579 research outputs found

    Design Specifications for an Auxiliary Incision Retractor in Dacryocystorhinostomy Surgeries

    Get PDF
    It is presented the design specifications for a Retractor Robotic System (RRS) based on the surgical necessities in the incisions procedure for a dacryocystorhinostomy. The specifications are conformed by a mathematical model, the experimental data measured, a modular flexible architecture, energy supplier system, the mechanical group, and the safety system. The specifications suggest that the use of flexible polymeric materials for the RRS provide a mayor adaptability of the system with the biological tissue; so a pneumatic actuator could be a suitable option.This research was funded by CONACYT (Consejo Nacional de Ciencia y Tecnología) Grant No. 86356

    The Minimally Invasive Retroperitoneal Transpsoas Approach

    Get PDF

    Robotic-Arm-Based Force Control by Deep Deterministic Policy Gradient in Neurosurgical Practice

    Get PDF
    This research continues the previous work “Robotic-Arm-Based Force Control in Neurosurgical Practice”. In that study, authors acquired an optimal control arm speed shape for neurological surgery which minimized a cost function that uses an adaptive scheme to determine the brain tissue force. At the end, the authors proposed the use of reinforcement learning, more specifically Deep Deterministic Policy Gradient (DDPG), to create an agent that could obtain the optimal solution through self-training. In this article, that proposal is carried out by creating an environment, agent (actor and critic), and reward function, that obtain a solution for our problem. However, we have drawn conclusions for potential future enhancements. Additionally, we analyzed the results and identified mistakes that can be improved upon in the future, such as exploring the use of varying desired distances of retraction to enhance training.The authors were supported by the government of the Basque Country through the research grant ELKARTEK KK-2023/00058 DEEPBASK (Creación de nuevos algoritmos de aprendizaje profundo aplicado a la industria). This study has also been conducted partially under the framework of the project ADA (Grants for R&D projects 2022 and supported by the European Regional Development Funds)

    Optimized endoscopic repair of the traumatized facial skeleton : cranial nerve VII region

    Get PDF

    Current Approaches in Orthognathic Surgery

    Get PDF
    The orthognathic surgical procedures are performed for the correction of abnormalities of the facial skeleton that are present from the birth or arise during growth or acquired secondarily during lifetime. Due to the cover of this book as orthodontics, I would prefer to summarize some commonly used techniques to correct the dentofacial deformities. Even we have published all these techniques at their popular time with our orthodontist colleagues; skeletal anchor systems, some basic interdental osteotomies, or complex mechanics that are applying orthopedic corrective forces are currently being used by the orthodontists rather than surgeons. Le Fort I osteotomy in maxilla and sagittal split ramus osteotomies (SSRO) in mandible are commonly used techniques to solve the deformity problems of the facial skeleton; therefore, the scope of this chapter is going to be including my personal experience and some technical details with Le Fort I and SSRO

    Development and Validation of a Hybrid Virtual/Physical Nuss Procedure Surgical Trainer

    Get PDF
    With continuous advancements and adoption of minimally invasive surgery, proficiency with nontrivial surgical skills involved is becoming a greater concern. Consequently, the use of surgical simulation has been increasingly embraced by many for training and skill transfer purposes. Some systems utilize haptic feedback within a high-fidelity anatomically-correct virtual environment whereas others use manikins, synthetic components, or box trainers to mimic primary components of a corresponding procedure. Surgical simulation development for some minimally invasive procedures is still, however, suboptimal or otherwise embryonic. This is true for the Nuss procedure, which is a minimally invasive surgery for correcting pectus excavatum (PE) – a congenital chest wall deformity. This work aims to address this gap by exploring the challenges of developing both a purely virtual and a purely physical simulation platform of the Nuss procedure and their implications in a training context. This work then describes the development of a hybrid mixed-reality system that integrates virtual and physical constituents as well as an augmentation of the haptic interface, to carry out a reproduction of the primary steps of the Nuss procedure and satisfy clinically relevant prerequisites for its training platform. Furthermore, this work carries out a user study to investigate the system’s face, content, and construct validity to establish its faithfulness as a training platform

    Applications of aerospace technology in biology and medicine

    Get PDF
    Utilization of National Aeronautics and Space Administration (NASA) technology in medicine is discussed. The objective is best obtained by stimulation of the introduction of new or improved commercially available medical products incorporating aerospace technology. A bipolar donor/recipient model of medical technology transfer is presented to provide a basis for the team's methodology. That methodology is designed to: (1) identify medical problems and NASA technology that, in combination, constitute opportunities for successful medical products; (2) obtain the early participation of industry in the transfer process; and (3) obtain acceptance by the medical community of new medical products based on NASA technology. Two commercial transfers were completed: the Stowaway, a lightweight wheelchair that provides mobility for the disabled and elderly in the cabin of commercial aircraft, and Micromed, a portable medication infusion pump for the reliable, continuous infusion of medications such as heparin or insulin. The marketing and manufacturing factors critical to the commercialization of the lightweight walker incorporating composite materials were studied. Progress was made in the development and commercialization of each of the 18 currently active projects
    corecore