49,389 research outputs found

    Passengers information in public transport and privacy: Can anonymous tickets prevent tracking?

    Get PDF
    Abstract Modern public transportation companies often record large amounts of information. Privacy can be safeguarded by discarding nominal tickets, or introducing anonymization techniques. But is anonymity at all possible when everything is recorded? In this paper we discuss travel information management in the public transport scenario and we present a revealing case study (relative to the city of Cesena, Italy), showing that even anonymous 10-ride bus tickets may betray a user's privacy expectations. We also propose a number of recommendations for the design and management of public transport information systems, aimed at preserving the users’ privacy, while retaining the useful analysis features enabled by the e-ticketing technology

    Preserving Privacy: How Governments and Digital Services Can Harness Zero-Knowledge Proofs for Secure Identification

    Get PDF
    Amidst rapid technological advancement and digital transformation, ensuring privacy and data security is paramount. Governments and digital service providers face the challenge of establishing secure identification systems that protect individuals' personal information while enabling reliable authentication and seamless user experiences. Traditional identification methods often require individuals to disclose sensitive personal information, leading to privacy risks and potential data breaches. Zero-knowledge proofs (ZKPs) have emerged as a promising solution to address these concerns. By leveraging ZKPs, individuals can authenticate their identities or assert specific attributes without revealing sensitive data. This approach holds great potential for preserving privacy while enabling efficient and trustworthy verification processes. This paper explored ZKPs and how governments and digital service providers can utilize this technology to achieve secure identification while upholding privacy. A key focus was prototyping a secure identification protocol using ZKPs. Through practical implementation, this research aimed to demonstrate the reliability and effectiveness of ZKPs in real-world scenarios. Keywords: zero-knowledge proofs, privacy, digital identity, governments, digital services. DOI: 10.7176/ISDE/13-2-06 Publication date:September 30th 202

    ModelChain: Decentralized Privacy-Preserving Healthcare Predictive Modeling Framework on Private Blockchain Networks

    Full text link
    Cross-institutional healthcare predictive modeling can accelerate research and facilitate quality improvement initiatives, and thus is important for national healthcare delivery priorities. For example, a model that predicts risk of re-admission for a particular set of patients will be more generalizable if developed with data from multiple institutions. While privacy-protecting methods to build predictive models exist, most are based on a centralized architecture, which presents security and robustness vulnerabilities such as single-point-of-failure (and single-point-of-breach) and accidental or malicious modification of records. In this article, we describe a new framework, ModelChain, to adapt Blockchain technology for privacy-preserving machine learning. Each participating site contributes to model parameter estimation without revealing any patient health information (i.e., only model data, no observation-level data, are exchanged across institutions). We integrate privacy-preserving online machine learning with a private Blockchain network, apply transaction metadata to disseminate partial models, and design a new proof-of-information algorithm to determine the order of the online learning process. We also discuss the benefits and potential issues of applying Blockchain technology to solve the privacy-preserving healthcare predictive modeling task and to increase interoperability between institutions, to support the Nationwide Interoperability Roadmap and national healthcare delivery priorities such as Patient-Centered Outcomes Research (PCOR)

    PERSONALIZED POINT OF INTEREST RECOMMENDATIONS WITH PRIVACY-PRESERVING TECHNIQUES

    Get PDF
    Location-based services (LBS) have become increasingly popular, with millions of people using mobile devices to access information about nearby points of interest (POIs). Personalized POI recommender systems have been developed to assist users in discovering and navigating these POIs. However, these systems typically require large amounts of user data, including location history and preferences, to provide personalized recommendations. The collection and use of such data can pose significant privacy concerns. This dissertation proposes a privacy-preserving approach to POI recommendations that address these privacy concerns. The proposed approach uses clustering, tabular generative adversarial networks, and differential privacy to generate synthetic user data, allowing for personalized recommendations without revealing individual user data. Specifically, the approach clusters users based on their fuzzy locations, generates synthetic user data using a tabular generative adversarial network and perturbs user data with differential privacy before it is used for recommendation. The proposed approaches achieve well-balanced trade-offs between accuracy and privacy preservation and can be applied to different recommender systems. The approach is evaluated through extensive experiments on real-world POI datasets, demonstrating that it is effective in providing personalized recommendations while preserving user privacy. The results show that the proposed approach achieves comparable accuracy to traditional POI recommender systems that do not consider privacy while providing significant privacy guarantees for users. The research\u27s contribution is twofold: it compares different methods for synthesizing user data specifically for POI recommender systems and offers a general privacy-preserving framework for different recommender systems. The proposed approach provides a novel solution to the privacy concerns of POI recommender systems, contributes to the development of more trustworthy and user-friendly LBS applications, and can enhance the trust of users in these systems

    An Efficient Two-Party Protocol for Approximate Matching in Private Record Linkage

    Get PDF
    The task of linking multiple databases with the aim to identify records that refer to the same entity is occurring increasingly in many application areas. If unique identifiers for the entities are not available in all the databases to be linked, techniques that calculate approximate similarities between records must be used for the identification of matching pairs of records. Often, the records to be linked contain personal information such as names and addresses. In many applications, the exchange of attribute values that contain such personal details between organisations is not allowed due to privacy concerns. The linking of records between databases without revealing the actual attribute values in these records is the research problem known as 'privacy-preserving record linkage' (PPRL).While various approaches have been proposed to deal with privacy within the record linkage process, a viable solution that is well applicable to real-world conditions needs to address the major aspect of scalability of linking very large databases while preserving security and linkage quality. We propose a novel two-party protocol for PPRL that addresses scalability, security and quality/ accuracy. The protocol is based on (1) the use of reference values that are available to both database owners, and allows them to individually calculate the similarities between their attribute values and the reference values; and (2) the binning of these calculated similarity values to allow their secure exchange between the two database owners. Experiments on a real-world database with nearly two million records yield linkage results that have a linear scalability to large databases and high linkage accuracy, allowing for approximate matching in the privacy-preserving context. Since the protocol has a low computational burden and allows quality approximate matching while still preserving the privacy of the databases that are matched, the protocol can be useful for many real-world applications requiring PPRL
    • 

    corecore