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ABSTRACT OF DISSERTATION

PERSONALIZED POINT OF INTEREST RECOMMENDATIONS
WITH PRIVACY-PRESERVING TECHNIQUES

Location-based services (LBS) have become increasingly popular, with millions of
people using mobile devices to access information about nearby points of interest
(POIs). Personalized POI recommender systems have been developed to assist users
in discovering and navigating these POIs. However, these systems typically require
large amounts of user data, including location history and preferences, to provide
personalized recommendations.

The collection and use of such data can pose significant privacy concerns. This
dissertation proposes a privacy-preserving approach to POI recommendations that
address these privacy concerns. The proposed approach uses clustering, tabular gen-
erative adversarial networks, and differential privacy to generate synthetic user data,
allowing for personalized recommendations without revealing individual user data.
Specifically, the approach clusters users based on their fuzzy locations, generates syn-
thetic user data using a tabular generative adversarial network and perturbs user data
with differential privacy before it is used for recommendation.

The proposed approaches achieve well-balanced trade-offs between accuracy and
privacy preservation and can be applied to different recommender systems. The
approach is evaluated through extensive experiments on real-world POI datasets,
demonstrating that it is effective in providing personalized recommendations while
preserving user privacy. The results show that the proposed approach achieves compa-
rable accuracy to traditional POI recommender systems that do not consider privacy
while providing significant privacy guarantees for users.

The research’s contribution is twofold: it compares different methods for syn-
thesizing user data specifically for POI recommender systems and offers a general
privacy-preserving framework for different recommender systems. The proposed ap-
proach provides a novel solution to the privacy concerns of POI recommender systems,
contributes to the development of more trustworthy and user-friendly LBS applica-
tions, and can enhance the trust of users in these systems.

KEYWORDS: recommender system, location-based services, privacy-preserving, data
synthesis, differential privacy
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Chapter 1 Introduction

Recommender systems (RS) serve a dual purpose: enabling users to extract pertinent
data from an abundance of information and allowing service providers to tailor their
offerings to individual users [4]. In a more comprehensive definition, an RS may be
described as an application or methodology that generates recommendations for users.
These suggestions are formulated by considering factors such as user information, item
characteristics, historical purchases, and other relevant data.

Advancements in technology have undoubtedly improved the quality of life, yet
they have also introduced new complexities. For instance, an individual seeking to
purchase a toy helicopter on Amazon is confronted with numerous options, encom-
passing various brands, features, and prices, as illustrated in Figure 1.1. Online
retailers can harness purchase history and algorithmic approaches to curate a person-
alized list of items a user will most likely buy. A system capable of producing such
tailored suggestions may be classified as a Recommender System.

Moreover, Recommender Systems extend beyond the realm of E-commerce, find-
ing applications in diverse fields such as e-business and e-learning, where they facili-
tate or support a wide array of decision-making processes. Their widespread adoption
can be attributed to the vast quantities of data generated daily by electronic and au-
tomated devices. Over the past several years, researchers have endeavored to develop
and innovate an extensive range of recommender systems to address the growing
demand for such solutions.

Amidst the accelerated growth of recommender systems, Point-of-Interest (POI)
Recommendations have increasingly gained prominence. Location-based social net-
works (LBSNs) such as Yelp, Foursquare, and Google Local accumulate vast amounts
of daily data from smartphones, tablets, and portable PCs. Consequently, POI Rec-

Figure 1.1: An Example of Recommendations from Amazon
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Figure 1.2: A Generalized Classification of Recommender Systems

ommender Systems have emerged as an optimal resource for organizations to harness
pertinent information, including check-in records, venue details, and social connec-
tions, in order to generate the most precise predictions of POIs.

As a specialized branch of recommender systems, Point-of-Interest Recommender
Systems can adopt ideas, structures, or algorithms from conventional Recommender
Systems. Nevertheless, they also inherit the associated challenges and complexities.

1.1 General Classifications

As delineated in the introductory section, the scholarly investigation of producing
high-quality recommendations has significantly advanced. A recommender system
constitutes a software application or an ensemble of applications that harness data
and implement algorithms to forecast users’ predilections for purchases based on an
analysis of their historical buying habits. Any methodology capable of fulfilling these
functions may be categorized as a recommender system, ranging from content-based
systems to collaborative filtering recommender systems (CFRS) and, ultimately, to
hybrid recommender systems (refer to Figure 1.2 for a visual representation). While
there exist more granular taxonomies for recommender systems, this report will focus
solely on examining traditional models, thereby excluding approaches such as utility-
based or demographic recommender systems.

Content-based Recommender Systems

Content-based recommender systems primarily focus on identifying similarities be-
tween items, deriving these similarities from the intrinsic attributes of the items or
products rather than ratings. For instance, in the context of movie recommendations,
such intrinsic attributes might include the film’s genre, duration, and production year.
In contrast to collaborative filtering, content-based recommender systems employ item

2



attributes to compute predictions. These systems do not emphasize the interactions
between all users and items as collaborative filtering recommender systems (CFRS)
do; instead, they rely on the target user’s ratings and the properties of the items
favored by that user. Consequently, a key distinction of content-based recommender
systems is that other users’ preferences hold minimal significance when generating
recommendations for a specific user.

The ability to disregard other users’ preferences is advantageous for content-based
recommender systems, as they can better address the cold start problem. The cold
start problem pertains to two situations: 1) the absence of feedback from specific
users, known as the new-user problem, and 2) the lack of general community feedback,
referred to as the new-RS problem. Even if a recommender system is new and the
majority of users’ ratings are temporarily inaccessible, content-based recommender
systems can still produce relatively accurate recommendations if sufficient information
about the target user is available. The lack of feedback is a common issue for new
products, which require time to accumulate user feedback. In this case, content-based
recommender systems can first extract critical attributes from the new product and
then attempt to generate recommendations. However, content-based recommender
systems are unable to provide high-quality recommendations when the user is new.
Moreover, by overlooking other users’ ratings, the generated recommendations may
exhibit poor performance in specific metrics such as novelty and diversity, which will
be detailed in Section 6. Nevertheless, content-based recommender systems excel in
text-rich domains, such as webpage and news recommendations, where users’ browsing
and click history alone can generate recommendations.

Although content-based recommender systems vary significantly depending on
the domain or case, they generally follow a three-step process to produce appropriate
recommendations:

• Feature extraction: Content-based recommender systems can utilize various
types of information across different domains. However, this information is not
always readily available and often requires preprocessing and extraction from
multiple sources to form a keyword-based, vector-space representation. The
effectiveness of feature extraction directly influences the recommender system’s
performance, although the specific extraction method may vary and be case-
dependent.

• User profiling: This step is similar to conventional classification or regression
modeling. As previously mentioned, this process is case-dependent and relies on
whether the input rating is binary or numeric. Ratings and extracted features
are combined to generate the dataset. Notably, while this step is termed “user
profiling,” the subject could also be items. By transposing the input rating
matrix, items can be treated as users and users as items. Additionally, rather
than extracting features from items, features can be extracted from users, albeit
this case is relatively uncommon given that users are typically not “text-rich.”

• Filtering and generating recommendations: The final step involves the trained
model generating recommendations for each user. As most research is conducted
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offline, computational efficiency is not a critical concern. However, for real-time
online recommendations, this step must be highly efficient.

In summary, content-based recommender systems identify similarities between
items based on their intrinsic attributes, with minimal consideration of other users’
preferences. This approach is particularly advantageous in text-rich domains and
when addressing the cold start problem. Content-based recommender systems gen-
erally follow a three-step process of feature extraction, user profiling, and filtering to
generate recommendations.

Neighborhood-based Collaborative Filtering

There are two types of neighborhood-based algorithms: user-based collaborative fil-
tering and item-based collaborative filtering. The user-based algorithm focuses on
finding similar users for a specific user. Then, the RS will generate a list of rec-
ommendations based on the weighted average values of all the peer ratings for each
item. The underlying idea or assumption is that because the current user is showing
similar patterns as the group based on the feedback of purchased items, the user must
also have similar feedback to a specific un-purchased item. In other words, similar
users display similar rating behaviors. On the other hand, the item-based algorithm
focuses on finding similar items. The underlying assumption is that similar items
receive similar ratings.

It is essential to point out that different algorithms may have included various in-
formation about users. It is rather heuristic when calculating the similarities between
user groups. Even in the simplest scenario where we only use users’ explicit feedback
to calculate similarities, the measurement of distances between users from different
models can still vary entirely. The complexity exists because every user has different
rating habits and rating scales. For example, user A could have a kind personality
leading to giving high ratings to everything he or she reviews. At the same time, user
B may have high standards giving comparatively negative feedback on everything he
or she bought. In this case, for a rating scale from 1 to 5, user A’s rating scope
could be from 4.4 to 4.8, while user B’s ratings can range from 1 to 3.5. In order
to resolve the issue of calculating similarities between users, people usually need to
define the similarity function between two users before implementing the model. In
later chapters, it will introduce the equations and formulas to generate predictions
using this model. Below are two examples of the similarity functions:

• Cosine Similarity: mathematically, this method is used to calculate the cosine
value of two non-zero vectors by using the dot product formula:

A ·B = ∥A∥ · ∥B∥ cos(θ) (1.1)

So here, cos(θ) is the similarity that we are looking for, and the two vectors
containing ratings from two users are treated as A and B. However, only
common users (or items) are taken into account.
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The cosine similarity Sim(u, v) is defined as:

Sim(u, v) =

∑
i∈Iuv rui · rvi√∑

i∈Iuv r
2
ui ·

√∑
i∈Iuv r

2
vi

(1.2)

Here, u and v are two different users. i is the index of each common item, and
Iuv is the set of all the common items rated by both user u and v. rui is the
rating given by user u to item i, and rvi is the rating given by user v to item i.

• Mean Squared Difference (MSD): MSD is more straightforward compared to co-
sine similarity. For users u, and v, in a user-based model, the MSD is calculated
according to the following formula:

msd(u, v) =
1

|Iuv|
·
∑
i∈Iuv

(rui − rvi)
2 (1.3)

So, the similarity is defined as below:

Sim(u, v) =
1

msd(u, v) + 1
(1.4)

Here, the same notations have the same meaning as in the cosine similarity.
Also, the +1 used in the similarity function is used to avoid dividing by zero.
In actual situations, it is prevalent that two different users have never given
feedback on even the same item.

• Pearson Similarity: it is very similar to cosine similarity only that the vectors
mentioned before A and B are standardized. In other words, statistically, the A
and B here should have a mean that is 0 and a standard deviation of 1, and the
Pearson correlation coefficient can be seen as mean-centered cosine similarity.
However, unlike in statistics, the vectors will not be centered by being divided
by standard deviation. Also, when calculating the mean, all ratings or feedback
of a user will be used instead of using merely the shared items rated by both
users. Below is how the Pearson similarity is defined:

Sim(u, v) =

∑
i∈Iuv (rui − µu) · (rvi − µv)√∑

i∈Iuv(rui − µu)2 ·
√∑

i∈Iuv(rvi − µv)2
(1.5)

Here, µu and µv are the average ratings for user u and user v. All the other
notations have the same meaning as in the above cases.

Once the similarity matrix is available that records the similarity relationships
between all users, we can move to the final step to generate predicted ratings. Suppose
we choose the K-neighborhood approach. Then by checking the similarity matrix, we
can quickly get the closest k users to the current predicting user and use their ratings
and the similarities we just got to generate the predictions or recommendations.
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Figure 1.3: The Different General Methods for Building Hybrid Recommender Sys-
tems

Hybrid Recommender System

To predict or generate recommendations, Content-based RS and CFRS employ dis-
tinct strategies and utilize different types of data. For instance, Content-based RS
makes use of a single user’s ratings and item descriptions, while CFRS considers all
ratings from the interactions between users and items. As a result, each system and
its variants possess their own advantages and disadvantages, such as CFRS being
faster and Content-based RS being relatively better at handling cold start problems.

In fact, a hybrid model won the Netflix Prize competition that began in October
2006 [5]. The grand prize was awarded to a team that managed to improve accu-
racy from an RMSE of 0.9514 to below 0.8563 (over 10% improvement) [6]. Their
final solution, “BellKor’s Pragmatic Chaos,” integrated numerous models, including
the Neighborhood-based model (k-NN), Restricted Boltzmann Machines, and Matrix
Factorization (MF) models, among others [6].

There is more than one way to combine different recommendation approaches. As
shown in Figure 1.3, in some earlier surveys [7, 8], researchers identified seven distinct
methods:

• Weighted: The scores of different components are combined numerically.

• Switching: The RS chooses components in real-time.

• Mixed: The recommendations generated by different recommenders are pre-
sented together.

• Feature Combination: Features derived from different sources are combined to
feed a single recommendation algorithm.

• Feature Augmentation: Features generated from one recommendation technique
are used as input for the following recommendation technique.

• Cascade: Recommenders are prioritized, breaking ties in the scoring of the
higher recommended algorithms.

• Meta-level: The output of a recommendation technique is another recommen-
dation model.
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In [7], the author further organized these methods into three primary designs:

• Ensemble: Methods that combine results from different recommending tech-
niques to form the final recommendations.

• Monolithic: The separation of different components is not clear, and the RS
presents itself as an integrated system.

• Mixed System: Similar to Ensemble, but the recommendations generated are
presented together instead of merging into one.

1.2 Preliminaries

Suppose we have m users (customers) and n items (locations). A rating rui represents
the preference of user u for item i. When rui ∈ [0, 1], it denotes an implicit rating,
which can only be 0 or 1 (positive or negative). Thus, rui = 0 implies that user u has
negative feedback for item i or dislikes the visiting experience of place i. Conversely,
rui = 1 indicates the opposite. When rui ∈ [1, 5], there are additional rating values
between 1 and 5. rui = 1 signifies user u’s complete disappointment with item i,
while rui = 5 demonstrates strong favor.

Let U and I represent the user and item sets, with m and n as their respective
cardinalities. Consequently, we have u ∈ U and i ∈ I. To distinguish between true
and predicted ratings, let’s use the notation r̂ui for predicted ratings and rui for true
ratings.

Finally, let’s define K such that K = (u,i) | rui is known. For the Matrix Fac-
torization (MF) models introduced later, unless specified, let’s use k to represent the
number of latent factors, such that P ∈ Rm×k and QT ∈ Rk×n are the user and item
latent factor matrices, respectively. Let’s further employ pu and qi as the column
vectors of the matrices for the k-dimensional latent factors.

Most RS models learn user and item latent factors by regressing known user-item
ratings from a preprocessed training dataset. An objective function, such as Equation
1.11, typically comprises three parts. First, the loss function calculates the distance
between actual and predicted ratings. Second, the regularization part penalizes the
magnitude of the latent parameters, denoted by the constants in the regularizing
terms, λ. The third part, though not always necessary, consists of additional terms
that penalize or reward based on other contextual information. The least-squares
optimization problem is commonly solved using Stochastic Gradient Descent (SGD).

Simon Funk’s SVD

The Singular Value Decomposition (SVD) model was initially introduced in the field
of recommender systems as a feature reduction tool [9]. However, this term soon be-
came conflated, as matrix factorization was inspired by the conventional SVD method
[10]. In the context of recommender systems, SVD refers to Matrix Factorization
(MF). Throughout this dissertation, any mention of SVD refers to the basic matrix
factorization model.
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Performing MF on a dense rating matrix results in three matrices:

R = PΣQT (1.6)

where P∈ Rm×k and Q∈ Rk×n have orthogonal columns, as R is a real matrix. The
Σ∈ Rk×k is a diagonal matrix, which can be considered as a scalar. The columns of
P and Q form the orthogonal basis spanning the column space and row space of the
rating matrix R, respectively. By absorbing Σ, we can obtain the following:

R = PQT (1.7)

To estimate the value of each entry in the rating matrix, the dot product of the
row vector qTi and the column vector pu can be employed:

rui = qTi · pu (1.8)

If R is dense, P and Q can be quickly obtained by calculating the eigenvectors
of RTR and RRT , respectively. However, in the case of POI recommender systems,
the rating matrix is typically sparse, rendering it impossible to compute either RTR
or RRT without imputation. Early studies on this topic, which included imputation
with the global mean or zero, did not produce satisfactory results.

In [10], researchers found that three properties are not necessary when construct-
ing a recommender system: (1) Equation 1.8 needs to be true for all u and i; (2) all
vectors for pu are mutually orthogonal; (3) all vectors for qi are mutually orthogonal.

Instead, we can find all such vectors by solving the following objective function:

min
pu,qi

∑
u,i∈K

(rui − qTi · pu)2 (1.9)

The authors in [10] contend that constraining the vectors does not lead to more
accurate predictions. Furthermore, missing entries are disregarded during the training
process. This algorithm has been widely adopted and examined in numerous studies,
demonstrating its effectiveness.

Incorporating biases into the model is another important aspect of enhancing
predictive accuracy. In later research, Koren addressed this issue by proposing the
Model-based Collaborative Filtering (CF) Recommender System using a different
approach [11]. The authors capture the biases and encapsulate the biasing effects
independently, while the MF model captures most of the observed signal from the
user-item interaction.

Subsequently, the SVD++ and timeSVD++ models were introduced, which in-
tegrated implicit contextual information and temporal effects, respectively [11, 3].
These models significantly improved the accuracy of predictions in the context of
recommender systems, as demonstrated by their performance on large movie rating
datasets such as Netflix.

In conclusion, the development of recommender system models from the basic
SVD to the more advanced SVD++ and timeSVD++ models has led to a significant
improvement in predictive accuracy. These models have been widely adopted in
various research fields and have proven to be highly effective in delivering personalized
recommendations to users.
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The Baseline Integrated MF Model

User ratings are known to exhibit biases. To address this issue, Koren and his col-
leagues proposed a Model-based Collaborative Filtering (CF) Recommender System
using a novel approach [11]. The authors capture biases and encapsulate their ef-
fects independently, while the MF model captures most of the observed signals from
user-item interactions. The bias is defined as follows:

bui = µ+ bu + bi (1.10)

Here, µ denotes the average rating of the entire training set; bu represents the
deviation of user b’s average rating from µ; bi indicates the deviation of item i’s
average rating from µ. To estimate the values of bu and bi for each user and item, the
following optimization functions can be adopted:

min
pu,qi

∑
u,i∈K

(rui − r̂ui)
2 + λ(b2u+ b2i + ∥qi∥

2 + ∥pu∥2) (1.11)

r̂ui = bui + pu · qTi (1.12)

The first term in Equation 1.11 is designed to capture the bias present in the given
ratings, while the second term serves as a regularization component. This approach
effectively accounts for user and item biases, resulting in a more accurate and reliable
recommender system.

The SVD++ and timeSVD++ Models

Time, space, and implicit feedback are considered vital contextual information which
can be collected effortlessly. The SVD++ model enhances the SVD model by incor-
porating implicit contextual information, while the timeSVD++ model further refines
the accuracy of predictions by considering temporal effects [11, 3].

Implicit feedback is utilized in the SVD++ model. This model recognizes that
implicit feedback often coexists with explicit feedback. Actions such as renting a
movie, purchasing an item, or visiting a place implicitly indicate a user’s interest. A
hidden matrix with implicit user ratings can be constructed. The updated objective
function in Equation 1.11 becomes:

r̂ui = bui+ (pu + |R(u)|−
1
2

∑
i∈R(u)

yi) · qTi (1.13)

The only modification between Equation 1.11 and Equation 1.13 is the perception
of user latent factor vectors. A new set of factor vectors yi ∈ Rk is added. R(u) is a

set containing all items rated by user u. The term |R (u)|−
1
2
∑

i ∈ R (u)yi represents
the perspective of implicit feedback.

Temporal effects are utilized in the timeSVD++ model. This type of data is
commonly available in various databases such as Google Local, Foursquare, Pandora,
and others. As a Time-aware Recommender System model, the timeSVD++ model
still exhibits the best performance.
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Table 1.1: Model Accuracy (RMSE) Comparisons [3]

Model Name k = 10 k = 20 k = 50 k = 100 k = 200

SVD 0.914 0.9074 0.9046 0.9025 0.9009
SVD++ 0.9131 0.9032 0.8952 0.8924 0.8911
timeSVD++ 0.8971 0.8891 0.8824 0.8805 0.8799

This model makes two assumptions: (1) traits such as user biases bu(t), item biases
bi(t), and user preferences pu(t) change over time; (2) item qualities qi remain static,
as the same products do not change with the passage of time.

The updated rating prediction function is shown below:

r̂ui = µ+ bi(t) + bu(t) + qTi

pu(t) + |R(u)|−
1
2

∑
i∈R(u)

yi

 (1.14)

Biases bu(t), bi(t), and pu(t) are functions aiming to capture temporal effects.
Various methods can model these three functions, such as time-linear models and
spline-based models.

Table 1.1 compares the accuracy (lower is better) of the three models. The eval-
uation is performed on a large movie rating dataset provided by Netflix. The results
table presents a general and intuitive overview of the improvements made by each
model [3].

1.3 Point-of-Interest Recommender Systems

A POI (Point of Interest) recommender system is a type of recommender system that
provides personalized recommendations of points of interest (such as restaurants,
shops, museums, etc.) to users based on their preferences and past behavior. It is
different from general recommender systems in that it takes into account the geo-
graphical location of the user and the POI, as well as other contextual information
such as time of day, weather, and user mobility patterns.

The contextual information present in Location-based Social Networks (LBSNs)
makes the POI recommendation task more challenging than the general RS task. For
example, a user may have a preference for Italian cuisine but may only be interested
in Italian restaurants within a certain radius of their current location. Additionally,
the POI recommender system needs to be able to handle sparsity in the data, as it
is common for users to visit only a tiny fraction of the available POIs. Furthermore,
the LBSNs have brought new challenges to POI recommendations, such as the users’
privacy concerns, which may affect the quality of the recommendations.

LBSN service is a network service based on real-world locations. Such locations
include but are not limited to, trajectories, regions, and point locations [12]. Figure
1.4 is a visualization of an LBSN and its components.

To tackle these challenges, researchers have proposed various models, such as
SVD and SVD++, which integrate implicit feedback and temporal effects into the
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Figure 1.4: Basic Components of Location-based Social Network

recommendation process. These models have been shown to improve the accuracy
of POI recommendations compared to traditional CF models. Nevertheless, POI
recommendation remains an active area of research due to the unique features of
LBSNs, and there is still much work to be done to develop practical recommendation
algorithms for these networks.

Challenges of POI Recommendations

POI recommendations can borrow ideas from the conventional recommender system,
but the challenges are inherited as well. Moreover, POI recommendations also have
new challenges to face. Below are some of the typical challenges:

• Cold start problem: Inherited from the conventional RS models, it refers to
the problem when the recommender system tries to generate recommendations
for users when insufficient data is available. This problem is a common problem
for all Recommender Systems, not limited to POI recommendations [13].

• Data scarcity: Inherited from the CF RS models. For the point-of-interest
recommender system, the problem is worse. For instance, the density of the
Netflix MovieLens dataset is 1.2%, whereas, for most POI recommendations,
this rate could be lowered to 0.1% [5, 14].

• Scalability: The data volume is large, and the time complexity for a non-
distributed recommender system is at least O(n2). If the system is distributed,
two new problems will appear, communication costs and privacy concerns.

• Physical constraints: Unlike online shopping or movie rating systems, local
stores and users interact differently in an LBSN. The users are only active in
some geographic regions, and the stores or shops are only open for a certain
amount of time.
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Figure 1.5: Stages for Evaluating a Recommender System

• Privacy concerns: At the expense of personal information, we can let the
algorithms perform better. However, as Recommender Systems keep using more
contextual information, the privacy concern only grows.

1.4 General Evaluation Methods and Metrics

Evaluation Methodologies

When evaluating a recommender system in an offline setting, the data is usually
divided into two sets: the training set, which is used to build the system, and the
test set, which is used to evaluate its performance. Figure 1.5 illustrates the typical
steps involved in the offline evaluation.

After partitioning the dataset, the recommendation algorithm learns and opti-
mizes its weight and biases using the training data. Once the model is trained and
stabilized, the test set is used to evaluate the performance of the model by comparing
its predictions to the actual data.

Evaluation Metrics

Evaluation of RS models typically involves partitioning the dataset into training and
test sets and calculating metrics such as Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE) on the test set. Research has shown that even small improve-
ments in RMSE can lead to more accurate top recommendations [11, 6].
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• RMSE: This evaluation metric was used as the standard metric for the Netflix
Prize contest [5]. Let Te be the set of all users and items in the test set. The
definition is shown below:

RMSE =

√∑
u,i∈Te(rui − r̂ui)2

m
(1.15)

• MAE: Unlike RMSE, MAE does not penalize large error. The equation for
calculating MAE is:

MAE =

∑
u,i∈Te |rui − r̂ui|

m
(1.16)

The Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) are
commonly used measures to evaluate the accuracy of recommendation models. While
both metrics estimate the distance between predicted and actual ratings, RMSE is
more sensitive to significant errors or outliers than MAE. This is due to the fact that
RMSE penalizes significant errors more heavily than MAE.

In addition to RMSE and MAE, there are other metrics used to evaluate the
performance of recommendation systems, depending on different evaluation consid-
erations. These metrics and their definitions will be introduced in later chapters,
providing more details on their usage and relevance.

1.5 Dissertation Organization

The dissertation is organized as follows: Chapter 2 presents an initial preliminary
empirical study that examines the impact of incorporating clustering techniques into
the recommendation system. The study focuses on the use of “super users” to anony-
mously collect and cluster data from nearby users, thus enabling the delivery of
high-quality recommendations.

In Chapter 3, an enhanced framework is introduced, which formally incorporates
the role of a trusted third party. This privacy-preserving scheme improves clustering
performance and decentralizes the system by distributing central servers across mul-
tiple vendor-based servers. This approach offers significant benefits to small business
owners by ensuring greater data security and privacy.

Chapter 4 proposes a further refined framework that safeguards not only users’ di-
rect feedback but also their historical comments. This improved framework increases
the accuracy of predictions made by the recommendation system, leading to more
personalized and relevant suggestions for users.

Addressing the challenge of privacy quantification, Chapter 5 introduces Local
Differential Privacy (LDP) and integrates it into the existing framework. Additionally,
this chapter presents an upgraded clustering method that further strengthens the
privacy-preserving capabilities of the system.

In Chapter 6, the concept of virtual users is formally acknowledged, and the po-
tential of using CTGAN (Conditional Tabular Generative Adversarial Networks) for
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synthesizing user data is investigated. This innovative approach enables the genera-
tion of realistic yet privacy-preserving user data for further enhancing the recommen-
dation system.

Finally, Chapter 7 provides a discussion of future research directions and offers
concluding remarks, summarizing the essential findings and contributions of the dis-
sertation.

Copyright© Longyin Cui, 2023.
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Chapter 2 Initial Study on Bringing Clustering Technique to
Point-of-Interest Recommender System to Preserve Privacy

2.1 Motivation and Problem Description

As the popularity of location-based social networks (LBSNs) continues to grow, there
is a rapidly increasing demand for practical recommendations [15]. The actions of
governments and international organizations also fuel the motivation for this research.
In May 2018, the European Union enacted the General Data Protection Regulation
(GDPR) to enhance the protection of online privacy. This legislation empowers cy-
bercitizens to control their own data, enabling them to determine what types of
information may be stored and how service providers can use it.

Prior to this study, several privacy-preserving (PP) Point of Interest (POI) recom-
mendation systems [16, 17, 18] have been proposed to deliver location-based recom-
mendations while safeguarding users’ privacy, such as their location and preferences.
However, these systems either necessitate additional knowledge, such as friendship or
trustworthiness information embedded in social networks or require the storage and
maintenance of a topological graph of user geographic coordinates on the server.

Here the research proposes a group preference-based recommender system that
employs matrix factorization, clustering, and anonymous ad hoc wireless peer-to-peer
(P2P) communication to provide accurate POI recommendations without compromis-
ing users’ privacy. The system assumes that both the central server and fellow users
are untrustworthy. Users store their personal preferences and visit history on their
own mobile devices and share their ratings anonymously with nearby users through
an ad hoc P2P network via Wi-Fi Direct. The server conducts matrix factorization
to learn the latent factors of the groups and locations. When a user device requires
recommendations, it retrieves the latent factors from the server and reconstructs the
global group preferences. Throughout this process, no individual preference data is
shared with the server. After each one-time communication between users, the ad
hoc P2P connection is terminated, making it impossible to deduce the identity of the
sender.

2.2 Methodology

In the proposed model, each user u has a preference vector u⃗ ∈ R1×n, which represents
their preferences for locations they have visited. This vector is stored on the user’s
mobile device and updated as new places are visited. When the user’s device detects
nearby users via Wi-Fi Direct with a predefined SSID (e.g., a string beginning with
“RecSysDataExchange#”), it counts the number of nearby users and prompts the user
with this count, and the user can then decide whether to share their preferences. The
exchange can safely occur only when a certain threshold of users (e.g., 10) is nearby.
Notably, no other information, including user identity or media access control (MAC)
address, is shared.
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Figure 2.1: An Illustration of the Proposed Model

It is assumed that once a user shares their preferences with another user, the
information will not be shared with anyone else. After receiving a sufficient amount of
data from others, a user’s device employs the k-means algorithm to cluster anonymous
individuals into g groups and anonymously sends the group preferences to the server.
The local group preferences are appended to the utility matrix R as a series of rows.
As data accumulates, the server performs Non-negative Matrix Factorization (NMF)
on the local group preferences collected from multiple users to obtain latent factors
for global group preferences. The following objective function is used for matrix
factorization:

minG≥0,Q≥0f(R,G,Q) =

∥R−GQT∥2F + α(∥G∥2F + ∥Q∥2F ),
(2.1)

where G ∈ R+m×k, Q ∈ R+n×k are two orthogonal matrices, k is the rank, | · |F is
the Frobenius norm, and α is the regularization parameter. The stochastic gradient
descent (SGD) technique is employed to find the update formulas for this objective
function:

Gij ← Gij ·
RQij

GQTQ+ αGij
(2.2)

Qij ← Qij ·
RTGij

QGTG+ αQij
(2.3)

To make recommendations for user ui, their mobile device first retrieves the latent
factor matrices G and Q from the server and reconstructs the utility matrix R. Due
to the lower dimensions, transferring the factor matrices requires significantly fewer
communication resources than transferring R. For visited places qj (∀j ∈ [1..n]∧uij ̸=
0), the latent factor vectors, i.e., the rows representing qj in Q, are retrieved to
construct
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2.3 The Challenger Model

The Decentralized Matrix Factorization (DMF) [17] model is chosen as the challenger
model for three reasons. This model is chosen to compare further to the proposed
model.

• it is a distributed model for a POI Recommender System;

• it utilizes the users’ active location information;

• it has a privacy-preserving framework.

Aside from the three reasons, this model was improved on centralized CF, which was
perfect for showing the continuation of the development of Recommender Systems.

Decentralization can resolve the scalability problem by distributing the computing
task to its users and by moving the large storage of user action data from the central
server to millions of mobile devices. Decentralization will usually cause two new
problems, which are privacy concerns and high communication costs. As well this
model solved these two problems by proposing a new data exchange mechanism.

To solve the privacy problem, this model introduced a new method that decom-
poses item latent factors into two parts, the regional preferences and local preferences,
and only the regional item latent factors can be exchanged. Furthermore, instead of
exchanging the original rating, which can give away the user’s preference on a par-
ticular item [19], the gradient of the loss is changed. This approach can prevent the
DMF model from risking data leakage, which has been proven successful in other
research as well [20, 19]. The model replaces the original item latent factor pu with a
new latent factor zui such that:

zui = q′ui + q′′ui , (2.4)

where q′i represents the regional item latent factor and q′′i represents the personal
item latent factor. Each of them is a three-dimensional matrix, with each entry
representing the intersection of the data holder, the current user, and the current
item.

To solve the communication problem, instead of allowing all users to communicate
with each other at all times, the model pre-calculated the similarities based on users’
location information, such as GPS, to generate an adjacency matrix W , so only users
within certain adjacency value can exchange data. This way, once a new check-in
activity appears, only targeted devices will receive the updated information, and it
also greatly reduces the number of communications. If we use du,v to indicate the
distance between user u and v, each entry in the matrix W is defined as below:

wu,v = Cu,v · f(du,v) (2.5)

where wu,v ∈ [0, 1], and C is a Boolean value that equals 1 when u and v are in
the same city and 0 otherwise. f is a mapping function whose value increases when
the similarity between u and v becomes closer and decreases when the du,v grows [8].
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With the above defined, the updated predicting function in the DMF model can
be formulated as:

r̂ui = (zui )
T pu (2.6)

Consequently, the DMF model can be formulated as below:

∑
(u,i)∈K

(rui − r̂ui)
2 + α

∑
u∈K

∥pu∥2F + β
∑

(u,i)∈K

∥∥q′ui ∥∥2

F
+ γ

∑
(u,i)∈K

∥∥q′′ui ∥∥2

F
(2.7)

This objective function can be solved using SGD by calculating the gradients of
the objective function with respect to pu, q

′, and q′′. Similar to the SVD model, the
DMF model iterates through each known rating, calculating the prediction, the error,
and the gradients and then updating corresponding vectors. The only difference is
that after updating the corresponding vectors pu, q

′
v, q

′′
v according to the gradient of

the loss function, the rater, i.e., the current user u, needs to communicate with a
number of neighbors sending gradients of the regional item preference q′u and update
those neighbors with each of their item preferences q′v.

The users of them will hold an independent recommender system on their mobile
devices, and the application on their devices will consistently generate POI recom-
mendations in the background. For each local recommender system, it will keep
receiving updated information from nearby users when check-in activities appear. If
the carrier himself or herself had a check-in activity, the application would send up-
dated information to their neighbors as well. The training process will not stop while
there are new check-ins happening.

Although this model addresses many of the difficulties mentioned above, there are
still some problems persisting. First, as the authors pointed out, the data volume is
large. Each user needs to hold a large amount of data to store both the adjacency
matrix and the latent factor matrices. Second, this model still needs to collect users’
GPS information directly, which is also a privacy concern.

Copyright© Longyin Cui, 2023.
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Figure 2.2: Rating Distribution of the Champaign-Urbana Dataset

2.4 Results and Discussion

The proposed model was examined on a subset of the Yelp business review dataset
[21] in the Urbana-Champaign area. The dataset includes 11,917 users, 1,579 busi-
nesses, and 33,770 ratings (ranging from 1 to 5 stars) recorded from January 2007
to December 2017. Figure 2.2 shows the distribution of the average ratings left on
the businesses. The dataset was preprocessed by sorting all the ratings in chrono-
logical order, from the earliest to the latest, and split it into 34 batches with 1,000
ratings each (the last batch has 770 ratings). Each user receives around 1,000 ratings
from nearby anonymous users at various times and locations. These ratings can be
represented by a user-location matrix. Each time a matrix was constructed, it was
imputed before the groups could be generated by the k-means algorithm. The group
preferences were represented as several rows of ratings, i.e., the cluster centroids.
They were attached to the end of the group-location rating matrix as a series of rows.
The NMF was re-run on the group-location matrix each time when it had new rows
attached, producing the updated latent factor matrices G and Q. To evaluate the
prediction accuracy, after every batch of 1,000 ratings was processed, the test users
were selected such that they had ratings in the previously processed batches, as well
as in the rest of the batches that had not yet been touched.

To study how this privacy-preserving model affects the prediction accuracy, a
simple NMF (referred to as “MFRS”) model is implemented, which takes 1,000 ratings
in each batch, imputes the raw ratings, and adds them to the end of the existing user-
location matrix (rather than the group-location matrix), performs the NMF on it, and
makes estimates of the same test ratings used in this proposed model.

The prediction accuracy was then computed and measured using the mean abso-
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Figure 2.3: The Impact of the Rank in Performance

lute error (MAE). To evaluate the performance of the model against recent research,
it is compared with the decentralized matrix factorization model proposed by Chen
et al. in [17]. Let’s use “GBRS” to denote the proposed model, i.e., a group-based
recommender system.

The batch group number is kept to 3 and the prediction group number to 10
when studying the impact of the rank k. The MAE was computed in each batch,
and the average error was used for comparison. Figure 2.4 shows the performance
of the three models with varying ranks (In the figure, MFRS was used to denote a
centralized NMF and DMFRS to denote the previously mentioned DMF model). It
is apparent that the number of latent factors had a trivial impact on all three models.
In the following tests, the rank was set to 1 for DMF and GBRS and 9 for DMF for
best performance.

When POI recommendations are expected, the user side program needs to identify
his/her groups. The cosine similarity between the user preference vector and the
group preference vectors is calculated. The program only uses the top 10 groups for
prediction. For each location, the weighted average of the group preferences on it is
considered the estimated preference for this user. Meanwhile, this research explored
how many groups should be generated when a batch of ratings becomes available.
The results show that the best MAEs were produced when the batch group number
was set to 3 and the prediction group number to 10.

Figure 2.4 illustrates such a trend that although the DMF had overall decreasing
errors over time, the average was noticeably higher than other methods. Comparing
the GBRS with the two non-privacy models, i.e., baseline and MFRS, the increased
portion of the errors is negligible. Inspired by this figure, the impact was studied
for the old group preferences on the prediction accuracy in order to help the system
determine when to get rid of the obsolete data and keep the knowledge on the server
up to date. For this purpose, the experiment removed the rows in matrix R when
they became a certain number of years old and examined the performance of the
model. The MAEs plotted in Figure 2.5 indicate that by removing two-year-old data,
the average prediction accuracy went up approximately 1.69% from the non-time
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Figure 2.4: The Trend of Errors Over Time

Figure 2.5: The Impact of Removing Old Rows in the Rating Matrix

sensitive version.
In summary, the proposed GBRS had a consistently better performance than the

distributed nonnegative matrix factorization model. It is a technically sound frame-
work that does not trade privacy for prediction accuracy, according to the comparison
against the baseline and the simple NMF models.

2.5 Summary

The study aims to address the growing need for location-based social network (LBSN)
recommendations while maintaining user privacy in accordance with regulations such
as the General Data Protection Regulation (GDPR). Previous privacy-preserving
(PP) Point of Interest (POI) recommendation systems had limitations, requiring ad-
ditional information or involving significant server storage.

In this section, a group preference-based privacy-preserving point-of-interest rec-
ommender system was designed and proposed. It takes advantage of matrix factor-
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ization, clustering, and anonymous ad hoc wireless peer-to-peer communication to
provide real-time private location-based recommendations. This system prioritizes
user privacy, with users storing their preferences on their devices and sharing rat-
ings anonymously via Wi-Fi Direct in an ad hoc P2P network. The server conducts
matrix factorization to learn about group preferences and locations, but individual
preference data is not shared with it.

Each user’s preference vector is updated as they visit new locations and stored
on their mobile device. Preferences are shared when a certain threshold of users
is nearby, with no user identity or MAC address information disclosed. Received
data is clustered into groups via the k-means algorithm, and the group preferences
are anonymously sent to the server. The server then employs Non-negative Matrix
Factorization (NMF) on the collected data to obtain latent factors for global group
preferences. An objective function is used for the matrix factorization process, and
stochastic gradient descent is employed for updates. To make recommendations for a
user, their device retrieves the latent factor matrices from the server and reconstructs
the utility matrix, facilitating an efficient and privacy-preserving way to offer POI
recommendations.

The major contributions of this work are two folds: first, this model is distinc-
tive in that it doesn’t require storing personal preferences on a central server, thus
ensuring user privacy and conforming to regulations such as GDPR; second, by in-
novatively combining local preferences stored on individual devices and global group
preferences deduced from server-side matrix factorization, the research provides a
more comprehensive and accurate recommendation system. In other words, this ap-
proach is more resource-efficient, as it requires fewer communication resources due to
lower dimensionality.

The results of the experiments demonstrate that it outperformed the recently pro-
posed decentralized matrix factorization model in terms of accuracy and the elimina-
tion of the user geographic graph. While providing technically sound privacy protec-
tion, the model merely lost trivial accuracy compared to the non-privacy benchmark
models.

Copyright© Longyin Cui, 2023.
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Chapter 3 A Distributed Framework with Vendor-Based Third Party for
Privacy-Preserving Point of Interest Recommender Systems

3.1 Motivation and Research Goals

The demand for Point of Interest (POI) recommendation services is proliferating.
Location-based Social Networks (LBSN) providers, such as Yelp and Google Local,
have effectively increased their market shares. According to Yelp’s Q4’19 report, there
are 36 million unique mobile app users bringing in revenues of over one billion dollars
in 2019. Moreover, the total number of user reviews it has collected since 2004 has
surpassed 205 million [22]. From the Newzoo’s Global Mobile Market Report 2020:
(1) there would be 3.5 billion smartphone users worldwide by the end of 2020; (2), in
2019, about 56% of the global website traffic was generated by mobile devices [23].
The primary structure and components of a typical LBSN are shown in Chapter 1
(Figure 1.4), in which the records of check-in activities are usually used to generate
recommendations.

Conventionally, all the data collected is saved and stored in a central server to
generate recommendations. However, once facing data breach issues, such centralized
recommender systems are vulnerable. A recent Capital One data breach caused ap-
proximately 500 million dollars in financial damage on top of other indirect costs [24].
The case study on this incident also shows that, nowadays, companies worldwide are
still not adequately adapted to securing their cloud computing environments [25].

Several privacy-preserving POI recommender system models [26, 27, 28, 29]were
proposed using a decentralized approach, enabling users to process and generate rec-
ommendations among themselves. However, data itself is an essential resource. These
frameworks require retrieving personal data, such as information from social networks.
Consumers’ social relationships and personal data are usually absent and sensitive.
Fetching such data is risky, even under the presence of a privacy disclaimer. In 2019,
the Federal Trade Commission issued a 5 billion dollar fine on Facebook due to its
violation of consumers’ privacy [30].

A vendor-based recommendation network scheme is proposed in this research.
Instead of maintaining a central server or carrying out all computing activities on the
user side, we can assume that the recommendation tasks are conducted on a local
vendor for each small area. Nevertheless, to protect users’ privacy, data concerning
users’ preferences or locations are untraceable, making it impossible for local vendors
to retrieve enough data. Due to the lack of correlation in the high dimensional space,
predictions directly made on this sparse matrix often suffer from low accuracy. With
all users divided into smaller groups, the matrix becomes even sparser. We can resolve
this issue by introducing “virtual users.”

This part of the work elucidates the benefits derived by both recommendation
providers and consumers through the proposed scheme. Service providers experience
enhanced user engagement, as users often place greater trust in local businesses com-
pared to large corporations [31]. Simultaneously, users benefit from more efficient
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data analysis while the risk of a comprehensive data breach is substantially reduced.
Moreover, the selected vendors inherently render the system location-aware, as they
correspond to the users’ active visiting areas.

The primary contributions of this research can be summarized as follows:

• The proposition of a localized point-of-interest (POI) recommender system
framework, which redistributes the computational tasks and data storage re-
sponsibilities of a central server across smaller geographic areas.

• The introduction of the “virtual users” concept, a novel approach that enables
localized recommender systems to collaborate with each other, effectively ad-
dressing the issue of data sparsity.

• The execution of experiments on real-world datasets demonstrates the impor-
tance of adhering to geographical constraints and validating the effectiveness of
the proposed framework.

3.2 Centralized and De-centralized Recommender Systems

Centralized Recommendations

The significant difference between a centralized RS and a distributed or decentralized
RS is how data is attained and processed. The data is stored on a single server for
a centralized RS, where new recommendations are generated immediately after data
pre-processing. There are many ways to implement centralized POI recommendation
models. To investigate the trade-off between privacy preservation and recommenda-
tion accuracy, the study has selected several straightforward models to demonstrate
the proposed framework. With that being said, the Recommender System Network
(RSN) that is proposed here is compatible with various methods.

For example, for a classic Matrix Factorization (MF) model, a regression technique
is realized to collaboratively learn the latent factors of users and items (i.e., POIs)
[32]. While users’ feedback is reflected by their ratings, the latent factors indicate each
user or item’s hidden characteristics. A general MF-based recommendation model can
be represented by the following optimization problem as shown in Equations 3.1 and
3.2, where rui denotes the known rating given by user u to item i, and r̂ui denotes
the predicted rating. Vectors pu and qi represent the user and item latent factors,
respectively.

min
pu,qi

∑
rui∈Rtrain

(rui − r̂ui)
2 + λ(∥qi∥2 + ∥pu∥2) (3.1)

r̂ui = qTi pu (3.2)

In the well-known biased MF model [32, 33], the predicted rating, however, is
formalized as follows:

r̂ui = µ+ bu + bi + qTi pu (3.3)
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where µ, bu, and bi represent the global mean, the user bias, and the item bias,
respectively. Rtrain is the set of observed ratings. Accordingly, the objective function
is then updated as Equation 3.4. The notations and the parameters will be discussed
in detail in later sections.

min
pu,qi

∑
rui∈Rtrain

(rui − r̂ui)
2 + λ(b2u + b2i + ∥qi∥

2 + ∥pu∥2) (3.4)

We involve Biased MF heavily in this experiment due to its excellent combination
of simplicity and reliability.

Decentralized Recommendations

To convert a centralized RS into a decentralized RS, service providers need to push
the data storage and processing tasks to the users’ end. Either the user data can
be distributed efficiently, or a secure protocol such as a safe peer-to-peer structure is
provided to allow information exchange. In a decentralized RS, every user keeps a
fraction of the training data and is responsible for generating their own recommen-
dations locally. Some researchers managed to shift the learning process to the users’
end to resolve privacy concerns [28, 29, 34].

However, there are inevitable vulnerabilities in these models. For example, when
users exchange ratings directly, a malicious user is able to gather other users’ ratings
by giving positive feedback to all locations. Alternatively, when only latent factors
are exchanged, a malicious user can tell that another user visited a specific place if
they share a similar latent factor associated with the exact location. Each of the
researchers made breakthroughs and solved different problems, but many of them
remain.

While distributed systems offer significant advantages in terms of privacy preserva-
tion, they also present specific challenges. One notable disadvantage is the increased
complexity of managing and maintaining a distributed architecture, as it necessitates
the synchronization and coordination of various nodes to ensure data consistency and
system reliability. Additionally, this distribution of responsibilities across multiple
nodes may inadvertently expose the system to potential security risks, as each node
could become a potential target for cyberattacks or unauthorized access. Moreover,
the need to communicate and share data between nodes in a distributed system may
also compromise privacy, as the data in transit could be intercepted or altered by
malicious actors. Consequently, it is crucial to implement robust security measures
and encryption protocols to safeguard the privacy of the data in a distributed system
while carefully balancing these precautions with the system’s performance, scalability,
and accessibility.

3.3 Model and Methodology

Involved Formula and Notifications

In a centralized or traditional recommender system, suppose we use u to denote a
user (customer) and i an item (POI), then U and I are the user and item sets, where
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we have u ∈ U and i ∈ I. m and n represent the sizes of U and I, respectively. A
rating rui indicates the preference of user u over item/POI i. In the dataset, each
rating rui ∈ [1, 5], where 1 indicates least favored and 5 most favored. As it was
introduced in the previous section, we can use r̂ui for predicted ratings and rui for
their observed counterparts. Aside from the objective function in Equation 3.4, if we
denote the rating matrix by R, then we have the following formula:

Rm×n ≈ Pm×k ·QT
n×k (3.5)

where k is the number of latent factors that are retained, pu and qi are column vectors
of the two matrices, respectively. For the MF models, unless specified, let’s use P ∈
Rm×k to denote user latent factor matrix, and Q ∈ Rn×k to denote the item latent
factor matrix. Furthermore, let’s define T r as the training set and T e as the test
set. Typically, all MF methods require learning user and item’s latent factors by
regressing over the known user-item ratings from the pre-processed training dataset
[35]. Because of this, both Equation 3.4 and Equation 3.5 aim to find the optimal
P and Q that minimizes

∥∥R− P ×QT
∥∥. Finally, let’s denote the constant in the

regularizing terms in Equations such as Equation 3.1 and Equation 3.4 by λ. Both k
and λ are adjusted and tuned using cross-validation. The Stochastic Gradient Descent
(SGD) is utilized to solve the least squares optimization.

In the proposed RSN framework, the centralized RS is broken down into multiple
local entities. Each area of the city has an independent RS, which maintains its own
users and is considered as a local group, denoted by gi (g1 ∪ g2 · · · ∪ gn = U). The
set of all groups is represented by G. In addition to the physical user (real customers)
set U , this research has introduced a virtual user (generated fake customers) set V .
If we define the matrix that stores the virtual users’ ratings as Rv and the real users
Rr, then we have:

Rtrain =

[
Rr

Rv

]
(3.6)

Users choose a nearby vendor they trust to receive recommendations. In order
to simulate the real scenario in the experiment, users in the dataset are clustered
beforehand. The clustering is based on the Pearson Correlation Coefficient (PCC) of
users’ ratings. Specifically, for any pair of users a and b, the similarity between the
two is defined by Equation 3.7.

SimPCC(u, v) =

∑
i∈Iuv(rui − µu) · (rvi − µv)√∑

i∈Iuv(rui − µu)2 ·
√∑

i∈Iuv(rvi − µv)2
(3.7)

where µa and µb are the average ratings of users a and b, and Iab is the item set
that a and b both rated. After the affinity matrix is constructed, we then perform
the kernel k -means clustering to minimize their in-cluster variance. The PCC is
chosen since it has the best performance with respect to mean absolute error (MAE)
in neighborhood-based RS models [25]. Once all the users are clustered, the cluster
centroids are treated as virtual users and sent to all the other RSs.
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Figure 3.1: Yelp Dataset User Visiting Behavior Analysis

Problem Description

Two separate cities and their nearby districts are chosen to evaluate the model. Most
users are only active in a particular town and remain in specific places. This phe-
nomenon is usually referred to as “location aggregation” [28]. For example, Figure
3.1 shows the points are aggregated where each point is a visiting record. The x-axis
and y-axis represent the user and POI IDs, respectively.

Users select local businesses they trust to share their data with before getting
recommendation services. Accordingly, we can split all the users into different groups
to simulate real user activities. This step in simulation is not required in practice
since users choose their trusted vendors spontaneously. The research estimates a
user’s active location (i.e., the latitude and longitude) by their previously visited
POIs (Equations 3.8 and 3.9):

Latu =
1

|Iu|
∑
i∈Iu

Lati (3.8)

Lonu =
1

|Iu|
∑
i∈Iu

Loni (3.9)

where Iu denotes all the POIs a user visited.
However, the side effect of such action is that it makes the already sparse POI

rating matrix even sparser. To increase the number of ratings that can be used to
train each model, we can provide each local RS with virtual users’ ratings. A local
RS generates a certain number of virtual users by clustering the existing users. We
can denote the cluster as c and the user set of that cluster as U c.

rvi =

∑
i∈Iuv ,u∈Uc

rui

|Uc|
(3.10)

Equation 3.10 shows how a virtual user rating is estimated. For a virtual user
v, its rating toward location i is approximated by computing the mean value of the
ratings left by users in the same cluster (u ∈ U c) who visited the exact location (i ∈
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Iuv). The virtual users, whose ratings are shared by all RSs in an RSN, summarize
the preferences of physical users.

Evaluation Algorithm

Since the simulation of users choosing trustworthy vendors and generating virtual
users play an essential role in the experiment, the research organizes the work and
shows it in Algorithm 1.

Algorithm 1: Preprocessing User Ratings

aInput: all ratings from R, all POIs’ location information (longitude and
latitude)

Output: n groups of processed training sets {Tr1, Tr2, ... Trn}and test
sets{ Te1,Te2, ... Ten }

1 for u = 1 to U do
2 Calculate each user’s longitude Longu and latitude Latu according to (8)

and (9)
3 Eliminate users outside the target city
4 Perform k-means clustering based on Euclidean distance among users

5 end
6 for g = 1 to G do
7 Split Rg into training Trg set and test set Teg
8 for user u in Trg do
9 Calculate the similarities to all other users according to (7)

10 end
11 Complete the affinity matrix for the current group.
12 Perform the kernel k-means clustering to generate virtual user ratings

Rvg according to (10)
13 Append Rvg to Rv

14 end
15 for g = 1 to G do
16 Update Trg by appending Rv according to (6)
17 end
18 return Tr and Te

Each vendor-based RS possesses a training set Trg in practice, learns the factorized
matrices according to Equations 3.4 and 3.5, and then make the matrices P and Q
ready for download for its users. The final recommendations are generated on every
user’s personal device, decreasing the workload for each vendor-based RS.

System Update and Maintenance

While the data is static in this simulation, the real-world users continuously move and
change their active visiting areas. Furthermore, for privacy concerns, there should not
exist a link between cluster centroids and physical users, which prevents the updating
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Figure 3.2: Plotting of the User Visiting Locations (Las Vegas)

process from using the same users. Therefore, each time a clustering is completed, its
components, centroids, and the number of clusters will differ from the previous one.
To make the cluster centroids better represent real users’ personal preferences, two
mechanisms are implemented:

• The clustering needs to be regularly performed to generate new virtual users.

• The old virtual users need to be turned inactive after the clustering becomes
obsolete.

In real-world scenarios, each virtual user is attached to a timestamp. Once it
reduces to zero, the virtual user expires and is then removed. When a virtual user
is created, the local RS will broadcast it to all the RSs in the same network. The
recipients will decide if the information is useful, depending on the overlap between
virtual users’ visited locations and the item set of the current RS.

3.4 Experiments

Datasets

We use two subsets of the Yelp business review dataset [21]. The first set was collected
in the Urbana-Champaign area, and the second was from the city of Las Vegas and its
surrounding areas. The rating type is an explicit rating (from 1 to 5 stars) collected
by Yelp between January 2007 and December 2017. The research removed the users
with too few ratings and repeated ratings.

All local RSs are in the same city or metropolitan area in the test. However,
in a real-world scenario, if the RSs share identical items or overlapped item sets,
communication can be established, and RSs in the same RNS can enhance each other.

During pre-processing, the research adopted multiple ways to test the appropriate
number of RSs in a network. As discussed in previous sections, we need to group
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Table 3.1: Datasets Statistics

Dataset # of Users # of Items # of Ratings
UC 2737 1502 22654
Las Vegas 31540 30374 802900

the users based on their visiting locations to simulate the real-world scenario. Figure
3.2 shows the users’ visited POIs, almost reflecting the streets’ shape in Las Vegas
and nearby areas. However, the results did not illustrate apparent segregation when
attempting to guess users’ real locations by plotting their Euclidean centers of all
the visited places. Clustering methods, including k -means, spectral, and density-
based spatial, were all tested, and eventually, the k -means method was chosen for its
simplicity and straightforwardness. When comparing different clustering methods,
the research evaluates both the results of accuracy and the balance of user numbers
in each area.

After pre-processing, the details of the datasets are listed in Table 3.1. We sort
all the ratings in chronological order and split them by the ratio of 0.2 with the first
80% of ratings for training and 20% for testing.

Evaluation Metrics

We adopted two metrics to evaluate the model performance, the Root Mean Square
Error (RMSE) and Mean Absolute Error (MAE). Although accuracy is not always
the best metric to evaluate recommender systems [36], minor accuracy improvements,
measured by RMSE or MAE, can still pose significant impacts on the quality of top-k
recommendations [32, 37]. Equations (10) and (11) show the details of the definition:

RMSE =

√∑
u,i∈Te(rui − r̂ui)2

m
(3.11)

MAE =

∑
u,i∈Te |rui − r̂ui|

m
(3.12)

Results and Discussion

This experiment has compared the results with three existing models:

• The MF model, promoted by one of the Netflix winners, Simon Funk [38]. The
research chooses the one that has integrated the baseline model proposed in
[32]. The two latent matrices in Equation 3.5 are factorized and learned using
the objective function in 3.4. The research used a well-built version to represent
a typical centralized RS [39].

• The DMF model, a decentralized scheme that only allows users to exchange
gradient loss among neighbors during training [28]. Like most decentralized
RSs, there is no data stored on the server. All personal information is kept on
users’ devices.
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Figure 3.3: Local RSs Accuracy Results (Urbana-Champaign). Four Models’ RMSE
Results for Each Local RS in the Urbana-Champaign Area.

Figure 3.4: Local RSs Accuracy Results (Las Vegas). Four Models’ RMSE Results
for Each Local RS in the Las Vegas Area.

• The baseline model, of which the prediction function is defined by Equation 3.3
but without the last term. A predicted rating is merely calculated by adding
the global mean, column bias, and row bias, and there are no iterative updates
involved.

I have opted for straightforward recommendation methods over complex models.
In this experiment, the core model can be replaced or combined with other schemes.
Each local RS can use different algorithms to generate recommendations.

In the Urbana-Champaign dataset, users were divided into four sections based on
their frequently visited locations. In contrast, the Las Vegas metropolitan area has
been categorized into ten smaller regions based on the same criterion. The results of
every local RS are shown in Figure 3.3 and Figure 3.4. The different number of groups
is due to the different number of users and the cities’ scale. On the one hand, if we
keep the user size too small for an area, the number of users that can be clustered
would be too small, leading to insufficient clusters. On the other hand, if this size
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Table 3.2: Datasets Statistics

Urbana-Champaign
Model MF RSN(MF) Baseline RSN(Baseline) DMF
RMSE 1.2946 1.3121 1.3650 1.4279 1.4984
MAE 1.0307 1.0568 1.0469 1.0940 1.2018

Las Vegas
Model MF RSN(MF) Baseline RSN(Baseline) DMF
RMSE 1.3034 1.3704 1.2394 1.32996 1.4360
MAE 1.0012 1.1015 0.9452 1.04457 1.1241

is too large, each cluster will have too many users, causing the centroids to be too
general to reflect physical users’ preferences and interests.

In Figure 3.3 and Figure 3.4, for local RSs in RSN, their performance oscillates
up and down on the curves formed by centralized RSs. In most cases, their accuracy
is only slightly better than each local RS in an RSN. Occasionally, for some specific
areas, such as areas 2 and 3 in Figure 3.3 or areas 4 and 5 in Figure 3.4, RSs in RSN
produced higher accuracy than the centralized RSs. In practice, each local RS in an
RSN can virtually work with any model and does not have to use the same method
uniformly, so theoretically, the proposed model has the potential to outperform a
centralized RS. This is similar to why a hybrid model performs consistently better
than a pure model.

One thing to point out is how this research calculates the average RMSE and
MAE. It is assumed each region has a local RS to generate its recommendations
using actual and virtual ratings. It is necessary to estimate the performance of the
RSN using all local RSs’ average MSE and RMSE. For MAE, the average is the mean
value of all the MAEs from every local RS. For the RMSE, however, the average
RMSE is estimated by calculating the MSE first and then computing the average
RMSE by taking the square root of the mean value of the MSE.

As far as hyper-parameters, in Figure 3.4, where every RS in the RSN uses biased
MF as the default model, the number of latent factors k(40) and learning rate λ(0.1)
were the same as the centralized MF model. The DMF model used the same value for
k and set the regularizer to 0.01 and the learning rates to 0.05. The experiment probed
each model with k ∈ {5, 40}, the learning rate λ ∈ {0.01, 0.5}, and the regularizer
between {0.001, 10}.

Table 3.2 shows the results for different models. It is apparent that all MF models
performed better on the Urbana-Champaign dataset. There could be two reasons.
First, the Urbana-Champaign dataset is more compact, meaning a small area with
relatively sufficient users and POIs to analyze their preferences. Although the Las
Vegas dataset is from a densely populated city, it is still too sparse geographically.
In fact, this dataset includes visiting records from the city of Las Vegas, North Las
Vegas, Spring Valley, Paradise, and all small towns nearby. Second, as shown in
Figure 3.5, the percentage of new businesses in the Las Vegas area is higher than
that in Urbana-Champaign. As mentioned previously, the research ordered the rat-
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Figure 3.5: Rating Distributions. (Red: Urbana-Champaign, Blue: Las Vegas). The
Ratings Are Ordered from Old to New.

ings chronologically, enabling the models to use old data to predict new ratings for
simulating real-world scenarios.

In the first dataset, compared to the centralized Biased MF model, the accuracy
tradeoff for the RSN model is very small, if not trivial (as low as 0.0175 in RMSE and
0.0261 in MAE). The tradeoff is more significant when the recommending method is
changed from Biased MF to the Baseline, but it is still smaller than 0.1. This test
result is under the circumstances that all local RSs in the RSN uniformly use the same
method and much fewer ratings (1/4 of the total ratings in the Urbana-Champaign
dataset, 1/10 of the total ratings in the Las Vegas dataset). With different recom-
mendation methods implemented, the RSN can achieve better performance. Since
each local RS maintains a much smaller set of users to generate recommendations,
it reduces the training time. Also, with the help of “virtual users,” it scored similar
accuracy as a centralized RS. In contrast to a completely decentralized RS such as
DMF, the RSN sacrifices much less accuracy for privacy preservation.

This experiment estimated users’ preferred vendors who hold their personal his-
tories using the locations of their most frequently visited stores. This, although not
the most accurate way, is the best option in the assessment due to the limited in-
formation. One can confidently assume that, in practice, the overall performance
of the proposed RSN framework will be better. In summary, the RSN can lower the
privacy risk and boost user confidence with minimal loss of prediction accuracy. Each
local RS has a light workload and fast speed of convergence. Moreover, it is easier to
investigate and control the damage if there is any data breach.
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3.5 Summary

Conventional centralized RSs face high risks in protecting users’ privacy because they
carry all personal information in the same system. On the other hand, even though
decentralized models can eliminate the risks of data breaches, they almost give up all
further data analysis or mining opportunities. However, the proposed framework de-
centralizes data storage and computation by redistributing responsibilities to trusted
local vendors within smaller geographical areas. This localized approach aligns with
the observed ’location aggregation’ phenomenon, where users remain active within
specific locations. The system simulates real user activities by dividing users into
groups based on their trusted local vendors.

To address data sparsity—an inherent side effect of the localized approach—’virtual
users’ are introduced into the system. These virtual users are generated by clustering
existing users and estimating their preferences based on the mean rating values of
the clustered users. The scheme focuses on both the collaboration among users and
among the RSs hosted by small local businesses that people trust.

The primary contributions of this research are three-fold. First, it proposes a lo-
calized POI recommender system that enhances user engagement, reduces the risk of
comprehensive data breaches, and provides location-aware recommendations. Second,
it introduces the concept of ’virtual users’ to manage data sparsity, facilitating col-
laboration between different localized recommender systems. Finally, it validates the
effectiveness of the proposed framework through real-world experiments, emphasizing
the importance of geographical constraints in improving recommendation accuracy.
Compared to previous research, this study not only further improved the prediction
accuracy but also made the design logically more sound.

Also, this research leads to another work that includes integrating a distributed
neural network into the RSN and exploring other ways to create virtual or synthetic
users, i.e., users who are not physical but can reflect real users’ interests and prefer-
ences.

Copyright© Longyin Cui, 2023.
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Chapter 4 Leveraging User Text Feedback for Improved Prediction and
Privacy

4.1 Motivation and Research Goals

The development of recommender systems accelerated during the past decade in dif-
ferent fields, such as online shopping, streaming services, and point-of-interest (POI)
recommendations. People have cultivated a habit of surrendering various life details
in exchange for the powerful tool, colloquially known as the recommender system,
in coping with information overload. However, as the awareness of privacy issues
continues to grow, more and more general data protection regulations and consumer
privacy acts are being implemented worldwide [40, 41, 42].

Traditional recommendation methods, e.g., matrix factorization [43], infer users’
preferences on items using only the implicit or explicit feedback data. Over the years,
newer models have integrated more contextual information to generate better and
more accurate predictions. From timeSVD++ [3], factorization machine [1], to the
neural network with attention-based novel RS models [44], recommendation methods
keep including more forms of sensitive user data.

Furthermore, privacy concerns have started to arise from the framework of tra-
ditional recommender systems. In the area of POI recommendations, users employ
their end devices for restaurant and gas station recommendations, as well as for many
other places that might interest them. While the users enjoy the convenience brought
by a recommender system, it collects sensitive data, such as private user profiles or
interaction records from personal devices, and stores them in a centralized server.
Should there be any data breach or mismanagement, all private data may be at risk,
which could lead to severe consequences.

Over the years, researchers have experimented with many different privacy-preserving
methods to lower the risks of privacy breach issues. For example, decentralized RS
aims to push off the computation entirely to the users’ end [17], removing the need for
saving any sensitive data. In contrast, the k-anonymity based-RS, which keeps the
central server, hide user identities and broadens certain sensitive information [45].
Other methods, such as obfuscation, focus more on perturbations and noise injec-
tion [46]. However, each technique still faces unique challenges today. For example,
K-anonymity-like algorithms are especially vulnerable to reverse engineering when
platforms purposely collect any available contextual user information; decentraliza-
tion requires more communication among users and more computing powers from
each device; Obfuscation, although easy to implement, may cause the original data
to be no longer available.

Previously a group-based RS was proposed where ratings are spread out among
user devices to accumulate sufficient information for forming groups in order to en-
hance identity obfuscation [47]. The performance showed a reasonable trade-off com-
pared to its centralized counterpart demonstrating the effectiveness of user groups in
POI recommendation.
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This research presents the cascade recommender system (CRS), a novel framework
with a cascade structure that integrates and processes sensitive data differently at var-
ious levels while maintaining high prediction accuracy. Generally speaking, the data
in the proposed model are processed on three different levels. Firstly, the research
uses clustering methods to replace users with centroids based on users’ feedback on
their visited POIs and estimated locations. At the same time, the research extracts
user reviews from local POIs to calculate POI similarities using the Doc2Vec method
[48]. Secondly, the research has conducted the recommendation algorithm using the
centroids’ information to generate several data fragments for users to download in
order to reconstruct an imputed centroids’ preference matrix. Finally, after the re-
construction, the users’ mobile devices will impute the users’ missing preferences to
compare against their own, thus obtaining the final recommendations. Based on two
large-scale location-based social networks (LBSN) datasets, the test results show a
satisfying accuracy of POI recommendations under a secure framework.

the main contributions to this research are summarized as follows:

• The research has proposed a cascade recommendation framework for POI rec-
ommendation, whereby sensitive user information is processed at different levels
to accommodate the gradually unsecured environment. The multiple aggrega-
tor servers added to the model ease the extra computational privacy cost on
the central server and user devices.

• The research proposed to sever the connection between contextual information,
such as text comments and user identity, while keeping it serviceable. The model
in this research collects and uses such information, but when the processed
information is fed to the central server, the highly processed information cannot
be retraced to the customers.

• The research conducted experiments on real-world publicly available datasets,
and the results demonstrate the effectiveness and a reasonable trade-off.

The remainder of this part’s research is organized as follows. The immediate
next section discusses topics pertinent to the proposed research. “Proposed Model
and Methodology” depicts the problem and the approach. In the section “Datasets
and Experiment”, the datasets and results are presented. Finally, the summary will
conclude the accomplishment of this era’s research.

4.2 Exploration on Related Work

This section presents some related background context and techniques which were
utilized to develop the model, including conventional recommender systems, privacy-
preserving recommender systems, user comments embedding, and clustering methods.

Conventional Recommender Systems

There are a variety of models and approaches to the traditional point-of-interest (POI)
recommender system (RS), and various standards can categorize them differently.
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For example, a broad categorization of the RSes can be content-based RSes [49],
collaborative filtering (CF)-based RSes [50], and hybrid RSes that are a combination
of multiple kinds. Collaborative filtering, one of the most well-known recommendation
techniques, focuses on finding user preferences from similar user-item interactions.
After reviewing enough feedback, these RS models carry out a set of predictions by
filtering down the entire item set for a new user using the knowledge obtained from
similar users. The models assume that users with similar behaviors tend to interact
with similar items or locations. Within CF-based RS models, there are a large number
of variants, including the matrix factorization (MF) models [43], regression-based
latent factor models [51], Bayesian personalized ranking models [52] and deep MF
models [53].

Due to the nature of POI recommendations, POI RS is heavily associated with
LBSN. Figure 4.1 shows the diagram of data flow for a POI recommender system based
on LBSN. Aside from collecting direct user feedback, more contextual information,
including sensitive personal data, is also being stored.

In recent years, researchers increasingly focused on analyzing auxiliary informa-
tion from users and POIs. Although RS models mainly use user feedback directly
to predict future user actions, integrating auxiliary information vastly increases the
models’ performance. Thus, in another dimension, traditional recommender systems
can also be categorized by the auxiliary information it focuses on to enhance the
results. The earlier auxiliary information on which most researchers focused was the
temporal effect, such as users’ check-in time and visiting frequency [3]. This kind of
study first focused on the temporal effect independently (time-aware RS) and later
successively (sequence-aware RS) [54]. Meanwhile, the geographical information is an
especially important trait for POI recommendations [55] and many attractive traits
uniquely appear in this field. For example, users are usually active in only one city,
and their visiting behaviors are often bound by where they live [17]. Moreover, the
users’ text comments also play an increasingly critical role in POI RSes due to the
advancement in the field of natural language processing. Not only can researchers
more accurately predict user behavior, but they are also able to make the machine
decisions explainable [44]. Lastly, even though integrating user social relations is not
as popular as previously mentioned auxiliary information, some researchers improved
their results with the help of social network information [56]. Indirect methods such
as group-based POI recommendations have also found ways to use the relationships
among individuals and the group in which they are to boost prediction accuracy [57].
Recently, correlations have also been found between long-distance visits and social
relations [58].

Privacy-Preserving Recommender Systems

Because of the ever-increasing privacy risks that recommender systems face, re-
searchers have proposed different methods and models over the years. The first
approach is through distribution. Two typical examples were entirely distributed
recommender systems [17] and the federated recommender systems [59]. The former
pushes the computation burden entirely to the user end, meaning that each user has
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Figure 4.1: The Framework Of Traditional Centralized Point-of-Interest Recom-
mender Systems

a separate private data and recommendation model. In contrast, the latter only re-
quires the private data to be stored on each user’s device while a central server learns
the neural network through gradient aggregation. The second most popular method
is obfuscation, such as randomized perturbation. The idea is to protect users’ original
private data by adding extra noise. As a traditional privacy-preservation technique,
it has been frequently used in RS models [60, 46, 61, 62]. Last, the third type is
by adding cryptographical protocols to secure users’ identities and data transmission
[63, 64, 65, 66]. The advantage is that there is no or little sacrifice of the performance
of the RS model, but the downside is it requires extra computation power or time.

As mentioned before, in the previous work [47], a two-layered system was proposed,
employing clustering and grouping as a means for obfuscation. Instead of focusing on
improving the prediction accuracy of individuals’ preferences as in [57], the grouping
mechanism was implemented as a way for further concealing users’ identities. While
the experiment showed a promising trade-off between the privacy-preservation feature
and prediction accuracy, both of them have much room for improvement.

Despite their differences, privacy-preserving recommender systems (PPRS) share
the same categorizations, compositions, and challenges since they are derived from
traditional recommender systems. However, from the perspective of privacy preser-
vation, the privacy of the utilization of auxiliary information has not been studied as
thoroughly as direct user feedback, such as user ratings or approvals. This research
share ways for protecting and safely collecting different contextual information in a
POI recommender system.
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Clustering Method

Data clustering is a popular data mining technique as well as a way to mask or
obfuscate private user information. Since clustering is an integral part of the exper-
iment, the research briefly mentions the differences among the grouping algorithms,
including k-means, spectral [67], DBSCAN [68], and fuzzy c-means [69].

k-means, probably the most well-known clustering algorithm, groups n observa-
tions into k clusters with the nearest mean. On the other hand, spectral clustering
treats the grouping task as a graph partition task. Both k-means and spectral cluster-
ing require a predefined number of groups. In addition, DBSCAN clustering is based
on the number of observations in a certain radius, i.e., density. Compared to the
former methods, it is better at eliminating outliers and, most importantly, does not
require a predefined k. Lastly, the fuzzy c-means (FCM) algorithm is a soft clustering
algorithm because it assigns observations to different clusters by percentage instead
of assigning an observation entirely to one group.

It is worth noting that relying on customers to be physically close to each other
while there is always Wi-Fi Direct can be challenging in real-world scenarios. There-
fore, compared with the work in [47], the research adds a layer to use aggregator
servers to aggregate user information actively. Consequently, to reflect this change,
the research needs users’ GPS information to establish the hypothetical locations of
aggregator servers. Since this information is not readily available, especially in this
dataset, the research uses the user-visited POIs’ public GPS information to estimate
their locations. However, the original k-means can no longer satisfy the current sys-
tem due to how user affinities are constructed. To still perform the clustering, the
research tested extensively on clustering methods, especially DBSCAN, which auto-
matically decides the number of clusters but finally chose to use spectral clustering,
which is more potent for locational classification.

The finished framework does not involve all of the clustering methods mentioned
above, but the choice of picking is based on the comparison of each one’s final results.

User Comments and Word Embedding

In most e-commerce and LBSN websites, users can write free-text reviews along with
an explicit or implicit rating. The text comment feedback can be very informative
in the sense that it contains the evaluation and subjective opinions toward a product
or a place from multiple perspectives. The review information weighs separately in
potential customers’ minds when choosing the next place to visit. This is especially
true in POI recommendations since there are often limited ratings for unpopular
places.

Some studies, such as [70, 71], focus on preprocessing user comments, and these
models aim to separate normal comments from “bad” comments (irrelevant com-
ments, advertisements, or scams). Others, such as [72, 73, 74], integrate user com-
ments to affect the latent factors for users and items while training. However, better
results have been found for integrating speech recognition and natural language pro-
cessing (NLP) [75]. In [44], Chen et al. proposed a neural attentional regression model
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with review-level explanations (NARRE) to evaluate user reviews while generating
accurate predictions.

In this model, word embedding is used to find the association among the POIs
with similar comment sections. The term ”word embedding” refers to the problems
in NLP where we want similar vectors to represent similar texts. Specifically, the
research used “Doc2Vec” [48], an unsupervised algorithm to generate vectors for a
document to convert user comments to vectors. This algorithm is an extension of the
algorithm “Word2Vec” [76] that generates vectors for a single word.

The motivation for integrating such a feature is because privacy-preserving POI
recommender systems such as [47, 17, 59] tend to ignore such commonly existing
LBSN resources. Additionally, the clustering processes in this framework narrow
down available user records, rendering other contextual information more invaluable.
However, there is a strong connection between user comments and their identities.
Thus, “Doc2Vec” came into place to vectorize the text information, making it im-
possible to convert the vector back. Additionally, the evaluation method for such
vectorization is challenging to establish, considering the already complicated system.
Different text datasets were tested on the training of the “Doc2Vec” model, such as
comments from the same city, general words, or nationwide POI comments. Eventu-
ally, it was decided to experiment using the non-private POIs’ similarities based on
vectors to regularize the private features in the loss function.

Subsequently, the system has many moving parts, and an optimal controller be-
comes immediately necessary, which will be discussed in the later sections.

4.3 Proposed Model and Methodology

This section introduces the model from its overall structure to the notations, as well
as problem definitions. Meanwhile, the details of the framework are depicted as well,
and the formulation is explained.

Overall Structure

As Figure 4.2 shows, physically, there are three significant components in this model.
The first part is the users’ mobile devices, where raw data are preprocessed, and final
recommendations are generated. In each user’s POI recommendation application, the
device keeps records of their private information, such as the locations they visited
and the comments they left. Specifically, each device needs to carry out three data
processing tasks corresponding to each type of private data. (1) Each user’s com-
ments are vectorized using the embedding tool “Doc2Vec”. (2) The mobile device
uploads user feedback through secure ad hoc P2P Wi-Fi Direct to the nearby aggre-
gator server. (3) The user’s device uploads a package containing recent anonymized
ratings and matching vectorized comments. In the first component, the environment
is comparatively secure, and the data process level is low, meaning that it is closer to
raw private user data.

Additionally, it is worth mentioning that mobile devices are also in charge of
generating random user IDs when the connection is established. In other words, even
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Figure 4.2: The Overall Model Structure, the Tasks of Each Component, and the
Data Flow.

when multiple connections were initiated by the same user at the same place over a
particular time, the user cannot be identified.

The next component’s primary task is user clustering on the aggregator server.
The clustering is based on each user’s uploaded ratings and their estimated GPS
locations using the locations of the POIs they visited. Note that the framework
does not require the user’s address, nor does the framework require any information
on the real-time user location. When an aggregator server collects enough ratings,
e.g., 1, 000, it then performs the clustering and transfers the results to the central
server. Moreover, user ratings and their comments are detached and uploaded sepa-
rately. In this component, the data are further processed to cope with the less secure
environment.

In the third component, its task is similar to a conventional non-privacy preserving
RS. The centroids collected from all the aggregator servers are treated as physical
users, and the model is then trained with “user” ratings and comments. At this point,
the trained model should have generated all the necessary fragments, such as lower-
ranked decomposed matrices from the rating matrix factorization, to reconstruct the
rating matrix. In order to receive recommendations, users need to download these
fragments to reconstruct the imputed rating matrix on their devices. In the last
component, the central server, sensitive data such as user ratings, locations, and
reviews are substantially processed to minimize the potential data breach risks.

Notations and Problem Definitions

Suppose we use u to denote a user (customer) and i an item (POI); then U and
I are the user and item sets, where u ∈ U and i ∈ I. A rating rui indicates the
preference of user u over item/POI i. In our datasets, each rating rui ∈ [1, 5] where
1 indicates the least favored and 5 indicates the most favored. Furthermore, we can
use r̂ui for predicted ratings, and rui for their observed counterparts. All the observed
and unobserved rui together form the matrix R. Now, if we decompose it into two
lower-ranked matrices, the column vectors pu and qi of each matrix represent the user
and item latent factors, respectively.
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A generic matrix factorization procedure can be regarded as an optimization prob-
lem, as shown below:

min
pu,qi

∑
rui∈R

(rui − r̂ui)
2 + λ(∥qi∥2 + ∥pu∥2) (4.1)

In this framework, however, user comments are taken into consideration on the
central server, and it is necessary to use centroid ratings instead of user ratings. The
rationale behind these changes to the above objective function is that there may
be potential patterns that each user follows when reading other users’ comments to
make their decisions to visit. Therefore, the research intends to reflect the weight
of such effects by introducing POI similarities calculated from the vectorized user
comments. If we define sij as the similarity between two POIs i and j based on the
user impression of their comment section, we have the similarity matrix Sc, and the
updated objective function is as follows:

min
pu,qi

∑
u,i∈R

(rui − r̂ui)
2 + α(∥bu∥2 + ∥bi∥2 + ∥pu∥2 + ∥qi∥2) + β

∑
j∈N(i)

sij(qi − qj)
2 (4.2)

where sij ∈ Sc; bu, bi and N(i) represent the user bias, item/POI bias and the set
of item i’s neighbors, respectively; α and β are two different learning rates of the
regularization terms. If we define eui = rui − r̂ui, then we have the following update
functions. Suppose we let L represent the loss function above; then, the gradients
with respect to pu and qi can be calculated as follows:

∂L
∂pu

=
∂

∂pu
((rui − pu · qi)2 + α ∥pu∥2)

= −2qi(rui − pu · qi) + 2αpu (4.3)

∂L
∂qi

=
∂

∂qi
((rui − pu · qi)2 + α ∥qi∥2) + β

∑
j∈N(i)

sij(qi − qj)
2

= −2pu(rui − pu · qi) + 2qi(α + β

 ∑
j∈N(i)

sij

)− 2β
∑

j∈N(i)

sijqj (4.4)

We use θ to globalize all terms’ learning rate; then, the corresponding update
protocols are as follows:

bu ← bu + θ(eui − αbu) (4.5)

bi ← bi + θ(eui − αbi) (4.6)

pu ← pu + θ(eui · qi − αpu) (4.7)

qi ← qi + θ(eui · pu − (α + β

 ∑
j∈N(i)

sij

)qi + β
∑

j∈N(i)

sijqj) (4.8)

After settling the update protocol, we can use the classic stochastic gradient de-
scent (SGD) to optimize the aforementioned objective function. In addition, it is
essential to mention that even though the research uses centroids’ ratings on the cen-
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tral server, all centroids are still referred to as users to prevent excessive notations.
However, in order to obtain all the centroids, a clustering task must be conducted
on the aggregator server, as mentioned previously. Various clustering methods have
been tested, and kernel spectral clustering was chosen in this research due to its better
performance in terms of prediction accuracy.

Furthermore, in order to perform such clustering, the research needs to first con-
struct the affinity matrix S by calculating the users’ similarities. Suppose Sr is the
user similarities based on user ratings, while Sl is based on estimated user locations.
We then have the following equation:

S = α′Sl + (1− α′)Sr (4.9)

where α′ is the weight ratio of the two similarities and Sr is imputed based on the
Pearson correlation coefficient (PCC) of users’ ratings. Specifically, if we use µ to
denote user mean rating, for any pair of users a and b, the similarity between the two
is defined as:

sab PCC =

∑
i∈Iab(rai − µa) · (rbi − µb)√∑

i∈Iab(rai − µa)2 ·
√∑

i∈Iab(rbi − µb)2
(4.10)

On the other hand, to complete the construction of Sl, the users’ locations need
to be estimated using the GPS locations of their previously visited POIs. If we let
Latu and Lonu represent the latitude and longitude of a user, respectively, and Iu
represents the set of all POIs that a user visited, then we have the following equations:

Latu =
1

|Iu|
∑
i∈Iu

Lati (4.11)

Lonu =
1

|Iu|
∑
i∈Iu

Loni (4.12)

where Iu denotes all the POIs that the user u has visited.
Finally, after the clustering, the aggregator servers can upload the centroids to the

central server to finish the previously mentioned optimization according to Equation
(4.2). Afterward, the users can download bu, bi, pu and qi to their personal devices
to reconstruct the complete centroid rating matrix R̂. To receive personalized recom-
mendations, a user’s personal device needs to calculate the weighted average ratings
of the top similar centroids by checking its private rating records against all centroids,
thus applying the following equation:

r̂ūi =
∑
v∈U

s̄ūvrvi

/∑
v∈U

s̄ūv (4.13)

where ū is the target user and s̄ is the vector containing similarities between the
target user and all centroids. The similarities were also calculated according to Equa-
tion (4.10).

Furthermore, ket’s use T e and T r to denote the test set and training set in later
sections. For a complete summary of the notations, please refer to Table 4.1.
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Table 4.1: Notation summary.

Notation Description

U User (centroid) set
I Item (POI) set
R Rating matrix
r Observed rating
r̂ Predicted rating

pu
The column vector representing the latent factors of user
u

qi
The column vector representing the latent factors of item
i

bu User (centroid) bias
bi Item (POI) bias

N(i) Neighbor set of item i
L Loss function

e
The error between the observed rating and
predicted rating

θ Global learning rate
sij Similarity between item (POI) i and item (POI) j
Sc Similarity matrix based on comments
Sr Similarity matrix based on ratings
Sl Similarity matrix based on locations
µa The mean rating of all ratings from user a
Latu The estimated latitude of user u
Lonu The estimated longitude of user u
ū A real user (cannot be considered a centroid)
s̄ The similarity vector between a real user and all centroids
T r Training set
T e Test set

Implementation

In order to better illustrate the implementation of the theory mentioned at the begin-
ning of this chapter, It is more suitable to compare hypothetical real-world scenarios
with the conducted experiment.

First of all, the research needs to sort all datasets in temporal order from the per-
spective of time awareness. In reality, one cannot depend on interactions that happen
in the future to find the affinities between current users to perform personalization.
Thus, the research puts user records into a timely sorted “buckets” list, where each
bucket represents a time window.

In the previously described theory, the users share anonymized personal infor-
mation via a secure ad hoc P2P network with the nearest aggregator server, which
naturally reflects the user’s active visiting area. Since there are no physical user
devices in the experiment, this step is reproduced by estimating the users’ GPS lo-
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cations using the geographical information of the visited POIs. At the same time,
the research has vectorized the text comments left by device owners, removing any
trace before leaving their host devices. In the implementation, “Doc2Vec” is used to
convert user text comments into various vectors. It is worth noting that since the
user IDs are anonymized, geographically or temporally separated data sharing will
be considered from different users.

The proposed theory devotes a lot of effort to the clustering of users. This is
not only to obfuscate the users’ identities further but also to find the ”trend” of the
users of the present location. To implement this part of the experiment, the research
used users’ shared ratings in the current “bucket” and their estimated locations to
calculate the similarities among the users. After the clustering, a set of centroids
will be generated on the aggregator servers and sent to the central server. In the
experiment, the research treats the centroids as new users with index-based IDs.

Then comes the matrix factorization on the central server, where there is no
difference between the real-world scenario and the experiment. This step focuses on
improving the imputation of the rating matrix and dimensionality reduction. It will
be faster when users download the smaller-sized required “fragments” to rebuild a
complete rating matrix.

Finally, the users can use their protected private information to compare against
the imputed centroids rating matrix to see what “trends” they belong to more. In
the experiment, the top similar centroids’ ratings will be extracted, and a weighted
mean is taken to impute the current user’s rating vector.

4.4 Datasets and Experiment Results

This section first introduces the datasets used for training and testing the cascade rec-
ommender system (CRS) model. After the introduction of the metrics and evaluation
methods, the proposed CRS, another two privacy models, as well as a non-privacy
model are empirically compared by the same standards and procedures. Lastly, it
will show the tuning methods and the effects of parameters on model performance.

Datasets

Two areas are chosen from Yelp’s real-world POI feedback dataset, Champaign–Urbana
metropolitan area and the city of Phoenix [21] (https://www.yelp.com/dataset). Both
sets fetched the information between January 2007 and December 2017. The Champaign–
Urbana area was chosen for its small scale and concision. In contrast, Phoenix is one
of the areas with the most enormous amount of feedback data in the entire Yelp busi-
ness review dataset. However, both are significantly sparse compared to conventional
RS datasets such as MovieLens [77]. The statistics of the two areas can be found in
Table 4.2.

Moreover, there is no repeated feedback meaning that each user can only rate a
place once. Figure 4.3 shows the distribution of the user rating numbers from Phoenix
with a base 2 logarithmic scale on the y axis.
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Table 4.2: Datasets statistics.

Area User POI Rating Density

CU 11, 953 1, 579 33, 990 0.1802%
PH 204, 887 17, 213 576, 700 0.0163%

Figure 4.3: The User Rating Distribution (Phoenix). ( The X axis represents the
numerical user IDs starting from 1. For example, if we have 10 users, they Will be
numbered from 1 to 10. The Y axis is the number of ratings they have left, and it is
on a log scale to show a clearer distribution.)

The datasets contain features such as user IDs, POI IDs, explicit rating feedback,
timestamps, user text comments, and POI GPS information. As previously noted,
an explicit rating can only be {1, 2, 3, 4, 5}. Since Yelp does not collect users’ GPS
information in real-time, we can only estimate their active visiting area. For privacy
reasons, the estimation is necessary both in the experiment and in practice. Assuming
that all users decided to disable GPS tracking, the location of POIs can be utilized
instead. Since the GPS information of each POI is not private and publicly available,
it is more than viable to be utilized as a source to estimate each user’s fuzzy position
without privacy concerns. For example, if we determine that a user is only active in
the downtown area, it is helpful to eliminate some unnecessary recommendations in
suburban areas. Figure 4.4 shows the plot of the POI locations from which we can
almost see the city’s shape.

Metrics and Evaluation Methods

We use both root mean square error (RMSE) and mean absolute error (MAE) to
evaluate the model’s prediction accuracy to better study the trade-off between privacy
preservation and the RS model’s accuracy. The following Equations (4.14) and 4.15
show the details of the definition:

RMSE =

√∑
u,i∈Te

(rui − r̂ui)2

n
(4.14)
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Figure 4.4: The User Visiting Locations (Phoenix). (Abscissa: the latitude; Ordinate:
the longitude)

MAE =

∑
u,i∈Te

|rui − r̂ui|
n

(4.15)

where T e is the entire test set and n is the number of ratings compared.
Meanwhile, the experiment was designed in a way to reflect real-world scenarios.

First, a time-dependent cross-validation method is conducted, ensuring the time de-
pendencies among all the training–test pairs. For any training set, the ratings given
by the users are in an earlier time state than any ratings in the corresponding test
set. Moreover, the window size of each training set is built through the number of
ratings uploaded by the aggregator servers.

Second, the user’s GPS information is estimated by the locations of POIs that
this user visited to avoid the need for private user information. Since the locations
of POIs are not private, an estimation of a user’s active area using such information
is sufficient, considering the correlation between a user’s physical location and their
active visiting areas.

Third, all comments in the experiment can be collected beforehand due to its
non-private nature, better assisting the “Doc2Vec” neural network’s training. Unlike
the older centroids’ preference information, the information from comments can be
accumulated due to their less significant temporal effect on semantics. In reality,
even comments from different areas can be collected and utilized simultaneously to
build a more robust word embedding model collaboratively. Algorithm 2 describes
the procedure of model training and testing.

Results and Comparison

This section compares the framework with three other models: a baseline model, a
purely decentralized model, and a federated RS model. Afterward, it briefly shows
the overall improvement in contrast with preliminary work in [47].
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Algorithm 2: CRS Model Training/Testing Algorithm

Input: Preprocessed training sets {Tr1, Tr2, ... Trn}, preprocessed test sets
{ Te1,Te2, ... Ten }, the POI similarity matrix Sc, and the POIs’
GPS information

Output: MAE, RMSE
1 for each training set Tri do
2 Calculate each user’s longitude Lonu and latitude Latu according to

Equation (4.11) and Equation (4.12)
3 Construct affinity matrix S based on Equation (4.9) and Equation (4.10)
4 Perform clustering to generate the centroids’ rating matrix R
5 for each rui in R do
6 Calculate the gradients of L with respect bu, bi, pu, and qi
7 Update iteratively according to Equation (4.5), Equation (4.6),

Equation (4.7), and Equation (4.8)

8 end

9 Reconstruct the centroids’ rating matrix R̂
10 for each rūi in the corresponding Tei do
11 Calculate the corresponding r̂ūi according to Equation (4.13)
12 end
13 Calculate RMSEi and MAEi according to Equation (4.14) and

Equation (4.15) (We calculate RMSE for the convenient averaging)
14 end
15 Calculate the average RMSE and MAE
16 return RMSE and MAE

• It starts by choosing the well-known biased matrix factorization (MF) [43] as the
baseline model. It is a non-privacy centralized RS model with simple structures
and reliable performance, and this model was thoroughly studied and constantly
compared.

• The federated recommender system, MetaMF [59], has a distinct advantage in
terms of privacy protection and providing exceptionally accurate predictions.
Despite requiring a global model on a central server, this method distributes its
training to multiple local devices, reducing the risk of leaking private user data.

• The decentralized recommender system (DMF) [17] is a purely distributed
privacy-preserving recommender system that relies on matrix factorization and
gradient exchange. Due to its distributive framework, the only leakage risk
of data is the loss function’s gradient. Each user has a dynamic global and
personal model combined, making the hacking even harder.

I have compared the CRS with the three aforementioned models with the classic
biased MF as the baseline. For fairness, the data filtering methods and preprocessing
are the same for all models involved. The overall results are presented in Table 4.3.
It is worth noting that even though the scales of the two areas are different, the
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Table 4.3: Average Result Comparison (Champaign–Urbana).

Champaign–Urbana

Model Name Biased MF CRS MetaMF DMF

RMSE 1.1966 1.1685 1.3942 1.4984
MAE 0.9537 0.9494 1.1268 1.2018

Phoenix

Model Name Biased MF CRS MetaMF DMF

RMSE 1.0463 1.0482 1.3647 1.4534
MAE 0.8247 0.8235 1.0647 1.0872

Figure 4.5: The RMSE Comparisons among the Four Models for Each Training-Test
Dataset Pair (Champaign–Urbana). (Abscissa: the value of RMSE; ordinate: index
of folds).

research strives to show the same detail in the results, presenting the results from
each training–test pair. The fold size is 1, 000 ratings for the dataset of Champaign–
Urbana and 3, 000 ratings for the city of Phoenix. The RMSE and MAE of each fold
are shown in Figures 4.5–4.8.

Among the four compared models, the CRS has the best performance in terms of
accuracy. The CRS is close to the baseline, the non-private centralized recommen-
dation model. In specific folds, the performance of the CRS is even better. All the
models use the same training and test datasets. The following subsection will discuss
the tuning of models and hyper-parameters.

The testing procedure mimics real-world scenarios where recommendations are
temporally given in succession. In other words, only old data can be used to predict
newer data. The previous test set will be the training set in the subsequent round of
testing. As the result figures have shown, each inflection point reflects a result from
a training–test pair. To maintain a steady curve of accuracy, the research chooses
to maintain the same number of ratings in all of the training and test sets instead
of having the same time span from user ratings. This is also to ensure that we have
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Figure 4.6: The MAE Comparisons among the Four Models for Each Training-Test
Dataset Pair (Champaign–Urbana). (Abscissa: the value of MAE; Ordinate: index
of folds).

Figure 4.7: The RMSE Comparisons among the Four Models for Each Training-Test
Dataset Pair (City of Phoenix). (Abscissa: the value of RMSE; ordinate: index of
folds).

enough records for each time period for generating recommendations when simulating
the real-world scenario.

For both RMSE and MAE, the CRS shows a very steady and good performance on
both datasets in an environment that is very close to real-world settings. Compared
to DMF, the CRS does not push all the computing burdens onto the users’ end,
ensuring an easier, more light-weighted way of generating recommendations. At the
same time, the CRS’s central server relies on the data that are already processed
by the aggregator server, making the model’s training process more accessible and
faster. The CRS is also more modulized and detachable compared to the federated
learning-based recommender systems. In comparison to its previous prototype [47],
the average value of MAE falls from 1.118 to 0.949.

In terms of privacy preservation, unlike other privacy RS models, users in CRS
anonymously and dynamically share private information with the aggregator server
on an ad hoc P2P network via Wi-Fi Direct. In other words, each time a user
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Figure 4.8: The MAE Comparisons among the Four Models for Each Training-Test
Dataset Pair (City of Phoenix). (Abscissa: the value of MAE; ordinate: index of
folds).

shares information, their IDs are temporary and different. Moreover, contextual
information such as text comments and GPS information is protected and preserved.
Other privacy-preserving models, such as DMF and MetaMF, require that users have
a constant identity in order to maintain long-term communication.

Parameters and Tuning

The previous sections introduced the CRS model from three aspects: the users’ mobile
devices, aggregator servers, and the central server. Since various parameters can
directly affect the result in CRS, we can connect the discussion of parameters with
these three parts correspondingly for easier understanding.

• During the aggregation stage, there are two crucial parameters. First, the
performing of the clustering is based on the affinity matrix according to Equa-
tion (4.9). In this equation, α′ denotes the ratio or weight of either part in
building the final affinity matrix. Second, the number of centroids, n clusters,
is required due to the clustering method we chose.

• On the central server, we have the number of latent factors k, the global learning
rate θ, and each specific learning rate α and β of each term from the loss
function. the research used n epochs to denote the number of epochs used in
SGD for each training process.

• On users’ mobile devices, after users reconstruct the imputed rating matrix,
they will compute their personalized predictions according to Equation (4.13).
During the experiment, it was found that not including all centroids yields more
accurate results. Here, let us use n centroids to denote the number of centroids
involved.

Due to the number of parameters, broad intervals, and contentiousness, the re-
search seeks an automatic approach to model tuning instead of brute-force searching
or heuristic random guessing based on human experiences. In the field of optimal

51



Figure 4.9: The Impact on the Average RMSE Value from Changes on α′ in Equa-
tion (4.9) (Champaign-Urbana). ( The α′ indicates the weight of geographical simi-
larities among the users played in the affinity matrix S. )

controls, researchers have made significant progress during the past decade on adap-
tive control schemes and solving nonlinear systems [78, 79]. However, since this is
the initial attempt to adopt such methods, the strategy is to combine the use of a
developed library with stable performance [80] and manual intervention. Therefore,
the research adopted a Bayesian optimization framework wherein the model’s perfor-
mance is treated as a sample from a Gaussian process. This approach, proposed by
Snoek et al. [81], considers the entire training–test process as a continuous function.

According to the authors, the Bayesian optimization method reduces the heavy
computation task of finding the close-to-optimal combinations of parameters by using
proxy optimization. In the beginning, a function was constructed that wraps up the
entire algorithm (Algorithm 2). In other words, instead of optimizing each part of the
framework, the research includes all parts of the algorithm and puts them into one
“function.” The number of observations keeps growing as the program runs, and a
posterior distribution is gradually built. Each time a parameters-error pair is plotted,
exploration strategies such as the upper confidence bound and expected improvement
are used to determine the next set of parameters to try. The number of steps to find
optimal parameters is claimed to be minimized compared to a brute-force strategy.
Specifically, in the experiment, a method to estimate the range of optimal parameters
was used in the tuning process and to perform manual fine-tuning. For example, the
research would combine the observed parameters from different top-ranked results
and increase or decrease specific parameters to see whether a better performance can
be achieved.

In CRS, the model has set α′ to 0 to maximize the effect of user location. However,
this does not mean it is always a better choice to exclude all contributions from the
similarities based on user feedback. For example, Figure 4.9 shows the comparison
of the final RMSE by selecting different α′ in 1.0, 0.9, 0.8 ... 0.0. n clusters is set
to 6. It is worth noting that the best result was achieved when k is 1. This may be
caused by the sparsity of the dataset and the fact that the data are clustered. For the
coefficients of the loss function, θ, α and β are set to 0.12, 0.02 and 0.6, respectively.
For each round of training, n centroids is as small as 20 to achieve convergence.
Finally, n centroids is set to 9.
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4.5 Summary

This research has proposed a privacy-preserving POI recommendation framework
CRS that utilizes ad hoc wireless peer-to-peer communication and user clustering.
The CRS processes sensitive user data at various levels in a gradually less secure
environment, replacing users with centroids based on their feedback on visited POIs
and estimated locations. This method severs the connection between contextual in-
formation, like text comments, and user identity while still keeping it useful for the
system. By adopting a cascade structure, the CRS processes risky data under secure
connections and uploads processed secure data when facing a potentially malicious
environment.

The CRS model has three primary components: users’ mobile devices, aggregator
servers, and a central server. Mobile devices preprocess raw data and generate final
recommendations, and each device keeps records of users’ visited locations and their
comments. User comments are vectorized using the “Doc2Vec” embedding tool, and
user feedback is securely uploaded to a nearby aggregator server via P2PWi-Fi Direct.
Notably, each device generates random user IDs during connections to ensure user
anonymity.

The aggregator server’s primary task is user clustering based on each user’s up-
loaded ratings and estimated GPS locations. When an aggregator server collects
enough ratings, it performs the clustering and transfers the results to the central
server. The central server treats the centroids collected from the aggregator servers
as physical users, training the model with “user” ratings and comments. After the
model training, the necessary fragments to reconstruct the rating matrix are gener-
ated and made available for users to download. Users can then compare these imputed
preferences against their own to obtain final recommendations.

Moreover, because of the nature of clustering, CRS has excellent scalability as well
as geolocational awareness. Furthermore, it mimics a real-world scenario by prepar-
ing the cross-validation folds temporally sequential. Under such a testing strategy
alongside real-world datasets, the CRS shows a performance close to a centralized
non-private model. This multi-level, cascade structure helps to protect user privacy
while maintaining the functionality of the recommendation system.

Meanwhile, the CRS framework does face some difficulties when facing different
datasets or uncertain real-world situations. Two significant challenges remain the
need for ample input and its severance on the connections between the users and
their historical information. The former is caused by the nature of CRS, where
constant clustering is required. The latter one, even though protecting the user
from being traced, will cap the personalization performance since personal historical
records cannot be accumulated to improve the accuracy of the predictions further.

Copyright© Longyin Cui, 2023.
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Chapter 5 Towards Privacy-Preserving POI Recommendations: a
Generic Data Collection Approach

5.1 Motivation and Problem Description

As the research has constantly stressed, a recommender system is a technique used
in data analysis to solve problems related to a surplus of choice. These choices may
include an overwhelming number of movies, TV shows, and short videos available on
online-streaming services [82]. For instance, customers of online streaming services
can choose to share their private information and history records in exchange for a
list of content they might enjoy watching, saving the time of going through endless
content. On the other hand, corporations can use recommender systems to promote
specific content or improve user experience, increasing user stickiness. Such tech-
niques are designed to predict future interactions between users and products that
the recommender system is promoting by analyzing information pertaining to the
attributes, feedback, and contextual details.

The pace and changes in the development of recommender systems nowadays are
fast, and the trend is toward integrating more types and volumes of information. Dur-
ing the short history of recommender systems development, more and more models,
techniques, and approaches have been invented and added to improve the accuracy
of predictions. From the conventional [43], which utilizes only explicit user feedback,
to the xDeepFM [83] model, which uses every available source of information, recom-
mender systems researchers have been trying to employ more collectible information
to maximize user satisfaction. For example, POI recommender systems tend to ge-
olocate user devices, track activities across all applications, and gather related social
information such as one’s contact list.

Consequently, there are increasing privacy concerns due to frequent data breach
scandals, homogenous product competition, and international disputes over data own-
ership. Frequent data breach scandals undermine customers’ trust in sharing personal
data with private companies. Moreover, since data is invaluable and often tied to na-
tional security, certain countries are competing for the exclusive right to its access,
putting international corporations in challenging positions. On top of that, regula-
tions make information and data exist in the forms of an isolated island leading to
a more unfriendly environment for the recommender systems to collect helpful infor-
mation. Point-of-Interest (POI) recommender systems, which benefit from location-
based services (LBS), naturally have access to rich and diverse data from a large
number of mobile user devices. However, due to the growing privacy concerns of
users, companies, and many other parties, there has been increased research on pre-
serving privacy in POI recommender systems.

In recent years, a wide range of approaches has been carried out in research on
privacy-preserving recommender systems to maintain good performance while mini-
mizing the loss of prediction accuracy. With the approach of decentralization, a local
RS can operate on its own, eliminating the need to store sensitive data on the cloud.
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For another, anonymization and obfuscation-based recommender systems can protect
sensitive information by perturbing or removing identifiable user details from critical
user feedback. In addition, many non-private recommender systems use traditional
cryptography methods to protect data from unauthorized access. However, many
challenges still remain. Decentralized recommender systems require additional com-
munication among users leading to more privacy considerations. More importantly,
recommendation service providers lose the ability to gather the information that is
vital for future research and usage. A common challenge for many of the aforemen-
tioned privacy-preserving models is that each requires a unique and strict framework,
rendering them less compatible with newer inventions.

In this time’s research, a generic and flexible framework was proposed that col-
lects user information through Local Differential Privacy (LDP) and location-based
clustering to generate synthetic data for POI recommendations. First, the local Rec-
ommender System (RS) estimates the users’ location without knowing their true GPS
information. An honest but curious (HOB) third party will then perform a clustering
based on the estimated user locations while providing differential privacy guarantees
for users’ explicit feedback. After aggregating user feedback, the information is no
longer stored, and the centroids of historical user records are sent to the central RS
as synthetic user data. Finally, users’ local RS will collaborate with the central RS
to offer predictions to the users without sharing additional personal details.

The main contributions of this particular research are summarized as follows:

• The research proposes a generic user data collecting mechanism specifically
for privacy-preserving POI RS that does not tie to a specific model structure.
By indirectly synthesizing user feedback, the system circumvents conventional
privacy issues in data storage and analysis. Furthermore, the proposed inclusive
framework contains a semi-trusted (honest but curious) third-party, offering
opportunities for utilizing more contextual information in future research.

• The framework offers a secure way of data communication. Based on estimated
user location and Local Differential Privacy (LDP), the users are able to gen-
erate personalized recommendations on their local devices without jeopardizing
the privacy of sensitive information. Throughout the paper, it will present the
importance of relating users by their estimated activity center and providing
differential privacy guarantees.

• The research was conducted on publicly available real-world datasets, demon-
strating the effectiveness and a reasonable trade-off. The results also indicate
the framework’s potential for supporting cross-platform collaborations.

The remainder of this piece of research is organized as follows. The section “Rel-
ative Techniques and Background” discusses related topics and background informa-
tion for the proposed framework. “Framework Description” depicts the framework’s
structure and the challenges the research aims to solve. Section “Notations and Ex-
pression Explanations” introduces the fundamentals, notations, and formulation of
the proposed framework. Next, “Experiment and Discussion” introduces the datasets,
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privacy analysis, and the results of this era’s work. Finally, a summary is presented
in the final section.

5.2 Relative Techniques and Background

Privacy Concerns

Privacy concerns are driving increased regulations in the field of recommender systems
[84, 85, 41, 86, 87, 88]. These regulations, which have been introduced in regions
such as the EU, the US, and China, aim to prevent irresponsible or malicious data
mining and analytics. Point-of-Interest (POI) recommender systems, which rely on
large quantities of data and various data sources, are particularly affected by these
regulations. Besides, the growing use of mobile devices, including personal cell phones,
has led to the proliferation of location-based services (LBS) over the past decade,
providing a wealth of data for POI recommender systems. That being said, it makes
these systems vulnerable to malicious attacks and accidents.

Existing Privacy-Preserving Recommender System

In response to privacy concerns, a variety of privacy-preserving recommendation mod-
els have been proposed. These models can be broadly classified into centralized and
decentralized approaches.

Decentralized approaches can further be divided into distributed and federated
models. Distributed models, such as [89, 90, 17] using gradient exchange, involve
local storage and processing of data, but lack the ability to collect or analyze data.
Federated models such as [59], on the other hand, rely on a central server and involve
the exchange of model weights between the server and individual users. After updat-
ing these weights according to each user’s local rating or feedback, the global model
retrieves the updated weights in order to perform the training process. In practice,
the process above repeats itself to keep the system dynamically updated. Although
the users’ data is fully kept on their devices at any moment, the central system is
comparatively vulnerable to malicious participants.

In centralized RS, frameworks revolve around conventional encryption protocols,
k-anonymity, and perturbations. Encryption-based RS, such as [91, 92, 93], has bet-
ter accuracy than its non-private counterpart but requires solid computational power
and faces the same problem when collecting user data. K-anonymity in recommen-
dation models has not changed its definition that privacy is achieved by severing the
connection between sensitive or private information and user identities by data ob-
fuscation or aggregation. Lastly, perturbation-based models add noise to raw data
while preserving underlying statistics. However, these approaches face challenges
when balancing privacy with other factors, such as data transfer or a large user base.

In addition to the traditional techniques mentioned above, Differential Privacy
(DP) is a privacy-preserving standard that is getting growing attention. There are
two types of DP: centralized DP (CDP), in which perturbation or randomization
occurs at the curator level, and local or localized DP (LDP), in which perturbation
occurs at the user level. CDP trusts the third party, while LDP assumes that the
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third party is at risk of being compromised and therefore adds noise at the user level.
It is worth noting that CDP is often referred to as DP in most cases.

Differential Privacy (DP) is a privacy preservation standard that does not require
attack modeling. In the past, researchers had to define a potential attacker and de-
tails of attack scenarios in order to design a privacy-preserving framework. DP, on
the other hand, claims to protect a user’s feedback and related contextual informa-
tion even if the attacker is aware of particular users or uses them as infiltrators to
gather information about other users. DP’s unique properties allow for the calcula-
tion and quantification of the trade-off between privacy and performance after data
goes through a complex algorithm, even when multiple mechanisms are combined in
a proposed framework.

In recommendation research, DP has been implemented to protect critical user
information in recent years as well. For example, in [94] Arik Friedman, Arnaud
Berlioz, et al. gave a thorough analysis on applying differential privacy to matrix fac-
torization (MF) based recommender systems, which presents not only various ways to
apply such privacy-preserving techniques but also shows particular optimal solutions.
In comparison, H. Shin et al. applied Local DP (LDP), a newer and more localized
version of DP, to the MF recommender systems to protect user feedback from cen-
tral servers. Other researches such as [95] improved its remaining challenges giving
deniability to not only rating values but also rating behaviors.

Data Clustering

Data clustering is a technique for grouping data objects into different clusters based
on similarities or distances. There are many clustering algorithms, such as k-means,
spectral, DBScan, and fuzzy c-means, that solve different clustering tasks. In this
research, k-means clustering was selected because of its simplicity and suitability for
addressing the problem at hand.

In the field of recommender systems (RS), clustering is widely used for two pur-
poses. First, it is used to improve RS performance and address data scarcity problems,
such as predicting how groups of people choose online streaming services or nearby
restaurants [96, 97, 98]. Second, clustering has been used to protect user identities
and mask sensitive user information in privacy-preserving schemes for RS and gen-
eral data mining, helping to protect user feedback and certain contextual information
[99, 47, 100].

5.3 Framework Description

This section introduces the proposed framework, the Generic User Synthesizer (GUS),
offering a unique approach to generating personalized recommendations. The ap-
proach involves replacing real users with aggregated user information protecting user
privacy while still generating meaningful recommendations. The research outlines the
proposed framework by breaking it down into steps and discussing the challenges that
each step addresses. Figure 5.1 shows the four main components of the multifaceted
framework, with the last two hosted on the central server.
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Figure 5.1: The Overall Framework Structure and Data Flow of the system. (The
diagram illustrates the various components of the framework and the way in which
data flows between them.)

Figure 5.2: Schemes in STTP Collecting Data from User Devices

From Local Devices

To generate data-minable synthetic data, the proposed approach leverages a Semi-
Trusted Third Party (STTP) that uses clustering algorithms to collect useful infor-
mation from users. As Figure 5.2 shows, to protect user privacy, the transmission
protocol between users’ devices and the STTP is based on Local Differential Privacy
(LDP), which leverages perturbation techniques to protect the value of user ratings,
and randomized responses to protect user rating behaviors. This approach ensures
that the data collection process is locally and deferentially private, with perturba-
tion and randomized responses occurring at the user level. The STTP is honest but
curious (HBC), and individual data are aggregated in batches to prevent traceabil-
ity to their original owners. Randomness is introduced from the beginning of the
dataflow To provide privacy guarantees throughout the process. As a consequence of
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the sequential property of LDP, which is further defined in later sections, all following
computation is LDP-guaranteed.

On STTP

After receiving user information, the STTP employs a clustering algorithm that
groups users based on their implicit location, which is estimated from previously
visited Points of Interest (POIs) rather than using real-time GPS information. Ac-
cording to the previous research [101], this approach is likely more accurately reflects
user visiting behaviors and is also more computationally efficient, as it greatly reduces
the feature space. Intuitively speaking, users may be less motivated to visit a distant
location even if it perfectly fits their preferences. In terms of clustering scalability,
clustering thousands of users based on their feedback takes hours, while clustering
based on implicit locations takes only seconds. The centroids of the clustering algo-
rithm are treated as synthetic users, and their feedback is calculated by averaging the
feedback from all corresponding group members.

To Central Servers

Upon receiving synthetic user feedback from the STTP, the central server performs
several tasks. Firstly, it stores the synthetic data for future use and calculates the
similarities among POIs(items) based on the synthetic user feedback. The result-
ing similarity matrix is then used in the randomized response mechanism to protect
user rating behaviors and provide deniability for each visiting record. Additionally,
the central recommender system prepares user/item embeddings and the similarity
matrix for users to download. To minimize computation workload and downloadable
package size, the central RS employs “pre-training” and feature reduction techniques.
This approach helps prevent malicious users from accessing the exact synthetic user
information, even though the synthetic users’ privacy is trivial.

Back to Local Devices

The local recommender system (RS) on a user device is capable of offering accu-
rate recommendations by appending the owner’s personal rating record to the recon-
structed rating matrix. In order to generate meaningful recommendations, the user
device must first download assistive content, which is prepared by the central server.
These preparations reduce the size of the downloading package and pre-train the
model to help re-construct an imputed user rating matrix locally, like a “meal prep
kit” for recommender systems. Once the rating matrix reflecting the user’s real visit-
ing preferences is reconstructed, the local RS can predict future user preferences like
any conventional RS. Unfortunately, simulating thousands of mobile devices applying
adaptive training is unrealistic under experimental conditions. Due to computing
power limitations in the experiment, a different approach was employed, using the
most similar synthetic users to calculate a weighted average as the final prediction.
A detailed definition of this approach will be provided in later sections.
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5.4 Notations and Expression Explanations

This section will introduce the fundamental concepts of the different models, includ-
ing the notations and problem definitions that are used, as well as the metrics and
evaluation methods that the model employs.

Fundamentals of Matrix Factorization and Neural Collaborative Filtering

Figure 5.3: The Factorization of the Rating Matrix in the Collaborative Filtering
Technique. (The diagram illustrates the process of decomposing the matrix into lower-
rank matrices that represent the latent factors underlying user-item interactions.)

Neural Collaborative Filtering (NCF) [102] is a recommendation model based on
Collaborative Filtering (CF) and Matrix Factorization (MF). MF decomposes the
feedback matrix into two lower-rank matrices and iteratively minimizes the error be-
tween observed and predicted ratings. Missing entries in the feedback matrix are
imputed to estimate users’ potential preferences. The minimization problem is for-
mulated as follows:

min
pu,qi

∑
rui∈R

(rui − r̂ui)
2 + λ(∥qi∥2 + ∥pu∥2) (5.1)

where we use u to denote a user (customer) and i an item (POI). If we define U
and I as the user and item sets, then u ∈ U and i ∈ I. In the above equation,
rui indicates an observed rating suggesting the preference of user u over item/POI
i. Correspondingly, the variable r̂ui represents predicted ratings. The rating matrix
R comprises all the observed and unobserved feedback or visiting records. Thus the
prediction function for r̂ui can be written as below:

r̂ui = pu
T · qi =

∑
k

pukqik (5.2)
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where the column vectors pu and qi are from the decomposition result, two sub-
matrices representing the user and item latent factors, respectively. Here, k is the
dimension of the latent space.

Collaborative Filtering (CF) and Neural Collaborative Filtering (NCF) are two
popular techniques used to model user-item interactions in recommendation systems.
CF works by representing the rating matrix in a latent space using inner product
optimization, while NCF uses a neural network to replace the lower-rank matrices
used in CF. The advantage of NCF is that it can capture non-linear interactions and
incorporate weighted user/item features, making it a more generalized approach that
can handle complex interactions.

NCF consists of two parts: the Generalized Matrix Factorization (GMF) and
the Multi-Layer Perceptron (MLP). The GMF is a linear model that learns user-
item interactions, while the MLP uses a deep neural network to model nonlinear
interactions between users and items. In short, the way GMF predicts future ratings
is formulated as follows:

r̂ui = aout(h
T (pGu · qGi )) (5.3)

where aout is the activation function of the output layer, and h is the edge weight for
the output layer. G indicates the user or item embedding is from GMF. On the other
hand, MLP alters its prediction function pertaining to future ratings in the following
way:

r̂ui = σ(hTaL(W
T
L (aL−1(...a2(W

T
2

[
pMu
qMi

]
+ b2)...)) + bL)) (5.4)

where σ is the sigmoid function and M indicates the user or item embedding is from
MLP. Moreover, Wx, bx, and ax denote the weight matrix, bias vector, and activation
function from the corresponding layer, i.e. xth perception. Finally, a pre-trained NCF
model combines the two trained models together to catch the interactions between
users and items fully and thus forms the below prediction function:

r̂ui = σ(hT

[
ϕGMF

ϕMLP

]
) (5.5)

where ϕ indicates all the above-mentioned function mappings up until the output
layer of either GMF or MLP.

Other information or techniques applied in NCF, such as negative sampling, train-
ing strategies, and deduction process for the loss functions, are not discussed here due
to the scope of the research.

In summary, Neural Collaborative Filtering (NCF) is a widely adopted neural
network-based technique for modeling user-item interactions in recommendation sys-
tems. The research selected NCF as the baseline model because it has been shown
to be reliable, is widely used in the literature, and has been extensively studied by
peer researchers. Additionally, NCF’s generic usage aligns well with the design of the
framework, which aims to provide a flexible and scalable approach for recommenda-
tion tasks.
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Local Differential Privacy (LDP)

In this section, it will introduce some essential notations and definitions of LDP.

Definitions and Theorems

In the previous sections, we have introduced differential privacy (DP) to give abstract
ideas of its functioning and utilization. Thus, notations and definitions of LDP are
included further in the current section for conducting proper demonstrations.

Formally, assuming we have an Algorithm A and a pair of neighboring datasets D
and D′ that differ of a single user record, A provides ϵ−differential privacy protection
if all outputs of A(D) and A(D′) satisfy the following condition:

Pr[A(D) ∈ S] ≤ exp(ϵ) · Pr[A(D′) ∈ S] (5.6)

where S ⊆ Range(A) stands for any permitted output from Algorithm A and Pr
is the probability over the randomness of A. The variable ϵ is called the budget of
piracy protection. Larger values in ϵ indicate the data is “truer” since the level of
randomization is low. In other words, the value of ϵ is aligned with data integrity but
the opposite of privacy protection. The term “neighboring” may be defined differently
in other research where the difference is all information of a single user. In contrast,
some algorithms aim to guarantee per-item privacy where the protection extends to
a single rating.

Definition 1 (ϵ-Local Differential Privacy). Suppose there is a randomized
Algorithm A and a single dataset D, for any pair of different user feedback r, r′ ∈ D
and for any outcome S ⊆ Range(A), we have:

Pr[A(r) ∈ S] ≤ exp(ϵ) · Pr[A(r′) ∈ S] (5.7)

where randomization is applied to each user’s feedback independently. The LDP
mechanism is based on Generalized Randomized Response (GRR) [103, 104]. The
definition of GRR is given below:

Definition 2 (Generalized Randomized Response (GRR)). Given i being
the true visited POI, let ī be the random response instead. If K̄ is the option space
from which the random response is selected, i.e., i ∈ K̄, then we have the following
formulation:

Pr(̄i = i) =

{
eϵ

eϵ+|K̄|−1
, if (i = ī)

1
eϵ+|K̄|−1

, if (i ̸= ī)
(5.8)

As the above formula shows, when |K̄| = 2, which means the user can only choose
one of two items/POIs, then it becomes the conventional true or false scenario where
the traditional Randomized Response (RR) is implemented. Aside from using the
GRR mechanism to protect the user rating behaviors, the feedback value is also
guarded against the perturbation technique using Duchi et al.’s solution [105].

Definition 3 (Laplace Mechanism). Given a dataset D, and a function f
where f : D → R mapping over D, the Laplace mechanism is as followed:

F (D) = f(D) + Laplace(
s

ϵ
) (5.9)
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where s is the sensitivity. The sensitivity is dependent on the dataset and the tar-
get algorithm. For example, if the dataset uses explicit rating feedback such as
{1, 2, 3, 4, 5}, then s = 4.

Duchi et al.’s Solution. Given a tuple r ∈ [-1, 1], a perturbed tuple r′ that
equals either eϵ+1

eϵ−1
or − eϵ+1

eϵ−1
is returned according to the following probability t:

Pr(r′ui = t|rui) =

{
eϵ−1
2eϵ+2

· rui + 1
2
, if (t = eϵ+1

eϵ−1
)

1−eϵ

2eϵ+2
· rui + 1

2
, if (t = − eϵ+1

eϵ
)

(5.10)

where u is the user given ratings, and i is the target POI. The perturbed ratings r′ui
are unbiased estimators of the original ratings, according to Duechi et al.

Since LDP mechanisms in the framework include GRR and Duchi et al.’s Solution
to protect user rating behavior, i.e., whether a user visited a POI, and POI preference,
i.e., whether the user likes their visited place, respectfully, the research introduces the
following properties.

Theorem 1 (Sequential Composition). If a mechanism G contains a series
of n independent randomized functions G = {g1, g2, ..., gn}, and each function offer
ϵi − LDP guarantee where i ∈ n, then the mechanism G provides (

∑n
i=1 e

ϵ)− LDP .
Meanwhile, the LDP mechanisms are introduced at the very beginning, so the

post-processing property is involved to guarantee the safety of the data manipulation
and training process following the initial step.

Theorem 2 (Post-processing). Given a dataset D, and a function f that
guarantees ϵ− LDP where f : D → R, for any randomized function f ′ : R→ R′ we
have f ◦ f ′ also being ϵ− LDP .

These theorems guarantee the privacy-preserving qualities for all the following
computing and data processing procedures.

Rating Value Protection

In POI RS, the ratings are either explicit or implicit. The implicit ratings are either
0 or 1, where 1 indicates visited record and 0 indicating not visited. In the case
of implicit user feedback, the user rating value does not require protection since
the actual value only implies whether or not a user has visited a particular location
instead of how much they enjoy visiting it. Explicit ratings, on the other hand, require
such protection. Considering that the LDP-dependent algorithm in this research is to
calculate centroids’ ratings, which comes from averaging all user ratings in each group,
the research chooses Duchi et al.’s solution. The algorithm is shown in Algorithm 3.

It is worth noting that the input of the following algorithms is a list of tuples
that are in the format of { userID, itemID, rating }. Each tuple can be denoted
as rui representing that user u possesses a rating r toward item i. Precisely, the
collection of ratings thereby forms the rating list Rlist. In Algorithm 3, each rating
after normalization is perturbed according to the Equation (5.10). Based on the
above Algorithm 3, the historical ratings stored in users’ devices are firstly perturbed
in value that reflects how much they enjoyed their previous visit.
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Algorithm 3: Rating Perturbation Using Duchi et al.’s Solution

Input: list of rating tuples Rlist, privacy parameter ϵ1
Output: list of perturbed rating tuples R′

list

1 for each rui in Rlist do
2 Normalize rui such that rui ∈ [−1, 1]
3 rui =

1
2
· (rui − 1)− 1

4 end
5

6 for each rui in Rlist do
7 Sample a Bernoulli variable t where:
8 Pr(t = 1) = eϵ1−1

2eϵ1+2
· rui + 1

2

9 if t = 1 then
10 r′ui =

eϵ1+1
eϵ1−1

11 else
12 r′ui =

eϵ1+1
1−eϵ1

13 end

14 end
15 for each r′ui in R′

list do
16 De-normalize r′ui such that r′ui ∈ [1, 5]
17 end
18

19 return R′
list

Rating Behavior Protection

Besides protecting the users’ rating values, the scheme also aims to protect the users’
behaviors. Among other research, such as [106], on applying DP or LDP to recom-
mender systems, the studies show that guarding rating behaviors is very challenging
since the column space is very large, considering the number of POIs. Perturbing each
entry of the rating matrix is highly expensive in terms of privacy budget since the
matrix is often exceedingly sparse. Thus in the framework, instead of camouflaging
the actual ratings by perturbing all potential ratings, the research adds deniability
only to existing ratings.

In the next section, it will introduce a dynamically pre-calculated similarity matrix
on the central server. For now, let’s state the purpose that each locationID in the
rating tuple in the form of {userID, locationID, rating} can be perturbed using such
a matrix. As a result, either the actual location remains or a similar POI takes its
place. The advantage of having such a mechanism is to change the question from
“whether or not the user visited the place” to “where the user visited, if at all.”

Algorithm 4 shows how the POIs are randomized. The input, the list of rating
tuples R′

list, is the exact output from Algorithm 3. Variable k is the option space.
For example, when k = 2, the locationID in {userID, locationID, rating} can only
be replaced by the most similar POI’s locationID. When k = 3, the locationID in
{userID, locationID, rating} is replaced by either one of the top two most similar
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POIs’ locationIDs. The larger k is, the higher the privacy budget. Eventually, the
output R′′

list is sent to the aggregating and clustering server.

Algorithm 4: Protecting Rating Presence

Input: list of rating tuples R′
list from Algorithm 3, privacy parameter

ϵ2,similarity matrix SI , number of options k
Output: list of perturbed rating tuples R′′

list

1 for each r′ui in R′
list do

2 Sample a Bernoulli variable t where:
3 Pr(t = 1) = eϵ2

eϵ2+k−1

4 if t = 1 then
5 r′′ui = r′ui
6 else
7 r′′ui = r′uSI [i]

8 end

9 end
10 return R′′

list

Privacy Analysis

As previously mentioned, privacy protection is for user rating values and rating be-
haviors. The POI visiting history indicates not only the users’ preference for selected
POIs but also the POIs the users chose. To improve the privacy-preserving feature in
this generic data collection framework, the honest but curious third party, although
not designed to collaborate with the recommendation service providers, is separated
from direct user rating information by LDP.

Theorem 1. Algorithm 3 satisfies ϵ-LDP with respect to users’ rating values.

proof 1. According to the definition of ϵ-LDP, one wants to prove that it is equally
likely to generate the same output r

′

list = [r
′
ui]

n
i=1 for any two input r1list = [rui]

n
i=1 and

r2list = [rui]
n
i=1 in Algorithm 3. Let x,X1, and X2 be any values in [−1, 1], then we

have

Pr[r
′
ui = x|rui = X1]

Pr[r
′
ui = x|rui = X2

≤ maxX1(Pr[r
′
ui = x|rui = X1])

minX2(Pr[r
′
ui = x|rui = X2])

=
maxX1( eϵ1−1

2eϵ1+2
X1 + 1

2
)

minX2( eϵ1−1
2eϵ1+2

X2 + 1
2
)
=

eϵ1−1
2eϵ1+2

(1) + 1
2

eϵ1−1
2eϵ1+2

(−1) + 1
2

= eϵ1 .

Thus, the perturbation of Rlist in Algorithm 3 satisfies ϵ1-LDP and Algorithm 3 sat-
isfies ϵ1-LDP with respect to users’ rating values.

Theorem 2. Algorithm 4 satisfies (ϵ1 + ϵ2)-LDP for both users’ rating values and
rating behaviors.
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Proof. We start by proving that it is equally likely to generate the same output
r
′′

list = [r
′′
ui]

n
i=1 for any two input r1list = [r

′
ui]

n
i=1 and r2list = [r

′
ui]

n
i=1 in Algorithm 4. Let

y, Y 1, and Y 2 be any values in [−1, 1]. According to Algorithm 4, we have

Pr[r
′′
ui = y|r′

ui = Y 1]

Pr[r
′′
ui = y|r′

ui = Y 2
≤ maxY 1(Pr[r

′′
ui = y|r′

ui = Y 1])

minY 2(Pr[r
′′
ui = y|r′

ui = Y 2])
=

eϵ2
eϵ2+k−1

k−1
eϵ2+k−1

=
eϵ2

k − 1
≤ eϵ2 .

Thus, the perturbation of R
′

list in Algorithm 4 satisfies ϵ2-LDP and Algorithm 4
satisfies ϵ2-LDP with respect to users’ rating behavior. Since Algorithm 4 protects the
user’s rating value by using Algorithm 3 and Algorithm 3 satisfies ϵ1-LDP, according
to the sequential composition property, we can conclude that Algorithm 4 satisfies
(ϵ1 + ϵ2)-LDP.

Notations and Methods for Clustering and POI Similarity Calculation

Figure 5.4: The Visualization of User Location Clustering (Phoenix). (The clustering
algorithms shown in the picture include DBSCAN (upper-left), PAM (upper-right),
k-mean (lower-left), and OPTICS (lower-right). )

In general geolocation analysis, it is common to use user-item interaction records
to perform clustering. However, this approach is not effective for POI recommender
systems, as users in datasets often only visit an extremely small portion of a city and
do not have a significant number of interactions. In comparison, this research chose
to use estimated user locations to determine the similarities among users’ visiting
behaviors. The user estimation locations Locu[latu, longu] is formulated below:

Latu =
1

|Iu|
∑
i∈Iu

Lati (5.11)

Longu =
1

|Iu|
∑
i∈Iu

Longi (5.12)
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where Iu denotes all the POIs a user visited. It is worth mentioning that the calcula-
tion of the estimated location of a user is after the GRR data processing. Naturally,
the clustering happens after the perturbation.

Various clustering methods have been investigated in the experiment. Initially,
the approach started with DBSCAN [107], a standard geolocation clustering method
that automatically decides the appropriate number of clusters. However, as Figure
5.4 shows (Upper-left), where the dataset is limited to a single city and user density
is applied as the clustering criterion, this method leads to grouping users who are far
from each other into one cluster. The red dots represent the users that are grouped
into the first cluster. On the other hand, when testing OPTICS clustering [108], also
a density-based clustering algorithm, the research shrank the maximum distance to
avoid overly large groups. As a result, a large portion of the users is considered noise
(black dots).

Moreover, the research has also considered hierarchical clustering methods such
as the Partition Around Medoids (PAM) [109] clustering algorithm (upper-right).
Unfortunately, it creates a lot of empty clusters despite the active tuning, and the
result is stretched by users who are active farther from the metropolitan area. As a
result, the K-mean method yields comparatively better results regarding the ability
to include all users and generate balanced clusters. Spectral clustering [67] has also
been tested as well by constructing the affinity matrix first. However, this method
is too computationally costly. To address this, K-mean clustering is employed as a
more efficient and competitive alternative.

After clustering, centroids from the output are utilized as virtual users or syn-
thetic user information resulting from aggregation. The way to create ratings for the
artificial users is by taking the average of all users in each cluster. Suppose the users
are split into |C| clusters where each cluster c ∈ C and all users u ∈ Uc belonging
to that cluster, and we have the following equation to impute the ratings for each
centroid from the clustering:

r̂c̄i =
∑
u∈Uc

rui

/
|Uc ∩ Ui| (5.13)

where Ui denotes all users that have feedback for the item/POI i. The synthetic users
with ratings can then be sent to the central server for model pre-training and POI
similarity calculation.

As mentioned before, the central server actively calculates the similarities among
POIs based on the clustered information. Suppose Sij is the POI similarities between
POI i and j based on user ratings, then Sij is defined using Pearson Correlation
Coefficient:

Sij PCC =

∑
u∈Uij

(rui − µi) · (ruj − µj)√∑
u∈Uij

(rui − µi)2 ·
√∑

u∈Uij
(ruj − µj)2

(5.14)

where Uij is the set of users who have rated both POI i and j. The variable µ denotes
the rating mean. For example, µi is the average rating for all ratings of POI i, and
µj is the average rating for all ratings toward POI j.
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Personalization

The central recommendation system (RS) in the approach serves two primary pur-
poses. First, it can alleviate the computational burden on users’ mobile devices by
performing initial training as needed. Second, it can impute missing data in the rat-
ing matrix, which is often incredibly sparse in point-of-interest (POI) datasets. This
is important because even the centroids may not have feedback for specific POIs in
these datasets, unlike in datasets such as MovieLen.

The model uses synthetic data for training to generate the pre-trained models
for users to download. It is essential to point out that, by design, the users need to
perform adaptive training on the local RS. On each user’s model device, the local RS
finishes the recommendation by imputing the missing probabilities for the current user
to visit each new location. However, iterating through all test users to simulate such
a scenario during the experiment is exceptionally time-consuming and unrealistic.
Thus, under experiment conditions, an alternative approach is taken where the real
users rank the artificial users based on their rating (visiting probability) similarities
and get personalized recommendations through the weighted average ratings (chance
of visiting) of the top t similar centroids.

Suppose Iu represents all POIs visited by user u, and suc denotes the similarity
score between physical user u and synthetic user c, the calculation is based on the
following formula:

suc =
∑
i∈Iu

Rankci (5.15)

where Rankci ≤ k denotes the rank of the POI i in the top-k list of the synthetic user
c’s preferred locations. Consequently, the users get their personalized prediction by
applying the following equation:

r̂ui =
∑
c∈C

sucrci

/∑
c∈C

suc (5.16)

where C is the set containing all synthetic users.

Evaluation and Metrics

Because of the non-linear feature of this system, it is challenging to optimize it as
a whole. Therefore, the research has decided to optimize each of the three parts
(perturbation, clustering, and final results) separately, as this approach allows us to
tackle the heavy workload in a more efficient and effective way.

Perturbation

In order to evaluate the performance of the perturbation part, it was decided to use
Mean Absolute Error (MAE) to measure the relationship between the LDP budget (
ϵ1, ϵ2 ) and the resulting errors between real users and virtual users. By comparing
the MAE values at different levels of the LDP budget, we can assess the impact of the
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budget on the accuracy of following the clustering procedure. The formula is shown
below:

MAE =
1

|R|
∑
i∈R

|ri − r̄i| (5.17)

where R is the set of all ratings. The variables ri and r̄i are the corresponding ratings
from real users and virtual users, respectively.

Clustering

Previously, we mentioned the reasoning behind selecting k-mean clustering as the
aggregating method. Here the research states the metric for finding the optimal group
number k: the within-cluster sum of squares (WSS). In order to avoid over-complex
notations, the research needs to abuse the usage of variable k. WSS measures the
sum of the squared distances between each data point and its assigned centroid in
k-means clustering. By plotting the WSS for different values of k and looking for the
“elbow” in the plot, it is found the desired range for k. The formula is listed below:

WSS =
k∑

i=1

∑
xj∈Ci

∥xj − ci∥2 (5.18)

where k is the number of clusters, Ci is the i-th cluster, xj is the j-th data point in
the i-th cluster, ci is the centroid of the i-th cluster, and ||xj − ci||2 represents the
squared Euclidean distance in between.

Final Result

Regarding the assessment of the final result, the research uses precision at k and recall
at k to study the trade-off from the framework output. If we let Ir and Iv denote
the recommended POI set and visited POI set, then the following equations show the
details of the definition:

Recall@k =
|Ir ∩ Iv|
|Iv|

(5.19)

Precision@k =
|Ir ∩ Iv|

k
(5.20)

whereRecall@k measures the portion of visited POIs in all visited POIs, and Precision@k
measures the portion of recommended POIs that are actually visited in the top-k
POIs.

It is worth noting the unique aspects of this framework and experiment. Firstly, it
uses time-dependent cross-validation with uniformly sized data partitions. Secondly,
it employs on-device processing to exclude distant recommendations for enhanced
accuracy. Finally, it assumes no disclosure of GPS information but can estimate user
location for enhanced privacy.

For a comprehensive description of the evaluation process, the research refers the
reader to the Algorithm 5.
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Algorithm 5: Framework Evaluation Steps

Input: Preprocessed datasets {Train1, Test1, Train2, Test2, ... Trainn,
Testn}, number of recommendations k, POIs’ GPS information

Output: Recall@k, Precision@k
1 for each training set Traini do
2 —Estimate each user’s longitude Longu and latitude Latu according to

(5.11) and (5.12)
3 —Perform rating value perturbation according to Algorithm 3
4 —Perform the general random response according to Algorithm 4
5 —Perform clustering and rating aggregation according to (5.13) to

generate virtual users
6 —Feeding the virtual user data to the NCF model for pre-training

7 —Reconstruct the centroids’ rating matrix R̂
8 —Calculate the POI similarity matrix SI for future GRR
9 for each rui in the corresponding Testi do

10 Calculate the corresponding r̂ui according to (5.15) and (5.16)
11 end
12 Calculate Recall@ki and Precision@ki according to (5.19) and (5.20)

13 end
14 Calculate the average Recall@k and Precision@k
15 return Recall@k and Precision@k

5.5 Experiments and Discussion

The section begins by introducing the datasets in the experiment, followed by ana-
lyzing the privacy implications of data perturbation. Afterward, an overview of the
parameter tuning and optimization strategy employed in the experiment is given be-
fore concluding with the final experimental results and their comparisons to prior
research.

The Datasets

the research has experimented using user feedback from two areas: the Champaign–Urbana
(CU) metropolitan area and Phoenix (PH) city area. The data were filtered from Yelp
and Google Local datasets, respectively. Something new is that the research used four
datasets: CU from Google, PH from Google, CU from Yelp, and PH from Yelp. PH
was selected due to its large population and high volume of user feedback. At the
same time, CU was chosen for comparison as it has fewer user records but with
higher density. The research used both Yelp and Google Local datasets to account
for different business models. As shown in Figure 5.4, user locations outline the city’s
shape.

The user feedback in this time’s datasets has the following characteristics:

• The feedback is explicit, meaning the ratings are in {1, 2, 3, 4, 5}.
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Table 5.1: Datasets Statistics (rounded)

Area #Users #POIs #Feedback Density

CU (Yelp) 11953 1579 33990 0.1802%
PH (Yelp) 204887 17213 576700 0.0163%
CU (Google) 1910 876 3310 0.1978%
PH (Google) 24899 7801 37245 0.0192%

• The user ratings are unique, meaning each user can only give a rating to the
same place once.

• The sparsity of the datasets is comparatively much lower than conventional
recommendation datasets, even with filtering. A straightforward comparison of
statistics of the four areas can be found in Table 5.1.

Parameters and Tuning

In the previous sections, we discussed the GUS framework from the perspective of its
three main components: the user end, the honest but curious STTP, and the central
server that holds the RS model. The optimization is performed in each of the three
parts:

• On each user’s mobile device, two optimization tasks must be performed: de-
termining the appropriate privacy budget (ϵ1 and ϵ2) to control the level of
perturbation and selecting the number of synthetic users (nv) to use for predic-
tion. In the experiments, it was found that using too many or too few synthetic
users resulted in sub-optimal performance.

• On the STTP, the clustering is performed using the k-means method, in which
we need to choose the number of clusters beforehand using the elbow method.

• On the central server, we have a number of hyperparameters that we can tune
to optimize the performance of the NCF model. These include the number of
latent factors nfactors, the learning rate r, the layer size layersizes for the
multi-layer perceptron component, the batch size batchsize, and the number of
training epochs nepochs. It is worth noting that the research has been training
the NCF model from scratch for each dataset.

To streamline the hyperparameter tuning process for GUS, the research has de-
veloped a strategy that decomposes the tuning process into smaller, manageable sub-
tasks that focus on optimizing specific sub-components. This approach enables me
to fine-tune the parameters in an efficient and effective manner while reducing the
computational burden of full hyperparameter tuning.

Specifically, the first part of the optimization process aims to strike a satisfactory
balance between error values and privacy protection by adjusting the epsilon value.
To achieve this, the research has used the MAE to calculate error values between
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feedback generated from centroids, with and without the use of LDP. The objective
is to identify the optimal trade-off point that offers both high accuracy and robust
privacy protection. Considering the tolerable increase in MAE, the research has set
both ϵ1 and ϵ2 to 0.6, as determined from the analysis in Figures 5.5 and 5.6.

(a) Errors Against ϵ1 (b) Errors Against ϵ2

Figure 5.5: The two plots show the relationship between privacy parameters Epsilon
1 (ϵ1) and Epsilon 2 (ϵ2) and the mean absolute error (MAE). The first plot changes
Epsilon 1 (ϵ1) with Epsilon 2 (ϵ2) fixed, and the second changes Epsilon 2 (ϵ2) with
Epsilon 1 (ϵ1) fixed. Both plots show the effect of privacy parameters on MAE.

Figure 5.6: Comparison of Perturbation Results for Varying Epsilon Values: Scatter
Plot of Mean Absolute Error (MAE) Values for Different Combinations of Epsilon 1
(ϵ1) and Epsilon 2 (ϵ2) Values Obtained through Overall Perturbation Analysis. (The
size and color of the markers correspond to the magnitude of the MAE values. Higher
MAE values are observed for certain combinations of epsilon values, indicating that
the perturbation has a larger impact on the model’s predictions for those parameter
values.)

In the second stage of the optimization process, the research focuses on determin-
ing the optimal number of clusters for the clustering operation. Given the clustering
results are highly related to the perturbation processing in the first part, it does not
utilize perturbed data in this stage when determining the optimal number of clusters.
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By considering the elbow method as shown in Figure 5.7 and computation cost, the
number of clusters is set to 45.

Figure 5.7: Plotting the Within-Cluster Sum of Squares (WSS) for Different Numbers
of Groups.

In the last part, the research adopted an automatic approach for model tuning
due to a large number of parameters, a wide range of possible values, and a lack of
consensus on optimal settings. This approach [110] employs a Bayesian optimization
framework in which the model’s overall performance is treated as a sample from a
Gaussian process. By treating the training-testing process as a continuous function,
this approach eliminates the need for brute-force searching or heuristic guesswork
based on the human experience.

During the search process, a posterior distribution gradually develops as the num-
ber of observations increases. Exploration strategies such as upper confidence bound
and expected improvement determine the next set of parameters to evaluate based
on parameters-error pairs. This approach significantly reduces the number of steps
required to find optimal parameters compared to brute-force search. the research
used the method to estimate the approximate range of optimal parameters and then
fine-tuned manually using the top-ranked results and adjusting specific parameters
to achieve better performance in the experiment.

It was found when the number of latent factors k is 2, which is a reasonably
low number, the experiment can have the best result. This may be caused by the
sparsity of the dataset and the fact that the data is clustered. The structure of multi-
layer perceptron in the NCF is set to be [128, 64, 32]. For each round of training
and testing, The initial number of centroids for calculating the final prediction is
set to be 20, used to generate the final user prediction is made to improve the final
performance. Finally, the number can be reduced to 9 without affecting the final
result. Comparatively speaking, the above parameters’ values yield the best average
performance.
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Table 5.2: Average Result Comparison

Champaign-Urbana
Metric P@5 R@5 P@10 R@10
Data Yelp Google Yelp Google Yelp Google Yelp Google
NCF 0.014 0.081 0.051 0.004 0.014 0.008 0.070 0.0046
GUS 0.015 0.067 0.044 0.003 0.013 0.010 0.044 0.005
DMF 0.006 0.004 0.008 0.003 0.008 0.004 0.006 0.001
Meta 0.013 0.070 0.043 0.004 0.013 0.011 0.071 0.006

Phoenix
Metric P@5 R@5 P@10 R@10
Data Yelp Google Yelp Google Yelp Google Yelp Google
NCF 0.015 0.090 0.066 0.006 0.017 0.010 0.070 0.007
GUS 0.015 0.077 0.053 0.004 0.015 0.008 0.044 0.004
DMF 0.012 0.048 0.042 0.002 0.077 0.004 0.007 0.0023
Meta 0.014 0.076 0.060 0.006 0.014 0.007 0.042 0.003

Results and Comparison

The research compared four models in this study: the Neural Collaborative Filter-
ing (NCF) baseline model, the proposed framework (NCF+GUS), the Decentral-
ized Matrix Factorization (DMF) model [17], and the federated recommender system
(MetaMF) [59]. The research has selected these models for the following reasons:

• Given its prominence as a widely studied neural network-based collaborative
filtering model, the NCF provides an ideal baseline for comparison in the re-
search.

• As a decentralized approach that strongly emphasizes user privacy, DMF pro-
vides a valuable reference point for this research. This model can protect against
malicious attacks and untrusted users by relying on gradient exchange and other
security measures.

• MetaMF is a privacy-preserving RS model with a federated structure that
strikes an excellent balance between privacy and prediction accuracy. Its semi-
distributed structure separates central and local training processes.

All the models in this study, including the proposed framework, were evaluated
on datasets that were filtered and pre-processed using the same methods. The overall
average performance of each model is shown in Table 5.2. Each of the entries in Table
5.2 is the average performance of its corresponding model on all training-testing
folds. If we expand each entry, we can get Figure 5.8. For example, Figure 5.8
displays precision comparisons for each training-testing dataset pair in the City of
Phoenix, comparing the performance of the four models. The datasets are partitioned
chronologically, with each point on the graph representing a distinct training-testing
pair.
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Figure 5.8: The Precision Comparisons among Four Models for Each Training-Testing
Dataset Pair in the City of Phoenix. ( The dataset is partitioned chronologically.)

The results from this experiment have lower precision and recall values compared
to experiments using other popular datasets because of the sparsity nature of location-
based services. Most users visit below three locations among thousands of POIs in
the city. Nevertheless, comparatively speaking, of the four compared models, the
non-private centralized recommendation model NCF had the highest precision since
its trade-off from privacy concern is zero. However, in terms of the accuracy-privacy
trade-off, the proposed framework, which includes the Generic User Synthesizer, has
the best performance among the privacy models. It is worth noting that even though
all models were trained and tested on the same datasets, their hyperparameters of
choices are not necessarily the same.

As usual, the testing procedure simulates real-world scenarios where the recom-
mendation system receives data sequentially and over time. During each round of
cross-validation, the testing set becomes the training set, and the next fold is used
as the testing set. The inflection points of the curves in Figure (5.8) represent the
validation process results. To ensure that each fold has sufficient users, the research
has adjusted the temporal window size of each fold so that each user has at least two
ratings in the training set. This process is applied to all models being tested.

Integrating the Generic User Synthesizer (GUS) in the proposed framework shows
a consistent and balanced trade-off in precision and recall on both datasets in a
real-world setting. Possibly due to the lack or low density of data, DMF is not
reaching its full potential. The GUS framework is a lightweight and efficient method
for generating local recommendations, as it does not burden users with additional
computational tasks. At the same time, the central server is trained on condensed
data secured by the LDP standard and clustering, which not only makes the model’s
training process more efficient and fast but also preserves user privacy. The data-
mineable synthetic data cannot be traced back to real users and can be transferred
without compromising privacy.

Additionally, the GUS framework is more modularized and detachable than fed-
erated learning-based recommendation systems, allowing recommendation service
providers to add it to their existing systems without significant changes easily. This
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detachable feature is convenient for upgrading the recommendation system or using
the desired model without sacrificing privacy. In contrast, other privacy-preserving
models, such as the Decentralized Matrix Factorization (DMF) and the federated
recommender system (MetaMF), require a complete switch to the privacy-preserving
model and have limitations on the use of future data.

Lastly, an essential benefit of the GUS framework is that it generates synthetic
user-item interaction data that can be used in future research and shared without
concern for privacy liability. Because the synthetic users created by the framework
are not associated with any real users and their identities cannot be traced back to
the original data, there are no privacy concerns when transferring or sharing the data.

5.6 Summary

This study proposes a Privacy-Preserving Point-of-Interest Recommendation Frame-
work that accurately estimates users’ location while providing satisfactory predic-
tion accuracy without disclosing GPS information. The framework utilizes a general
user data collection approach based on LDP and data clustering, contributing to the
framework’s scalability and geolocation awareness.

The data uploading process is securely separated by integrating a third-party
server that collects direct user feedback through LDP and obfuscates private data
through clustering. Due to its sequential property, the data flow from the third-party
server to the central server is still protected under the LDP standard.

This research introduces a flexible framework to resolve these challenges. It es-
timates users’ location without accessing GPS data, utilizes an Honest but Curious
(HOB) third party for clustering, and generates synthetic user data for POI rec-
ommendations. As a result, personalized recommendations are generated on local
devices without compromising the privacy of sensitive information. The research fur-
ther incorporates an automatic approach for model optimization using a Bayesian
optimization framework, which reduces the number of steps needed to find optimal
parameters.

To simulate a real-world scenario, the research has generated cross-validation folds
in a temporally sequential manner. The proposed framework balances prediction
accuracy and privacy protection through various processing techniques, strict testing
conditions, and real-world datasets. The collected data is safe to store, transfer and
ready for future usage without extensive liability. The results demonstrate a good
level of user-item interaction information preserved in the virtual users, which is
essential in training any recommender system.

The optimization process for the framework employs an automatic approach using
a Bayesian optimization framework. The approach treats the model’s overall perfor-
mance as a sample from a Gaussian process, which significantly reduces the number
of steps required to find optimal parameters compared to a brute-force strategy.

Future research will focus on enhancing the data-collecting mechanism with ad-
vanced contextual information processing tools and exploring user data synthesis
techniques with generative adversarial networks and variational autoencoders. The
study concludes that this novel framework is not only effective in balancing pre-
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diction accuracy with privacy preservation, but it also has the potential to support
cross-platform collaborations.

Copyright© Longyin Cui, 2023.
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Chapter 6 Privacy-Preserving User Data Synthesis Scheme

6.1 The Final Motivation and Problem Description

Point-of-Interest (POI) recommender systems (RS) furnish users with personalized
recommendations and promotions by filtering out extraneous information. Such ser-
vices, exemplified by Yelp and Google Maps, facilitate the discovery of intriguing local
venues, such as parks, restaurants, and museums, based on users’ search histories and
preferences. Despite the advantages POI RS offer in mitigating information overload,
they also raise concerns regarding security, privacy, and control [111].

The proliferation of mobile devices and applications has been accompanied by
mounting privacy apprehensions related to Point-of-Interest recommender systems.
As privacy regulations struggle to adapt, the necessity for improved privacy safeguards
is becoming more evident, as demonstrated by the European Union’s General Data
Protection Regulation (GDPR), the California Consumer Privacy Act (CCPA), and
China’s draft personal information protection law [88, 85, 41]. Both governments and
corporations acknowledge the importance of addressing privacy concerns, leading to
a shift toward privacy-preserving techniques instead of solely relying on personal data
collection. Recent events, such as Google’s $392 million privacy lawsuit settlement
across 40 U.S. states, illustrate this trend [112].

In light of escalating privacy concerns surrounding Point-of-Interest (POI) rec-
ommender systems (RSs), researchers have increasingly focused on developing mod-
els that strike a balance between privacy preservation and prediction accuracy [84].
The recommender systems community is examining various strategies to enhance
this trade-off, including system decentralization to eliminate central servers that are
often susceptible to malevolent hacking and data breaches [17, 90, 89]. Alterna-
tive approaches involve employing anonymity and obfuscation techniques, such as
perturbing user feedback or concealing user identification information, to facilitate
necessary data mining without disclosing user identities [113]. Additionally, incor-
porating traditional cryptography or differential privacy protocols into non-private
recommender systems is frequently proposed as a means of bolstering privacy during
information communication [94]. These endeavors underscore the ongoing demand
for privacy-preserving features in recommender systems.

In the final study, an alternative solution was developed for preserving user privacy
in Point-of-Interest (POI) recommender systems. The final approach entails gener-
ating synthetic users with a Conditional Tabular Generative Adversarial Network
(CTGAN) and integrating them into the recommender system’s dataset. The objec-
tive of this research is to ascertain whether deep neural networks, in conjunction with
conventional methods such as clustering or differential privacy, can effectively synthe-
size virtual users while maintaining the recommender system’s accuracy. the findings
indicate that incorporating meticulously trained synthetic users into the dataset does
not significantly affect the system’s accuracy. This approach offers not only enhanced
flexibility and generativity but also ensures secure storage and unrestricted transfer
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of datasets. Furthermore, this method permits the evaluation of the impact of in-
creasing the proportion of synthetic users in the original dataset. To validate this
approach, experiments utilizing real-world datasets will be conducted to quantify the
trade-off between privacy preservation and recommendation accuracy.

The main contributions to the communities and the overall research path are
summarized as follows:

• Offering a comprehensive study on generating synthetic users and protecting
users’ personal information in POI recommender systems using both CTGAN
and clustering techniques.

• Investigation of the effectiveness of CTGAN-generated synthetic users compared
to cluster-based synthetic users in terms of prediction accuracy.

• Evaluation of the trade-off between privacy preservation and recommendation
accuracy by increasing the ratio of synthetic users in the original dataset, using
real-world datasets, and providing a comparative analysis between CTGAN and
clustering methods.

The structure of this chapter is as follows: The section “Utilized Techniques and
Important Information” reviews the relevant techniques and provides background
information that informs the proposed framework. The section “Notifications and
Formulas in Study” outlines the foundation and notations related to the framework.
Section “Experiment Design” presents the datasets the research has used, the method-
ology, the metrics the research employed to evaluate the framework’s performance,
and the hyperparameters tuning strategy. The section “Results and Explanations”
shows the results from using different datasets and various ratios of the insertion of
synthetic data. Finally, the Section “Summary” concludes the research and outlines
the following research directions.

6.2 Utilized Techniques and Important Information

This section of this research provides an overview of the relevant research, such as
the newly updated clustering techniques in this research, data synthesizing for RS
privacy preservation, and Generative Adversarial Networks (GANs) and Conditional
Tabular Generative Adversarial Networks (CTGANs). The aim of this section is to
provide convenient background information for the readers and to highlight how they
contribute to the approach proposed in this paper.

POI Recommender Systems

Point-of-Interest recommender systems represent a technological advancement that
offers personalized recommendations and promotions to customers, with the aim of
streamlining the discovery of new locations [82]. These systems, as location-centric
variants of recommender systems, primarily focus on recommending geographic loca-
tions or Points of Interest to users based on their preferences and historical location
data. POI RSs can be accessed through many popular services, such as Yelp or Google
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Maps, but they raise privacy and security concerns. Nonetheless, the popularity of
POI RSs continues to grow due to the increasing number of mobile devices and their
capacity to simplify and enhance the customer experience.

PP RSs can be categorized based on the underlying technology and the type of
POI they recommend. For instance, collaborative filtering-based POI RSs generate
recommendations according to the collective behavior of users, such as check-ins,
ratings, and preferences. Conversely, content-based POI RSs offer recommendations
based on POI attributes and users’ historical preferences. Hybrid POI RSs employ
both collaborative filtering and content-based methods to deliver more personalized
recommendations. Well-known POI RSs encompass services such as Yelp, Google
Maps, and Foursquare.

In this dissertation, the focus is placed on collaborative filtering-based Point-of-
Interest Recommender Systems, which are widely acknowledged as the most prevalent
and successful type of POI RSs. Specifically, the Neural Collaborative Filtering (NCF)
model, which utilizes neural networks to enhance collaborative filtering, was chosen
as the evaluation target due to its broad applicability and dominant position within
the field of recommender systems [102]. By employing a generic model, the findings
presented in this dissertation are comprehensive and applicable across various use
cases.

GAN and CTGAN

Generative Adversarial Networks (GAN) [114] are a class of deep learning models
that have gained significant attention in recent years for generating high-quality syn-
thetic data that resemble real-world data [115]. GANs consist of two neural networks
that compete with each other in a zero-sum game: a generator network that gen-
erates synthetic data and a discriminator network that tries to distinguish between
natural and synthetic data. GANs have shown remarkable success in various appli-
cations, including image and speech synthesis, text-to-image translation, and data
augmentation.

• The generator is trained to create realistic data, which subsequently serves as
negative training examples for the discriminator.

• The discriminator, in turn, is tasked with differentiating between the genera-
tor’s fabricated data and genuine data, penalizing the generator for generating
implausible results

As shown in Figure 6.1, Both the generator and the discriminator are neural
networks. The generator output is connected directly to the discriminator input.
Through back-propagation, the discriminator’s classification provides a signal that
the generator uses to update its weights. At the onset of training, the generator ini-
tially produces evidently false data, enabling the discriminator to identify its artificial
nature swiftly.

ctGAN (conditional tabular GAN) [116] is a variant of GAN that is specifically
designed for generating synthetic tabular data. ctGAN extends GAN by incorpo-
rating conditional generation capabilities, allowing users to specify conditions on the
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Figure 6.1: The Basic Diagram of a Generative Adversarial Network

generated data. Specifically, a variational Gaussian Mixture Model (VGM) is utilized
for the numerical variables, and the Wasserstein GAN loss function is used for the
gradient penalty. The ctGAN can be used to generate synthetic data that follow the
identical statistical distributions as the original data, making it useful for tasks such
as data augmentation, privacy-preserving data sharing, and synthetic data generation
for model training.

The Wasserstein GAN loss function consists of two parts: the discriminator loss
(LD) and the generator loss (LG).

Discriminator Loss (LD):

LD = Ex∼pdata [D(x)]− Ez∼pz(z)[D(G(z))] (6.1)

Generator Loss (LG):

LG = −Ez∼pz(z)[D(G(z))] (6.2)

Variables:

• LD: Discriminator loss

• LG: Generator loss

• x: Real data sample

• pdata: Data distribution

• D(x): Discriminator’s output for a real data sample x

• z: Random noise sample

• pz(z): Noise distribution

• G(z): Generator’s output for a noise sample z

• D(G(z)): Discriminator’s output for a generated data sample G(z)

• E: Expectation
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Data Synthesizing in Privacy-Preserving Recommender Systems

Data synthesis refers to the process of generating artificial data that resembles real-
world data with the aim of preserving the privacy of the original data while still
enabling the use of the synthesized data for various purposes [117]. This technique
has gained increasing attention in the field of privacy-preserving data analysis, where
the goal is to maintain the privacy of individuals or organizations while still allowing
researchers or practitioners to leverage the information contained in the data. Data
synthesis can be achieved through various methods, including randomization, pertur-
bation, and generative models such as GANs. These techniques aim to synthesize
data that accurately represents the statistical properties of the original data while
still ensuring the privacy of the original data.

Several models for synthesizing user data with the goal of preserving privacy
have been proposed, including GANs, Variational Autoencoders (VAEs) [118], and
Bayesian Networks [119]. However, empirical studies in the field of RS remain limited.
The objective of these models is to generate synthetic data that closely resembles the
original user data, with each model presenting its own unique challenges. In this
research, GANs are utilized, precisely the CTGAN model, due to the advantage it
offers in terms of differential privacy. As the generator in GANs does not have access
to actual data during the training process, privacy protection can be achieved with
ease. Additionally, GANs have been demonstrated to generate high-quality training
models more readily when applied to large-scale real datasets.

Clustering Techniques

Clustering algorithms can be broadly classified as hierarchical and non-hierarchical
methods, depending on the manner in which they group data points [120]. Cluster-
ing has numerous real-world applications, including market segmentation, anomaly
detection, image segmentation, and recommendation systems like POI recommender
systems. The resulting clusters are expected to exhibit homogeneity within them-
selves and heterogeneity with other clusters to ensure their effectiveness.

Moreover, clustering is a fundamental technique in data mining and machine learn-
ing that is used to group data points based on their similarities. In this research, clus-
tering is employed to group similar users based on their estimated locations. Specifi-
cally, this research utilizes k-means, a popular non-hierarchical clustering method, to
cluster POIs based on their geographic proximity and semantic similarity. In later
sections, it will explain the reason behind the choice of K-means among all the other
clustering techniques. K-means divides the data into k clusters, with each cluster
represented by its centroid. The algorithm iteratively assigns each user to the near-
est centroid and re-positions the centroid based on the mean position of all users in
the cluster. The goal is to identify groups of users that share similar attributes and
interests.
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6.3 Notifications and Formulas in Study

This section introduces the different model fundamentals, the notations, problem
definitions, and the metrics and evaluation methods.

Introduction to Neural Network Based Matrix Factorization

Figure 6.2: Example of the Conventional Collaborative Filtering Technique

Like most conventional RS, the core component is built upon Collaborative Fil-
tering (CF) [43]. Iterative Matrix Factorization (MF) was the most used version of
CF for recommendation models. It is worth mentioning that the MF decomposes the
feedback matrix into two lower-rank matrices, as in figure 6.2. Iteratively, the algo-
rithm stops when the total error between the observed true ratings and the predicted
corresponding ratings is minimized. When reconstructing a feedback matrix or utility
matrix as to which some may refer, the missing entries are imputed, giving people
a vague idea of users’ potential or future references. The minimization problem is
formulated as below:

min
pu,qi

∑
rui∈R

(rui − r̂ui)
2 + λ(∥qi∥2 + ∥pu∥2) (6.3)

where we use u to denote a user (customer) and i an item (POI). If we define U
and I as the user and item sets, then u ∈ U and i ∈ I. In the above equation,
rui indicates an observed rating indicating the preference of user u over item/POI
i. Correspondingly, the r̂ui represents predicted ratings. The rating matrix R is
composed of all the observed and unobserved feedback or visiting records. Thus the
prediction function for r̂ui can be written as below:
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r̂ui = pu
T · qi =

∑
k

pukqik (6.4)

where the column vectors pu and qi from the decomposition result, two sub matrices
P and Q, represent the user and item latent factors, respectively. Here, k is the
dimension of the latent space.

Collaborative Filtering and Neural Collaborative Filtering are two popular tech-
niques used to model user-item interactions in recommendation systems. CF works
by representing the rating matrix in a latent space using inner product optimization,
while NCF uses a neural network to replace the lower-rank matrices used in CF.
The advantage of NCF is that it can capture non-linear interactions and incorporate
weighted user/item features, making it a more generalized approach that can handle
complex interactions.

It is worth noting that NCF models, in general, can be designed to predict explicit
ratings or implicit feedback (such as the probability of interaction). The specific
design of the model, such as the choice of the last activation function or the loss
function, will determine the final output of the model. In this dissertation, the last
activation function was modified to be a linear function, which allows the model
to output a continuous value, which can be interpreted as a rating. The choice of
generating explicit feedback is to assist the comparisons of trade-offs better. In other
research, a sigmoid or softmax activation function might be used at the end.

In summary, Neural Collaborative Filtering (NCF) is a widely adopted neural
network-based technique for modeling user-item interactions in recommendation sys-
tems. The research has selected NCF as the baseline model because it has been shown
to be reliable, is widely used in the literature, and has been extensively studied by
peer researchers. Additionally, NCF’s generic usage aligns well with the design of the
framework, which aims to provide a flexible and scalable approach for recommenda-
tion tasks.

Notations for Clustering and User Similarity

The users’ locations need to be estimated using the GPS locations of their previously
visited POIs. If we let Latu represent the latitude of a user, Lonu the longitude, and
Iu the set of all POIs a user visited, then we have the following equations:

Latu =
1

|Iu|
∑
i∈Iu

Lati (6.5)

Lonu =
1

|Iu|
∑
i∈Iu

Loni (6.6)

where Iu denotes all the POIs the user u has visited, and Ui denotes all users that
have feedback for the item/POI i.

After clustering, centroids from the output are utilized as virtual users or synthetic
users, even though their information results from aggregation. The way to create
ratings for the artificial users is by taking the average of all users in each cluster.
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Suppose the users are split into |C| clusters where each cluster c ∈ C and all users
u ∈ Uc belonging to that cluster. We have the following equation to impute the
ratings for each centroid from the clustering:

r̂c̄i =
∑
u∈Uc

rui

/
|Uc ∩ Ui| (6.7)

where Ui denotes all users that have feedback for the item/POI i. The synthetic users
with ratings can then be sent to the central server for model pre-training and POI
similarity calculation.

Evaluation Metrics

I am using both Root Mean Square Error (RMSE) and Mean Absolute Error (MAE)
to evaluate the model’s prediction accuracy to better study the trade-off between
privacy preservation and the RS model’s accuracy. RMSE and MAE are famous
evaluation metrics for regression tasks, and they measure the difference between the
predicted ratings and the actual ratings. While both metrics measure prediction
errors, they have different properties: RMSE gives more weight to more significant
errors, making it more sensitive to outliers, whereas MAE treats all errors equally.

It is worth mentioning other metrics like precision, recall, mean average preci-
sion or normalized discounted cumulative gain are all famous evaluation metrics for
modern recommender systems. These metrics value more on how well the system can
help users make better decisions, so they are affected mainly by the top recommended
items. Moreover, in many cases, it is indeed that users care only about the top few
recommended items or POIs. However, the focus is more on the overall impact of
integrating synthetic data into the system.

The following equations 6.8 and 6.9 show the details of the definition:

RMSE =

√∑
u,i∈Te

(rui − r̂ui)2

n
(6.8)

MAE =

∑
u,i∈Te

|rui − r̂ui|
n

(6.9)

where T e is the entire test set, and n is the number of ratings compared. Lower values
of RMSE and MAE indicate better prediction accuracy, with an RMSE or MAE of 0
representing perfect predictions.

6.4 Experiment Design

This section gives a description of the datasets and presents the experiment results
in comparisons. Lastly, the parameters and their tuning are discussed.
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Table 6.1: Datasets Statistics

Area #Users #POIs #Feedback Density

CU 11953 1579 33990 0.1802%
PH 168585 3784 453507 0.0711%

The Datasets

The Original Datasets

The selected datasets described user feedback on Yelp in two metropolitan areas:
Champaign–Urbana (CU) and Phoenix (PH). This feedback took the explicit ratings
in {1, 2, 3, 4, 5}, where user-item ordered pairs were unique. Thus, each item could
only be rated once by any particular user. These two datasets were chosen for contrast
in size. While CU contained fewer users in a smaller area, PH consisted of a larger
population and rich user feedback. The sparsity of the datasets is comparatively much
lower than conventional recommendation datasets. A straightforward comparison of
statistics of the four areas can be found in Table 6.1.

The Synthetic Dataset from CTGAN

The synthetic dataset was obtained through training a conditional generative adver-
sarial network (CTGAN). The research adopted a framework from the Synthetic Data
Vault (SDV) for its compatibility with tabular data [116]. The GitHub documentation
for the CTGAN library can be found at https : //github.com/sdv − dev/CTGAN .

Before inputting the datasets into the CTGAN model, the list of tuples was trans-
formed into a rating matrix in which rows represent users and columns denote items.
This reformatting aimed to emphasize the interactions between users and locations
better. Subsequently, the matrix was filtered to exclude users who had rated too few
locations, such as low-quality users with only one rating. For testing purposes, the
number of ratings required for users in the PH dataset is increased to 12, as demon-
strated in the next section. It is important to note that during CTGAN training,
any number of users can be removed as desired since the objective at this stage is not
to simulate real-world situations but rather to extract the most valuable information
from the training data.

In practice, retaining the original data format as a list of userID, itemID, rating
tuples prevents the CTGAN model from understanding the significance of either
userID or itemID unless set as the primary key. Even so, it leaves only a column of
rating values for training, and feeding such data into the model would result in the
generation of highly random and useless synthetic data. Instead, transforming the
original data into a rating matrix more effectively captures the relationships between
users and POIs. During training, the user index was manually added as a separate
column, serving as the key.

The tuning of CTGAN hyperparameters in this implementation was based on
the suggested values provided in the original research paper and some minor man-
ual adjustments. Due to the extensive training times required for both CTGAN
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and NCF, reliance on rough estimations of the synthetic data quality was necessary
when adjusting the hyperparameters for CTGAN. To roughly estimate the quality
of the generated synthetic data, a simple conventional collaborative filtering model
with a five-fold cross-validation approach was employed. In other words, each time
the training of the CTGAN model was completed, the synthetic data was sampled
and the quality of the generated dataset was tested using a minimal CF model with
cross-validation. For the PH dataset, manual tuning was halted once the mean abso-
lute errors (MAEs) reached 0.6719, 0.672, 0.6732, 0.6718, 0.6721, a considerably good
result. For the Champaign-Urbana dataset, the process was stopped at the value
of 0.9676, 0.9666, 0.9658, 0.9580, 0.9712. Considering the complexity of the CTGAN
hyperparameters and as the detailed analysis of each of them is beyond the scope of
this investigation, their discussion has been omitted in this context.

The Synthetic Datasets from Clustering

Figure 6.3: The visualization of User Location Clustering (Phoenix). (The clustering
algorithm shown in the picture is K-mean.)

Various clustering methods were considered. Initially, DBSCAN [107], a widely-
used geolocation clustering method that automatically determines the optimal num-
ber of clusters, was employed. However, this method resulted in grouping users who
were distant from one another into a single cluster. Conversely, when implement-
ing OPTICS clustering [108], another density-based clustering algorithm, the same
problem was encountered. Moreover, reducing the maximum distance to prevent the
formation of excessively large groups led to a considerable portion of users being
classified as noise (not in any cluster).

Furthermore, hierarchical clustering methods such as Partition Around Medoids
(PAM) [109] clustering algorithm were investigated. Regrettably, despite diligent
tuning efforts, this method produced numerous empty clusters and was influenced
by users active beyond the metropolitan area (noise). Consequently, the K-means
algorithm demonstrated superior performance in terms of encompassing all users and
generating balanced clusters, as shown in Figure 6.3. Spectral clustering [67] was
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also evaluated by initially constructing the affinity matrix and then using the affinity
matrix to perform clustering; however, this approach proved too computationally
intensive, making it impossible to cluster large datasets within a reasonable time. To
avoid these limitations, K-means clustering was ultimately selected as a more efficient
and competitive alternative.

In both the CU and PH datasets, while clustering, a user filtering criterion was
applied to exclude users who provided only one or two ratings. This was done to
ensure that only users who could contribute meaningfully to collaborative filtering-
based RS were included. It is intuitive that users with only one or two feedback records
would have limited ability to suggest items to other users, making them less useful
for recommendation purposes. Hence, excluding these users improves the quality of
the clustered dataset.

Real-Synthetic Blend

Initially, the CU Yelp dataset was partitioned into base training and testing subsets
using a 75-25 split by time. The combined training dataset used for training NCF
consisted of a mix of real users from the base training subset and synthetic users
generated by CTGAN or clustering. The proportion of real and synthetic users,
mixrate, was the varying factor in trials of ensemble subsets.

To distinguish between real and synthetic users in the ensemble dataset, the num-
ber of unique real users was added to every synthetic user identifier. Both real and
synthetic tuple lists were pivoted into matrices of ratings. It is important to note
that the real data refers to the training set of the original dataset, and the synthetic
data refers to the entire sampled synthetic data pool. Rows of the original rating
were then removed according to the mixrate. For example, if the value of mixrate
is 0.5, it would mean that 50% of the original users are removed. To compensate for
the removed data, the same amount of ratings from the synthetic data was added.
It is essential to point out that real users were not directly replaced with synthetic
users because the density of the synthetic data and the original data is drastically
different. The combined rating matrix was unstacked to restore its original format,
which is a list of tuples as userID, itemID, rating.

During the entire data processing stage, the correspondence relationships between
users in the training set and test set were maintained. It is important to note that
during the experiment, manipulating and slicing the training data frames must be
consistent with the test set. Moreover, the indices of the remaining users or items,
as well as the synthetic counterparts, had gaps, which is problematic for most recom-
mender systems. Re-indexing solved this problem by iterating through the dataset
and redefining user and item identifiers to be the least unoccupied integer. This ef-
fectively closed these gaps and sequentially filled the counting numbers from 0 to the
number of respective users and items.

Evaluation

In an ideal setting, users would use their local RS to train on the synthetic data and
provide optimal recommendations without the need to disclose private data. To sim-

88



ulate such a scenario, the experiment should be designed with the assumption that
a central RS is responsible for pre-training the NCF model. Each user could then
download the pre-trained model and finalize personalization by performing adaptive
training using their historical record on their local device. However, implementing
such a simulation is computationally expensive. With a thousand users, adaptive
training would have to be performed a thousand times to complete only one instance
of system evaluation. Consequently, an alternative approach was taken, which in-
volved mixing the synthetic data with real users to evaluate the impact of integrating
synthetic data into the original dataset.

Furthermore, a time-dependent dataset splitting method was conducted, ensuring
time dependencies between the training-test pairs. The dataset was sorted temporally
since using future ratings to predict past behaviors is not realistic. Temporal cross-
validation was not implemented for two reasons. First, the sparsity of POI datasets
is already low, and further dividing it into multiple folds temporally would increase
sparsity. Second, as synthetic data does not contain timestamps, adding more strate-
gies for injecting different synthetic data into each fold could make the evaluation
process unnecessarily complex.

The evaluation procedure is straightforward. For a single-round evaluation algo-
rithm, please refer to Algorithm 1. In the experiment, the value of mixrate iterates
the set 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9.

Algorithm 6: Data Mixing and Model Evaluation

Input: Dorig, Dsynth,mix rate
Output: RMSE,MAE

1: Split Dorig into Dtrain and Dtest with a 75% and 25% ratio
2: Randomly remove (1−mix rate) of the users in Dtrain

3: Select the same amount of rating records from Dsynth

4: Create Dmixed train by combining the remaining original rating records with
synthetic rating records.

5: Train the NCF model on Dmixed train

6: Evaluate the model on Dtest

7: Return RMSE and MAE

In Algorithm 1, Dorig represents the original dataset; Dsynth represents the syn-
thetic dataset; Dtest remains the test set, and Dmixedtrain is the prepared dataset.

Parameters and Tuning

Various parameters can directly impact the results; therefore, the approach taken in
this study combines an automatic method for model tuning with subsequent manual
adjustments, rather than relying solely on brute-force searching or heuristic random
guessing based on human experience. Initially, a Bayesian optimization framework
is adopted, treating the overall performance of the model as a sample from a Gaus-
sian process. This approach [81] considers the entire training-testing process as a
continuous function.

89



With this framework, a reasonable set of parameters is determined when the
mixrate is 0.5. Following the Bayesian optimization, manual tuning is employed
to further refine the parameters, ensuring optimal performance for the NCF model.
These parameters are then applied to all other cases.

During the NCF training process, the gamma value is set to 0.9 and the stepsize
to 10, which means the learning rate is multiplied by 0.9 every 10 epochs. The
hiddensize, determining the size of the hidden layers in the neural network, is set
to 16. It is worth noting that there is a structure of user and item embedding sub-
networks within the NCF model. These sub-networks are designed as Multi-Layer
Perceptrons (MLPs), a type of feedforward artificial neural network consisting of
multiple layers of neurons. The structure, or the number of neurons in each layer, of
the MLP is set to [16, 32, 64]. Finally, the batch size is set to 128. The number of
training epochs is limited to 100, and the initial learning rate is set to 0.001.

6.5 Results and Explanations

The experimental methodology involved using two previously introduced datasets
obtained from the Champaign-Urbana and Phoenix City metropolitan areas. For
each dataset, three different dataset compositions were evaluated, namely the original
dataset, the dataset partially replaced with virtual users generated from clustering,
and virtual users generated from CTGAN. To assess the impact of different mixrate
values in integrating synthetic data, each composition was examined. It should be
noted that the reason for evaluating by mixing the original data with synthetic data
is due to the overwhelming computing time required to personalize for each user using
only synthetic data.

Figure 6.4: Comparison of RMSE Values for Different Cut Rates Using Original Data
(Blue), Clustered Data (orange), and CTGAN-Generated Data (grey) on the Dataset
from CU.

Figure 6.4 and 6.5 illustrate the results, where the x − axis denotes the value
of mixrate, and the y − axis represents the value of RMSE. The baseline (shown
in blue) corresponds to the NCF model that operates solely on the original dataset
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Table 6.2: RMSE Result Comparison for Different mix rate from CU

mix 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Cluster 1.278 1.262 1.261 1.276 1.274 1.277 1.278 1.281 1.284 1.265
CTGAN 1.278 1.272 1.283 1.277 1.281 1.284 1.287 1.284 1.289 1.293

without any synthetic data injection. The baseline is represented as a straight line,
indicating that it has not undergone any modifications. However, it is noteworthy
that the RMSE value of the baseline is relatively high when compared to popular
datasets like MovieLen [77], primarily due to the sparsity level of the POI datasets.

The remaining data curves correspond to datasets that were partially replaced
with synthetic users generated from clustering (orange) or CTGAN (grey), respec-
tively. For Figure 6.4, which represents the CU dataset, clustering-based mixed data
yields better results than CGGAN-based augmentation, though the absolute differ-
ences between the three runs are not substantial. During the generation of synthetic
data, a filter was applied to exclude users who rated fewer than 3 items. In other
words, all users with only one or two ratings were excluded during the clustering and
CTGAN training stages.

Figure 6.5: Comparison of RMSE Values for Different Cut Rates Using Original data
(blue), Clustered data (orange), and CTGAN-Generated Data (grey) on the Dataset
from PH.

By contrast, Figure 6.5 shows a different scenario where a meaningful change was
made. During the training of CTGAN, the density of the dataset was significantly
increased by excluding all users with fewer than 12 ratings, as opposed to 3. It is
worth noting that no data or users were modified or filtered during the evaluation
stage to simulate real-world conditions. Instead, the training of CTGAN was opti-
mized to optimize the composition of the feeding dataset. As evident from the figure,
the performance of the NCF model using the original dataset and the dataset aug-
mented with synthetic users generated via CTGAN are almost indistinguishable. The
clustered data was generated in the same manner as before.
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Table 6.3: RMSE Result Comparison for Different mix rate from PH

mix 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Cluster 1.277 1.271 1.941 1.726 1.907 1.872 1.813 1.637 1.617 1.392
CTGAN 1.277 1.274 1.263 1.284 1.282 1.282 1.277 1.288 1.279 1.266

6.6 Summary

The concluding chapter of this study presents a deep dive into the generation and
application of synthetic users within the framework of Point-of-Interest (POI) rec-
ommender systems (RS). These systems serve to personalize recommendations and
promotions by filtering extraneous information, as seen with services such as Yelp
and Google Maps. They aid users in discovering local venues of interest based on
their search histories and preferences. Yet, in mitigating information overload, these
systems concurrently give rise to concerns related to security, privacy, and control.

With the surge of mobile devices and applications, privacy anxieties related to
POI RS have become increasingly pronounced. As privacy regulations grapple with
keeping pace, the call for reinforced privacy protections becomes more conspicuous.
The culmination of this study provides an innovative solution for preserving user pri-
vacy in POI recommender systems, proposing the generation of synthetic users with a
Conditional Tabular Generative Adversarial Network (CTGAN) and their subsequent
integration into the recommender system’s dataset. This research seeks to determine
whether deep neural networks, coupled with traditional methods such as clustering
or differential privacy, can effectively synthesize virtual users while preserving the
recommender system’s accuracy. The evidence suggests that the inclusion of meticu-
lously trained synthetic users into the dataset does not significantly compromise the
system’s accuracy. This method not only offers enhanced flexibility and generativity
but also ensures secure storage and unrestricted transfer of datasets. Furthermore, it
allows for the evaluation of the impact of increasing the proportion of synthetic users
in the original dataset.

The significant contributions of this research to the communities and the overall
research trajectory can be encapsulated in three parts: first, the provision of a holistic
study on generating synthetic users and safeguarding users’ personal information in
POI recommender systems, employing both CTGAN and clustering techniques; sec-
ond, the investigation of the efficacy of CTGAN-generated synthetic users compared
to cluster-based synthetic users in terms of prediction accuracy; and third, the evalu-
ation of the trade-off between privacy preservation and recommendation accuracy by
increasing the ratio of synthetic users in the original dataset, employing real-world
datasets, and conducting a comparative analysis between CTGAN and clustering
methodologies.

Looking forward, the plan is to expand the research by incorporating local differen-
tial privacy on top of CTGAN and exploring more advanced contextual information
processing tools. It is also possible to aim to investigate other practical synthetic
generation tools and delve deeper into parameter tuning for large non-linear systems.
This chapter sets the stage for future work in enhancing privacy and performance in
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POI recommendations by leveraging synthetic data and advanced techniques.

Copyright© Longyin Cui, 2023.
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Chapter 7 Conclusions and Future Work

7.1 Research Accomplishments

In the past two decades, recommender systems have gained prominence as an indis-
pensable component of personalized technology, profoundly impacting various sectors
such as e-commerce, entertainment, and social media platforms. The growing signif-
icance of recommender systems can be attributed to their capacity to process large
volumes of data and provide customized recommendations to users, ultimately en-
hancing user experience and satisfaction. Notable milestones in the evolution of
recommender systems encompass the advent of collaborative filtering in the late
1990s, the influential Netflix Prize competition in 2006, and the emergence of deep
learning-based recommendation models in recent years. These developments have
considerably improved the precision, scalability, and versatility of recommendation
algorithms. Nevertheless, the flourishing and widespread adoption of recommender
systems has concurrently elicited significant privacy concerns. The extensive acquisi-
tion and analysis of user data for personalization purposes pose potential threats to
individual privacy and even national security, underscoring the necessity for robust
privacy-preserving mechanisms within the domain of recommender systems.

This dissertation primarily focuses on exploring potential solutions to the privacy-
preserving challenges currently faced by recommender systems. The scope of the
research is specifically narrowed down to the domain of POI recommender systems.
Throughout the dissertation, the author recounts the investigative journey undertaken
to develop privacy-preserving strategies.

Initially, an empirical study was conducted to examine the use of clustering tech-
niques in concealing users’ identities. Subsequently, the research introduced a trusted
third party, eliminating the need for a superuser. As the study progressed, the pro-
tection and utilization of users’ comments were also addressed. In response to the
concerns raised by peers, the privacy budget was quantified by introducing differen-
tial privacy, leading to the formulation of a distinctive approach to safeguarding user
privacy.

This unique perspective involved generating virtual user data through various
methods, with the cutting-edge CTGAN technique proving to be particularly suc-
cessful in synthesizing user data. The results demonstrated a seamless replacement of
real user data, thereby highlighting the potential value of this approach in alleviating
privacy concerns related to data storage and transfer in the field of recommender
systems.

In summary, this dissertation can be concluded as five parts:

• Investigation on the use of clustering techniques to broaden the user’s identity.

• Introducing a trusted and distributed third party.

• Utilize and protect the users’ comment contextual information.
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• Add quantification by introducing differential privacy.

• Using synthetic user data to replace real users’ data.

An Empirical Study on Integrating Clustering Techniques into Recom-
mender Systems

This approach, intuitively speaking, is to hide every single user’s identity into a
group. The study in chapter 2 presents a framework that uses “super users” to
collect nearby user data indirectly instead of using the central server. The research
demonstrated that by using a grouped preference, the users can still get personalized
recommendations that are reasonably well-suited.

However, this research has remaining challenges. First, the clustering mechanism
is sometimes not accurate since the users near the “super users” are not necessarily
the users that are similar to them. It caused the group references not to be correctly
grouped together, which affected the accuracy of the prediction heavily. Second, the
number of ratings in each batch is too small to be usefully applied in practice. These
challenges lead me to the subsequent research.

Introducing Trusted and Distributed Third Party

To resolve mentioned issues, such as preventing the risk of having a central server and
decreasing the clustering errors, a recommender system network has been introduced.
More importantly, this approach allows the integration of geolocation information. In
the earlier research, the users’ visiting records are clustered based on the assumption
that similar users will gather together. However, in reality, this is not always true. By
formally introducing a trusted third party, we can cluster users based on the entire
user’s history visit records and the fuzzy physical locations of the users.

Furthermore, not only did the research upgrade the clustering mechanism, but
the datasets were also expanded to include the Chicago city area. The target recom-
mender system model has also been improved from a plain NMF to a more advanced
biased MF model. Furthermore, this is when the idea of using virtual users to replace
real users began to emerge.

Protecting Contextual User Information

Subsequently, due to the emerging trends in the recommender system community,
an increasing amount of contextual information has been leveraged to provide more
accurate recommendations. This situation is particularly pronounced in POI recom-
mender systems, as mobile devices are highly efficient in collecting various types of
personal information. As a result, the focus shifted towards examining the natural
process through which individuals select their POIs, with an emphasis on the role of
user-generated comments.

By emulating real-world scenarios, the comment sections for each POI were aggre-
gated and then subjected to an NLP technique known as “Doc2Vec” for vectorization.
This allowed for the comparison of similarities, which could subsequently be utilized
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in the updated objective function. Moreover, the clustering technique was further
refined by incorporating both users’ rating records and estimated GPS locations.
Ultimately, the results demonstrated significant success, as the accuracy of the rec-
ommender system was notably enhanced, along with the added feature for protecting
user comments.

Quantification of The Privacy Budget

Throughout the research, consistent inquiries from peer reviewers were received re-
garding the quantification of privacy-preserving features and the inclusion of an attack
model. Consequently, it was decided to incorporate differential privacy, specifically
local differential privacy (LDP), to develop a more robust and convincing framework.

During this stage of research, a variety of clustering techniques were explored,
with users’ estimated GPS information serving as the sole factor for calculating user
similarities. The introduction of LDP protected both users’ rating values and rating
behaviors. Owing to the integration of LDP, the role of the trusted third party was
relaxed to that of a semi-trusted third party. This framework, as a result, offers
a versatile data collection mechanism for any recommender system model without
necessitating alterations to the core components of the RS model.

Total Replacement of Real User Data

In the final segment of the dissertation, the research formally acknowledged the
privacy-preserving technique for POI recommender systems, which involves gener-
ating synthetic user data. Much of the prior research focused on utilizing centroids
as users to assist customers in personalizing their services. This concept led me to
employ state-of-the-art techniques, such as GANs, to generate synthetic data using
real or slightly perturbed user data. During this study, an aspect that was ignored
previously was discovered, which is the ability to filter and optimize the training set
as desired since it represents the mineable information the research sought to extract.

Ultimately, this approach proved successful, as CTGAN-generated synthetic users
enabled customers to generate recommendations of nearly equivalent quality regard-
ing RMSE and ME. At this juncture, synthetic user data can be generated by both
classical clustering techniques and CTGAN, which can be combined with LDP. The
research’s success is evidenced by: 1) the development of multiple methods for gen-
erating synthetic user data; 2) the protection and utilization of contextual user in-
formation, such as location and comments; and 3) the ability of synthetic data to
achieve similar performance without incurring privacy liabilities by using actual user
data.

7.2 Potential Future Work

It would be interesting to investigate more details of the POI recommender system
problem and the privacy issue in the future. In general, the following three topics
will be studied:
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• Synthesize user ratings and contextual user information: Previous research fo-
cused on only synthesizing the user ratings. Any other contextual information,
such as timestamps, the user, or item location, cannot be incorporated into the
current rating generation scheme.

• Secure Multi-Party Computation (SMPC): SMPC is a cryptographic technique
that allows multiple parties to compute a function while keeping their inputs
private jointly. Investigate using SMPC in recommender systems to enable col-
laborative filtering without revealing users’ individual preferences and ratings.

• Evaluation Metrics and Benchmarks: Develop evaluation metrics and bench-
marks to assess the privacy-utility trade-offs in recommender systems, enabling
comparisons between different privacy-preserving methods and understanding
their performance implications.

Contextual User Information Synthesis

Previously, the research has put much of the focus on making CF-based RS models to
preserve user privacy. However, one notable limitation of collaborative filtering is its
inability to incorporate contextual information effectively. Contextual information,
such as time, location, and user preferences, can significantly influence users’ choices
and enhance the overall quality of recommendations. By not accounting for this
context, collaborative filtering can lead to suboptimal recommendations that may fail
to capture users’ varying preferences across different situations. This limitation can be
particularly detrimental in dynamic environments, where users’ interests may change
rapidly or depend heavily on contextual factors. Furthermore, the lack of contextual
information can also exacerbate the cold-start problem, where little or no data is
available about new users or items, leading to poor recommendations. In summary,
while collaborative filtering has been successful in many scenarios, its inability to
incorporate contextual information represents a significant drawback that may hinder
its effectiveness in delivering highly relevant and personalized recommendations.

Factorization Machines (FMs) are advantageous in incorporating various auxiliary
information. Instead of a rating matrix R, a feature matrix X composed of diverse
features and a corresponding target vector Y are required. Figure 7.1 demonstrates
an example of the necessary input data. In contrast to a rating matrix R, this feature
matrix X can store everything by converting elements such as “movies rated” or
“user ID” into binary indicators and combining them. The Y vector contains the
final ratings of each user.

ŷ = w0 +
n∑

i=1

wixi +
n∑

i=1

n∑
i=i+1

⟨vi, vj⟩xixj (7.1)

⟨vi, vj⟩ =
k∑

f=1

vi,f · vj,f (7.2)

Equation 7.1 represents the FM model, where x ∈ Rn is a sample vector from
the feature matrix X, w0 ∈ R represents the global bias, ∈ Rn denotes the weights
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Figure 7.1: An Example of The Input Data Required for FMs [1]

of the variable, and V ∈ Rn×k is the feature embedding matrix. The first two terms
form the linear regression model, and the last is a matrix factorization model. It is
essential to note that this is a two-way FM, meaning that the last interaction term
in the equation can be expanded to a higher order, similar to SVM with polynomial
kernels. However, the equation’s polynomial order is typically set to 2 in practice,
and it will be set to 2 in the initial test. Therefore, the details of higher-order FMs
are omitted here.

The most crucial aspect of the FM method is its time complexity. The research
team reformulated the last term in Equation 7.1, resulting in a time complexity of
O(kn). In practice, only the known rating is calculated, so the algorithm’s complexity
is linear to the number of non-zero features. Due to the speed and efficiency of
the algorithm, particularly with high-dimensional sparse inputs, FMs have had a
significant impact for an extended period [121, 122, 123].

In the following research, the plan is to explore the potential of using Genera-
tive Adversarial Networks (GANs) to generate synthetic input data for Factorization
Machines (FMs). GANs have demonstrated exceptional capabilities in generating
realistic data samples across various domains, making them a promising candidates
for data synthesis in recommender systems. By generating synthetic user-item inter-
action data, GANs can potentially address some of the common challenges recom-
mender systems faces, such as data sparsity and privacy concerns. In this context,
the GAN-generated data will be utilized as input for FMs, which are known for
their effectiveness in capturing latent factors and higher-order feature interactions.
By combining the power of GANs and FMs, future research aims to create a robust
and privacy-preserving recommendation framework that can achieve high-quality rec-
ommendations while mitigating the risks of using real user data. Furthermore, this
approach may offer additional benefits, such as improved generalization and reduced
overfitting, by augmenting the training data with more diverse and realistic synthetic
samples.

Secure Multi-Party Computation

Secure multi-party computation (SMC) is a technique for evaluating a function with
multiple parties such that each party learns the output value but not each other’s
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inputs. There are various ways to implement secure MPC with different numbers of
parties and security guarantees. Here, we concentrate on systems based on secret
sharing.

Secret sharing, introduced by Blakley (1979) and Shamir (1979), is a method of
splitting a secret value s into a number of shares s1, s2, . . . , sn that are distributed
among the parties (computing nodes). Depending on the type of scheme used, the
original value can be reconstructed only by knowing all or a predefined number
(threshold t) of these shares. Any group of t or more parties can combine their
shares to reconstruct the original value. However, the result of combining fewer than
t shares provides no information about the value they represent.

Figure 7.2: An Example of The Secure Multi-party Computation Scheme [2]

As shown in the above Figure 7.2, secure multi-party computation protocols can
be used to process secret-shared data. These protocols take secret-shared values as
inputs and output a secret-shared result that can be used in further computations. For
example, let us have values u and v that are secret-shared and distributed among all
the parties so that each computation node Ci gets the shares ui and vi. To evaluate
w = u ⊕ v for some binary function ⊕, the computation nodes engage in a share
computing protocol and output w in a shared form (node Ci holds wi). During the
computation, no computation node can recover the original values u or v, nor learn
anything about the output value w.

In the following research, in an effort to enhance the privacy and security of the
recommender system framework, the plan is to employ Secure Multi-party Compu-
tation techniques to eliminate the need for a third party. Previously, the framework
necessitated a third party that mediates between users and the central server, re-
sponsible for clustering or generating synthetic users. By leveraging the capabilities
of SMC, the aim is to develop a more decentralized approach where users can collab-
oratively compute the desired pre-processed data without disclosing their individual
data to a third party. This would not only strengthen privacy protection but also
increase the overall efficiency and robustness of the recommender system. By har-
nessing the power of SMC, the research endeavors to create a paradigm shift in the
design and implementation of privacy-preserving recommender systems.
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Developing Evaluation Metrics and Benchmarks

One of the challenges in evaluating privacy-preserving recommender systems lies in
identifying an appropriate metric that can accurately measure the performance of
various algorithms. The difficulty stems from the fact that different POI recommender
systems may have distinct characteristics, making it hard to compare them using a
single metric. For instance, considering RMSE as a performance indicator may not
necessarily guarantee that a model with a lower RMSE value is better than another.
This is because the model with a lower RMSE might not preserve as much privacy
as the competing model, which could be a crucial aspect of the PPRS.

Moreover, although Differential Privacy is a useful privacy-preserving metric, not
all algorithms employ this technique, further complicating the evaluation process.
Without a universally accepted privacy metric, it becomes challenging to assess the
level of privacy preservation in each model. Additionally, the datasets used by dif-
ferent researchers can also vary, making it even more challenging to perform a fair
comparison of the privacy-preserving techniques employed in different recommender
systems. This lack of a standardized evaluation metric and the inherent differences in
datasets underscore the need for further research in developing comprehensive metrics
and benchmarks tailored for privacy-preserving recommender systems.

Recognizing the challenges in evaluating privacy-preserving recommender systems
due to the absence of a universal benchmark, the goal is to develop a comprehensive
and standardized set of metrics that can be used to assess the performance of various
PPRS. This will facilitate a more accurate and fair comparison of different algorithms
while considering the recommender systems’ diverse characteristics. A multi-faceted
evaluation approach could involve considering a combination of metrics, such as ac-
curacy (RMSE, MAE), privacy preservation (DP, k-anonymity, or other privacy mea-
sures), and utility (recommendation quality and coverage).

By promoting this unified set of metrics, researchers and practitioners in the field
will be better equipped to compare their models, identify potential improvements, and
foster a more collaborative environment for developing novel privacy-preserving tech-
niques. Furthermore, considering multiple metrics as a whole will enable stakeholders
to strike an optimal balance between privacy, utility, and accuracy, paving the way
for more robust and efficient privacy-preserving recommender systems. Ultimately,
establishing and promoting a universal benchmark will contribute significantly to ad-
vancing state of the art in PPRS and addressing the ongoing challenges related to
privacy protection in the era of data-driven personalization.

Copyright© Longyin Cui, 2023.
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