
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Computational Modeling & Simulation 
Engineering Theses & Dissertations 

Computational Modeling & Simulation 
Engineering 

Fall 2017 

Development and Validation of a Hybrid Virtual/Physical Nuss Development and Validation of a Hybrid Virtual/Physical Nuss 

Procedure Surgical Trainer Procedure Surgical Trainer 

Mohammad F. Obeid 
Old Dominion University, mobei001@odu.edu 

Follow this and additional works at: https://digitalcommons.odu.edu/msve_etds 

 Part of the Biomedical Engineering and Bioengineering Commons, and the Surgery Commons 

Recommended Citation Recommended Citation 
Obeid, Mohammad F.. "Development and Validation of a Hybrid Virtual/Physical Nuss Procedure Surgical 
Trainer" (2017). Doctor of Philosophy (PhD), Dissertation, Computational Modeling & Simulation 
Engineering, Old Dominion University, DOI: 10.25777/5nd5-v736 
https://digitalcommons.odu.edu/msve_etds/11 

This Dissertation is brought to you for free and open access by the Computational Modeling & Simulation 
Engineering at ODU Digital Commons. It has been accepted for inclusion in Computational Modeling & Simulation 
Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, 
please contact digitalcommons@odu.edu. 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/msve_etds
https://digitalcommons.odu.edu/msve_etds
https://digitalcommons.odu.edu/msve
https://digitalcommons.odu.edu/msve
https://digitalcommons.odu.edu/msve_etds?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/706?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_etds/11?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


DEVELOPMENT AND VALIDATION OF A HYBRID VIRTUAL/PHYSICAL NUSS 

PROCEDURE SURGICAL TRAINER 

by 

 

Mohammad F. Obeid 

B.S. June 2011, German-Jordanian University 

M.S. August 2013, Old Dominion University 

 

 

A Dissertation Submitted to the Faculty of 

Old Dominion University in Partial Fulfillment of the 

Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

MODELING AND SIMULATION 

OLD DOMINION UNIVERSITY 

December 2017 
 

 

 

 

 

          Approved by:  

 

                                                                                              Frederic D. McKenzie (Director)  

                                                                                              

                                                                                              Yuzhong Shen (Member)  

 

                      Michel Audette (Member) 

  

                      Robert E. Kelly, JR. (Member) 
 

 

 



ABSTRACT 

 

DEVELOPMENT AND VALIDATION OF A HYBRID VIRTUAL/PHYSICAL NUSS 

PROCEDURE SURGICAL TRAINER 

 

Mohammad F. Obeid 

Old Dominion University, 2017 

Director: Frederic D. McKenzie 

With continuous advancements and adoption of minimally invasive surgery, 

proficiency with nontrivial surgical skills involved is becoming a greater concern. 

Consequently, the use of surgical simulation has been increasingly embraced by many for 

training and skill transfer purposes. Some systems utilize haptic feedback within a high-

fidelity anatomically-correct virtual environment whereas others use manikins, synthetic 

components, or box trainers to mimic primary components of a corresponding procedure. 

Surgical simulation development for some minimally invasive procedures is still, 

however, suboptimal or otherwise embryonic. This is true for the Nuss procedure, which 

is a minimally invasive surgery for correcting pectus excavatum (PE) – a congenital chest 

wall deformity. This work aims to address this gap by exploring the challenges of 

developing both a purely virtual and a purely physical simulation platform of the Nuss 

procedure and their implications in a training context. This work then describes the 

development of a hybrid mixed-reality system that integrates virtual and physical 

constituents as well as an augmentation of the haptic interface, to carry out a reproduction 

of the primary steps of the Nuss procedure and satisfy clinically relevant prerequisites for 

its training platform. 

Furthermore, this work carries out a user study to investigate the system’s face, 

content, and construct validity to establish its faithfulness as a training platform.  
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CHAPTER I 

INTRODUCTION 

Over the past two decades, minimally invasive procedures (MIP) have rivaled the 

popularity of conventional approaches in scarring, recovery times, and pain medication 

aspects. It is often argued, however, that such procedures pose a prolonged learning curve 

for most novice surgeons. Preoperative training and proper surgical planning can alleviate 

such limitations. In the early stages, such planning existed in the form of collaboration 

between radiologists and surgeons using three-dimensional representations of organs and 

body components constructed from MRI and/or CT images for preoperative planning such 

as for colonoscopy [1] and craniofacial surgery [2]. In principle, high fidelity surgical 

simulators can be employed for surgical training and education and proved to be an 

advantageous part of teaching curricula [3]1. 

Today, several commercially available and under development simulators exist for 

most common endoscopic, laparoscopic, and, in general, minimally invasive procedures. 

SimSurgery's Educational Platform for laparoscopic procedures [4], Simbionix's numerous 

mentors for laparoscopic, endoscopic, arthroscopic, endovascular and other procedures [5], 

SurgicalScience's procedural simulation systems for cholecystectomy, appendectomy, 

suturing and anastomosis [6], and Mentice's Minimally Invasive Surgical Trainer (MIST) 

[7], are all examples of such simulation systems. Others are developing simulation and 

training systems to aid in medical robotics. Among those are projects that seek skill transfer 

and training for operating the da Vinci surgical robot. Although Mimic's dV-Trainer [8] is 

                                                 
1 IEEE Transactions on Biomedical Engineering style is used in this dissertation for formatting figures, 

tables, and references. 
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a pioneer in this area, Simulate Surgical Systems' RoSS [9] and Simbionix's Robotix 

Mentor [10] are not far behind. 

According to Milgram and Kishino [11], the conventional view of a virtual reality 

(VR) environment is one where the user views, and interacts with, a completely synthetic 

world that consists of virtual objects. On the other extreme of their virtuality continuum, a 

real environment is one that consists solely of real objects. A display system that falls 

somewhere between the two and involves a merge of real and virtual worlds is referred to 

as mixed reality (MR). A similar classification was provided by [12, 13] in a clinical 

context, where they described that within a continuum between physical manikins and 

virtual environment simulators, are hybrid simulators that combine anatomical models with 

VR and haptic interfaces. This concept of mixed reality is carried out in this work and will 

be used with the term hybrid simulation interchangeably. This definition of a hybrid 

excludes simulators that use physical ports or trocars mounted on arbitrary objects like a 

box or hemisphere and focuses on those that use an anatomically-correct manikin. 

 

1.1 Motivation 

Pectus Excavatum (PE) is a congenital chest wall deformity characterized by a deep 

depression of the sternum, affects 1 to 8 per 1,000 live births [14], and is often accompanied 

by other problems such as scoliosis, fatigue, and breathing issues [15]. In the Nuss 

procedure (a minimally invasive procedure to correct PE), a small incision is made on each 

side of the chest to insert a pre-bent steel bar from the side of the chest and secured it 

beneath the funneled area to elevate and support the sternum pushing out the sunken part 
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of the ribcage. The surgeon uses a thoracoscope to monitor the procedure internally in 

addition to the external view of the patient’s torso [16-18].  

Surgical trainers and simulators have been developed for various minimally 

invasive procedures cultivating a rapidly growing area of research. However, a surgical 

simulator and trainer for the Nuss procedure has not been introduced to date. Rechowicz 

et al. [19, 20] described the development and validation of a Nuss procedure planner 

including a force–deflection model to predict the sternum position as well as an average 

shape of the chest to assess performance measures of surgical outcomes. Furthermore, their 

work emphasized the necessity and benefits of a surgical trainer to complement the 

function of the planner. 

 

1.2 Problem Statement 

Simulating a non-laparoscopic minimally invasive procedure (which involves 

instruments other than common laparoscopic graspers, scissors, dissectors, etc.) or a 

procedure that doesn’t involve using a trocar for tool insertion can be challenging. 

Depending on the procedure, a physical constituent can be of great significance to enhance 

realism. Many of the aforementioned surgical simulators use physical components when 

simulating external behaviors such as a tool insertion process, whereas others utilize haptic 

feedback. A simulator that integrates a physical component representing an anatomically 

correct part of the body (a manikin) with a virtual environment displayed on a monitor is 

referred to, in this work, as a hybrid simulator. 

Similar challenges were faced by Kotranza et al. (2008) who indicated the need for 

a virtual/physical integration for training on clinical breast cancer examination by 
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augmenting a physical manikin with a collocated virtual human avatar. They indicate that 

using only manikins lacks the ability to provide user performance feedback, is hardly 

patient-specific, and isn’t a practical platform to introduce surgical complications or 

scenarios [21]. 

A research group at the University of Virginia developed a VR simulator for the 

tube thoracostomy procedure [22, 23]. Two years later, after facing the limitations of a 

fully virtual setup, they opted to improve it by incorporating the virtual environment with 

a chest manikin [24]. Their system design demonstrates the limitations of a fully virtual 

simulation for tasks that involve an insertion mechanism and highlights the advantages that 

physical components add. 

Li et al. found a similar motivation to adopt a mixed reality simulation for 

arthroscopic knee surgery. In their system, they couple an artificial knee joint and actual 

surgical tools with a synchronized 3D computer generated model of the joint. Their study 

showed the system’s potential to enhance navigational skills for novice residents [25]. 

Due to the unusual complexities of the Nuss procedure, the need for a hybrid trainer 

that addresses the most significant aspects for positive training is unambiguous. “An 

interactive haptic-incorporated real-time hybrid training simulator for non-trocar-based 

minimally invasive surgeries such as the Nuss procedure can be developed utilizing and 

combining the better elements of a virtual and a physical implementation.” It is believed 

that this hybrid simulator will outperform a fully virtual or fully physical version of the 

trainer and, furthermore, provide a more efficient reproduction for procedures that involve 

a movable pivot behavior of surgical tools. 
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1.3 Proposed System 

As stated earlier, a simulator and trainer for the Nuss procedure would be the first 

of its kind. The work of Rechowicz [20] touched on this topic by describing the need for 

such a system but was, however, steered toward the development and validation of a 

patient-specific planner. It is, therefore, the intent to complement that work with a real-

time training platform that simulates a pectus excavatum deformity and can be employed 

to, preoperatively, enhance surgical skills as well as alleviate risks of complications during 

surgery. This training platform will emphasize the surgical skills unique and crucial to the 

Nuss procedure, namely the sternal elevation and the mediastinal dissection (tunneling) 

skills. The Nuss Procedure Surgical Trainer (NPST), utilizes patient-specific data to create 

a computer-generated virtual model of the patient and the deformity; and allows the user 

to interact with the environment through a haptic interface. More specifically, this research 

addresses the following aims: 

 

▪ Aim 1: Develop a fully virtual Nuss procedure simulator. 

▪ Aim 2: Develop a fully physical anatomically correct training manikin 

(physical simulator) that replicates the PE deformity. 

▪ Aim 3: Deconstruct the Nuss procedure into comparable task-based 

components and compare corresponding virtually- versus physically-

reproduced counterparts using clinically relevant criteria. 

▪ Aim 4: Investigate the advantages and limitations of both implementations to 

produce a hybrid scheme that utilizes the better of each and fulfills the training 

requirements of the surgery. 
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▪ Aim 5: Demonstrate face, content, and construct validity of the surgical trainer. 

 

This work is closely supervised by pediatric surgeons at the Children's Hospital of 

The King's Daughters who pioneer in developing, enhancing, and training of the Nuss 

procedure. 

 

1.4 Contributions 

This dissertation aims to contribute in three original aspects. First is an integrated 

Nuss procedure surgical trainer; second, a framework for comparing virtual versus physical 

simulation platforms for surgery; and third, a methodology for reproducing pivot 

mechanics for surgical tool insertion using a haptic interface. 

 

1.4.1 A Nuss procedure surgical trainer (NPST) 

The first contribution of this dissertation is the development of a training platform 

for the Nuss procedure. To date, a simulation-based trainer specifically designed for 

components of this surgery does not exist. The main challenge is the uniqueness of the 

surgical techniques and instruments involved in the Nuss procedure. Unlike in most 

minimally invasive procedures where laparoscopic/endoscopic surgical instruments are 

used (such as forceps, graspers, and dissectors), the Nuss procedure is performed using a 

surgical instrument specifically designed for this surgery only. The shape and function of 

this instrument (introducer) requires specialized modeling techniques to be properly 

simulated (see 1.4.3). Additionally, the surgical technique itself involves an intricate set of 
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steps to identify, maneuver, and dissect a particular anatomical region, otherwise not 

approached by other surgical procedures. 

Consequently, the steps and components of the Nuss procedure prevent it from 

being grouped or classified with other minimally invasive surgeries which, therefore, 

necessitates the availability of its own training platform. In this work, a synchronized 

hybrid platform that integrates a semi-manikin of the thorax with a haptic-incorporated 

virtual environment is developed with facilities that attend specifically to the characteristics 

of the Nuss procedure as described by Obeid et al. in [26]. This work also establishes the 

validity of the developed platform as a training instrument. 

This contribution produced a system that allows the user to interact with the 

simulated surgery in two interfaces: a haptic interface and an active manikin. In addition 

to using the haptic interface to control the surgical tool, the user can perform physical 

alterations to the manikin, i.e., affecting the physical model of the sternum on the training 

thorax. These alterations are translated synchronously and mapped to corresponding 

behaviors in the virtual environment using appropriately placed sensors. 

This development also necessitated the introduction of a multi-model architecture 

for simulating organs in the virtual environment. In this architecture, four distinct models 

were incorporated for each organ including a render model, a deformation model, a haptic 

model, and an information model. These models differ in attributes, functionality, and 

responses to collisions. Collectively, the four models accomplish realistic visualization, 

soft-body deformation, haptic interactivity, as well as user performance recording, 

respectively. This configuration parallelizes the different functionalities to ensure an 
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adequate representation of behaviors; by simulating collision-based deformations as well 

as force feedback without sacrificing fidelity. 

 

1.4.2 A simulation framework: Virtuality and Interactivity 

The second contribution of this dissertation is the development, formulation, and 

implementation of a framework for analyzing a surgical procedure (pediatric, thoracic, or 

otherwise), convert its steps into a task breakdown, and then map the tasks to appropriate 

simulation components to reproduce the procedure’s mechanical and ergonomical 

behaviors. This is performed navigating within a 2-dimensional continuum for hybrid 

simulators composed of a virtual-physical reality dimension (degree of virtuality), as well 

as an active-passive dimension (degree of interactivity). The degree of virtuality vs. 

physicality of the components that make up the trainer places it closer to the left or to the 

right extreme of the x-axis of the continuum, respectively. Similarly, the degree of 

interactivity between the user and the system (in the form of visual or haptic feedback) as 

well as the multiplicity of input modalities at the user’s disposal (controlling a haptic 

device, changing the posture of a physical component, and/or using multiple surgical tools) 

affects a trainer’s placement along the y-axis of the continuum. 

This framework contributes to research areas and disciplines related to computer 

aided intervention, evaluation, and assessment as well as medical modeling and simulation. 

This framework also explores the employability of haptic-incorporated virtual 

environments, anatomy and pathology modeling, synthetic materials and physical 

phantoms, as well as 3D printing and rapid prototyping techniques for such simulation 

systems. Additionally, it can have numerous extensions specifically as it relates to the 
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scalability of training systems (stationary/high-fidelity platforms vs. portable low-detailed 

ones) as well as to efforts to address implications of surgical simulation with respect to 

fidelity and latency. 

 

1.4.3 Surgical instrument pivot reproduction 

The third contribution is the investigation of various approaches to reproduce a 

surgical tool’s pivot behavior in minimally invasive surgery as well as the development of 

an augmentation for generic haptic devices to better achieve this functionality. 

This work explores multiple virtual and physical techniques to model and simulate 

a surgical tool’s behavior once inserted into the body [27-29] by exploiting and 

demonstrating the limitations of solely utilizing the capabilities of generic haptic devices 

and identifies the inherent discrepancies produced accordingly. This work then introduces 

a prototyped supplemental component for generic haptic devices to augment their real-time 

motion tracking and eliminate the error in force vectors produced by the discrepancy 

between natural and virtual pivots. This is achieved by synchronizing the coordinate 

systems of the physical and virtual environments, aligning virtual and natural (physical) 

pivot points, and compensating for the described discrepancy with a mechanism that 

implements and simulates tool insertion as shown by Obeid et al. in [30]. 

 

1.5 Dissertation Organization 

The work in this dissertation is organized in 7 chapters. Chapter Two introduces 

the terminology and technical background relating to using surgical simulation for training 

as well as discusses validation approaches for surgical simulators and trainers. 



   

 

10 

Furthermore, it details the current apprenticeship of surgical training in general and of the 

Nuss procedure in particular as well as provides an analysis of existing research in the 

literature for developing such platforms. 

The development methodology and implementation of a fully virtual Nuss 

procedure simulator are detailed in Chapter Three fulfilling aim one. Aim two is addressed 

in Chapter Four where a fully physical (manikin-based) simulator for the Nuss procedure 

is constructed. 

Chapter Five presents the methods and approaches used to develop the ultimate 

improved iteration of the surgical trainer: The Hybrid model. The chapter presents a task-

breakdown and analysis of the surgical procedure to justify employing virtual or physical 

implementations of various components of the simulation. The findings and results of the 

developed hybrid system as well as the outcomes of an in-vitro validation experiment are 

presented in this chapter as well. This chapter directly corresponds to aims three and four. 

Chapter Six discusses the approaches and outcomes for conducting performance, 

clinical, and user evaluation experiments to establish face, content, and construct validity 

of the surgical trainer; addressing, thus, aim five of the dissertation. 

Finally, Chapter Seven provides a conclusion and summary of the dissertation and 

generalizes its outcomes for other purposes. The manner in which each of the dissertation 

aims were addressed is briefly reiterated and potential extensions and improvements of this 

work are described. 
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CHAPTER II 

BACKGROUND AND PREVIOUS WORK 

To build a knowledge infrastructure for the succeeding chapters and to clearly 

articulate the discussed topics, the theoretical background is introduced first in this chapter. 

This includes medical significance and clinical aspects pertaining to the work developed 

in this dissertation as well as a synthesis of existing simulation platforms and approaches. 

Additionally discussed are the various validation approaches and protocols 

followed for evaluating surgical simulators and trainers. This involves a thorough literature 

analysis that highlights the primary criteria to validate a surgical simulator as well as the 

applicability of these criteria to various surgical training platforms. 

 Following the theoretical background, a literature synthesis and review of related 

work is presented. When approaching the underlying issues of developing such a surgical 

simulator and trainer, several areas of research are investigated: 

1) Studies that explored simulating the Nuss procedure and associated tasks are of 

a prioritized focus. 

2) Research involving comparisons between virtual and physical simulation setups 

of a specific procedure are examined. Particularly beneficial, are those that 

showed a justification to transition parts of the simulation from a virtual to a 

physical scheme and vice versa; as well as those that combine virtual with 

physical constituents for surgery simulation. 

3) Since the Nuss procedure involves surgical tools that are not widely used across 

other minimally invasive procedures (MIPs), insights will be sought from 

research work involving the development of surgical trainers for procedures of 
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similar characteristics to the Nuss procedure, or those that simulate a non-

laparoscopic minimally invasive surgery. 

 

2.1 Pectus Excavatum 

 Pectus Excavatum (PE) (a Latin term meaning hollowed chest) is a congenital 

deformity in which several ribs as well as the sternum grow abnormally causing depression 

of the anterior chest wall (Fig. 1 (a)). In this condition, the sternum articulates posteriorly 

toward the spine [15]. This deformity is often observed at birth and can develop with 

growth [31]. PE is the most common chest wall anomaly in children affecting 1 to 8 per 

1,000 live births [14], and males more than females by a factor of 4:1 [32]. PE patients 

often experience limited cardiac and respiratory function as well as social anxiety and 

psychological stress [15, 33].  

 Cartoski et al. classified PE using the following criteria: (i) localized versus 

diffused depression, also known as cup versus saucer, (ii) length of the depression, (iii) 

symmetry, (iv) sternal torsion, (v) slope and position of absolute depth, and (vi) unique 

patterns of the deformation [34]. Frequency distribution of subtypes of typical PE and rare 

types was performed by Kelly et al. on a random sample of 300 patients with non-

syndromic PE [35]. Over two-thirds of analyzed PE morphologies were characterized by 

the cup and 21% by the saucer type PE. The remaining 11% were characterized by the 

trench type PE and very rare Currarino-Silverman which is a mix between PE and pectus 

carinatum (PC). The deepest point of PE in most cases was located to the right of the 

midline and in the inferior part of the sternum. 
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 Depending on the severity of this condition, surgery may be recommended as the 

treatment of choice. Several indices were introduced to quantify PE’s severity using 

computed tomography (CT) scans [36]. Haller index (HI), introduced in 1987 and 

considered the gold standard for assessing Pectus Excavatum (PE) severity, is the current 

prerequisite for insurance reimbursement [37]. A surgical intervention is generally 

recommended for a patient with a Haller Index (HI) larger than 3.25. 

 

  
(a) 

 

(b) 

 

Fig. 1. Computed tomography (CT) scan in axial plane for a patient with PE before (a) and 

after (b) the Nuss procedure surgery (courtesy of Beijing Children's Hospital). 

 

2.2 Nuss Procedure 

 Several techniques have been developed for PE correction including the Ravitch 

technique [38], the Robicsek technique [39], and the Vacuum bell [40]. The minimally 

invasive repair of Pectus Excavatum (MIRPE), often referred to as the Nuss Procedure, 

was developed by Dr. Donald Nuss of the Children’s Hospital of the King’s Daughters, 

Norfolk, VA, USA. This technique has recently become more and more popular as it 

requires no cartilage incision or sternal osteotomy. It was performed in 1987 for the first 
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time and a 10-year experience of the technique was reported in the Journal of Pediatric 

Surgery in 1998 [16-18]. 

 The Nuss technique is performed by making two small incisions on either side of 

the chest. The surgical tool, Introducer (Fig. 2), is then inserted from the right side and 

guided along posterior to the sternum and ribs and anterior to the pericardium (mediastinal 

dissection or tunneling) to make a pathway to the other side of the chest (Fig. 3 (b-d)). A 

third incision is made to insert a thoracoscope to provide an internal view and guide the 

procedure (Fig. 3 (a)). A pre-concaved stainless-steel bar is then inserted under the sternum 

through the pathway (Fig. 3 (e)). The bar is then flipped elevating and correcting the 

sternum and the bar is fixed in place and supported by a stabilizer and PDS sutures (Fig. 3 

(f)). After two to four years, the bar is removed from the patient’s chest (Fig. 1 (b)). 

 

 

Fig. 2. Surgical tool used in the Nuss procedure: the introducer [41]. 
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(a) 

 

(b) 

 

  
(c) 

 

(d) 

 

 
 

(e) 

 

(f) 

 

Fig. 3. Main steps of the Nuss procedure: (a) incision and thoracoscope sites, (b) inserting 

introducer into thorax, (c) mediastinal dissection and pivot around insertion point, (d) 

reaching exit site and using umbilical tape, (e) pulling pectus bar under sternum, and (f) 

stabilizing the bar(s). (Reprinted from [42] with permission. © Elsevier Inc., 2014). 
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 Nuss and Kelly [42] indicated several nuances of the procedure that would 

significantly influence its success. They emphasize the importance of constantly keeping 

the tip of the introducer in sight during mediastinal tunneling. They point out that 

performing an initial sternal elevation before attempting to create the pathway is necessary, 

particularly for severe and complex cases where the tip of the introducer is completely 

occluded by the deformity after a mere distance of two centimeters or less. This directly 

minimizes the risk of cardiac or pulmonary injury. Sternal elevation can be accomplished 

either by: (a) using an extra introducer placed 1-2 intercostal spaces superior to the 

deformity’s deepest point, (b) using Klobe’s Vacuum bell [40], (c) using Park’s Crane 

technique [43] utilizing a Rultract Retractor system [44] (Fig. 4), or (d) manually elevating 

the sternum using a Volkmann bone hook through in insertion lateral to the sternum [45]. 

 

 

Fig. 4. Sternal elevation with Park’s Crane technique [43]. Using a bed-mounted Rultract 

Retractor system to elevate the sternum and improve thoracoscopic view. (Reprinted from 

[42] with permission. © Elsevier Inc., 2014). 
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Cardiac injury has been commonly considered the most dreaded complication of 

the Nuss procedure after being reported for the first time in 1998 [46]. The first reported 

patient death from intraoperative cardiac perforation was brought to light in 2008 [47]. 

Furthermore, Castellani et al. described intraoperative cardiac perforation as the most 

serious Nuss procedure complication and listed it as one of seven major ones that occurred 

in 4.2% of 167 Nuss operations they included in their study [48]. Most of such studies that 

reported cases of intraoperative cardiac perforation indicated that patients sustained the 

injury during the surgeon’s mediastinal dissection or tunneling.  

As thoroughly explained by Nuss and Kelly [42], to perform a safe and correct 

mediastinal dissection (Fig. 5 (a)), the surgeon uses the posterior surface of the introducer 

to perform an anterior to posterior or “pawing” motion to peel off the pleura covering the 

anterior part of the pericardium under the surface of the sternum (Fig. 5 (b)). A foamy 

tissue is then visualized creating the first part of the tunnel. The dissection is then slowly 

continued until the introducer reaches the left side of the thorax. This behavior is unique to 

the Nuss procedure yet must be performed meticulously to avoid unfortunate consequences 

which may include bleeding, hematoma, or cardiac perforation. With this rationale, a 

training platform that focuses on this aspect of the procedure can be of significant benefit. 
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(a) 

 

  
(b) 

 

(c) 

 

Fig. 5. Mediastinal dissection using the introducer (a), an illustration of (b) a correct 

approach using the tool’s undersurface, and of (c) an incorrect approach using the tip for 

dissection (potential complication). (Reprinted from [49] with permission. © Springer-

Verlag Berlin Heidelberg, 2015). 

 

2.3 Approaches for Surgical Simulation 

 Surgical simulation is an instructional strategy utilized to transfer required surgical 

skills by involving the learners in scenarios that emulate realistic situations. It is generally 

used to train medical students on specific procedures to achieve eye-hand coordination and 

the ability to learn the primary steps of the procedure hands-on. In addition, surgical 

simulation allows for a repetitive performance of a specific task to enhance the trainee’s 

skills, speed, and efficiency.  
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 Similar to the way to Milgram and Kishino et al. classified generic visual displays 

along a virtuality continuum [11], an equivalent model was described by Lindeman as it 

related to visual, haptic, and other cues [50]. The Australian Safety and Efficacy Register 

of New Interventional Procedures (ASERNIP) – Surgical followed a similar classification 

of surgical simulation types, but referred to simulators that combine physical components 

with virtual environments as hybrid simulators in one systematic review in 2007 [12], and 

as augmented reality simulators in another in 2012 [13]. Synthesizing the perspectives of 

these three groups, the relevant types of surgery simulations are described here. 

 

2.3.1 Live animal models 

 Live animals are used for surgery training to provide a realistic, non-patient 

environment where the trainee can develop simple skills required in the operating room. 

Animals range in anatomical differences and similarities to humans which makes some 

animals better simulation candidates than others. 

 

2.3.2 Human cadavers 

 In this type, cadavers are used to provide the trainee with a detailed understanding 

of human anatomy. In addition to the benefits in anatomical teaching, human cadavers are 

used to train procedures including laparoscopy, endoscopy, and others [51, 52]. 

 

2.3.3 Synthetic models, box trainers, and manikins 

 Physical (synthetic) models and box trainers use models of plastic, rubber, and latex 

materials to mimic different organs and pathologies. In box trainers, the actual surgical 
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instruments and optical devices are usually used to reflect a realistic experience. This type 

is generally used as a low-cost, portable platform for part-task trainers but is limited in 

aspects such as time required to replace components, level of realism, haptic forces, and 

lack of capability for performance quantification [53].  

 Nonetheless, some have found that a manikin’s ability to provide both a visual 

representation as well as a tactile and tangible interface for identifying landmarks and 

training on specific tasks to be very beneficial. Currently, Delletec provides several 

synthetic components for simulating various surgical procedures including appendectomy, 

breast biopsy, laparoscopy, and many others [54]. SimuLab offers synthetic and physical 

models and manikins for numerous open and laparoscopic surgeries as well as box trainer 

modules. TraumaMan is considered one of their popular systems [55]. However, these 

systems generally lack user performance assessment and are not easily adaptable to patient-

specific parameters and scenarios. 

 

2.3.4 Virtual Reality (VR) simulators 

  Virtual reality has been widely used for training on minimally invasive surgery and 

provides a more customizable and flexible platform to introduce cases to the training 

program. In virtual reality surgical simulators, computer generated instruments are used to 

manipulate computer generated objects in a virtual environment through specially designed 

interfaces. A high-fidelity simulator of this type is usually expensive and poses great 

computational challenges for soft tissue modeling but provides a platform for collecting 

objective metrics such as completion time, number of errors, and other measures for speed 

and efficiency as well as tactile (haptic) feedback. 
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 Peterisk et al. (2002) worked on reproducing haptic volume interactions for bone 

surgery simulations. Recently, VOXEL-MAN commercialized their fully virtual Tempo 

and Dental simulators for training surgical access to the structures of the middle ear, and 

for training on dental procedures, respectively [56, 57]. A similar all-virtual surgical 

simulator was developed by Choi et al. (2009) for the phacoemulsification procedures of 

cataract surgery [58]. Heng et al. (2004) built a tailored force feedback device that 

compensates for all related forces within the surgical simulation for arthroscopic surgery 

[59]. Many others have developed and commercialized VR simulators for endoscopic 

procedural tasks such as camera navigation, instrument manipulation, perceptual-motor 

skills coordination, grasping, cutting, clipping, dissection, and suturing. SimSurgery's 

Education Platform [4], Surgical Science's LapSim [60], Simbionix's LapMentor [5], and 

CAE Healthcare's LapVR [61] are such products for laparoscopic surgery. For other 

endoscopic procedures, Surgical Science's EndoSim [62], Simbionix's Bronch Mentor 

[63], and CAE Healthcare's EndoVR [64] are available. 

 

2.3.5 Hybrid (Mixed) Simulators 

  Some systems have proven a more practical, realistic, and efficient reproduction of 

surgical procedures when composed of an integration of a physical manikin with a virtual 

environment. Hybrid simulators are a combination of physical and VR simulators, where 

a physical object (usually a manikin) is linked to a computer program that provides visual 

images and/or feedback [65]. The virtual component, i.e., the computer program, produces 

patient responses and simulation dynamics, whereas the physical component provides the 

ability to interact with the patient's physical constructs. 
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 Simbionix commercializes Arthro Mentor for arthroscopic training which 

combines fiberglass/polyurethane anatomical models (shoulder, knee and hip) with 3D 

images and a haptic interface, allowing the user to operate the actual instruments and the 

arthroscopic camera [66]. CAE Healthcare provides VirtaMed ArthroS for knee and 

shoulder arthroscopy training in a mixed reality environment that integrates anatomical 

rubber models of a knee or shoulder with a corresponding virtual environment, also 

allowing the user to train on the original surgical tools [67]. 

 

2.4 Validation of Surgical Simulators and Trainers 

For decades, many have committed to surgical simulation development. The 

appearance of surgical simulators in the training scene is, however, relatively recent 

compared to other domains such as aviation and military [68]. It is generally accepted that 

simulators need to be validated before being integrated into surgical education curriculums 

[69-73]. 

Definitions of different validity types for medical simulations were adopted from 

educational and psychological testing standards constructed by the American Educational 

Research Association (AERA), American Psychological Association (APA), and the 

National Council on Measurement in Education (NCME) in 1974 [74]. Many studies have 

been conducted to address an established set of validity types for surgical 

simulators/trainers such as face, content, construct, criterion, concurrent, transfer, and 

predictive validities [72, 75-79]. Although the types of validity addressed aren’t uniformly 

defined across different studies, a widely accepted recommendation for validation of 

surgical simulators is that of Gallagher et al. [80]. 
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The literature also generally agrees that validation approaches can be classified into 

subjective (for face and content validities) and objective (for construct, discriminative, 

concurrent and predictive validities) [72, 75-78, 81]. Subjective validity approaches 

typically require experts (surgeons) and novices (medical residents, trainees, or students) 

to complete a questionnaire about their experience after using the simulator. Objective 

approaches typically involve experiments to evaluate the simulator’s ability to discriminate 

between the various levels of expertise by collecting real-time metrics that describe the 

user’s performance. 

In this section, a literature analysis is performed to establish which types of validity 

are addressed more commonly than others for validating surgical simulation and training 

platforms. Following that, these relevant types of validity are defined and the approaches 

to establish each are discussed. 

 

2.4.1 Validity types: a literature analysis 

Although most types of validity are still investigated in several studies, some 

validity terms have become obsolete in newer editions of the Standards for Educational & 

Psychological Testing [82]. Additionally, it is widely accepted that construct validity is the 

central theme of validity [83]; and that face and construct validities are the first two 

fundamental steps of simulator validation [76]. 

Van Nortwick et al.’s 2010 review [84] showed that 60% of reviewed studies that 

aimed at establishing validity in surgical simulation targeted construct validity [84]. 

Similarly, a 2014 literature review by Arora et al. [79] revealed that, for studies that 

addressed face, content, construct, or predictive validities for virtual reality simulation 
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training in Otolaryngology, face and content validities were the most common study types 

representing nearly half the studied publications. Furthermore, they indicate that construct 

validity is considered the fundamental requirement for assessment and was evaluated in 

28% of the reviewed studies. In a more recent review of low-cost (<£1,500) laparoscopic 

simulators, Li and George [85] considered analyzing and comparing only face validity of 

the reviewed simulators.  

We perform a similar yet more recent investigation of literature, analyzing studies 

that conducted some form of experiment to establish one (or more) type(s) of validity for 

a surgical simulation/training platform. 

 

Search strategy 

A search on PubMed database [86] was performed for articles published between 

1995 – 2017 using the keywords: (“validity” OR “validation”) + (“surgical simulation” OR 

“surgical simulator” OR “surgical trainer”). The search yielded 260 studies. 

 

Inclusion criteria 

A study was included in the analysis if it demonstrated the following 

characteristics: (1) is a journal publication, (2) is in English, (3) has a simulation 

component, (4) attends to a specific type or domain of surgery, and (5) addresses at least 

one type of validity (face, content, construct, criterion, concurrent, transfer, or predictive). 

Discriminate and convergent validities were considered a subtype of construct validity. 

One hundred and fifty studies were identified to meet the criteria [87-236]. 
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Literature analysis results 

Analysis of all 150 articles concluded that 39% (58/150) of the studies addressed 

construct validity only; 15% (22/151) of the studies addressed face and construct validities; 

13% (20/150) addressed face, content, and construct validities; 9% (13/150) addressed face 

and content validities, and 7% (11/150) addressed face and content validities (Table 1). It 

can be observed that not all seven validity types are targeted by the literature in the last two 

decades. The primary types of validity that continue to be addressed and explored by many 

studies are face, content, and construct validities. These validity types remain perceived 

reliable to serve as descriptors of both subjective and objective evaluations of surgical 

simulator/trainer validation. 

 

Table 1. Analysis results for 150 studies that targeted one (or more) type(s) of validity for 

surgical simulation and/or training. 

Validity type(s) addressed Count Studies 

Construct 58 [87-144] 

Face 13 [145-157] 

Content 5 [158-162] 

Concurrent 1 [163] 

Predictive 2 [164, 165] 

Transfer 1 [166] 

Face and construct 22 [167-188] 

Content and construct 5 [189-193] 

Content and criterion 1 [194] 

Face and content 11 [195-205] 

Criterion and construct 1 [206] 

Content and concurrent 2 [207, 208] 

Concurrent and predictive 1 [209] 

Construct and predictive 1 [210] 

Face, content, and construct 20 [211-230] 

Face, construct, and transfer 1 [231] 

Face, construct, concurrent, and transfer 1 [232] 

Face, content, construct, and concurrent 3 [233-235] 

Face, content, construct, convergent, and predictive 1 [236] 
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2.4.2 Definitions of relevant validity types 

As eluded to by many, several definitions of validity have been used and the 

literature still lacks consensus regarding guidelines for establishing them. However, there 

are key elements associated with validity types and are described here. 

Face validity describes how realistic the simulator appears to the end user or, in the 

case of a surgical trainer, trainers and trainees [237]. It reflects the simulator’s ability to 

produce a realistic reproduction of the real surgery. This is satisfied by attaining the user’s 

opinion using a structured questionnaire that typically uses Likert scale rating [238]. 

 Content validity measures the simulator’s ability to deliver its purpose. A surgical 

trainer’s content validity is established by demonstrating (using user questionnaire) its 

capacity and utility as a training platform for specified tasks derived from the actual 

surgery. 

Construct validity confirms the simulator’s ability to quantifiably differentiate 

between varying levels of expertise. It can be obtained by incorporating the simulator with 

a component able to measure concrete aspects of a surgical skill. The typical approach is 

to expose various levels of expertise (experienced surgeons versus trainees, students, or 

nonsurgical personnel) to the simulator and observe the generated metrics with the 

hypothesis that they will correlate with experience level. Several studies emphasized the 

significance and reliability of such direct objective metric measures and many researchers 

used quantitative performance metrics including completion time, distance traveled, 

number of mistakes/errors, force applied, and dissection time [81, 239, 240]. 
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2.5 Related Work: Nuss Procedure Simulation and Planning 

To date, a real-time surgical simulator and trainer for the Nuss procedure has not 

been introduced. A patient-specific surgical planner was developed by Rechowicz et al. 

[19, 20] where they developed a generic model of the ribcage as well as a set of patient-

specific finite element models (FEM) using CT data from actual PE patients. A force–

displacement model was then constructed to train an artificial neural network (ANN) to 

generalize the data set. Additionally, they described a methodology for assessing the 

planner’s outcomes against information obtained from an average chest shape. However, 

their work did not include an interactive real-time simulation of the procedure for training 

and skill transfer. 

Other groups that explored surgery planning were steered toward studying the 

biomechanical behavior involved within the procedure [241], simulating stress distribution 

of the ribcage [242, 243], or otherwise conducting experiments to indicate the existence of 

a stress distribution difference between children and adults [244, 245]. Collectively, no 

prior research addressed the development of a real-time surgical trainer for the procedure. 

 

2.6 Related Work: Virtual Reality (VR) VS. Physical (manikin-based) Simulators 

 In general, surgical simulators fall within a virtuality continuum or spectrum where 

physical human manikins are on one extreme and virtual reality simulators are on another. 

In this section, studies that compared and contrasted the implementation of the two 

schemes for surgery simulation are described with greater focus on those who combined 

them for an improved result. 
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2.6.1 Studies that compared identical tasks on VR vs. physical vs. hybrid simulators 

Through comparing a virtual reality versus a physical implementation of 

phlebotomy training simulation, Scerbo et al. (2006) indicated that using physical limbs 

(or a manikin in general) is a better fit for training on tasks involving surface palpation of 

complex anatomical regions and other merely tactile skills (Fig. 6). On the other hand, they 

indicated that other cues, such as those which occur in response to user actions, are better 

reproduced using a VR environment such as blood emission at the incision point [246]. To 

the benefit of the NPST, their work can be used as a general strategy to guide the 

classification of surgical tasks and cues into pro-virtual or pro-physical setups.  

 

  

(a) 

 

(b) 

 

Fig. 6. Trainee performing a phlebotomy on a simulated arm (a) and the CathSim system 

(b). (Reprinted from [246] with permission. © The Infusion Nurses Society, 2006). 

 

 

Botden et al. (2007) conducted an experiment to evaluate the difference in 

performance between a laparoscopic virtual reality trainer (LapSim VR) and a hybrid 

virtual/physical trainer (ProMIS AR). Although they used the term augmented simulation 
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to describe their mixed reality implementation, ProMIS AR incorporates a torso-shaped 

manikin with an instrument tracking system which synchronizes the motion of the tools in 

the virtual environment with that of the physical tools affected by the user (Fig. 7). The 

authors compared aspects such as realism, haptic feedback, and didactic value between the 

two setups when performing lifting and grasping as well as suturing tasks. They concluded 

that ProMIS AR is a better training platform than LapSim VR [247] . Their work can be 

used as a reference for the development of NPST to distinguish between basic tasks that 

are better performed using a physical or a virtual setup. 

 

  
(a) 

 

(b) 

 

Fig. 7. ProMIS Augmented Reality laparoscopic simulator (a) and LapSim VR 

laparoscopic simulator (b). (Reprinted from [247] with permission. © Springer, Société 

Internationale de Chirurgie, 2007). 

 

Li et al. (2011) developed a mixed reality simulation for arthroscopic knee surgery. 

In their system, they used an artificial knee joint coupled with the actual tools and 

arthroscopic camera used in the surgery. Manipulation of this physical setup influences a 
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synchronized 3D computer generated model of the joint (Fig. 8). Their study showed 

compelling evidence that the mixed reality setup can assist novice residents in the 

challenging task of locating anatomical locations in arthroscopic surgery. Although the 

same outcome was not observed for experienced surgeons, all participants agreed the 

system provides an accurate representation of the surgical experience [25]. From their 

conclusions, the same hypothesis will be investigated for the NPST to validate whether it 

can enhance experts’ as well as novices’ skills in a comparable manner. 

 

  
(a) 

 

(b) 

 

Fig. 8. Mixed reality simulation for arthroscopic knee surgery: (a) a residents performing 

a trial and (b) a monitor showing the navigated arthroscopic view. (Reprinted from [25] 

with permission. © Springer-Verlag Berlin Heidelberg, 2011). 
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 Loukas et al. (2012) investigated whether basic laparoscopic skills acquired with a 

virtual reality simulator (LapVR) are transferable to a standard video trainer (VT) and vice 

versa (Fig. 9). Their study demonstrates that both types of simulator enhance the 

performance of novices in a consistent manner. The skills learned on LapVR are 

transferable to the VT and vice versa. However, for complicated tasks such as knot-tying, 

two users each training on one of the two modalities will not end up with the same level of 

proficiency [248]. Their work can be used as another instance for describing areas where a 

physical setup can be more advantageous over a virtual one, and vice versa. It is also worth 

investigating whether skills would be transferable between a solely physical and a solely 

virtual setup of the NPST. 

 

  
(a) 

 

(b) 

 

Fig. 9. VR simulator (a) and VT (b). (Reprinted from [248] with permission. © Springer 

Science+Business Media, LLC, 2012). 
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2.6.2 Studies that combined VR and physical simulators to produce a hybrid 

 Kotranza et al. (2008) developed a virtual/physical integration for training on 

clinical breast cancer examination by augmenting a physical manikin with a collocated 

virtual human avatar overlaid on top of it using a head mounted display (HMD), allowing 

the trainee to palpate the physical surface of the manikin which affects the virtual avatar 

using pressure sensors (Fig. 10). The authors conclude that their system increases 

communication skills of trainees as their experiment demonstrated that most students 

readily accepted the tactile modality by naturally using gentle stroking and touching 

motions based on their feedback [21]. In 2009, the group further expanded their work to 

incorporate in-situ visual feedback of the user’s performance to indicate necessary 

corrections of palpation by displaying the touch map and the pattern-of-search map in real-

time to reinforce learning. In their work, the authors note that manikins provide little 

feedback on the user’s performance, cannot be adapted for patient-specific cases, and are 

difficult to be incorporated with different scenarios [249]. In the benefit of the NPST, this 

will steer focus away from attempting to accomplish training evaluation, patient specificity, 

and scenario introduction from a physical constituent of the NPST. 
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Fig. 10. A mixed reality human merges virtual and real spaces. The user views a VH while 

touching her physical embodiment, including tangible interfaces. (Reprinted from [21] 

with permission. © IEEE, 2008). 

 

Halic et al. (2010) introduced a mixed reality simulation framework for the rasping 

task in the artificial cervical disc replacement (ACDR) procedure. Their system couples a 

plastic model of the spine with a virtual environment. As the user manipulates the real 

surgical tools to perform the rasping task, an optical motion tracking system (Vicon) 

captures the motion and, as a result, the binocular stereoscopic display shows the 

synchronized interaction on the virtual models (Fig. 11). The authors report that the 

developed simulator was tested by five different physicians who indicated that it is 

effective enough to teach anatomical details of cervical discs and is able to convey basics 

of the ACDR surgery and rasping procedure [250]. Their work will be used in the 

development of the NPST merely for guiding separation of tasks into pro-physical and pro-

virtual ones. Tool tracking will be compensated for in the NPST using the haptic device 

eliminating the need for motion capture. 
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Fig. 11. AR setting: Five VICON cameras on the bars, stereoscopic binocular display 

mounted binocular headgear. Plastic spine model and curette are placed within the tracking 

volume. (Reprinted from [250] with permission. © Halic and Kockara; licensee BioMed 

Central Ltd, 2010). 

 

Several years ago, a research group at the University of Virginia developed a virtual 

reality simulator that utilizes force feedback to train the cognitive and motor tasks involved 

in the tube thoracostomy (chest tube insertion) procedure (Fig. 12 (left)) [22, 23]. 

Subsequently in 2010, English et al. of the same group sought to improve the user’s sense 

of presence of the existing chest tube insertion trainer by incorporating the VR system with 

a chest manikin (Fig. 12 (right)). Their design performs a breakdown of the procedural 

tasks to allocate which is better implemented using a virtual implementation, and which 

using a physical one. Their improved system aimed to use the strengths of each element of 

simulation to provide an optimal experience with an increased degree of immersion, a 

higher authenticity of the simulator, and better skill transfer of joint psychomotor-cognitive 

tasks. Through the development of their system, the authors provide a very relevant 
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indication while attempting to simulate one of the tasks. They note that, in a VR 

environment alone, the user cannot experience a sufficiently authentic reproduction of a 

tunneling sensation and finger constriction that mimics the sensory response of entering 

the patient’s chest cavity using currently available haptics technology [24]. Their work 

serves as a very comparable platform for the NPST as it describes computational 

constraints of a solely virtual reproduction of the simulation and motivates a hybrid 

iteration of the system. Additionally, their work is considered very relevant as it involves 

tool tracking using a haptic device and the main task of the procedure involves tool 

insertion with a fixed pivot. 

 

  
(a) 

 

(b) 

 

Fig. 12. Fully virtual tube thoracostomy simulator (a) and developed hybrid simulator (b). 

(Reprinted with permission from [22, 23] © IEEE, 2008; and from [24] © IEEE, 2010). 

 

Carbone et al. (2011) described a method to develop a patient-specific training 

platform for abdominal surgery with a hybrid approach. This hybrid approach involves 

using silicone models of abdominal organs augmented with electromagnetic tracking 
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sensors to allow for deformations and coupled them with a corresponding virtual 

environment (Fig. 13). The authors utilize medical images to generate 3D models for the 

virtual environment using segmentation as well as to produce molds for synthetic silicon 

organs. Although only a simple deformation for the stomach is implemented, the system 

was evaluated by clinicians who confirmed a high degree of realism [251]. Their work is 

highly relevant and beneficial for the NPST in case a calibration and alignment of physical 

and virtual organs and behaviors proved to be required in the simulation. 

 

 

Fig. 13. Example of real time deformation of the virtual environment. The stomach is 

highly deformed so in virtual it is highlighted in red to underline the extent of deformation. 

(Reprinted from [251] with permission. © Carbone and Ferrari, 2011). 

 

In 2013, Larnpotang et al. [252] at the University of Florida presented a mixed 

reality simulator using physical exteriors augmented with a virtual environment for training 

on central venous access (CVA). The physical component was produced via 3D printing 

and includes the torso, neck and head of a manikin providing anatomical landmarks such 
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as a palpable sternal notch, clavicle and ribs (Fig. 14 (left)). The internal organs and soft 

tissues were virtually modeled using medical image segmentation and were registered to 

the physical component with sub-millimeter accuracy (Fig. 14 (right)). The user can 

puncture the skin using the surgical instrument (needle) which is coupled with a 6 degrees 

of freedom (DOF) magnetic sensor fitted inside the needle bore providing real-time 

tracking. The authors also implemented an automated scoring algorithm to measure the 

performance of the training session. The simulator was evaluated by vascular surgeons who 

indicated that the system is beneficial as a training and educational tool. 

 

  
(a) 

 

(b) 

 

Fig. 14. Mixed simulator of central venous access. (a) Physical components including 

physical syringe and needle, and (b) their virtual counterparts. (Reprinted from [252] with 

permission. © IEEE, 2013). 

 

Later that year, Bova et al. (2013) of the same group described three different 

simulators for neurosurgical procedures that employ a combination of physical and virtual 

components to provide the user with essential visual and haptic cues: a ventriculostomy 

simulator (Fig. 15 (a)), a radiofrequency lesion (RFL) probe insertion simulator for the 

treatment of trigeminal neuralgia (Fig. 15 (b)), and a spinal instrumentation simulator (Fig. 
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15 (c)). The three simulators use a physical external model (head, skull, and spine, 

respectively) coupled with an electromagnetic tracking system that is collocated with a 

virtual model allowing the user to use the actual surgical tools to perform skin cutting, 

tool/needle insertion, drilling, burr hole creation, and instruments fixation. The virtual 

components of the three simulators render the relevant internal anatomies such as brain 

ventricles, fluoroscopic view of the trigeminal verve region, as well as spinal radiograph, 

respectively [253, 254]. The same group is currently developing similar mixed-reality 

systems for pediatric procedures. Their simulations are considered very relevant for the 

NPST as they all involve tool insertion of some sort. Their tool tracking mechanism will 

be studied for potential benefits. 
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(a) 

 

(b) 

 

(c) 

 

Fig. 15. Physical (left) and virtual (right) components of (a) the ventriculostomy simulator, 

(b) the radiofrequency lesion (RFL) probe insertion simulator for the treatment of 

trigeminal neuralgia, and (c) the spinal instrumentation simulator. (Reprinted from [253] 

with permission. © Oxford University Press, 2013). 

 

Hochman et al. (2014) found it beneficial to combine a physical printed model of 

the temporal bone with a virtual haptic soft tissue rendering to construct a hybrid temporal 

bone surgical simulator. The authors augmented the end-effector of a HD2 haptic device 
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[255] to hold an otic drill used in the simulation. The printed bone model consists of two 

drillable layers separated by a free-space, within which a virtual spring force model is 

applied by the haptic interface increasing the force with penetration depth (Fig. 16). The 

physical model is collocated with the virtual one to trigger different types of forces [256]. 

This is another study relevant to tool tracking for the NPST as they perform that using the 

haptic device. Additionally, their system necessitates physical and virtual worlds 

calibration and alignment to trigger the correct types of forces at the right time and location. 

 

 

Fig. 16. Developed Mixed reality model showing HD2 haptic device, otic drill, and gripper 

assembly. (Reprinted from [255] with permission. © Hochman et al., 2014). 

 

2.7 A Framework for Surgical Simulation: Virtuality and Interactivity 

In this section, a simulation framework for evaluating the utility of virtual versus 

physical platforms for surgery is introduced. It also considers the different degrees of user-

system interactivity that can be utilized. This framework can serve as a continuum to 

classify hybrid surgical simulators and identify their characteristics. 
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The approaches followed by research groups in the studied literature showed that 

the attributes that affect the user’s sense of presence can be classified by two elements: 

degree of virtuality and degree of interactivity. Consequently, a 2-dimensional Continuum 

for Hybrid Surgical Simulators can be constructed to demonstrate a classification system 

(Fig. 17). In a generic sense, any hybrid surgical simulation environment can be 

characterized with a location on this model.  

The degree of virtuality relates directly to the virtual-physical continuum discussed 

in section 2.3, where a hybrid trainer falls between two extremes of a virtual-physical 

spectrum. Purely virtual or purely physical training platforms would fall close to the far 

left or the far right of the continuum, respectively. With this rationale, for a system to be 

considered a hybrid, it must not be placed too close to either extreme of the virtuality 

dimension. 

The degree of interactivity refers to the presence of multi-way (active) or a one-

way (passive) interaction between the system and the user [257]. In an active system, 

several forms of user/system interaction are present where the user can affect the system 

in more than one manner. A multi-way interaction is also achieved by incorporating 

multiple forms of feedback from the system to the user either by using visual implications 

of the user’s actions displayed on a monitor; or by incorporating haptic feedback, where 

the user can sense the collision or interaction with organs when maneuvering the surgical 

tool using a haptic device; or a combination of both. A system where the user affects the 

virtual environment through both a haptic device as well as a physical manikin for instance; 

or a system that provides both visual and haptic feedback corresponding to the user’s 

behavior would be placed higher on the active/passive dimension.  
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For instance, an active (involving two-way interaction) hybrid system discussed 

earlier is the tube thoracostomy trainer developed by English et al. [24] (2010), where a 

haptic interface is incorporated to simulate the sensation of tube insertion. A multi-way 

interactive arthroscopy trainer (Simbionix’s Arthro Mentor™) allows the user to control 

the surgical tool with a haptic device as well as adjust the posture of a physical model of 

the knee; and observe the implication of both in the virtual environment [66]. 

An example of a hybrid system that provides one form of feedback to the user (less 

active) is the work by Kotranza et al. (2008) for clinical breast exam training [21, 249] 

discussed earlier, where physical palpation on the manikin is transformed in to visual 

feedback displayed on the visual interface, but no sensory information is fed back to alter 

the components of the physical manikin accordingly, or in the form of force feedback that 

the user is able to perceive. Such a system would be placed in the middle of the 

active/passive dimension. 
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Fig. 17. Continuum for hybrid surgical simulators. 
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2.8 Considerations for a Hybrid Surgical Trainer 

There are several aspects that must be considered when developing a surgical 

simulator/trainer that is composed of virtual and physical components. This section 

discusses the two main aspects relevant for hybrid surgical training platforms and refers to 

related work discussed in the previous sections. 

 

2.8.1 Synchronization 

Coupling of virtual and physical modalities necessitates that corresponding 

interactions are highly synchronized. As typical in a hybrid system, a user affects a physical 

component and observes the effect on a virtual environment. Therefore, issues such as 

latency, coordinate systems alignment, and synchronized visual/haptic cues are of 

tremendous significance. The degree of said coupling is very impactful since unsuccessful 

synchronization of virtual and physical components highlights and emphasizes the artificial 

nature of the environment. Studies discussed in section 2.5.2 showed the significance of 

this seamless coupling to improve psychomotor and cognitive tasks. This is also true for 

systems with passive physical objects as demonstrated by [25] for arthroscopic knee 

surgery. 

 

2.8.2 Fidelity 

Surgical simulators/trainers vary greatly in terms of fidelity ranging from primitive 

synthetic objects inside boxes or hemispheres aimed at Fundamentals of Laparoscopic 

Surgery (FLS) training to high fidelity manikins capable of breathing, blinking, and 

replicating human vitals on a computer system. Although the level of fidelity of a trainer 
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undoubtedly influences the user’s degree of immersion and sense of presence, it doesn’t 

necessarily determine the degree of validity of the trainer nor its effectiveness as a training 

platform. The degree of fidelity should, therefore, be governed by the scope of training and 

the skills to be emphasized [259]. Increasing fidelity in components that correspond to 

features not directly related to the tasks of interest makes for an inefficient simulation 

platform. 
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CHAPTER III 

A FULLY VIRTUAL NUSS PROCEDURE SIMULATOR 

As mentioned before, this work aims to fulfill the need for a Nuss procedure 

simulator for training and skill transfer. In this chapter, the development of one of the two 

investigated simulation platforms is carried out following a modality that corresponds to 

the fully virtual extreme of the virtual-physical continuum described in section 2.3 of this 

dissertation. The developed system described in this chapter will be referred to, throughout 

this work, by the fully/solely virtual Nuss procedure surgical simulator, the virtual NPST, 

the virtual setup/modality/scheme, or the purely virtual version, interchangeably.  

A frequent practice to simulate the behavior of the surgical tool around the pivot 

for laparoscopic procedures is via a physical port. In this fully virtual setup, however, the 

insertion behavior is simulated without utilizing physical constraints. The intent is to solely 

utilize virtual components to, subsequently, be contrasted with a physical implementation. 

The methods undertaken to develop this system were derived from the requirements 

of the actual procedure. The workspace of the simulator and the anatomical structures of 

the virtual environment as well as the behaviors and physics-based interactions were 

constructed to fulfill realism and fidelity of the simulation. A haptic interface was 

integrated with the system to achieve a reproduction of surgical tool manipulation. 

Additionally, a patient-specific model of the chest and PE deformity were reproduced to 

allow for different training scenarios. The work described in this chapter about the fully 

virtual Nuss procedure simulator has been reported in several publications [27-29, 260]. 

Following the discussion of the methods, the outcomes and results are reported and 

a discussion of the merits and limitations of such an implementation is provided.  
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3.1 Methods 

In this section, the approaches used to develop of a solely virtual patient-specific 

Nuss procedure trainer are outlined and discussed. The methods used to reproduce relevant 

aspects of the surgery are described and the user interface is detailed. 

The virtual Nuss procedure simulator was constructed integrating a 3D Systems (6 

degrees of freedom motion / 3 DOF force) Phantom Premium 1.5 high force haptic 

feedback device [261] with an anatomically-correct virtual environment. A thorough 

description of the approaches used to develop the system’s components is provided here. 

 

3.1.1 Interface 

The user interacts with the virtual environment and controls the surgical tool using 

a haptic interface. The haptic device’s specifications are 0.007 mm (3784 dpi) nominal 

position resolution, 37.5 Newtons (8.4 lbf) maximum exertable force, and 6.2 Newtons 

(1.4 lbf) continuous exertable force. As explained in [27, 28], a dynamic link library (DLL) 

was developed to interface with the Geomagic® OpenHaptics® Toolkit [262] and import 

parameters from its application programming interface (API) to the environment developed 

on the Unity engine [263]. 

To reproduce the actual setup from the operating room, two views/displays are 

constructed to simultaneously provide an external view of the patient’s avatar and an 

internal thoracoscopic view, respectively. The external view of the patient is displayed on 

an LCD and projected on a mirror and the internal thoracoscopic view is displayed on a 

separate monitor. Both views are coupled with the surgical tool’s consistent motion as the 

user moves the haptic device’s stylus. A Wiimote (Wii Remote™) [264] is used to provide 
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the surgeon with control of the thoracoscopic camera in real-time. It is critical to maintain 

a high update rate in the haptic force servo loop to prevent any force discontinuities; 

therefore, the haptic interface and the simulation run asynchronously (Fig. 18). 

 

 

Fig. 18. Hardware setup for the fully virtual Nuss procedure simulator. 

 

3.1.2 Graphics and camera configuration 

The integration of the virtual environment with the haptic interface calls for a 

method to achieve collocation (consistency) between the two. A mirror’s behavior leads to 

a horizontally flipped view of the patient’s avatar and, therefore, should be compensated 

for (Fig. 19). In order to correct this behavior while preserving the properties of the 

graphical scene, an adjustment of the external view takes place independent of the 

thoracoscopic view. In the graphics pipeline, after the geometric primitives are modeled 

into the required objects and transformed into a common world coordinate frame (world 

space), the objects are transformed from the world coordinate system to the view reference 

(camera) coordinate system. The product of that is the Model-View Matrix. The next stage 
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is to project the view onto the projection plane where the 3D coordinate system of the 

camera is transformed into the 2D coordinate system of the image space of the screen. The 

projection transformation is performed by multiplying the Model-View Matrix by the 

Projection Matrix (P). 

 

  
(a) 

 

(b) 

 

Fig. 19. Original image of the scene (a) and its corresponding image in the mirror (b). 

 

Since the external view’s scene is flipped in the y-axis, a customized projection 

operation is constructed to control the rendered direction when transforming from the 

camera coordinate system into the coordinate system of the screen. Utilizing a customized 

Projection Matrix gives access to manipulating the projection direction as desired. To 

obtain a new customized Projection Matrix (�̂�), the original Projection Matrix (𝑃) is 

multiplied by a 4 × 4 matrix that has a negative y-component as shown in Equation (1). 

 

�̂� = 𝑃 × (

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

) (1) 

 



   

 

49 

In the graphics architecture, however, back-facing polygons are conventionally not 

visible in the scene and only front-facing polygons are visible. By convention, all polygons 

whose vertices appear in a counterclockwise order are called front-facing. When the 

projection is flipped in the y-direction, its counterclockwise order of vertices becomes 

clockwise which turns the polygon into a back facing polygon that will not be rendered. 

Fig. 20 demonstrates this phenomenon for a polygon abc. This will take place using the 

new customized Projection as all polygons of the external view are rendered as back-facing 

and therefore are not visible. In the industry standard for high performance graphics 

OpenGL® application programming interface (API) [265], the rule of choosing front-

facing polygons can be changed using the function glFrontFace(). A similar approach was 

implemented in the application of the surgical simulator for the external view only to 

resolve the issue. A thorough discussion of this approach was reported by Obeid et al. in 

[266]. 

 

 

Fig. 20. Triangle abc and its image mirrored in the y-direction. 
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3.1.3 Thoracoscopy 

A very important aspect of the simulation is to give a surgeon the ability to interact 

with a surgical space resembling the actual procedure. In reality, the thoracoscope is 

typically placed one or two intercostal spaces below or, less often, above the insertion point 

of the surgical tool. The entry point of the thoracoscope is modeled as a stationary point 

with constrained translation in all axes. The thoracoscope can slide in its local z-direction 

through this stationary point in and out of the thoracic cavity. Typically, the surgeon does 

not operate the thoracoscope during surgery. Therefore, the simulator is constructed to 

work in two modes: (1) the thoracoscope camera automatically follows the tip of the 

introducer or (2) it can be fully controlled by the same or another user. In the second mode, 

the orientation of the camera is controlled by a Wiimote’s pitch, roll and yaw [264]. The 

camera is a child of the Wiimote’s pivot, which simulates the position of the thoracoscope’s 

trocar. Due to the limitations of the Wiimote’s accelerometer, yaw cannot be directly 

detected. Therefore, the setup was supplemented by adding the Wiimote’s sensor bar which 

provided this necessary information. 

 

3.1.4 Modeling anatomical structures and surgical instruments  

Sophisticated 3D modeling platforms were utilized to design the models of the 

surgical tool (introducer) as well as the anatomical structures of the patient’s body with 

appropriate and realistic surfaces and textures. Following is a description of the techniques 

used to model these components. 

For the torso, a generic low polygon model was used and adjusted to a posture that 

corresponds to demographics of PE patients. A skeletal model created by [267] based on 
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Visible Human Project [268] was used to construct the geometry of the ribcage. Since the 

internal intercostal muscle is observed to take the shape of adjacent ribs and the sternum, 

cloth modeling was used coupled with directional forces to bring the internal intercostal 

muscle model in contact with the ribcage. The model of the internal intercostal muscle has, 

correspondingly, deformed to take the shape of the ribcage allowing the ribs and sternum 

to be distinguishable in the thoracoscopic view. The pericardium was modeled based on 

an anatomical atlas. 

The mediastinum was modeled by, firstly, creating a volumetric capsule model. 

Boolean subtraction and intersection modeling was then used to omit a specific portion of 

the model subtracting the part intersecting with the pericardium in a way that both models 

fit without gaps. Generic models of the lungs and the diaphragm were acquired from a 

repository for 3D-models. 

The main tool used in the Nuss procedure (the introducer by Biomet Microfixation 

[41]) is shown in Fig. 21 (a). One of three sizes: S, L and XL which differ in curvature can 

be used, depending on the patient’s size. Models of the three sizes of the introducer were 

constructed based on orthogonal photographs (Fig. 21 (b)). 

 

  
(a) 

 

(b) 

 

Fig. 21. Surgical instrument: (a) introducer and (b) 3D model created for the introducer. 
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3.1.5 Texturing of 3D models 

In coordination with the surgeons and with the appropriate approval from the 

institutional review boards (IRB) of Old Dominion University (ODU), Eastern Virginia 

Medical School (EVMS), and The Children’s Hospital of the King’s Daughters (CHKD), 

numerous images and videos were using the thoracoscope during the Nuss surgery were 

collected and organized to construct a digital image database for relevant anatomical 

organs and surfaces. The author has acquired the necessary clearance to be present at the 

operating room on several occasions to observe the procedure and supervise the acquisition 

of the necessary footage from real surgery. 

After the 3D models composing the virtual environment are created, a process of 

UV mapping is carried out. In this process, each of the 3D models is unwrapped along 

seams (Fig. 22 (a)) to create an editable 2D map describing the coordinates of the 

unwrapped 3D model. The coordinates of this mesh are then relaxed and edited to become 

more suitable to receive a texture (Fig. 22 (b)). Parallel to that, appropriate images from 

the database were cropped (Fig. 22 (c)), edited and modified to be used as raw texturing 

material. Using image editing techniques, this raw material is used to create interactive 

brushes that are then used to carefully paint the UV-map for the corresponding 3D model, 

resulting with an unfolded texture map (Fig. 22 (d)). This map is then enhanced and 

modified to be coupled with a bump map to add realism to the appearance of the simulated 

torso, ribcage, internal intercostal muscle, diaphragm, lungs, pericardium (Fig. 22 (e)), and 

mediastinum. 
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(a) 

 

(b) 

 

  
(c) 

 

(d) 

 

 
(e) 

 

Fig. 22. Texturing: (a) 3D model of the pericardium with seams, (b) corresponding 

modified UV map, (c) source image cropping, (d) textured UV map, and (e) textured 

model. 
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3.1.6 Haptics and pivot mechanics 

A haptic interface allows the user to interact with component of the virtual 

environment. Capabilities of the haptic device are utilized to provide the limited field of 

motion and the constrained nature of the surgical tool’s movement, similar to what occurs 

in the actual surgery. 

As explained in more detail in [27], the pivoting behavior of the tool at the insertion 

point (Fig. 23) can be approximated using a fully virtual setup utilizing forces from the 

haptic device; the haptic device acts as a virtual pivot constraining the tool from motion in 

the local x- and y-directions by applying high stiffness forces while allowing translation in 

the z-direction only. The z-direction motion is along the axis of the tool at the point of the 

pivot allowing further insertion. This absence of force in the z-direction is altered 

depending on the orientation of the haptic device’s stylus, i.e., the movement is allowed in 

the local z-direction of the stylus which is reoriented in real-time when the stylus is rotated. 

Light friction force is applied in the local z-direction when moving through the pivot to 

simulate friction generated between the tool and the skin at the insertion area. To apply 

such accurate forces in all the corresponding haptic device local axes, global force 

components are to constantly be converted to local force components as follows: 

 

1. Get current rotation matrix 𝑅. 

2. Get total displacement vector, 𝑑, between initial and current positions. 

3. Multiply 𝑅 by 𝑑 to get the local translation vector 𝑡𝐿. 

4. Multiply 𝑡𝐿 by scaling vector < 1, 1, 0 > to get new local translation vector 

𝑡𝐿𝑆. 
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5. Multiply inverse of rotation matrix, 𝑅−1, by 𝑡𝐿𝑆 to get force components in the 

local coordinates of the haptic device. 

 

 

Fig. 23. Schematic of the surgical tool’s advancement into the thorax maintaining a 

stationary pivot [269]. 

 

Collision with surrounding organs is incorporated since inadequate dissection may 

cause severe damage, such as penetrating an organ with the introducer’s tip. In the case 

collision is detected when inserting the tool, a new stiffness force based on the penetration 

depth is generated in the local z-axis. This force depends on the elasticity of the colliding 

organ; however, it is assumed to be the same for all organs. A variation of stiffness and 

friction coefficient values were tested by experienced Nuss procedure surgeons at CHKD 

to approximate the sensation of the tunneling behavior. 

In case a collision occurred due to a rotational motion of the introducer, a similar 

approach can be followed if a 6 degrees of freedom (DOF) of force haptic device is used. 

Such an implementation was incorporated and tested. However, if using a 3-DOF of force 

haptic device, only translational forces can be applied and there is no capability to simulate 
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forces caused by rotation around the pivot. In this case, the movement of the surgical tool 

is visually disabled once in collision to prevent the tool’s mesh from intersecting with any 

other mesh while the physical tool is in motion. 

 

3.1.7 Patient-specific PE deformity 

The virtual NPST was incorporated with a patient-specific parameterized 

representation of the PE deformity. The purpose was to construct a system where 

parameters that describe the morphology are obtained from CT scans and used as input to 

a modifiable simulation of PE. Pre-surgical surface scans of the chest were collected using 

a non-radiological laser surface scanner (FastSCAN) [270] from patients with PE just prior 

to the Nuss surgery (EVMS IRB# 07-08-EX-0202). Pre-surgical CT and post-surgical X-

rays were collected for each patient to complement the database built for validation 

purposes and to obtain the ground truth as described by [260]. Each subject’s deformity 

was classified by cup, saucer or unknown, as well as symmetric or asymmetric criteria. For 

this work, patients characterized with symmetric deformities were chosen, which resulted 

in two patients with cup morphology and four patients with saucer morphology. 

A system of morphed deformations with a parameterized falloff was incorporated 

into the anatomical entities affected by PE, namely the 3D meshes of the torso (skin), 

internal intercostal muscle, and ribcage. These deformations are governed by an underlying 

bone-system embedded into the sternum to simulate PE deformity. This approach is widely 

used for character animation. The movement of the bone-system of the sternum affects, 

correspondingly, the envelopes (areas of influence) of the linked 3D meshes. Vertices 

within the area of influence for each mesh are assigned gradual weights to produce smooth 
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transitions upon movement. A separate envelop of influence was modeled for each of the 

entities and the weights assigned followed characteristics of both morphology types 

introduced by [34] and available via the CT data collected: cup and saucer. As can be seen 

in Fig. 24, vertices within the influence envelope do not receive equal deformation weights 

as weights fall off rapidly for the cup type morphology (Fig. 24 (a and b)) while follows a 

Sigmoid function for the saucer (Fig. 24 (c and d)). 

 

  
(a) 

 

(b) 

 

  
(c) 

 

(d) 

 

Fig. 24. Deformation influence envelopes for a cup type PE for (a) the ribcage and (b) the 

torso; as well as a saucer type PE for (c) the ribcage and (d) the torso. 
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To develop a patient-specific system, parameters that describe both the overall 

shape of the chest as well as the PE morphology must be specified. Information that 

describes the width and depth of the ribcage as well as the amount of pectus depression 

and torsion are obtained from the CT slice that displays the deepest depression (typically 

the slice used to calculate the Haller index [37]) (Fig. 25). Using information pertaining to 

slice thickness and number of slices that cover the height of the sternum, a coefficient of 

scaling for the height of the entire ribcage can be approximated (height =

# of slices × slice thickness). 

 

  
(a) 

 

(b) 

 

Fig. 25. CT measurements: (a) width, depth, depression, (b) sternal torsion 

 

To define patient-specific PE deformation, it is essential to specify parameters for 

measurement that can be quantified and used to accurately reproduce the morphology and 

govern the developed morphed deformation system. One parameter that describes the 

morphology is depression, which is a measure of the distance between the ribs-line and the 

position of the sunken sternum taken from the CT layer where the rest of the parameters 

are measured (Fig. 25 (a)). For the depression parameter, simply measuring the deepest 
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point of the sternum in the CT image will produce an error. This error is demonstrated by 

observing a sagittal view of the sternum as shown in Fig. 26. 

 

 

Fig. 26. Calculation of depression parameters 

 

To address this error, we define the axis of a normal sternum to be the line 𝐴𝐵 and 

the axis of a deformed sternum to be the line 𝐴𝐶 both of length 𝑎. Connecting the two lines 

with line 𝐵𝐶 results in an isosceles triangle ∆𝐴𝐵𝐶. The angle ∠𝐶𝐴𝐵 is that of sternum 

depression which is the measure that we need as the bone and envelop for the ribcage model 

can be deformed by rotation. We will call this angle 𝛼. 

The CT image, however, only provides a transverse view which means that when a 

linear measurement is made, it gives the length of line 𝐵𝐷 which we will define as the 

linear distance of depression 𝑑. A mathematical operation is needed to convert this linear 

distance to an angle. In addition, merely using this calculated angle for depression assumes 

that the depression results in a vertical drop of point B which means that, since the sides 

𝐴𝐵 and 𝐴𝐶 are of equal and fixed length, points 𝐶 and 𝐷 are in the same point in space. 

This is not true. Another step will, therefore, follow to compensate for that difference. 

First, the value of angle 𝛼 is to be estimated given the linear distance of depression 

𝑑. To do so, the isosceles triangle ∆𝐴𝐵𝐶 is considered. In order to find the value of 𝛼, we 
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assume temporarily that 𝐵𝐶 is equal to 𝐵𝐷. The error produced by this assumption will be 

compensated for in the following step. Using the Law of Cosines, we can come to: 

 

𝑑2 = 𝐴𝐵2 + 𝐴𝐶2 − 2 ∗ 𝐴𝐵 ∗ 𝐴𝐶 ∗ cos 𝛼 (2) 

 Which gives: 

𝛼 = cos−1 (1 −
𝑑2

2𝑎2
) (3) 

 

After determining the value of the angle 𝛼, this information can be used to calculate 

the actual length of the side 𝐵𝐶, which we will call �̂�, by considering both ∆𝐴𝐵𝐶 and 

∆𝐵𝐶𝐷. From ∆𝐴𝐵𝐶, the angles of the triangle are related as follows: 

 

∠𝐴𝐵𝐶 + ∠𝐴𝐶𝐵 + 𝛼 =  180° (4) 

Since ∠𝐴𝐵𝐶 = ∠𝐴𝐶𝐵, 

∠𝐴𝐵𝐶 =
180° − 𝛼

2
 (5) 

Therefore, 

𝛽 =
𝛼

2
 (6) 

Using this result in ∆𝐵𝐶𝐷, 

cos 𝛽 =
𝑑

�̂�
 (7) 

which gives 

�̂� =
𝑑

cos 𝛽
 (8) 
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We then use the new value �̂� to calculate the depression angle 𝛼. This value of the 

angle will be used as the depression parameter. Another parameter for deformation is the 

sternum torsion which can be simply measured from the CT slice used as it shows the 

amount of torsion that the sternum undergoes (Fig. 25 (b)). 

Thus, the patient specific information collected in the previous steps are shape 

parameters including width, length and depth as well as deformation parameters including 

depression and torsion. To deploy these values to the patient’s avatar in the simulation, the 

environment was constructed to receive them as input parameters. Applying the shape is 

performed as scaling factors for the model in the x, y and z-dimension. For the deformation 

parameters, the value of depression is inputted by the user which is then internally 

converted to the angle 𝛼, as well as the value for the sternal torsion. This input affects 

directly the bone system that controls the morphed deformation envelopes to simulate a 

patient-specific deformity. This work was published in [260]. 

To evaluate the patient-specific model, it is implemented for the 6 patients utilizing 

parameters measured from their pre-surgical CT scans; and the outputs from the patient-

specific model are compared with the pre-surgical surface scans for each patient. The 

results of this evaluation are presented in a form of a color map in section 3.2.2. 

 

3.1.8 Simulation and interactions 

In this section, the dynamics related to the real-time deformations of the organs and 

components of the body are constructed and the interactions of the surgical tool with the 

environment is explained. 
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Beating heart 

Physics-based interactions were modeled to deliver realistic behavior of the 

pericardium, which plays a crucial role for the actual and simulated procedure. To simulate 

the beating heart, a non-uniform scaling deformation of the pericardial sac was constructed 

to reproduce systole and diastole motions. The two-stage cycle is performed based on a 

heart rate of 70 per minute, which can be adjusted as desired. The systole motion occupies 

30% of the timeframe, while diastole motion occupies the other 70%; this behavior adds 

realism to the beating heart. The beating of the heart is linked to real-time instead of 

animation making the heart motion independent of the speed of the machine. In many 

instances of PE, the pericardial sac is depressed by the sternum and pushed to the left side 

of the thoracic cavity. This behavior was modeled by squeezing the anterior part of the 

pericardial sac (translating the vertices of that area posteriorly) according to the depression 

parameter. As the depression parameter is increased or decreased, the squeezing is changed 

with the same ratio. The pericardial sac is also pushed laterally to the left as severity 

increases. 

 

Mediastinal dissection 

Through spectating real surgery, the mediastinal dissection process starts with the 

surgeon pawing down on the anterior part of the pericardium and stretching its tissue to 

reveal a “foamy” plane. The surgeon then continues this motion while advancing the 

introducer forward to the left side of the thorax. Collision-based deformation is performed 

between the introducer collision mesh and an organ’s mesh. These collision-meshes are 

constructed from the original rendered mesh of each organ. Although computationally 
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expensive, we attempt to utilize this method as well as using shaders to simulate 

mediastinal dissection.  

Once collision is detected with the surgical tool, the mediastinum model is 

deformed in a similar fashion to other organs. The difference is that it does not return to its 

initial shape after collision (plastic deformation). A dynamic plane (sprite) is placed at the 

point where the surgeon chooses to make the pathway. This plane is textured with a texture 

map representing the “foamy” or “webby” structure (Fig. 27 (a)) with an underlying 

transparent channel to reproduce the creation of a hole in the mediastinal plane. Instead of 

creating an actual hole, a shader is used turn specific pixels of the sprite resembling the 

foamy tissue transparent, according to a semicircle-shaped gradient (Fig. 27 (b)) that is 

masked on the sprite.  

 

 

 

(a) 

 

(b) 

 

Fig. 27. Model of the stretched mediastinum (a) and the mask with gradient (b). 
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3.2 Results 

 The adopted methods were implemented in the game engine Unity and the 

simulation components were executed. Close supervision and feedback of experienced 

surgeons throughout the development process assisted in delivering a realistic reproduction 

of the procedure. This section presents the results obtained and describes the outcome of 

the used techniques. 

 

3.2.1 Mirrored-image correction 

 To correct the mirrored image problem, programming was used to construct a 

Customized Projection Matrix (�̂�) used to un-flip the projection of the scene. Furthermore, 

the back-face determination criterion was inverted to ensure rendering all polygons after 

this change in projection (Fig. 28 (a)). As a result, when running the simulation, the correct 

view of the graphical scene is displayed on the mirror (Fig. 28 (b)). 

 

  
(a) 

 

(b) 

 

Fig. 28. Graphical image in mirror using (�̂�) before (a) and after (b) addressing the back-

facing polygons issue. 
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3.2.2 Modeling PE deformity 

To evaluate the ability of our generic model to conform to the patient’s size and 

deformation, we compared the patient-specific generated deformity with the actual shape 

of the patient’s chest (ground truth) in the form of a 3D mesh obtained using surface 

scanning (Fig. 29 (a)). The comparison of the two surfaces was carried out utilizing Delta™ 

Surface Comparison Utility from ARANZ Scanning Ltd (ASL) [271]. 

Fig. 29 (b) shows results of such a comparison for the cup type PE. In this case, the 

difference between the surface scan (Fig. 29 (a)) and simulated chest shape (Fig. 30) along 

the centerline is slightly above 0 and equal to approximately 4 mm. The slight difference 

in the lower rib region can be explained by error introduced by breathing or by differences 

in supine postures from one patient to another. However, the differences in the deformity 

region are close to 0. The differences recorded indicate satisfactory approximation with 

minor inaccuracies. The maximum difference is very localized and situated in the area 

below the xiphoid process inferior to the region of interest. 

 

     
(a) 

 

(b) 

 

Fig. 29. Pre-surgical (a) cup type PE surface scan and (b) comparison between simulated 

and actual chest shape. 
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Fig. 30. External view of the patient avatar model with simulated PE condition. 

 

3.2.3 Simulation of the mediastinal dissection 

A mediastinal tunnel can be created using the simulated surgical tool. Fig. 31 (a) 

illustrates the initial position of the introducer at the start of the simulation. At this point, 

the introducer is constrained by high stiffness forces in local x- and y-axes and friction 

force in the local z-axis preventing from any rapid movement. The forces reach 

approximately 6.2 N, which is the maximum nominal force of the haptic device. The force 

coefficients were estimated with collaboration of experienced Nuss procedure surgeons 

from CHKD. The produced behavior approximates the movement of the tool around the 

pivot and the forces involved. 

Once the tool is in contact with that part of the mediastinum, the mediastinum 

deforms revealing the webby tissue (Fig. 31 (b)). Upon further motion, the hole increases 

in diameter (Fig. 31 (c)). As the introducer advances to the other side of the mediastinum 

(Fig. 31 (d)), the tool pushes away the surrounding tissue and the friction force is increased 

as the introducer comes into contact with the mediastinum. This force was approximated 

to not exceed 0.5 N, depending on velocity of the tool’s motion. Reaching the other side of 

the thoracic cavity requires creating another hole in the mediastinum (Fig. 31 (e)). Once 
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the tip reaches the other side, the mediastinal tunnel has been created (Fig. 31 (f)). Organ-

specific collision forces with deformable objects are not simulated. 

The next step requires reorienting the thoracoscope so that the surgeon can look 

underneath the deformity and can identify a blue sphere which marks the exit point from 

the thoracic cavity (Fig. 31 (g)). The simulation ends once the surgeon touches the blue 

sphere without causing any complications (Fig. 31 (h)). 

 

   
(a) 

 

(b) 

 

(c) 

 

   
(d) 

 

(e) 

 

(f) 

 

  
                       (g) 

 

                    (h) 

 

Fig. 31. Simulation of mediastinal dissection in the fully virtual NPST. 
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3.3 Advantages and Limitations of a Fully Virtual Simulation 

The fully virtual NPST provides a reasonable approximation of the procedure and 

a realistic training platform. However, it suffers from several limitations. Its merits and 

limitations are discussed here. 

This virtual implementation of the procedure displayed strength for patient-specific 

simulation where dimensions and parameters describing the patient's torso and deformity 

are extracted from CT data to, consequently, tailor the simulated models. Furthermore, the 

virtual environment allows for introducing surgical scenarios and complications to the 

procedure for training as well as for the ability to integrate dynamic behavior such as heart 

beating and bleeding. Another benefit is the ability to accurately reproduce forces with the 

aid of the haptic device and associated physics-based models. It is also an automated 

environment that can potentially be used to monitor and measure the user’s performance. 

On the other hand, given the nature of a generic (3-DOF) haptic device's end-

effector, no insertion mechanism can be performed without moving the stylus' natural pivot 

along. Therefore, although the force models for constraining the haptic device's motion and 

simulating collisions are a successful approximation of the tool's pivoting behavior, a 

discrepancy is present because of the lack of physical constraints and an insertion 

capability, where the end-effector is always carried along causing the stylus' physical joint 

to be located, at some instances, at coordinates that correspond to the inside of the patient. 

The virtual implementation of the simulator also lacks visual cues such as an exterior 

visualization of intercostal spaces as well as tactile cues, both of which are important for 

training. It is also not, or at least not easily, possible in such setup to utilize the haptic 

device to operate instruments such as a bar flipper, Kelly clamp, and umbilical tape. 
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CHAPTER IV 

A FULLY PHYSICAL NUSS PROCEDURE SIMULATOR 

In parallel to the development of the fully virtual simulator platform described in 

the preceding chapter, a manikin-based fully physical counterpart was explored. In this 

chapter, the methods adopted to construct a Nuss procedure training manikin are described. 

The approaches for designing, prototyping, and assembling the physical components that 

make up the simulator are articulated. A similar critique of this modality is then provided 

where the advantages and limitations are laid out. 

The setup described in this chapter corresponds to the fully physical extreme of the 

virtual-physical continuum described in section 2.3 of this dissertation and will be referred 

to, throughout this work, by the fully/solely physical Nuss procedure surgical simulator, 

the physical NPST, the NP manikin, the physical setup/modality/scheme, or the purely 

physical version, interchangeably. 

 

4.1 Methods 

In a fully physical version of the simulator, rapid prototyping, 3D printing and form 

casting techniques are utilized to create a physical manikin-based simulator of a patient's 

torso with a PE deformity.  

 

4.1.1 Interface 

The Nuss procedure training manikin allows the user to become familiar with main 

aspects of the surgery. The user can train on the actual surgical tools including the pectus 

introducer, pectus bar, retractors, Kelly clamp, stabilizers, and umbilical tape (Fig. 32). 
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Furthermore, the user can perform initial sternal elevation which is becoming a 

routine part of the procedure. The surgeon uses a bed-mounted crane, such as a Rultract® 

system [44], to perform lateral or subxiphoid elevation of the sternum before mediastinal 

dissection. This component of the surgery has proven to assist tremendously in decreasing 

the effort required to create the pathway through the mediastinum. 

Through this interface, the user is also able to utilize visual and tactile cues relevant 

for characterizing the deformity and making decisions regarding insertion and exit points. 

 

 

Fig. 32. Real surgical tools from the surgery can be used for training on the NP manikin. 

 

4.1.2 Thoracoscopy 

To display the internal view of the manikin, two approaches were implemented. 

The first prototypical approach uses an inexpensive endoscopic camera (webcam) mounted 

on a steel rod and inserted into the manikin and manipulated by the user. The camera 

connects to a computer and uses that connection to provide necessary lighting during usage.  

In a second, more advanced approach, an actual Stryker laparoscopic tower [272] 

was integrated with the manikin including the light and power sources as well as both a 5 
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millimeter- and a 10 millimeter-size autoclavable laparoscopes. The user is, thus, able to 

use the same scope used in the real surgery. 

 

4.1.3 Synthetic skin, external intercostal muscle, and organs 

Two iterations of a PE-deformed ribcage were developed. In the first iteration, a 

proof-of-concept design of the ribcage was constructed by modifying the skeletal model 

from the Visible Human Project [267, 268] to create a 3D model of a deformed ribcage 

(Fig. 33 (a)). Special pins were modeled for each rib to make it attachable to an 80/20 [273] 

stainless steel rail (Fig. 33 (b)). The ribs and corresponding pins were then 3D-printed and 

mounted on the apparatus. A hinge was inserted into the 3D-printed sternum to allow for 

anterior and posterior articulation. A second iteration of the ribcage was constructed by 

acquiring a generic thorax anatomy skeleton model (Fig. 33 (c)). 

For the external intercostal muscle and the skin, Smooth-On synthetic material 

[274] was utilized to prepare and shape a multi-layered and -colored skin as well as a strong 

yet elastic rubber mesh placed between the skin and the ribcage to resemble the external 

intercostal muscle (Fig. 34 (a, b)). Synthetic material was also used to form cast models of 

the pericardium, lungs, and diaphragm that each differ in elasticity and pliability (Fig. 34 

(c, d, e)). 
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(a) 

 

 
(b) 

 

(c) 

 

Fig. 33. Ribcage construction for the Nuss procedure manikin. First iteration using (a) a 

modified Visible Human Project ribcage model with a PE deformity and (b) the design of 

3D-printed ribs mounted on steel rail. Second iteration using (c) a generic anatomy model 

of the skeleton. 
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(a) 

 

(b) 

 

  
(c) 

 

(d) 

 

 
(e) 

 

Fig. 34. Components of the Nuss procedure manikin constructed from synthetic materials: 

(a) multi-layer skin, (b) ribcage covered with external intercostal muscle, (c) form casted 

pericardium, (d) diaphragm model, and (e) the appearance of all the components including 

the lungs. 
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4.1.4 Pectus excavatum deformity 

Pectus deformity was reproduced on both iteration of the ribcage. The 3D printed 

model was originally designed with an embedded PE deformity before printing (Fig. 33 

(a)). As for the iteration that utilized a ribcage obtained from a generic anatomical skeleton, 

high-temperature air was applied to the rubber material that resembles the costal cartilages 

and the sternum was pulled posteriorly to add the PE deformity. In both cases, springs were 

added to hold down the sternum while allowing the user to elevate it using appropriate 

techniques from the surgery (Fig. 35). 

 

 

Fig. 35. Springs holding down the sternum to simulate PE deformity. 

 

4.2 Results 

The physical NP simulator’s components described above provide a platform for 

training on the real tools from the surgery. Replaceable patches of the synthetic skin and 

muscle allow for repetitive training (Fig. 36). The manikin makes training on the skills 

described in the following sections possible. 
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4.2.1 Initial sternal elevation 

Using either a retracting device such as the Rultract® for lateral or subxiphoid 

sternal elevation (Fig. 36 (c)) or using the Vaccuum Bell system [40], the user is able to 

train on elevating the sternum to improve the thoracoscopic view of the mediastinum. This 

is a vital step that impacts greatly the mediastinal dissection process. The manikin is a 

suitable environment to observe the effect of this step and realize its significance (Fig. 36). 

 

 

 

(a) 

 

 
(b) 

 

(c) 

 

Fig. 36. The two iterations of the NP manikin components using a prototyped 3D-printed 

ribcage in one iteration (a) and a generic anatomy model of the ribcage in another (b) as 

well as using the Rultract® for sternal elevation (c). 
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4.2.2 Introducer maneuver, tissue dissection, and thoracoscopy 

Using the real introducer from the operating room (Fig. 37), the user is able to train 

on the motions associated with the mediastinal dissection process by pawing with the 

posterior part of the introducer on the pericardium model and making way to the other side 

of the chest. This is guided with simulated thoracoscopy as the user observes the internal 

view of the manikin on the computer and is able to operate the thoracoscope (Fig. 38). 

 

 

Fig. 37. Real introducer and thoracoscope used for training on the fully physical Nuss 

procedure simulator. 

 

 

Fig. 38. Thoracoscopic view of the interior of the Nuss procedure manikin. 
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4.3 Advantages and Limitations of a Fully Physical (Manikin) Simulator 

The physical setup clearly adds value to tasks that require the use of surgical 

instruments where fine movements are expected such as making an incision, creating a 

suture and securing the stabilizer. The reproduction of the mechanical behavior and 

pivoting motion of the surgical tools are flawless here as they, the tools, are inserted into 

the manikin just like they are in the actual surgery. Additionally, not only does the physical 

setup provide the user with visual cues regarding the external landmarks such as the 

intercostal spaces, deepest point of depression, and introducer's progress in the 

subcutaneous tunnel, but also the ability to determine their location in a tactile manner. 

In a physical setup, however, no real-time dynamics and interactions are present 

such as the beating heart, fluid emission, and the complication of puncturing the 

pericardium. Although these can be added with some difficulty and expense, the system is 

also unable to introduce procedural complications and pre-modeled scenarios to the 

simulation which makes the training scope and resolution somewhat limited. Furthermore, 

this setup is not an efficient platform for patient-specific planning as it requires an offline, 

and a rather long, changeover. Therefore, an average or standardized set of parameters that 

describe the patient and deformity populations are assumed to suffice. 
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CHAPTER IV 

A HYBRID SYSTEM 

This chapter introduces the ultimate proposition of this work, namely a training 

platform for the procedure that integrates the better elements of the two simulators 

developed and discussed in the preceding two chapters. The hybrid Nuss procedure 

surgical trainer (NPST) utilizes an optimal combination of the components of each 

implementation to produce a mixed-reality system that incorporates necessary physical 

constituents with a tailored virtual environment. The system described in this chapter will 

be referred to, throughout this work, by the hybrid Nuss procedure surgical trainer (NPST), 

the hybrid simulator, the hybrid model, the hybrid setup, or the hybrid version, 

interchangeably. 

The chapter discusses in its outset a thorough task breakdown and analysis of the 

Nuss procedure performed with consultation of experts who perform the surgery regularly. 

The purpose of this breakdown is to provide a systematic comparison reference that 

determines the extent to which a particular simulation modality accomplishes the most 

relevant characteristics of the surgery. This breakdown segments the surgery and identifies 

its discrete components for a successful NPST and, subsequently, classifies the procedure’s 

steps into tasks and subtasks as well as determines their significance for positive training. 

The two developed simulation modalities are then compared against relevant criteria 

derived from the nature of the surgery to highlight the potentials and emphasize the 

limitations of each setup and inspire a hybrid model that combines the best of both. An 

identification of various aspects in the previous systems that can be improved and/or 

supplemented with a better approach is detailed. 
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After delegating each aspect of the surgery to either a virtual or a physical 

simulation modality, the development of the hybrid surgical trainer is thoroughly 

discussed. The hybrid NPST’s architecture is described and details about its various 

components are elaborated. In addition to addressing and implementing several upgrades 

that improve the fidelity and performance of the trainer, a demonstration of how the system 

fulfills the discussed training requirements is provided. 

 

5.1 Evaluating Previous Systems Against the Procedure 

In collaboration with surgeons who frequently perform the Nuss procedure and 

have pioneered its training and advancement at the Nuss Center [275], a task breakdown 

of the surgery was performed to identify and classify the discrete steps involved in the 

procedure and highlight those that are considered most essential for a proposed training 

platform, i.e., unique to the Nuss procedure. This has, subsequently, identified the scope of 

the NPST to include the aspects of the procedure that experts consider a priority for training 

and excluded surgical steps that are trivial or mutual with other procedures. The resulting 

tasks are shown in Table 2 along with a brief description of how they are simulated on the 

purely virtual versus on the purely physical platform. To identify areas where each of the 

two implementations contributes more significantly, the efficient and more realistic 

implementation of the two is highlighted using bold text. 

Consequently, these surgical steps can be translated into a number of training 

requirements to be present in a successful trainer for the procedure. These requirements are 

listed in Table 3 as well as whether they are present in each of the two implementations. 



   

 

80 

As can be observed in Table 3 a virtual setup of the trainer plays a significant role 

in automated user assessment and patient-specificity aspects. The virtual nature of the 

simulation allows for tailoring the patient’s avatar and PE deformity to conform to 

parameters from patient CT data, introducing surgical scenarios and complications to the 

training scope, as well as enhancing the realism of the experience through dynamic 

visualizations such as breathing, bleeding, and heart beating. However, the nature of the 

haptic device hinders the use of various surgical tools and retractors and introduces a 

discrepancy in the tool’s pivot mechanics as addressed by Obeid et al. in [30]. 

The physical setup of the trainer, on the other hand, adds undisputable value in 

aspects such as realistic tool mechanics and behavior (bar flipper, Kelly clamp, suture 

needle, retractors, and umbilical tape), visual and tactile cues involving anatomical 

landmarks, as well as intuition and ease of use. As it relates to scenario versatility and 

training scope, however, the physical setup suffers from a cumbersome changeover 

between uses and a need to settle for an average standardized shape, morphology, 

parameters, and user experience. 
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Table 2. Implementation of the Nuss procedure trainer against relevant surgical tasks. The corresponding more efficient and realistic 

implementation is highlighted in bold. 

# Task Steps Purely Virtual Approach Purely Physical Approach 

1 Interface 

a. Surgeon uses thoracoscopy. a. Thoracoscopy is automated. a. Thoracoscopy is approximated. 

b. Surgeon uses scalpel, introducer, 

and retractor. 

b. User uses haptic device to control 

introducer only. 
b. Real surgical tools can be used. 

2 

Anatomical 

landmarks 

visualization and 

identification 

a. PE deformity observed. 

a. PE deformity is reproduced by 

affecting sternum, associated costal 

cartilage and external skin of patient's 

avatar with a deformation model with a 

fall off 

a. PE deformity created with a physical 

spring attached to xiphoid process. 

b. Patient-specific morphology 
b. Simulated deformity is governed by 

parameters collected from CT data. 

b. Generic PE deformity is reproduced 

and is not patient-specific. 

c. Organs and anatomical landmarks 

observed. 

c. 3D models of organs present 

including lungs, diaphragm, and 

beating heart textured via surgical 

photos obtained from operating 

room. 

c. Synthetic material is used to cast lung, 

diaphragm, and pericardium models. 

Primitive colors used, and heart is not 

beating. 

d. Deepest part of sternum. 
Deepest point visualized. However, tactile 

determination of landmarks is absent and 

intercostal spaces not visible externally. 

AAL/MAL approximated. 

Exterior landmarks can be located by 

visualizing and feeling through synthetic 

skin on 3D-printed ribcage. AAL and 

MAL can be located. 

e. Intercostal spaces. 

f. Anterior axillary line (AAL) and 

mid axillary line (MAL). 

3 Thoracoscopy 

a. Incision made for thoracoscope. 
a. Incision for thoracoscope is assumed to 

already exist. 

a. Incision can be made on replaceable 

synthetic skin. 

b. Inspect PE deformation internally. 

b. Virtual camera is available to 

visualize interior of virtual chest and 

internal intercostal muscle. 

b. Web-cam is mounted on a long steel 

rod and can be inserted into chest. 

c. Surgeon's assistant guides 

thoracoscope, focusing on tip of 

introducer. 

c. Virtual camera follows introducer's tip 

at all times according to haptic device's 

motion. A 30 angle is incorporated. 

c. Assistant can maneuver web-cam. A 

30 angle is absent. 
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4 Sternal elevation 

a. Make incision lateral to xiphoid 

process to make entry point of 

Rultract retractor rake. 

a. Cutting and incision not implemented. 
a. Surgical scalpel can be used to 

perform step 

b. Using Rultract, crank up and elevate 

sternum gradually. 

b. Haptic interface limits implementing 

retractor. 

b. Actual surgical retractor can be used 

to perform step. 

c. Noticeable substantial relief of 

Pectus deformation is observed in 

thoracoscope. 

c. Sternal elevation is not implemented. 
c. Thoracoscopic view shows sternal 

lift. 

5 
Mediastinal 

tunneling 

a. Determine correct tunneling plane 

by applying small force brushing 

downwards on undersurface of 

sternum. Separation of tissue 

indicates safe spot. 

a. Pericardial sac can be seen beating in 

view, a thin layer can be identified 

between pericardial sac and sternum. 

a. Tunneling plane can be determined 

between synthetic pericardial sac and 

sternum. Tissue separation is observed. 

b. With aid of thoracoscope, guide 

introducer under sternum. 

b. Virtual camera follows tip of 

introducer. Targeted areas are viewed 

by aiming introducer towards them. 

b. Maneuver camera to visualize targeted 

area. Synthetic organs in sight 

c. Gently dissect mediastinum tissue 

with consideration of beating heart. 

c. User can pry along defined plane to 

dissect tissue and make pathway while 

heart is beating. 

c. Brushing motion may be performed 

similar to surgery. Heart is not beating. 

d. When tunneling is achieved, 

puncture through exit site, 

examining externally. 

d. Exit point is marked on interior of 

simulated left thorax, touching it will 

terminate simulation. 

d. Puncturing can be performed 

through other side of synthetic 

muscle. 

e. Pull tip of introducer out through 

established left incision site. 

e. Simulation ends when left side was 

reached. 

e. Introducer tip can be pulled from 

left incision. 
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Table 3. Required training aspects for a NPST and their current availability on a purely 

virtual (V) or a purely physical (P) setup. 

Trainer Aspect  Requirement V/P? 

1. Visual / tactile cues 

a. Observe external skin and feel intercostal spaces.  P 

b. Observe deformity externally and internally. V 

c. PE deformity is interactive with user. P 

d. Realistic and adjustable deformation of organs. V 

e. Real-time dynamics: beating heart, blood emission. V 

2. Surgical tool mechanics 

a. Realistic feeling of holding tool. P 

b. Realistic pivot mechanics. P 

c. Versatility of surgical tools. P 

3. Procedural tasks 

a. Make markings on chest. P 

b. Elevating sternum using surgical retractor. P 

c. Mediastinal tunneling through substernal tissue. P 

4. User performance 

assessment 

a. Track simulation lapse time. V 

b. Track surgical tool economy of motion. V 

c. Track type and number of errors made. V 

d. Automated performance evaluation and calculation. V 

5. Patient-specificity 

a. Models can be adjusted patient-specifically. V 

a. PE is adjustable and can involve variability. V 

b. Other complications can be integrated. V 

6. Usability / repeatability 
a. Interface is intuitive and clear. P 

b. Changeover between training sessions is minimum. V 

 

 

A hybrid simulator/trainer will, therefore, combine the components of the two 

previous modalities according to the allocation described in Table 3 and following the road 

map described by Obeid et al. in [26]. Some components were, however, implemented sub 

optimally in the previous two versions and other components have inherent flaws that 

should be addressed. The following is a summary of aspects from the previous two setups 

that require improvements when implemented in the hybrid setup: 
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▪ Issues and challenges: the following pre-existing issues should be addressed 

when implemented in the new hybrid system: 

 Pivot mechanics: approximation of pivot behavior using the haptic device 

in the fully virtual simulator introduces an inherent discrepancy between the 

physical and the simulated pivot point because the haptic device’s stylus 

doesn’t support insertion. Since it will utilize the haptic interface, the hybrid 

setup must compensate for this discrepancy. 

 Computationally expensive organ structures: the models of the organs in the 

virtual setup are composed of a single high-polygon mesh used for collision 

detection registered for rendering, deformation, and haptic interaction. This 

design is very expensive to process. A better structure must be incorporated. 

 Slow soft-body deformation: implementation of soft-body deformation in 

the virtual setup uses a collision model generated from the original mesh of 

each organ and doesn’t leverage the computer’s Graphical Processing Unit 

(GPU), causing a dramatic loss in frames and hinders the performance. A 

more adequate high-performance design for deformations must be 

developed. 

 PE deformity: in the virtual setup, the PE deformity affects the chest wall 

only. Tissues such as the mediastinum, pericardium, and diaphragm should 

also be affected by the deformity. 

 Haptics: haptic forces are triggered using collision detection governed by 

the original high-polygon mesh rendered. Additionally, organ collision 

forces are based on a universal force type/property only. The hybrid setup 
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must optimize the haptic interface’s collision detection and introduce organ-

specific fore characteristics. 

 Unity engine: the virtual setup doesn’t utilize the most recent version of the 

engine as it runs on version 4.6. The hybrid setup must utilize the potentials 

of the more recent releases of the engine. 

 

▪ Additional requirements: after improving existing components from the 

previous two setups, several features that correspond to essential aspects of the 

surgery should be added to the hybrid NPST to ensure it provides the training 

skills required. These additions include: 

 The hybrid trainer must incorporate a platform to perform and train on 

lateral or subxiphoid sternal elevation, which is an essential step in the 

procedure. 

 The virtual setup doesn’t include a facility to record and evaluate the user’s 

performance. Such a component is needed. 

 No complication scenarios are implemented where the user penetrates the 

pericardium and causes bleeding. Adding such a scenario expands the 

training scope. 

 

 

5.2 Methods 

The previous section demonstrated how each simulator scheme has merits that the 

other cannot provide. A best-of-both approach is undertaken in this section to describe a 

design of a hybrid virtual/physical construction for the simulator. In a generic sense, the 
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hybrid Nuss Procedure Surgical Trainer (NPST) integrates a physical semi-manikin of the 

thorax with a haptic-incorporated virtual environment. 

 

5.2.1 Physical thorax 

Seeing that the physical setup showed strong potential for implementing aspects 

that are relevant to the external visual and tactile cues of the simulator, a similar 3D-printed 

ribcage with synthetic skin and muscle will be adopted in the new approach. Since the 

physical constituent is employed to complement the virtual environment, only ribs of the 

right side of the chest (facing the user) as well as the sternum were 3D-printed and added 

to the thorax. The ribs and sternum were obtained from the modified Visible Human Project 

model [267, 268]. The ribs were mounted on an 80/20 [273] steel rail by complementing 

each rib with a modeled pin that fits the rail’s openings (Fig. 39 (a)). The sternum 

articulates via an embedded metal hinge and is pulled down posteriorly via springs, along 

with the associated portion of the synthetic skin, to recreate a PE deformity (Fig. 39 (b)). 

This training thorax (Fig. 39 (c)) allows for marking the body, obtaining tactile cues from 

the skin, tool insertion, as well as the ability to use some of the original surgical tools and 

to perform trivial tasks such as marking relevant external landmarks, making incisions, and 

using the umbilical tape. Required surgical tools (scalpel, marker, Kelly clamp, etc.) were 

made available. 
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(a) 

 

(b) 

 

 
(c) 

 

Fig. 39. Structure of the training thorax including (a) the modeled and 3D-printed ribs of 

the right of the ribcage and custom pins, (b) the 3D-printed sternum that articulates via an 

embedded hinge, as well as (c) the synthetic skin and muscle. 

 

5.2.2 Thoracoscopy 

The thoracoscopic view of the patient will convey from the virtual setup. To control 

the virtual thoracoscope, the user can choose between two modes: (1) the “auto-follow” 

mode where the camera constantly follows the tip of the introducer; and (2) the 

“controlled” mode where the user controls the thoracoscopic camera in real-time using a 

Wiimote. Since the hybrid setup utilizes a physical manikin, the Wiimote can be attached 
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to a steel rod inserted in any intercostal space the surgeon decides. The Wiimote’s pitch, 

roll and yaw motions control and update the rotation of the virtual thoracoscopic camera. 

The simulated virtual camera is equipped with a 30 angle as in the real surgery. 

 

5.2.3 Patient specificity and PE deformity 

Patient-specific modeling of the patient's PE deformity is reproduced as explained 

in Chapter 3. Parameters to describe the morphology can be obtained from CT data and 

converted into a single parameter (depression) that is inputted in to the simulation [260]. 

The system of morphed deformations with a parameterized falloff described in 

Chapter 3 is incorporated into the associated entities of the hybrid trainer’s virtual 

environment. The envelopes of influence were, however, updated and supplemented using 

a system of blend shape deformers designed in Autodesk Maya [276] and incorporated as 

attributes for the torso, ribcage, internal intercostal muscle, diaphragm, pericardium, and 

mediastinum. Each organ affected by the PE deformity received a customized blend shape 

system that describes the gradient path of vertices’ deflection upon some degree of 

deformation (Fig. 40). All affected organs are linked to a single global value of deformation 

in the simulation equal to the established depression parameter. 

In the fully virtual simulator, the PE deformity was assigned at the start of the 

simulation and cannot be changed. In the hybrid NPST, however, the value of depression 

index was made a global variable and can change from 0 to 100; where 0 applies no degree 

of PE and 100 is the maximum depression. A module was incorporated to link the degree 

of PE deformity to the physical orientation of the sternum in the training thorax via Arduino 

communication. This module will be described in section 5.2.4.  
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Fig. 40. Envelop of influence for deformation constructed to apply a cup-shaped 

morphology to the simulated ribcage. 

 

5.2.4 Virtual/physical sternal elevation 

A sensor was mounted on the undersurface of the 3D-printed sternum and 

connected to an Arduino platform to monitor its articulation and orientation at all times 

(Fig. 41). The sensor used is a 6-axis motion processing component that provides 

information in six degrees of freedom (3-axis gyroscope and, 3-axis accelerometer). For 

the purposes of the PE deformity, only the 3-axis accelerometer was utilized.  

 

 

Fig. 41. Accelerometer installed on undersurface of sternum to monitor its articulation. 

 



   

 

90 

To incorporate the hybrid NPST with a facility to perform sternal elevation as 

deemed necessary by many experts, a cranking retractor mechanism was constructed and 

mounted on the apparatus above the training thorax. The device features a blunt tip 

Rultract® rake (Fig. 42 (a)) that can be inserted into the training thorax late and a cranking 

mechanism (Fig. 42 (b)) is used to elevate the sternum and hold it in place, using lateral or 

subxiphoid sternal elevation. 

 

 

 
(a) 

 

(b) 

 

Fig. 42. Cranking mechanism to train on sternal elevation. 

 

5.2.5 Pivot Mechanics 

As described before, the nature of generic (3-DOF) haptic device’s end effector 

hinders an insertion behavior because the device’s natural pivot, i.e., the stylus joint, 

physically travels with the user’s motion; whereas, in reality, the tool’s pivot is stationary 

at the insertion point. This discrepancy is, therefore, compensated for by augmenting the 
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generic haptic device with an extension that implements a mechanism to utilize the device’s 

natural pivot, while allowing the tool to be inserted into the training thorax appropriately.  

After performing necessary measurements of the haptic device’s stylus and 

associated components, this mechanism was designed, 3D-modeled, and prototyped using 

3D printing (MakerBot Replicator Z18). The mechanism is composed of a component that 

controls and monitors the translational motion of the tool via Arduino communications (an 

open-source prototyping platform). 

As the user attempts to move the tool through the insertion point (in the z-direction), 

a 3D printed component (Fig. 43) – not the stylus itself – slides through the extension 

affecting a 3D-printed wheel mounted to a rotary encoder connected to an Arduino Uno 

board. To simulate translational movements with respect to the fixed pivot, the tool’s 

motion rotates the wheel affecting the rotary encoder. The rotation of the encoder is 

converted into translation of the surgical tool in the simulation. 

This mechanism facilitates simulating an insertion behavior where the end effector 

is constrained from moving, while the user can maneuver through the extension utilizing 

the stylus’ natural pivot, thus resolving the previously described discrepancy. This work 

was reported and validated by Obeid et al. [30]. 

 

 

Fig. 43. 3D-printed handle that attaches to the haptic device’s stylus and can be inserted 

into the training thorax. 
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5.2.6 GPU-leveraged soft body deformation 

In the fully virtual setup, soft body deformation was based on collision models 

generated from the original mesh of each organ. Although soft body deformation upon 

colliding is achieved in this way, it is computationally expensive and causes a loss of many 

frames per second. Therefore, the hybrid NPST was incorporated with a facility to perform 

soft-body deformation in an efficient, optimized, and high-performance manner. 

In order to increase the performance while producing realistic tissue and organ 

deformation, the GPU-leveraged unified particle-based simulation framework NVIDIA 

FleX [277, 278] was utilized to create a set of unified collision particles for each organ. 

The Deformation model of each organ, therefore, is composed of a cluster of such particles 

(spheres) of controlled size and count that are linked together with spring-based stiffness 

models (see Table 4 for example for the lungs). Collisions with these particles are solved 

as soft bodies described with appropriate stiffness parameters and deformation behavior 

models and, consequently, influence the Render model of the corresponding organ.  

 

5.2.7 Recording performance 

The hybrid NPST is a training platform. Such a platform is not complete without 

an automated way of collecting performance data to describe the user’s behavior and 

convey scores that describe the adequacy of the performed tasks. Since the user’s 

interaction with the internal organs are simulated, the virtual environment can be 

incorporated with a metric calculation and performance assessment facility.  

The system infrastructure of the simulator was configured, and the various 

components were connected in a manner that allows for the collection of performance 
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metrics. Automated real-time data acquisition regarding relevant metrics that describe the 

training session and the trainee’s performance was constructed. The metrics that involve 

computing the number of organ collisions use a distinct collision system (the Information 

model) independent of that of the haptic, soft deformation, or render systems (see Table 4 

for example for the lungs). 

Through consultation with experts in Nuss procedure development and training, it 

was established that intraoperative cardiac perforation can be caused by using the tip of the 

introducer rather than its undersurface for mediastinal tunneling and/or applying too much 

pressure on the pericardium. Therefore, in addition to commonly recorded metrics such as 

completion time (sec) and total instrument path (mm), the performance-recording facility 

also calculates excessive instrument penetration time (total time introducer exceeds a given 

distance threshold from the center of the heart (sec)), total organ collisions (number of 

times the introducer’s body collides with an organ (n)), as well as tip collisions (number of 

collisions between introducer’s tip and the pericardium (n)). The value of each metric is 

updated in real-time during the simulation and is stored by the Recorder. The program 

generates a performance report associated with the trainee’s log-in credentials at the end 

of the session. 

 

5.2.8 Independent organ-specific haptic properties 

Haptics implementation in the fully virtual version of the simulator utilized a 

universal set of properties for the force generated upon colliding with any organ 

indiscriminately. In order to incorporate a more realistic behavior, the dynamic link library 

(DLL) for Geomagic® OpenHaptics® Toolkit by [279] is integrated into the system to 
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allow for organ-specific haptic force modeling. A set of parameters that describe the 

damping and stiffness of each organ were added to allow for an independent more specific 

behavior. Each organ’s Haptic model (described in 5.2.9) is used to detect collision with 

the surgical tool and haptic force is generated accordingly. This collision system that 

communicates with the haptic interface is independent of that of the soft deformation, 

rendering, and performance recorder systems (see Table 4 for example for the lungs). 

 

5.2.9 Optimized organ architecture 

As described in sections 5.2.6 through 5.2.8, a multi-model architecture was 

constructed for each organ in the virtual environment. This sophisticated architecture 

ensures an independent processing of visual, deformation, and haptic interactions as well 

as an independent retrieval of information that describes the members involved in a 

collision. 

Ultimately, the user only perceives the Render model which is the visual 

representation of the organ and its behavior. Internally, however, each organ is also 

composed of the Deformation model, the Haptic model, and the Information model. These 

models are used for collision detection but differ in type, function, granularity, and 

attributes. Table 4 provides a thorough description of all four models that make up the 

structure of each organ and how they interact with the environment. 
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Table 4. The four models incorporated into every organ in the scene. This architecture parallelizes the different functionalities and 

interactions for each organ. 

 Render model Deformation model Haptic model Information Model 

Description 

A high-resolution, high-

polygon smooth mesh that 

describes the topography of 

the organ. High resolution 

texture and UV-maps were 

created and mapped 

according to this mesh. 

A system made up of several 

clusters of identical particles 

(spheres) generated using 

NVIDIA Flex unified 

particles system to describe 

the volumetric shape of each 

organ. The particles are 

linked with spring-based 

stiffness models. Collision 

with particles affects their 

neighbors and drives a 

deformation of the “Render 

model”. This system is 

processed on the GPU. 

A low resolution coarse 

mesh, generated based on 

the original mesh of the 

organ but reduced using a 

feature-preserving vertices 

reduction algorithm. 

provides a superficial 

description of the organ’s 

surface and interfaced with 

by the haptic device. 

A trigger-based primitively 

shaped collider (sphere, 

capsule, cube) chosen 

appropriately for each organ. 

Physics-based interactions 

are not processed upon 

colliding with this mesh. 

Instead, information simply 

about whether or not a 

collision has occurred, and 

an identification of the 

colliding object is registered. 

Attributes 

Rendered in 

the scene? 
Yes No No No 

Drives organ 

deformation? 
No Yes No No 

Detected by 

haptics? 
No No Yes No 

Used by 

Recorder? 
No No No Yes 

Function 

This is the only mesh 

rendered to the viewer and is 

used to apply the surface 

texture of the organ. 

Not rendered in the scene 

but detects collision between 

the surgical tool and 

members of the particle 

system. This system 

executes soft-body 

deformation of the organ 

based on the occurring 

collision. 

Does not appear in the 

renderer but is nonetheless 

detectable by the haptic 

system. The mesh holds 

haptic properties that 

indicate how stiff the organ 

should feel (stiffness and 

damping). 

Does not appear in the 

renderer and only sends a 

signal to the Recorder when 

a collision with it has 

occurred. Also sends the ID 

of the colliding object. 
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 Render model Deformation model Haptic model Information Model 

Example: Lungs 

 

 
 

 

 
 

 

 
 

 

 
 

Vertices count: Lungs 13,000 vertices 1,622 particles 367 vertices 84 vertices 

Result: Lungs 
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5.2.10 Dynamic interactions 

The dynamics involved in the simulated surgery and virtual environment for the 

hybrid system will convey from the fully virtual setup. Physics-based interactions were 

modeled to deliver realistic behavior of the pericardium including a 2-stage motion for 

systole and diastole heartbeat. As the degree of PE deformity increases, according to the 

articulation of the sternum in the training thorax, the pericardium is squeezed and pushed 

laterally to the left and all adjacent entities of the body are deformed. 

Through the developed multi-model architecture for simulating organs’ behavior, 

collisions between the surgical tool and any organ causes soft-body deformations, 

generates corresponding haptic feedback, and is recorded as a collision event by the system. 

A surgical complication is implemented where excess collision with and pressure 

applied to the pericardium causes cardiac perforation. If a consistent force applied to the 

pericardium exceeds a specified threshold, the haptic interface generates a release behavior 

where force feedback is immediately dropped to simulate puncturing. At that time, the 

surgical tool has exceeded a specified distance to the inner area of the pericardium which 

triggers an immediate blood emission and the simulation is terminated. The bleeding source 

is spawned at the puncturing location and the blood flow’s direction and velocity are 

consistent with the surface normal. The fluid/blood particles are represented by 2D sprites 

and spheres and their trajectory is affected by a gravity field. Each particle increases in size 

once emitted by a predefined factor until it reaches the maximal size before being destroyed 

and disposed from the simulation after a specified limited amount of time. 
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5.3 Hybrid System Design Architecture and Components 

As depicted in Fig. 44, the main constituents of the hybrid trainer are the virtual 

environment module, the Arduino module, the hybrid pivot module, and the physical 

module. Details pertaining to each of the modules are described in the following sections. 

 

 

Fig. 44. Design architecture of hybrid Nuss procedure surgical trainer. 

 

5.3.1 Physical module 

The Physical Module of the trainer includes a training thorax (Fig. 39 (b)) that 

contains the right side of the ribcage, an articulating sternum, as well as synthetic skin and 

muscle. The user interacts with the physical module using surgical tools such as the scalpel, 

marker, or Kelly clamp (Fig. 32) as well as using the cranking retractor assembly that 

enables the user to perform lateral or subxiphoid sternal elevation. The user inserts the rake 
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(Fig. 42 (a)) into the training thorax lateral to the sternum and uses the cranking mechanism 

(Fig. 42 (b)) to elevate it and hold it in place. A synchronized immediate effect is observed 

in the virtual environment. 

 

5.3.2 Arduino module 

The Arduino Module includes a 3-axis accelerometer and a rotary encoder 

connected to an Arduino Uno board (Fig. 45). The accelerometer is mounted on the 

undersurface of the 3D-printed sternum and communicates real-time information that 

describe its articulation at all times (Fig. 41). The rotary encoder was installed in the hybrid 

pivot to control the insertion distance of the surgical tool.  

A driver for this Arduino module was developed and incorporated in the Unity 

engine virtual environment to send and receive data. For this communication not to 

interfere with and affect the performance of the system, a multi-threading approach was 

used where the driver queries a separate CPU thread at each run to send information 

regarding the accelerometer’s orientation and the encoder’s rotation from the Arduino 

board to Unity. 

 

 

Fig. 45. Arduino Uno board as part of the Arduino module. 
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5.3.3 Hybrid pivot Module 

The Hybrid Pivot is an integrated assembly that augments and attaches to the end-

effector of the haptic device. The haptic device is relied on only for providing the surgical 

tool’s orientation and rotation (yaw, pitch, and roll) during the simulation, whereas the 

Arduino module overrides the tool’s translation in the z-direction via the rotary encoder. 

As the user inserts the 3D-printed handle that simulates the introducer (Fig. 43), a rotary 

encoder is affected moving the simulated surgical tool in the virtual environment. 

 

5.3.4 Virtual environment module 

Within the Virtual Environment, the models of the patient's torso, ribcage, the 

internal intercostal muscle, the diaphragm, as well as the pericardium and mediastinum 

tissue are all influenced, with flawless synchronization, by a system of morphed 

deformation of a parameterized falloff. The degree of PE deformation (simulated via the 

percentage of the depression parameter) is governed by the real-time orientation of the 3-

axis accelerometer mounted on the physical sternum and connected through Arduino 

communication.  

The interior of the simulated thorax contains the 3D models of the lungs, 

diaphragm, and the actively beating pericardium ( Fig. 47 (c)). As the simulated surgical 

tool is inserted to perform mediastinal tunneling, it interacts with the multi-model system 

of organs to produce recorded collisions, soft-body deformations, and a haptic interaction. 

The virtual environment was incorporated with a Recorder that performs automated 

calculation of elapsed simulation time, path tool length, number of organ collisions, and 

evaluates the extent to which the pericardium is penetrated. 
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A framework was implemented to detect puncturing of the pericardium and a 

system for blood emission is triggered when the introducer’s penetration into the heart 

exceeds a specified threshold. 

 

5.4 Results 

The combination of virtual and physical components to form a hybrid setup 

capitalizes on the automatic, flexible, and controlled nature of a virtual reality system, 

coupled with the intuitive and perceivable nature of a physical manikin (Fig. 46). This 

section discusses the results regarding the trainer’s interface, functionality, and 

performance. 

 

 

Fig. 46. The hybrid virtual/physical Nuss procedure surgical trainer (NPST). 
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5.4.1 Lateral or subxiphoid sternal elevation 

The simulation starts with the trainee using a scalpel to make an incision at the 

appropriate place on the training thorax to insert the rake of the retractor under the xiphoid 

process to perform sternal elevation. As the trainee cranks the assembly and elevates the 

sternum, the simulated thoracoscopic view shows the model of the sternum moving 

correspondingly, thus relieving the formerly-depressed pericardium and making the path 

for mediastinal tunneling clearer (Fig. 47). 

 

  

(a) 

 

(a) 

 

  

(c) 

 

(d) 

 

 Fig. 47. Effect of using cranking retractor to elevate sternum. Moving sternum of physical 

training thorax affects directly and simultaneously the sternum and associated organs in 

the virtual environment: Training thorax showing degree of PE deformity (a) before and 

(b) after elevation. Thoracoscopic view of virtual environment showing degree of PE 

deformity (c) before and (d) after sternal elevation.  
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5.4.2 Thoracoscopy 

Thoracoscopy can be guided with one of two modes: using a Wiimote to control 

the thoracoscope, or use an auto-follow mode where the camera automatically follows the 

tip of the instrument. 

 

5.4.3 Mediastinal dissection 

After properly elevating the sternum, the formerly depressed mediastinal area (Fig. 

48 (a)) is relieved and the thoracoscopic view is immediately improved (Fig. 48 (b)). 

Following that step, the trainee inserts the 3D-printed surgical tool into the thorax and 

observes the simulated introducer moving in the thoracoscopic view (Fig. 48 (c)). The 

trainee then dissects the mediastinal tissue by carefully pawing down on the beating 

pericardial sac with the posterior surface of the introducer as it deforms posteriorly to this 

motion and the mediastinal tissue is observed to be dissected (Fig. 48 (d)). Fig. 48 (e) shows 

the mediastinal tunnel halfway created as both the mediastinal tissue and the pericardium 

deform posteriorly under the introducer as the introducer’s tip brushes against the 

undersurface of the sternum. At this stage, the trainee would feel the friction of the 3D-

printed tool similarly brushing against the physical sternum in the training thorax. The 

mediastinal dissection process is continued (Fig. 48 (f-i) and a blue sphere comes into view 

on the internal intercostal muscle resembling the exit point. As the left side of the thorax is 

reached (Fig. 48 (j)), the simulation ends once the tip of the introducer reaches that exit site 

and the sphere’s color turns red (Fig. 48 (k)).  
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(a) 

 

(b) 

 

(c) 

 

   

   
(d) 

 

(e) 

 

(f) 

 

   
(g) 

 

(h) 

 

(i) 

 

  
                        (j) 

 

                    (k)  

 

Fig. 48. Performing the mediastinal dissection on the hybrid NPST. 
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5.4.4 Soft-body deformation 

During the simulation, soft-body deformation is observed upon colliding with the 

pericardium, the mediastinal tissue, the lung, or the diaphragm. These deformations are 

implemented as part of the multi-model architecture described in section 5.2.9 and their 

computations are executed on the GPU. Fig. 49 (a) and (b) show a soft-body deformation 

instance were the pericardium is deformed upon colliding with the tip of the introducer and 

Fig. 49 (c) and (d) show the underlying unified particle system for the deformation model. 

 

  
(a) 

 

(b) 

 

  
(c) 

 

(d) 

 

Fig. 49. Soft-body deformation of the pericardium: The Render model (a) before collision 

and (b) at collision. The same is demonstrated for the Deformation model in (c) and (d) 

showing the interaction with the underlying NVIDIA Flex particle system. 
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5.4.5 Complication: Cardiac perforation 

At any point during the simulation, a complication scenario can be invoked if an 

incorrect plane is used for mediastinal dissection or if the introducer’s tip is used instead 

of it undersurface. Upon applying an amount of pressure on the pericardium with the 

introducer’s tip that exceeds the specified threshold, cardiac perforation takes place and 

blood is observed to flow from the penetration site (Fig. 50). The simulation will terminate 

if that event occurs. 

 

  
(a) 

 

(b) 

 

 
(c) 

 

Fig. 50. Complication scenario during mediastinal dissection: Cardiac perforation and 

bleeding. (a) force applied using the tip of the introducer has exceeded the predefined 

threshold and the pericardial tissue has been penetrated, (b) blood flow increases, and (c) 

view is obscured by blood and simulation terminates. 
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5.4.6 Delegation of training requirements to system components 

The hybrid Nuss procedure surgical trainer (NPST), allows for realistic tactile 

assessment of the physical torso and the use of actual surgical tools to provide adequate 

training on the sternal elevation and the mediastinal tunneling skills. The integrated 

Recorder measures and monitors the motion of the surgical tool and reports relevant user 

performance metrics. Table 5 shows the delegation of each of the NPST requirements 

discussed in section 5.1 to the various constituents of the developed system along the 

virtual-physical continuum. 
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Table 5. Delegation of each training requirement to components of the hybrid Nuss procedure surgical trainer (NPST) as they relate to 

the virtual/physical continuum. 

  Virtual Physical 

 

Virtual Environment Module Arduino Module Hybrid Pivot Module Physical Module 

Collision/ 

rendering 

NVIDIA 

FleX 

Perf. 

Recorder 

Accelero-

meter 

Rotary 

encoder 

Haptic 

device 

Hybrid 

pivot 

3D-printed 

extension 

Training 

thorax 

Surgical 

tools 

Cranking 

retractor 

T
ra

in
er

 r
eq

u
ir

em
en

t 
#

 

1a. Ext skin + ribs         X   

1b. PE ext. & int. X        X   

1c. Interactive PE X   X     X   

1d. Def. organs X X          

1e. Heartbeat & bleed X           

2a. Realistic tool        X    

2b. Realistic pivot       X     

2c. Versatile tools          X  

3a. Make markings         X   

3b. Sternal elevation    X     X  X 

3c. Med tunneling X X   X X X X    

4a. Track lapse time   X         

4a. Track tool path   X   X      

4a. Track # collisions   X   X      

4a. Generate metrics   X         

5a. Patient-specific X           

5b. Adjustable PE X   X        

5c. Complications X           
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5.4.7 In-vitro validation of the Recorder 

An in-vitro validation experiment was conducted to verify the functionality of the 

performance-recording system when a particular behavior is intended. Three scenarios 

were executed (10 runs each) and average performance metrics are reported in Table 6: 

▪ Scenario 1 – minimizing errors: collision with any organ but the pericardial sac was 

avoided, excessive pressure on pericardial sac was avoided, and the undersurface 

of the instrument (not its tip) was used for mediastinal tunneling.  

▪ Scenario 2 – excessive penetration: intentional excessive penetration was applied 

to the pericardial sac and the instrument’s undersurface was used for tunneling. 

▪ Scenario 3 – tool tip perforation: mediastinal tunneling was intentionally performed 

using the tip of the introducer not its undersurface. 

 

Results show that the simulator can faithfully reflect the intended behavior in each 

scenario. Lower count of total organ collisions and excessive instrument penetration was 

observed in Scenario 1, longer excessive penetration was observed in scenario 2, and higher 

count of tip collisions and excessive penetration was observed in scenario 3. 

 

Table 6. Reported performance metrics for three validation scenarios. 

Performance Measure 
Scenario # (n = 10) 

1 2 3 

Avg. completion time (sec) 87.1 106.3 98.3 

Avg. instrument path (mm) 171.1 159.8 222.9 

Avg. organ collisions count (n) 1.2 1.9 5.6 

Avg. excessive penetration (sec) 0.9 19.1 19.4 

Avg. tip collisions count (n) 0.7 9.1 33.4 
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CHAPTER IV 

VALIDATION 

Rigorous evaluation, assessment, and validation is essential following the 

development of a new simulation and training system to establish its utility and 

faithfulness. The fifth aim of this dissertation is to demonstrate the validity of the developed 

hybrid trainer. This chapter details the design and obtained outcomes of experiments 

performed to establish primary validation entities including face, content, and construct 

validities. 

 

6.1 Study Design and Demographics 

A user study was designed to deploy the Hybrid NPST at the Children’s Hospital 

of the King’s Daughters (CHKD) and invite two cohorts of medical professionals to 

participate. The main objective is to obtain necessary subjective and objective evaluation 

of the system to establish its validity as a training instrument. The Old Dominion University 

Institutional Review Board (IRB) approved the study (IRB #: 1077126-2). 

A total of 15 subjects (9 males and 6 females) participated in this study. The 

participants included two groups: 4 experienced surgeons (experts) and 11 

residents/students (novices). The age ranged from 40 to >50 for experts and from 20 to 40 

for novices. Surgical experience ranged from 12 to 33 years (23 ± 9) for experts and from 

0 to 9 (2.3 ± 2.7) for novices. Table 7 shows details about the participants’ demographical 

information displayed in the form of pie charts. It is worth pointing out that all experts have 

previously performed the NP and none of the novices received simulation-based training 

for the NP. 
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Table 7. Demographics of participants in the user study. 

 Performed NP? Received NP Training? 
Received Simulation-based 

Training on NP? 
Used Simulators? 

Experts 

    

Novices 

    

All 

    

 ,  

100%

0%

100%

0%

50%50%

75%

25%

27%

73%

36%

64%

0%

100%

73%

27%

47%

53% 53%

47%

13%

87%
73%

27%
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6.2 Protocol of the Study 

All participants were asked to complete a short pre-questionnaire before using the 

system to provide information about prior surgical experience as well as experience with 

surgical trainers and simulators. 

All participants were then asked to complete three training trials on the hybrid 

NPST. In each trial, the participant performed sternal elevation using the cranking 

mechanism as well as performed mediastinal dissection (tunneling) by passing the 

simulated surgical tool from the right side to the left side of the simulated thorax, while 

observing and monitoring the process in the simulated thoracoscopic view. Each 

participant received an instructional briefing about the simulation with aid of a video of the 

real surgery. The simulation terminates automatically upon reaching the specified location 

on the left side of the thorax. 

After completing the 3 simulation trials, each participant was asked to complete 

two post-questionnaires. The post-questionnaires provided the user’s evaluation of the 

fidelity, as well as the training capacity of the hybrid NPST, respectively. 

 

6.3 Face Validity 

Face validity evaluates the extent to which the simulator resembles the real system 

as judged by users. After using the simulator, the participants were asked to subjectively 

evaluate the simulator’s esthetics, realism, and fidelity with special focus on four aspects 

relating to the surgery: realism of using the cranking mechanism for sternal elevation, 

realism of organ simulation and visualization, realism of the mediastinal dissection process, 

and overall realism. 
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6.3.1 Methods 

A 1–7 Likert scale was employed in this experiment, with 1 being Absolutely not 

realistic and 7 being Absolutely realistic. The participants were also able to leave 

anonymous feedback regarding the system’s realism for future and further improvement. 

The instrument (questionnaire) used is included in Appendix A. 

 

6.3.2 Results 

The complete evaluation of the various aspects of realism for the hybrid NPST is 

displayed in Fig. 51. For the Overall Realism category (Fig. 51 (d)), 67% of the participants 

judged the first impression and the user design as ‘‘5 – somewhat realistic, 6 – realistic, or 

7 – absolutely realistic’’. This score (5 or higher) was given by 27%, 47%, and 60% of the 

participants for the introducer manipulation, the synchronization between virtual and 

physical components, and the overall realism, respectively. 

 

 
(a) 
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5

6

7

Interface and ease of use Responsiveness of simulation
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Effect of sternal elevation on
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(b) 

 

 
(c) 
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(d) 

 

Fig. 51. User evaluation of the NPST’s realism with respect to: (a) using the cranking 

mechanism for sternal elevation, (b) organ simulation and visualization, (c) mediastinal 

dissection process, and (d) overall realism. 

 

6.4 Content Validity 

After using the simulator, the participants were asked to subjectively evaluate the 

simulator’s capacity and appropriateness for training on the Nuss procedure with special 

focus on four aspects relating to the surgery: Training capacity for identifying procedural 

landmarks using visual and tactile cues, training capacity for sternal elevation, training 

capacity for mediastinal dissection, and overall training capacity.  

 

6.4.1 Methods 

A similar 1–7 Likert scale was employed in this experiment, with 1 being 

Absolutely not useful and 7 being Absolutely useful. The participants were also able to leave 
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Overall
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realism
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anonymous feedback for suggested improvement to aspects relating to positive training. 

The instrument (questionnaire) used is included in Appendix A. 

 

6.4.2 Results 

The complete evaluation of the various aspects of training capacity of the hybrid 

NPST is displayed in Fig. 52. For the Overall Training Capacity category (Fig. 52 (d)), the 

percentage of participants that gave a score of ‘‘5 – somewhat useful, 6 – useful, or 7 – 

absolutely useful” were as follows: 73% for training capacity of introducer manipulation, 

80% for training capacity of hand-eye coordination, 87% for training capacity of special 

properties of the Nuss procedure, and 73% for overall training capacity. 
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(b) 

 

 
(c) 
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(d) 

 

Fig. 52. User evaluation of the NPST’s training capacity with respect to: (a) identifying 

procedural landmarks using visual and tactile cues, sternal elevation, mediastinal 

dissection, and overall training capacity. 

 

6.5 Construct Validity 

In this section, the trainer’s ability to detect quantitative differences in performance 

between various levels of surgical expertise was investigated. The system’s ability to 

provide a statistically significant discrimination between the two levels of expertise 

establishes its construct validity signifying its ability to measure performance and viability 

as a training platform. 

 

6.5.1 Methods 

An experiment was carried out to investigate the NPST’s ability to distinguish the 

experienced from the novice participants. A Recorder facility was incorporated into the 
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system to automatically collect information pertaining to the following objective 

performance metrics: 

1. Completion time in seconds. 

2. Total instrument path in millimeters. 

3. Excessive instrument penetration (total time the introducer exceeds a given 

distance threshold from the center of the hear) in seconds. 

4. Total number of instrument-body collisions with organs.  

5. Total number of instrument-body collisions with the pericardium 

6. Total number of instrument-tip collisions with the pericardium. 

 

All participants received instructions on how to perform the procedure and were 

shown an instructional video for sternal elevation using a Rultract® as well as for the 

mediastinal dissection process. Participants then completed three consecutive trials on the 

NPST system and received brief feedback between trials. The objective of the simulation 

run was to perform mediastinal dissection while minimizing collisions with organs and 

pressure applied to the pericardium.  

It is hypothesized that the group of experienced surgeons will outperform the group 

of novices in metrics that quantify the user’s skill in performing mediastinal dissection with 

minimized errors. Comparisons of mean performance measures for each metric between 

the two groups were made using a Mann-Whitney U test. 
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6.5.2 Results 

The experts group displayed better performance than the novices group for skills 

relevant to correct mediastinal dissection. This was demonstrated by the shorter excessive 

penetration time: 7.5 ± 8.8 for experts versus 20.5 ± 10.7 for novices with statistically 

significant difference (p < 0.05) (Fig. 53 (c)); as well as fewer tip-heart collisions: 6 ± 3.81 

for experts versus 16.3 ± 12 for novices with statistically significant difference (p < 0.05) 

(Fig. 53 (e)). There was no statistically significant difference between the two groups for 

simulation time, total tool path, and body-organ collision metrics (Table 8). 

 

Table 8. Statistical test results for performance metrics. 

Metric Experts Novices p-value a 

Time (sec) 130.2 (60.4) 86.2 (40.8) 0.053 

Total Tool Path (mm) 110.1 (69.1) 144.1 (79.4) 0.118 

Excessive pen time (sec) 7.5 (8.8) 20.5 (10.7) 0.002 

Body-organ collisions (n) 2.11 (1.8) 13.4 (17.5) 0.160 

Body-heart collisions (n) 23.33 (17.36) 21.56 (17.52) 0.781 

Tip-heart collisions (n) 6 (3.81) 16.3 (12.0) 0.006 
a Mann-Whitney U test 

 

These results showed that the simulator was able to reflect a difference in expertise 

level between experts and novices for mediastinal dissection with respect to pressure 

applied on the heart as well as avoiding using the tip of the surgical tool for dissection. 

This demonstrates preliminary construct validity of the mediastinal dissection task on the 

hybrid NPST. 
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(a) 

 

(b) 

 

  
(c) 

 

(d) 

 

  
(e) 

 

(f) 

 

Fig. 53. Performance difference between experts group and novices group for various 

metrics: (a) simulation time, (b) tool path, (c) excessive penetration time, (d) tip-heart 

collisions, (e) body-organ collisions, and (f) body-heart collisions. 
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CHAPTER VII 

CONCLUSIONS AND FUTURE WORK 

 This dissertation discussed the development, design, and utility of a surgical 

training platform for the Nuss procedure – the minimally invasive technique to correct the 

congenital chest wall deformity pectus excavatum (PE). The development involved an 

exploration of virtual reality- as well as physical-based surgical simulation modalities to 

exploit their limitations and identify aspects where each adds value. The resulting system 

is a hybrid mixed-reality trainer. 

 

7.1 Virtual Simulator 

 A fully virtual simulator for the procedure was constructed by integrating a patient-

specific virtual environment with a haptic interface. In this setup, the user manipulates the 

surgical instrument using a haptic device and interacts with an avatar of the patient and 

relevant organs. A simulated thoracoscopic view displays the instrument’s behavior within 

the thorax. A patient-specific model for the PE deformity was developed to allow for 

tailoring the avatar to parameters obtained from CT data. The anatomically-correct 

environment was constructed using footage from real surgery combined with 3D modeling 

techniques. 

 

7.2 Physical Simulator 

  A fully physical manikin-based platform for simulating the procedure was also 

constructed to explore the other extreme of the virtual-physical spectrum where a PE-

deformed ribcage was designed, 3D-printed, and coupled with synthetic materials for the 
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skin, muscle, and organs. The sternum was pulled posteriorly using springs and fixed in 

place; and the real surgical tools were made available for training. 

  

7.3 Evaluating the Two Simulators 

 Realistic simulation of an entire surgical procedure is not a feasible goal with 

current technology. A more dominantly practical approach is to follow a task breakdown 

procedure of the surgery to identify the most relevant aspects to be included in the 

simulation. Therefore, this work performed this task breakdown for the Nuss procedure 

and, based on experts' opinion, identified the significance of each task. 

 This dissertation then compared the two simulation platforms constructed against 

the conducted task breakdown of the surgery resulting with an identification of the areas 

where each setup contributes more and identified the limitations of each. 

 A fully virtual environment enables automated user assessment and patient-

specificity. The virtual and flexible nature of the simulation allows for adjusting the models 

and morphologies to patient-specific data, provides a wider training scope through the 

ability to introduce surgical scenarios and complications, as well as involves a higher 

fidelity simulation through incorporating dynamic visualizations such as breathing and 

heart beating. Such an environment, however, has limited ability to reproduce a surgical 

tool’s mechanics as it relies on a haptic interface for the approximation of physical 

constraints. It is also infeasible in such an environment to simulate procedures that require 

the usage of several surgical tools and retractors. 

 On the other hand, the fully physical variety of the simulator suffers no issues in 

aspects relating to tool mechanics as well as visual and tactile cues. Its training scope, 
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however, is very narrow because of the involved changeover between uses and the 

difficulty in incorporating patient-specific components and dynamic interactions. 

  

7.4 The Hybrid 

 A hybrid virtual-physical simulator and trainer was developed utilizing the 

successful components of the two previous versions. This capitalizes on the merits of 

having a physical external manikin that allows for realistic tactile assessment of the torso 

and the use of actual surgical tools, coupled with the power of a virtual environment that 

integrates an interactive and realistic patient-specific model of the patient's torso and 

deformity with the ability to generate accurate haptic force feedback and automatically 

measure the user’s performance. 

 Through the development of the NPST, three main challenges were addressed: (a) 

the ability to reproduce an interaction between the user and the environment through visual 

and tactile cues, addressed through incorporating appropriately placed sensors and 

synchronizing virtual and physical coordinate spaces; (b) the compensation for a 

discrepancy between virtual and natural pivots when utilizing a haptic interface for tool 

insertion, addressed by constructing an augmentation for generic haptic devices to account 

for said discrepancy; and (c) the requirement to process high fidelity visualization, soft- 

body deformations, and haptic interactions for anatomically-correct organs while 

preserving and recording collision events and information for user performance evaluation, 

addressed by developing a multi-model architecture that describes and implements the 

behavior of each organ in a parallel manner. 

 



   

 

125 

7.5 Validation Study 

 A user study was conducted to establish face, content, and construct validity of the 

system. According to the respondents, the hybrid NPST provides a realistic reproduction 

of important aspects of the Nuss procedure (60% of participants judged it as realistic) and 

is an adequate platform for training (73% of participants judged that it has capacity for 

useful training). Additionally, the trainer was able to distinguish between various levels of 

expertise with regards to metrics that measure the surgeon’s correct and safe mediastinal 

dissection. 

 

7.6 Future Work 

 The hybrid NPST delivers a platform for simulating the surgery. It focuses, 

however, on specific surgical tasks relevant for sternal elevation and mediastinal 

dissection. Future work can address the reproduction of other aspects of the surgery such 

as: subcutaneous tunneling, left lung simulation and interaction, as well as bar placement 

and securement. 

 Furthermore, the developed architecture for simulating organs with associated 

interactions could benefit greatly from further experimentation with a different procedure 

that involves different organs. This could further demonstrate the utility of the architecture 

and generalize its purpose.
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APPENDICES 

APPENDIX A: VALIDATION STUDY INSTRUMENTS 

The instruments (questionnaire’s) used to obtain the necessary information for the 

user study (IRB #: 1077126-2) are shown here: 

 

Pre-questionnaire 

Participants were asked to complete the following questionnaire before using the 

NPST system. It provides demographical information and a description of surgical 

experience: 

1. Age range? (20 – 30, 30 – 40, 40 – 50, or >50) 

2. Role at medical institution? 

3. Are you a resident? If yes, what year/specialty? If no, how long is your post-

residency experience (years)? 

4. Surgical experience (number of years)? 

5. Have you performed the Nuss procedure? If No, please proceed to question 8.  

6. How long is your experience with the Nuss procedure (number of years)? 

7. How many Nuss procedures do you do yearly? 

8. Have you received any training on the Nuss procedure?  

9. Have you received simulation-based training on the Nuss procedure? 

10. Do you have prior experience with surgical trainers? 
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Post-questionnaires 

Participants were asked to complete the following two-part questionnaire after 

using the NPST system. It provides an evaluation of the user’s experience with the system 

after trying it as well as an evaluation of the system in a training capacity. 

 

PART I: Please evaluate the realism of the NPST system and its components. (1-

absolutely not realistic, 4-neutral, 7-absolutely realistic): 

1. Please evaluate the realism of simulating sternal elevation using Rultract: 

1) Interface and ease of use. 

2) Responsiveness of simulation to sternal elevation. 

3) Effect of sternal elevation on improving thoracoscopy and relieving 

pressure on pericardium. 

2. Please evaluate the realism of organ simulation and visualization:  

1) Pericardium. 

2) Mediastinal tissue. 

3) Lungs. 

4) Ribcage and internal intercostal muscle. 

5) Diaphragm. 

3. Please evaluate the realism of the mediastinal dissection process. 

1) Tactility of physical skin and muscle on manikin. 

2) Simulated organ deformation upon collision. 

3) Tactility and haptic feedback of virtual simulated organs. 

4) Responsiveness and experience during mediastinal dissection. 
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5) Quality of thoracoscopic view. 

4. Please evaluate the overall realism of the NPST. 

1) First impression. 

2) User design. 

3) Introducer manipulation. 

4) Synchronization between physical and virtual components. 

5) Overall impression and realism. 

 

PART II: Please evaluate the training capacity of the NPST system and its components. 

(1-absolutely not realistic, 4-neutral, 7-absolutely useful): 

1. Please evaluate the training capacity for identifying procedural landmarks using 

visual and tactile cues (relevant to NP): 

1) Deepest point of depression. 

2) Intercostal spaces. 

3) Anterior axillary line (AAL). 

4) Mid axillary line (MAL). 

5) Incision site. 

6) Entry and exit sites of internal intercostal muscle. 

7) Overall. 

2. Please evaluate the training capacity for sternal elevation: 

1) Attaching Rultract to sternum. 

2) Lifting sternum and improving thoracoscopic view. 

3) Overall. 
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3. Please evaluate the training capacity for mediastinal dissection steps: 

1) Orientation. 

2) Finding correct tunneling plane. 

3) Avoiding tip/pericardium collision. 

4) Pawing down on pericardium to separate from sternum.  

5) Successful substernal tunnel creation. 

6) Overall. 

4. Please evaluate the overall training capacity of the NPST: 

1) Training of Introducer manipulation. 

2) Training of hand-eye coordination. 

3) Training of special properties of the Nuss procedure. 

4) Overall training capacity. 
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APPENDIX B: PERMISSION TO USE FIGURES 

This appendix is for obtained permissions to use figures of other studies. 
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