9 research outputs found

    Fixed Price Approximability of the Optimal Gain From Trade

    Get PDF
    Bilateral trade is a fundamental economic scenario comprising a strategically acting buyer and seller, each holding valuations for the item, drawn from publicly known distributions. A mechanism is supposed to facilitate trade between these agents, if such trade is beneficial. It was recently shown that the only mechanisms that are simultaneously DSIC, SBB, and ex-post IR, are fixed price mechanisms, i.e., mechanisms that are parametrised by a price p, and trade occurs if and only if the valuation of the buyer is at least p and the valuation of the seller is at most p. The gain from trade is the increase in welfare that results from applying a mechanism; here we study the gain from trade achievable by fixed price mechanisms. We explore this question for both the bilateral trade setting, and a double auction setting where there are multiple buyers and sellers. We first identify a fixed price mechanism that achieves a gain from trade of at least 2/r times the optimum, where r is the probability that the seller's valuation does not exceed the buyer's valuation. This extends a previous result by McAfee. Subsequently, we improve this approximation factor in an asymptotic sense, by showing that a more sophisticated rule for setting the fixed price results in an expected gain from trade within a factor O(log(1/r)) of the optimal gain from trade. This is asymptotically the best approximation factor possible. Lastly, we extend our study of fixed price mechanisms to the double auction setting defined by a set of multiple i.i.d. unit demand buyers, and i.i.d. unit supply sellers. We present a fixed price mechanism that achieves a gain from trade that achieves for all epsilon > 0 a gain from trade of at least (1-epsilon) times the expected optimal gain from trade with probability 1 - 2/e^{#T epsilon^2 /2}, where #T is the expected number of trades resulting from the double auction

    Simple and Near-Optimal Mechanisms For Market Intermediation

    Full text link
    A prevalent market structure in the Internet economy consists of buyers and sellers connected by a platform (such as Amazon or eBay) that acts as an intermediary and keeps a share of the revenue of each transaction. While the optimal mechanism that maximizes the intermediary's profit in such a setting may be quite complicated, the mechanisms observed in reality are generally much simpler, e.g., applying an affine function to the price of the transaction as the intermediary's fee. Loertscher and Niedermayer [2007] initiated the study of such fee-setting mechanisms in two-sided markets, and we continue this investigation by addressing the question of when an affine fee schedule is approximately optimal for worst-case seller distribution. On one hand our work supplies non-trivial sufficient conditions on the buyer side (i.e. linearity of marginal revenue function, or MHR property of value and value minus cost distributions) under which an affine fee schedule can obtain a constant fraction of the intermediary's optimal profit for all seller distributions. On the other hand we complement our result by showing that proper affine fee-setting mechanisms (e.g. those used in eBay and Amazon selling plans) are unable to extract a constant fraction of optimal profit in the worst-case seller distribution. As subsidiary results we also show there exists a constant gap between maximum surplus and maximum revenue under the aforementioned conditions. Most of the mechanisms that we propose are also prior-independent with respect to the seller, which signifies the practical implications of our result.Comment: To appear in WINE'14, the 10th conference on Web and Internet Economic

    Multi-unit Bilateral Trade

    Get PDF
    We characterise the set of dominant strategy incentive compatible (DSIC), strongly budget balanced (SBB), and ex-post individually rational (IR) mechanisms for the multi-unit bilateral trade setting. In such a setting there is a single buyer and a single seller who holds a finite number k of identical items. The mechanism has to decide how many units of the item are transferred from the seller to the buyer and how much money is transferred from the buyer to the seller. We consider two classes of valuation functions for the buyer and seller: Valuations that are increasing in the number of units in possession, and the more specific class of valuations that are increasing and submodular. Furthermore, we present some approximation results about the performance of certain such mechanisms, in terms of social welfare: For increasing submodular valuation functions, we show the existence of a deterministic 2-approximation mechanism and a randomised e/(1-e) approximation mechanism, matching the best known bounds for the single-item setting

    Approximately Efficient Double Auctions with Strong Budget Balance

    Get PDF
    Mechanism design for one-sided markets is an area of extensive research in economics and, since more than a decade, in computer science as well. Two-sided markets, on the other hand, have not received the same attention despite the numerous applications to web advertisement, stock exchange, and frequency spectrum allocation. This work studies double auctions, in which unit-demand buyers and unit-supply sellers act strategically. An ideal goal in double auction design is to maximize the social welfare of buyers and sellers with individually rational (IR), incentive compatible (IC) and strongly budget-balanced (SBB) mechanisms. The first two properties are standard. SBB requires that the payments charged to the buyers are entirely handed to the sellers. This property is crucial in all the contexts that do not allow the auctioneer retaining a share of buyers' payments or subsidizing the market. Unfortunately, this goal is known to be unachievable even for the special case of bilateral trade, where there is only one buyer and one seller. Therefore, in subsequent papers, meaningful trade-offs between these requirements have been investigated. Our main contribution is the first IR, IC and SBB mechanism that provides an O(1)-approximation to the optimal social welfare. This result holds for any number of buyers and sellers with arbitrary, independent distributions. Moreover, our result continues to hold when there is an additional matroid constraint on the sets of buyers who may get allocated an item. To prove our main result, we devise an extension of sequential posted price mechanisms to two-sided markets. In addition to this, we improve the best-known approximation bounds for the bilateral trade problem

    On the theory of truthful and fair pricing for banner advertisements

    Get PDF
    We consider revenue maximization problem in banner advertisements under two fundamental concepts: Envy-freeness and truthfulness. Envy-freeness captures fairness requirement among buyers while truthfulness gives buyers the incentive to announce truthful private bids. A extension of envy-freeness named competitive equilibrium, which requires both envy-freeness and market clearance conditions, is also investigated. For truthfulness also called incentive compatible, we adapt Bayesian settings, where each buyer's private value is drawn independently from publicly known distributions. Therefore, the truthfulness we adopt is Bayesian incentive compatible mechanisms. Most of our results are positive. We study various settings of revenue maximizing problem e.g. competitive equilibrium and envy-free solution in relaxed demand, sharp demand and consecutive demand case; Bayesian incentive compatible mechanism in relaxed demand, sharp demand, budget constraints and consecutive demand cases. Our approach allows us to argue that these simple mechanisms give optimal or approximate-optimal revenue guarantee in a very robust manner
    corecore