area of linear pro-

gramming, allowing for a richer source of theory and applications. In particular, semidefinite

programs have proven themselves useful in their ability to provide strong relaxations of hard

combinatorial optimization problems.

The success of linear optimization in many real-world applications has initiated the study

of integer linear programming, which allows to model decision problems under finitely many

alternatives. A natural way to approach these problems is provided via so-called cutting-

plane methods, which have become a fundamental tool in almost all modern optimization

algorithms. For semidefinite programs, the concepts of integrality and cutting planes have

not yet been investigated to their full extent. To render semidefinite programs suitable

for practical use, further investigation and exploration of these conceptual foundations are

imperative. This dissertation, consisting of six self-contained essays, contributes to the

understanding of these concepts in the framework of SDPs.

In the first part of the thesis we focus on the incorporation of cutting planes in continu-

ous semidefinite programs. It is well-known that polyhedral cuts can significantly strengthen

the SDP relaxations of combinatorial problems. The current state-of-the-art SDP solvers,

however, have difficulties solving models involving a large number of cutting planes. As an

alternative, we introduce an advanced SDP-based cutting-plane method that is suitable for

the addition of polyhedral cuts. Building on the framework of an augmented Lagrangian

method, we propose to incorporate these cuts in a subroutine via Dykstra’s projection al-

gorithm. Our method exploits warm starts and can be (partially) parallelized by clustering

the set of cuts into subsets of nonoverlapping cuts. These ingredients allow for a highly

efficient implementation of the algorithm. Since the major components of our method are

generic, our algorithm is suitable for solving general-purpose SDPs with a large number of

polyhedral cuts. We apply and compare various flavours of our algorithm on several different

problems in Chapter 3 and 4 of this thesis. Numerical results show substantial improvements

in the strength of the bounds for these problems, while being able to handle thousands of

cutting planes.

The second part of the thesis focuses on integer semidefinite programming. Although

semidefinite programs are commonly used as an approach to obtain tight relaxations of dis-

crete optimization problems, the incorporation of integrality constraints in semidefinite pro-

grams itself has been considered only recently. We study various theoretical notions related

to integer semidefinite programming, which are mainly generalizations of similar concepts

from integer linear programming. In particular, we study the Chvátal-Gomory closure for

integer semidefinite programs and its connection to total dual integrality in Chapter 5. This

leads to several characterizations and conditions for a linear matrix inequality to be totally

dual integral. In Chapter 6 we extend the Lagrangian duality theory from integer linear

301
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programming to the case of integer semidefinite programming. Moreover, by examining the

interplay between positive semidefiniteness and integrality in matrix theory, we show that a

wide range of combinatorial optimization problems can be modeled as integer semidefinite

programs, including various types of binary quadratic problems and problems related to data

science. To the best of our knowledge, this thesis provides the first generic approach to show

the modeling power of integer semidefinite programming. Although the above-mentioned

theoretical generalizations from integer linear programming are interesting on their own, we

also demonstrate how these can be exploited to obtain improved solution strategies for the

problems under consideration. This leads to the introduction of a Chvátal-Gomory-based

cutting-plane method and a projected subgradient method for integer semidefinite programs

in Chapter 5 and 6, respectively. Numerical results show the potential of the introduced

approaches on several problem classes, providing algorithms that show more powerful or

competitive behaviour compared to the state-of-the-art solvers for these problems.

Throughout the thesis, a particular emphasis is placed on the application of our ap-

proaches to problems in combinatorial optimization. As returning examples throughout this

work, we consider three graph optimization problems: the graph partition problem (GPP),

the quadratic cycle cover problem (QCCP) and the quadratic traveling salesman problem

(QTSP). The GPP and its variations are mainly treated in Chapter 4, where we apply our

SDP-based cutting-plane approach to obtain bounds for large-scale graph partition prob-

lems. These are currently the strongest GPP bounds in the literature. The QCCP and the

QTSP are highly related optimization problems that have applications in, among others,

bioinformatics, logistics and energy distribution networks. Our study on integrality and

cutting planes in SDPs pays off in terms of novel and efficient methods for solving both

problems. On top of these approaches, we also investigate alternative solution strategies. In

Chapter 2 of this thesis we study the linearization problem of the QCCP, which asks whether

a given instance of the QCCP can be solved as an equivalent linear cycle cover problem. We

derive various sufficient conditions for the cost matrix to be linearizable and exploit these

conditions to obtain bounds that are both strong and efficiently computable. Also, various

novel LP- and SDP-based upper bounding techniques for the QCCP are introduced, such as

randomized rounding methods and a reinforcement learning approach.

In the final chapter of the thesis, we consider yet another combinatorial optimization

problem. Although the proposed solution strategy is not directly related to the other parts

of the thesis, the problem itself is related to a variation of the QTSP, namely the generalized

traveling salesman problem (GTSP). An interesting application of this setting can be found

in quantum circuit design, where the objective is to find an assignment of qubits over a given

architecture that minimizes the total overhead costs to compile the circuit. By exploiting

the symmetries underlying the problem, we are able to significantly reduce the number

of variables and constraints in the model. For certain special quantum architectures, this

reduction empowers us to obtain optimal assignments for extremely large quantum circuits.
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Wetenschappelijke samenvatting

Semidefiniet programmeren is het deelgebied van wiskundige optimalisatie dat zich bezig-

houdt met de optimalisatie van een lineaire functie over de kegel van positief semidefiniete

matrices onder de aanwezigheid van affiene randvoorwaarden. Omdat dit deelgebied ook li-

neaire programma’s omvat, kan semidefiniete optimalisatie worden gezien als een natuurlijke

generalisering van lineaire wiskundige optimalisatie. In het bijzonder hebben semidefiniete

programma’s (SDP’s) hun nut bewezen in het vermogen om sterke relaxaties te bieden voor

complexe combinatorische optimaliseringsproblemen.

Het succes van lineaire optimalisatie in veel praktische applicaties vormde de aanleiding

voor het bestuderen van geheeltallige lineaire optimalisatie, waarmee beslissingsproblemen

met een eindig aantal oplossingen kunnen worden gemodelleerd. Een natuurlijke manier om

deze problemen te benaderen wordt geboden via zogenaamde snijvlakmethoden, die een fun-

damenteel onderdeel zijn geworden in bijna alle moderne optimaliseringsalgoritmen. Voor

semidefiniete programma’s zijn de theorie en het gebruik van geheeltalligheid en snijvlak-

ken echter nog niet volledig onderzocht. Om semidefiniet programmeren geschikt te maken

voor praktisch gebruik, is verder onderzoek en verkenning van deze conceptuele grondslagen

noodzakelijk. Dit proefschrift draagt bij aan het begrip van deze concepten in het kader van

semidefiniet programmeren, in de vorm van zes op zichzelf staande hoofdstukken.

In het eerste deel van dit proefschrift concentreren we ons op de integratie van snijvlak-

ken in continue semidefiniete programma’s. Het is bekend dat polyhedrale snijvlakken de

semidefiniete relaxaties van combinatorische problemen aanzienlijk kunnen versterken. De

huidige oplossingsalgoritmen voor semidefiniete programma’s in de literatuur hebben echter

moeite met het omgaan met deze snijvlakken. Als alternatief introduceren we een op SDP

gebaseerde snijvlakmethode die geschikt is voor de toevoeging van een groot aantal snijvlak-

ken. Voortbouwend op een implementatie van de uitgebreide methode van Lagrange, wor-

den snijvlakken toegevoegd middels een toepassing van het projectie-algoritme van Dykstra.

Onze methode maakt gebruik van een warme-start strategie en kan (gedeeltelijk) worden

geparallelliseerd door de verzameling snijvlakken te clusteren in deelverzamelingen van niet-

overlappende snijvlakken. Deze ingrediënten maken een zeer efficiënte implementatie van

het algoritme mogelijk. Omdat de belangrijkste componenten van onze methode generiek

zijn, is ons algoritme geschikt voor het oplossen van algemene SDP’s met een groot aantal

polyhedrale snijvlakken. We passen verschillende vormen van ons algoritme toe op diverse

problemen in Hoofdstuk 3 en 4 van dit proefschrift. Numerieke resultaten laten substantiële

verbeteringen zien in de sterkte van de berekende begrenzingen voor deze problemen, waarbij

duizenden snijvlakken kunnen worden toegevoegd.

Het tweede deel van het proefschrift richt zich op geheeltallige semidefiniete optimalisatie.

Hoewel semidefiniete programma’s vaak worden gebruikt om sterke relaxaties voor discrete

optimaliseringsproblemen te verkrijgen, is de integratie van geheeltalligheidsbeperkingen in

de semidefiniete programma’s zelf pas zeer recentelijk in overweging genomen. We bestu-

deren diverse theoretische concepten gerelateerd aan semidefiniet programmeren met gehele

getallen, welke voornamelijk generalisaties zijn van soortgelijke concepten uit geheeltallige
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lineaire programma’s. In het bijzonder bestuderen we de Chvátal-Gomory afsluiting voor

geheeltallig semidefiniet programmeren en de verbinding ervan met totale duale geheeltal-

ligheid in Hoofdstuk 5. Dit leidt tot verschillende karakteriseringen en condities voor totale

duale geheeltalligheid van een lineaire matrix ongelijkheid. In Hoofdstuk 6 breiden we de

Lagrangiaanse dualiteitstheorie van geheeltallig lineair programmeren uit naar het geval van

geheeltallig semidefiniet programmeren. Bovendien leidt een reeks resultaten met betrekking

tot positief semidefiniete en geheeltallige matrices tot het modelleren van een breed scala

aan combinatorische optimaliseringsproblemen als geheeltallige semidefiniete programma’s,

waaronder verschillende binaire kwadratische problemen en problemen gerelateerd aan data-

wetenschap. Voor zover bij ons bekend, biedt dit proefschrift de eerste generieke benadering

om de modelleringskracht van geheeltallig semidefiniet programmeren te demonstreren. Hoe-

wel de bovengenoemde generalisaties van concepten uit geheeltallige lineaire optimalisatie

op zichzelf interessant zijn, laten we ook zien hoe deze praktisch kunnen worden benut.

Dit leidt tot de introductie van een op Chvátal-Gomory gebaseerde snijvlakmethode en een

geprojecteerde subgradiëntmethode voor geheeltallig semidefiniet programmeren in respec-

tievelijk Hoofdstuk 5 en 6. Numerieke resultaten laten de potentie van de gëıntroduceerde

aanpak voor verschillende probleemklassen zien, waarbij de verkregen algoritmen competitief

en vaak zelfs krachtiger zijn dan de huidige oplossingsstrategieën voor deze problemen.

In het proefschrift wordt bijzondere nadruk gelegd op de toepassing van onze methoden

op problemen in combinatorische optimalisatie. Als terugkerende voorbeelden beschouwen

we drie graafoptimaliseringsproblemen: het graafpartitie probleem (GPP), het kwadratisch

cyclusdekkingsprobleem (QCCP) en het kwadratisch handelsreizigerprobleem (QTSP). De

GPP en zijn varianten worden hoofdzakelijk behandeld in Hoofdstuk 4, waar we onze op

SDP gebaseerde snijvlakmethode gebruiken om begrenzingen van grootschalige graafpartitie

problemen te vinden. Dit zijn momenteel de sterkste GPP-begrenzingen in de literatuur.

De QCCP en de QTSP zijn gerelateerde optimaliseringsproblemen die toepassingen hebben

in onder meer bio-informatica, logistiek en energiedistributienetwerken. Ons onderzoek naar

geheeltalligheid en snijvlakmethoden in SDP’s initieert nieuwe en efficiënte benaderingen

voor het oplossen van beide problemen. Naast deze methoden verkennen we ook alternatieve

oplossingsstrategieën. In Hoofdstuk 2 bestuderen we het linearisatieprobleem van de QCCP,

waarbij de vraag wordt gesteld of een instantie van de QCCP kan worden opgelost als

een equivalent lineair cyclusdekkingsprobleem. We bepalen diverse voorwaarden waaronder

de kostmatrix van de QCCP lineairiseerbaar is en gebruiken deze voorwaarden om nieuwe

begrenzingen te vinden die zowel sterk als efficiënt berekenbaar zijn. Daarnaast introduceren

we verschillende nieuwe op LP en SDP gebaseerde bovengrenstechnieken voor de QCCP, zoals

gerandomiseerde afrondingsmethoden en een reinforcement learning methode.

In het laatste hoofdstuk van het proefschrift beschouwen we een ander combinatorisch

optimaliseringsprobleem. Hoewel de voorgestelde oplossingsstrategie niet direct gerelateerd

is met de andere onderdelen in het proefschrift, houdt het probleem zelf verband met een

variant van de QTSP, namelijk het gegeneraliseerd handelsreizigersprobleem (GTSP). Een

interessante toepassing van dit probleem is te vinden in de studie naar kwantumcircuits,

waarbij het doel is om een toewijzing van qubits over een gegeven architectuur te vinden

zodanig dat de totale overheadkosten voor het compileren van het circuit geminimaliseerd

worden. Door de symmetrieën in het onderliggende probleem te bestuderen, kan het aantal

variabelen en randvoorwaarden in het model aanzienlijk worden beperkt. Voor bepaalde spe-

ciale kwantumarchitecturen stelt deze reductie ons in staat om optimale qubit toewijzingen

voor extreem grote kwantumcircuits te verkrijgen.
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solution strategies for these problems, with the potential to be extended to other 
problem classes.
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