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Abstract: This research continues the previous work “Robotic-Arm-Based Force Control in Neurosur-
gical Practice”. In that study, authors acquired an optimal control arm speed shape for neurological
surgery which minimized a cost function that uses an adaptive scheme to determine the brain tissue
force. At the end, the authors proposed the use of reinforcement learning, more specifically Deep
Deterministic Policy Gradient (DDPG), to create an agent that could obtain the optimal solution
through self-training. In this article, that proposal is carried out by creating an environment, agent
(actor and critic), and reward function, that obtain a solution for our problem. However, we have
drawn conclusions for potential future enhancements. Additionally, we analyzed the results and
identified mistakes that can be improved upon in the future, such as exploring the use of varying
desired distances of retraction to enhance training.

Keywords: neurosurgical robotics; optimal control; reinforcement learning; deep deterministic
policy gradient
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1. Introduction

This article is the continuation of the work developed in [1]. As stated in that
work, studies indicate that every year, 22.6 million people suffer neurological injuries
and 13.8 million of them must go to the operating room [2]. Only in the USA and according
to the American Society of Neurological Surgeons (AANS), 50,000 neuro surgeries lasting
more than half an hour are performed each year and studies indicate that brain tissue begins
to undergo tension about a quarter of an hour after the beginning of the operation [3].

In order to prevent ischemia discomfort, medical professionals emphasize the crucial
need for maintaining an appropriate volume of the inner brain artery, with a recommended
level higher than 10–13 mL per 100 gm−1 min1. Additionally, Bell et al. [4] and the research
of Laha et al. [5] indicate that brain injury can occur when mean arterial pressure is off by
less than 70 mmHg from the brain’s retraction pressure, but that full recovery can occur
when the deviation is beyond 200 mmHg. Notably, the frequency of postoperative problems
varies depending on the complexity of the surgical treatment, with an incidence between
3% and 9% [6,7]. Brain retraction in skull base surgery causes particular complications in
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about 10% of surgeries, which might result in problems such parenchymal hematomas,
aphasia, hemiparesis, and numbness, see the work of Laha et al. [5].

Intriguingly, the human brain is an incredibly complex organ, and its response to
surgical procedures involves a delicate interplay of various factors. The impact of brain
retraction extends beyond immediate mechanical stress; it can also influence cerebral blood
flow and intracranial pressure. When the brain is retracted, it can compress blood vessels,
potentially compromising blood flow to vital regions. This reduced blood supply can
lead to ischemia, which can have severe consequences, including neuronal damage and
cognitive deficits [8]. Therefore, the meticulous management of brain retraction is crucial
not only for preventing immediate tissue damage but also for safeguarding the brain’s
overall functionality.

Moreover, it is worth noting that the brain’s sensitivity to pressure variations can vary
significantly from person to person. Factors such as age, overall health, and pre-existing
conditions can influence how the brain responds to retraction. Older individuals or those
with vascular disorders may be more vulnerable to complications related to brain retraction,
emphasizing the need for personalized approaches in neurosurgical procedures [9].

Medical practitioners have taken a number of steps to improve surgical outcomes
in light of these alarming figures. Two significant developments are the adoption of
minimally invasive surgery (MIS) techniques as an alternative to traditional operations,
which minimizes the requirement for large incisions, and the introduction of surgical
robots [3] to overcome human limits and improve surgical precision. Combining these
developments has created minimally invasive robotic surgery (MIRS), in which robots
work with surgeons to extend surgical options and bypass human limits. Patients who
receive MIRS experience a quicker return to baseline function, less postoperative discomfort,
shorter hospital stays, less immune system stress, and cheaper healthcare expenses [10–12].
Hoecklemann has defined three primary categories for MIRS: teleoperated systems, where
robots collaborate with medical professionals via an interface; image-guided systems, where
robots carry out predetermined surgical plans using intraoperative geometric data obtained
from navigation or tracking systems; and active guidance, where medical professionals
have manual control over the robotic system [13,14].

This article primarily focuses on the critical aspect of brain retraction during surgical
procedures (refer to Figure 1). In surgeries involving access to areas deep within the brain,
surgeons employ a technique called “brain retraction” [15]. This maneuver involves care-
fully separating the natural folds of the brain to access the targeted area within. However,
experts caution that the pressure applied during brain retraction can potentially damage
brain tissue, and the extent of damage depends on several factors, including the magnitude
and duration of the pressure, gravitational effects, fluid loss, the brain’s rigidity, and the
limit of deformation (typically around 20 mm) [3,10–12,16,17]. High pressure during retrac-
tion can lead to brain contusions and infarctions, compromising oxygen supply due to vein
deformations and swelling.
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In a groundbreaking study outlined in a prior work [1], researchers introduced the
use of a robotic system to assist with brain retraction (Table 1). They formulated a control
law equation, derived from variational calculus, which provided an optimal speed for
the robotic brain retractor, denoted as Equation (1). This equation incorporates three
lambda coefficients to model the robotic arm’s behavior, and the precise definition of these
coefficients is crucial for achieving the correct speed profile.

v(x) =

√
λF(xd − x)2F2(x) + λerror(xd − x)2

2λv
(1)

Table 1. Control parameters and variables from [1].

Parameter Name Definition Value with Units or
Units

λF Square force term ponderation coefficient 1 N−2

λerror
Square position setpoint error

ponderation coefficient 10−4 m−2

λv
Square speed term ponderation

coefficient 10−3 s2 m−2

xd Brain tissue displacement objective m
x Brain tissue displacement m
F Applied force by brain retractors N

The robotic brain retractor must reach the desired final position, have a final speed
of zero, and start at a position of zero. The ideal speed is determined by Equation (1) and
accomplishes these three critical goals.

The point of interaction, the preceding position, and the applied force are all inputs
into this control system (Figure 2), which only has one output—speed.
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The experimental results obtained in [1] are shown in Figures 3–6.
In [1], when discussing future improvements, it was proposed to use deep reinforce-

ment learning techniques for the configuration of the controller; such techniques could then
be applied to the research to improve and adapt the control law. Considering everything
stated above, we will now go over how to apply these methods to the application we just
mentioned. It is important to note that this is a highly analytical result, and one can only
support it if they have a very accurate and linear model of brain tissue.
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Furthermore, in the existing literature, several research works, such as the one pre-
sented in the work of Song et al. [18], have introduced adaptive control structures. These
methodologies hold the potential for applicability in our specific scenario, particularly
when the penalty or optimization costs can be expressed as analytical functions that depend
on the control parameters. One notable advantage of these adaptive control structures is
their ability to mitigate issues such as controller-induced overshoot, thus enhancing overall
system performance.

However, it is important to note that, in our case, a significant limitation arises due to
the absence of an analytical expression linking the control response to its corresponding
reward or fitness function. This lack of a direct analytical relationship between the control
actions and the performance metrics poses a considerable challenge when attempting to
integrate adaptive control methods into our system.

2. Problem Statement

We have set two conditions for the control proposal to be useful. On one hand, the
most important objective is to separate the brain folds enough for the professional to work
in the affected area, so we are going to set up a variable as xdesired, which is the distance
we are trying to achieve between the folds that we are opening. On the other hand, as we
have mentioned before, when the brain is retracted, ischemic processes are induced, so our
second condition is to reduce them as much as possible, lowering the deformation force on
the brain as we open it and reducing the velocity of retraction as much as possible.

The strength/resistance of the brain tissues when they are separated does not cause
significant errors in the location of the retraction tools, so the robot’s speed and the speed
of the displaced brain tissues will always be the same. As a result, the robot’s dynamic
equation can be defined as follows:

dx
dt

= u (2)

The robot velocity (u) is the derivative of the position (x) with respect to time (t).
Brain tissues generate a reaction force when the retractors are opened by the robotic

arm; this is what we are going to control to achieve/improve our second objective. We will
model this resistance/force using the hyper elastic response from the Ogden model [19]
(see Figure 7), where the deformation force depends on the separated distance.
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Because there is a dearth of detailed knowledge about modeling brain tissue, we
have opted for the straightforward model shown in Figure 7. It is currently the only
straightforward yet reliable model that is available to us. The necessity for simplicity and
accuracy and the lack of more extensive modeling choices dictated this decision in the
absence of alternatives.

The stretch ratio (λ) in our case is the position of the robot (x), which is same as the
distance between the brain folds that we are opening because the initial position is taken as
zero. The force is calculated with Equations (3)–(5).

λ =
x + Linitial

Linitial
; i f Linitial = 0→ λ = x (3)

F = Fmax·FNormalized(λ, t) (4)

Fmax = A·Pmax (5)

A stiffness model from the literature is used to normalize the force to its maximum
values. The maximum force is a necessary parameter for this model.

3. Control Proposal

Through a digital twin or a more intricate model than the one utilized in the earlier
study, reinforcement learning (RL) enables adaptation.

Among the deep reinforcement learning techniques, we will use the Deep Determinis-
tic Policy Gradient (DDPG). Both are included in the reinforcement learning (RL) paradigm.

RL is based on the fact that a robot, also known as an actor, can train itself to solve a
problem and always executes the most appropriate decisions (which will give the greatest
reward) [20]. RL’s actor is connected to a simulated environment, which defines the
problem we want to solve. While training, the agent will select actions based on the
feedback received from the environment. The goal is to gradually learn the set of actions
that will give the actor the best reward by solving the problem with the optimal result.
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DDPG uses this method to learn a policy (what to do in a given state or situation)
in a continuous environment with a deterministic actor [21]. A problem formulation is
composed of the environment, the agent (critic and actor), and the reward function.

The initial article’s methodology confines the development to a linear model of brain
tissue. Because it incorporates control based on continuous input and output variables, this
technique was chosen above others.

3.1. Environment

The environment gives the agent the information it needs, such as, the observations
which define the state (position of the retraction tools and deformation force) and the
reward (value of the previously taken action) (see Section 3.4) [20]. As stated previously, it
is a simulated environment, which simulates the operation room and the brain. The code
written to create the environment was divided into two parts.

On one hand, we initialized the quantity/number of observations and actions (see
Algorithm 1). Then, we set all the values for all the variables that are necessary to perform
the calculations within the environment, and finally created the environment.

Also, we created a function called “cleanstart” (see Algorithm 2), which reset all
variables to their starting values, so that when a new simulation starts, the agent will start
from the same state every time.

Algorithm 1: Create an environment.

1. procedure
2. Observation Information← Quantity of Observations = 2: Force and Position.
3. Action Information← Quantity of Actions = 1: Velocity.
4. λ1← 0.9 // Control variable for the deformation force importance in the reward function.
5. λ2← 0.2 // Control variable for the velocity importance in the reward function.
6. λ3← 0.2 // Control variable for the position error importance in the reward function.
7. OgdenModelData← load(‘OgdenModelData’)
8. xdesired ← 0.1
9. Ts← 0.02 // Step time.
10. Λx← 0.01 // Position error thresholds.
11. Penalty←−15 // Penalty for terminal conditions (see Section 3.3)
12. env← Create environment with Observation and Action information.
13. env← @cleanstart

Algorithm 2: Create a reset function.

1. function cleanstar
2. x← 0
3. F← 0
4. xprev← 0
5. ẋ← 0
6. return x, F, xant, ẋ

On the other hand, we created a function that runs every time the agent interacts with
the environment to give it feedback, where the actual position of the robot and the value of
the deformation force are calculated (see Algorithm 3). In addition, the reward function is
calculated and the ending/penalty conditions are checked, which will be explained later.
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Algorithm 3: Obtains observations and reward for agent use.

1. function EnvironmentFunction (λ1, λ2, λ3, Penalty, Λx, OgdenModelData, Ts, xprev, v,
xdesired)

2. ẋ← v
3. x← xprev + ẋ * Ts
4. F0 ← Interpolation (OgdenModelData, 0)
5. F← Interpolation (OgdenModelData, x)
6. F← F − F0
7. [isDone]← TerminalConditions (xdesired, Λx, xprev) (See Algorithm 4)
8. [reward]← Reward (F, x, ẋ, x desired, λ1, λ2, λ3, Penalty) (See Algorithm 5)
9. return x, F, reward

Algorithm 4: Terminal conditions.

1. function TerminalConditions (xdesired, Λx, xprev, x)
2. if x > xdesired + λx // The agent opens the brain more than we desired.
3. isDone← 1
4. elseif x < 0 // The positions have negative values.
5. isDone← 1
6. elseif x − xprev < 0 // While the brain is being opened, the robot starts closing it again.
7. isDone← 1
8. else
9. isDone← 0
10. endif
11. return isDone

Algorithm 5: Reward function.

1. function RewardFunction (F, x, ẋ, xdesired, λ1, λ2, λ3, Penalty)
2. if isDone == 0
3. Reward← Value (F, x, ẋ, xdesired, λ1, λ2, λ3)
4. Else
5. Reward← Value (F, x, ẋ, xdesired, λ1, λ2, λ3, Penalty)
6. endif
7. return Reward

3.2. Agent

The agent in DDPG is composed of two parts, which were implemented as two
neural networks.

3.2.1. Actor

The actor is the first neural network that we need to create. Neural networks learn
from data sets to construct a model [19]. Neural networks are made up of several layers,
each inner layer fulfilling a function. The layers are made up of a number of neurons, which
are connected to the neurons of the layers before and after. Each neuron has weights and
biases that define the neural network output and are variables that change while training.
The consequence of these connections and weights is a long equation, filled with variables
that implement our policy. Figure 8 shows a simple model.
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In reinforcement learning, the actor–critic architecture is a common approach used to
solve problems where an agent interacts with an environment and learns to make decisions,
in order to maximize its long-term rewards. The actor–critic architecture combines elements
from both value-based and policy-based methods to improve learning efficiency.

The actor–critic architecture has several advantages:

1. Efficient learning: The critic’s value estimates guide the actor’s exploration and
exploitation, which helps in faster convergence and better decision-making.

2. Policy optimization: The actor’s policy can be directly optimized using gradient-based
methods, leveraging the critic’s value estimates. This allows for more flexible and
effective policy updates compared to value-based methods alone.

3. Handling continuous action spaces: The actor–critic architecture is well-suited for
problems with continuous action spaces, where the actor can learn a policy that
produces continuous valued actions, while the critic estimates the value of state–
action pairs.

The actor is responsible for learning a policy, which is a mapping from states to actions.
It directly interacts with the environment, receives observations, and selects actions based
on its current policy. The actor explores the environment and collects data by performing
actions and observing rewards and next states.

We build the following neural network for the actor. It is worth mentioning that we
built a Multilayer Perceptron (MLP) artificial neural network that is usually composed of
alternating Fully Connected Layers (layers composed of neurons that are connected with
neurons in all previous and following layers) and ReLu Layers (layers that limit the data to
only positive values).
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The layers for the actor were:

• Input Layer (obs1)→ 2 inputs/observations (x,F)→ 2 neurons;
• Fully Connected Layer (fc1)→ 10 neurons;
• ReLu Layer (relu1);
• Fully Connected Layer (fc2)→ 10 neurons;
• ReLu Layer (relu2);
• Fully Connected Layer (fc3)→ 10 neurons;
• ReLu Layer (relu3);
• Fully Connected Layer (act1)→ 1 neuron;
• ReLu Layer (relu4)→ works as the output layer→ 1 neuron.

3.2.2. Critic

The critic is the second and final neural network that we need to create. The critic
evaluates the actions taken by the actor by estimating the value or quality of each state
or state–action pair. It provides feedback to the actor by estimating how good or bad the
actor’s actions are in a given state. The critic learns from the collected experiences and
updates its value estimates to guide the actor towards better actions.

To build the critic neural network, we used the following layers. We started with
two different lines that converge into one since the critic takes inputs from two different
sources, i.e., the environment and the actor.

• 1st Line:

# Input Layer (obs2)→ 2 inputs/observations(x,F)→ 2 neurons;
# Fully Connected Layer (fc1)→ 10 neurons;
# ReLu Layer (relu1);
# Fully Connected Layer (fc2)→ 10 neurons.

• 2nd Line:

# Input Layer (act2)→ 1 input/observations. → 1 neuron.
# Fully Connected Layer (fact)→ 10 neurons.

• Convergence Line;
• Addition Later→ adds the two lines into one;
• ReLu Layer (relu2);
• Fully Connected Layer (fc3)→ 10 neurons;
• ReLu Layer (relu3);
• Fully Connected Layer (value)→ works as the output layer→ 1 neuron.

After creating the actor and the critic, we combine them to create our complete agent.

3.3. Terminal Conditions

When we talk about terminal conditions, we refer to situations where the simulation
enters a state that we cannot handle, which might be impossible in reality, or a state that
we do not want to pass through it (see Algorithm 4). Are our terminal conditions are
the following:

1. The agent opens the brain more than desired, creating too much pressure.
2. The positions have negative values. This is impossible in reality.
3. While the robot opens the brain, the robot starts closing it again without reaching our

objective, making us lose time.

If we encounter any of these situations, we will add a penalty to the reward, so that
the agent can avoid them. Typically, in terminal conditions, rewards are given when our
robot successfully reaches a specific goal. However, in our case, these rewards are not
implemented because our objective is not simply to reach a specific value (e.g., opening
until a certain threshold), but rather to sustain and maintain a desired state (keeping the
brain open).
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3.4. Reward Function

The reward function in reinforcement learning (RL) is a mechanism that assigns
numerical values to different states or actions taken by an agent. It serves as a measure of
the desirability or success of those states or actions, guiding the learning process of the RL
algorithm by providing positive or negative reinforcement signals.

Therefore, the environment variables that will be observed and the following circum-
stances will be taken into account:

1. The error is as small as possible.
2. The opposite force made by the brain must be as small as possible.
3. Speed should be as small as possible.

Knowing all of this, we established the following code.
The reward value function used in the code is described by Equation (6). The variable

“Penalty” in the equation only takes on a value when a terminal condition is met (see
terminal conditions in Section 3.3).

R = −

λ1 ·
(
(xdesired − x)2

)
· F2 + λ1 · λ3

(
(xdesired − x)2

)
.
x + 0.0001

+ λ2 ·
.
x

+ Penalty (6)

The equation provided represents a mathematical expression that was derived af-
ter extensive experimentation and iterations. Let us break down the components and
their meanings.

1. R within the equation signifies the system’s output, specifically representing the
velocity of the robot.

2. λ1, λ2, and λ3 are coefficients or constants embedded within the equation, ostensibly
governing and shaping the intricate behavior of the system.

a. λ1: This parameter governs the relative significance of both the position error and
the reactive force within the reward function.

b. λ2: This parameter controls the relative significance of the position error within
the reward function.

c. λ3: This parameter modulates the significance of the position error within the
reward function.

3. x and ẋ represent the state of the robot within the system, with x denoting its position
and ẋ representing its velocity.

4. F embodies the reactive force emanating from the brain, obtained through the Ogden
model data elucidated in point 2. Our objective is to minimize this force.

5. In the event that the terminal condition is satisfied, the Penalty variable introduces a
penalty into the reward function. This serves to inform the actor that an unfavorable
combination of actions was taken.

4. Experimental Results

Once we created the environment and agent, we started training the agent. We
established the training parameters shown in Table 2.

In order to obtain successful results, the training settings provided in Table 3 have been
chosen following a number of thorough trials. Fine-tuning parameters in reinforcement
learning can frequently be a difficult operation that requires a rigorous process of trial and
error. It is important to keep in mind that changing these settings can result in less-than-
ideal outcomes. For example, when changing the learning rate, we saw occasions where
the robot did nothing while training.
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Table 2. Control parameters and variables in Equations (3)–(5).

Parameter Name Definition Unit

λ Brain tissue stretch [-]
x Brain tissue displacement m

Linitial Displaced brain tissue length m
F Applied force by brain retractors N

Fmax Maximum force amplitude N
FNormalized (λ,t) Normalized force [-]

A Brain retractor contact surface area cm2

Pmax Maximum pressure in brain tissue Pa

Table 3. Training parameters.

Training Parameter Value

Maximum Episodes 5000

Maximum Steps Per Episode 200

Score Averaging Window Length 250

Stop Training Criteria—Average Reward—Stop Training Value −1 × 10−3

Stop Training Value 5000

Save Agent Criteria—Episode Reward—Save Agent Value −0.3605

As we can see in the training plot (Figure 9), the actions initially performed by the
actor make no sense; however, as time passes, the reward is larger and larger, jumping at
the end between the terminal condition of the upper limit and our desired position.
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We saved the best performing agent for testing later. The following figures show the
performance of that agent. As we can see (Figures 10–18), the agent has decided, with
our established reward function, that the best option is to set the maximum speed at the
beginning is and stop it once we achieve our desired position (xdesired). For all the cases, to
change from one objective to another, we had to train our agent again.
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5. Conclusions

We followed the article [1] and used the knowledge given to create a control problem
using deep reinforcement learning techniques.

This article’s primary contribution lies in its comprehensive guide for preparing an au-
tonomous robot to effectively utilize the DDPG method. DDPG involves the establishment
of two distinct networks, and this work plays a crucial role in elucidating their structural
prerequisites and specifying the requisite transfer functions. Additionally, it introduced
an incentive function designed to assist the robot in overcoming control challenges. Fur-
thermore, it delved into the critical parameters and hyperparameters essential for training
these networks. The central objective here is to assess the future potential of this system,
with prospects for developing a more intricate model of the robot’s behavior. It is worth
noting that the current work represents an initial application of the deep reinforced learning
algorithm to address an existing problem, laying the foundation for future advancements
in this domain.

As we can see, our results compared to the ones in [1] are not the same. The graphs
of velocity over time do not match (Figures 3 and 13). This is due to our reward function,
which does not perfectly represent the actual problem and gives a similar explanation.
For future improvement, the reward function could be adjusted (by changing the lambda
coefficients) so both the agent self-training policies and calculated optimal speeds match.

The proposed control method operates as a closed-loop control, which has been tuned
according to a reward function. Therefore, the input to the actor agent accepts both a
position error and a measurement of the force exerted by the retractor. The output consists
of the position/velocity of the retractor.

One of our biggest limitations is that even if we change the desired retraction distance
after training, it will not change the robot’s behavior and will just function to retract the
brain until the trained distance is reached. For every new desired retraction distance,
the agent must be retrained. This can be improved in the future by training an agent for
different xdesired values. This can be achieved by adjusting our reset function (Algorithm 2)
and adding xdesired as a random variable that changes when a simulation starts. This
was tested by us but was immediately thrown out due to lack of computational resources
and time.
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The availability of a linear or near-linear model adequately describing the mechanical
properties of brain tissue is a prerequisite for the validity of the analytical strategy described
in the initial study. This crucial realization emphasizes how important it is to continue
studying and improving our understanding of brain mechanics since it has a direct bearing
on the applicability and efficiency of analytical approaches to dealing with complicated
problems in this area.

In our current state, the experiment cannot be tested in real-life situations. As soon as
more complex models of mechanical behavior and brain damage become available, this
technique can be applied directly. However, it is important to note that, in its current state,
the experiment conducted cannot be tested in a real-life situation due to the simplicity of
the models used and the need for a more accurate representation of reality.

When a more complex mechanical stress model of brain tissue is available, the tech-
nique used in this study enables improved control. It is adaptive in nature and can produce
good outcomes when a more precise digital counterpart is present.

Author Contributions: Conceptualization, E.Z. and I.I.-H.; methodology, I.I.-H. and E.Z.; software,
E.G. and I.I.-H.; validation, S.E. and U.F.-G.; formal analysis, S.E. and E.Z.; investigation, I.I.-H. and
J.M.L.-G.; resources, U.F.-G. and E.Z.; writing—original draft preparation, I.I.-H. and E.G.; writing—
review and editing, J.M.L.-G. and E.G. All authors have read and agreed to the published version of
the manuscript.

Funding: The authors were supported by the government of the Basque Country through the re-
search grant ELKARTEK KK-2023/00058 DEEPBASK (Creación de nuevos algoritmos de aprendizaje
profundo aplicado a la industria). This study has also been conducted partially under the frame-
work of the project ADA (Grants for R&D projects 2022 and supported by the European Regional
Development Funds).

Data Availability Statement: Data are available upon reasonable request to the corresponding author.

Acknowledgments: The authors would also like to thank Karmele Gomez for her contribution.
The authors wish to thank the Aldakin Group for material support. Finally, the authors thank the
University of the Basque Country for its laboratory resource collaboration.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Inziarte-Hidalgo, I.; Uriarte, I.; Fernandez-Gamiz, U.; Sorrosal, G.; Zulueta, E. Robotic-Arm-Based Force Control in Neurosurgical

Practice. Mathematics 2023, 11, 828. [CrossRef]
2. Dewan, M.C.; Rattani, A.; Fieggen, G.; Arraez, M.A.; Servadei, F.; Boop, F.A.; Johnson, W.D.; Warf, B.C.; Park, K.B. Global

Neurosurgery: The Current Capacity and Deficit in the Provision of Essential Neurosurgical Care. Executive Summary of the
Global Neurosurgery Initiative at the Program in Global Surgery and Social Change. J. Neurosurg. 2019, 130, 1055–1064. [CrossRef]

3. Bennett, M.H.; Albin, M.S.; Bunegin, L.; Dujovny, M.; Hellstrom, H.; Jannetta, P.J. Evoked Potential Changes during Brain
Retraction in Dogs. Stroke 1977, 8, 487–492. [CrossRef] [PubMed]

4. Bell, B.A.; Symon, L.; Branston, N.M. CBF and Time Thresholds for the Formation of Ischemic Cerebral Edema, and Effect of
Reperfusion in Baboons. J. Neurosurg. 1985, 62, 31–41. [CrossRef] [PubMed]

5. Laha, R.K.; Dujovny, M.; Rao, S.; Barrionuevo, P.J.; Bunegin, L.; Hellstrom, H.R.; Albin, M.S.; Taylor, F.H. Cerebellar Retraction:
Significance and Sequelae. Surg. Neurol. 1979, 12, 209–215. [PubMed]

6. Andrews, R.J.; Bringas, J.R. A Review of Brain Retraction and Recommendations for Minimizing Intraoperative Brain Injury.
Neurosurgery 1993, 33, 1052–1064. [PubMed]

7. Spetzler, R.F.; Sanai, N. The Quiet Revolution: Retractorless Surgery for Complex Vascular and Skull Base Lesions: Clinical
Article. J. Neurosurg. 2012, 116, 291–300. [CrossRef] [PubMed]

8. Zagzoog, N.; Reddy, K.K. Modern Brain Retractors and Surgical Brain Injury: A Review. World Neurosurg. 2020, 142, 93–103.
[CrossRef] [PubMed]

9. Müller, S.J.; Henkes, E.; Gounis, M.J.; Felber, S.; Ganslandt, O.; Henkes, H. Non-invasive intracranial pressure monitoring. J. Clin.
Med. 2023, 12, 2209. [CrossRef] [PubMed]

10. Fukamachi, A.; Koizumi, H.; Nukui, H. Postoperative Intracerebral Hemorrhages: A Survey of Computed Tomographic Findings
after 1074 Intracranial Operations. Surg. Neurol. 1985, 23, 575–580. [CrossRef] [PubMed]

11. Kalfas, I.H.; Little, J.R. Postoperative Hemorrhage: A Survey of 4992 Intracranial Procedures. Neurosurgery 1988, 23, 343–347.
[CrossRef] [PubMed]

https://doi.org/10.3390/math11040828
https://doi.org/10.3171/2017.11.JNS171500
https://doi.org/10.1161/01.STR.8.4.487
https://www.ncbi.nlm.nih.gov/pubmed/898246
https://doi.org/10.3171/jns.1985.62.1.0031
https://www.ncbi.nlm.nih.gov/pubmed/3964854
https://www.ncbi.nlm.nih.gov/pubmed/515917
https://www.ncbi.nlm.nih.gov/pubmed/8133991
https://doi.org/10.3171/2011.8.JNS101896
https://www.ncbi.nlm.nih.gov/pubmed/21981642
https://doi.org/10.1016/j.wneu.2020.06.153
https://www.ncbi.nlm.nih.gov/pubmed/32599200
https://doi.org/10.3390/jcm12062209
https://www.ncbi.nlm.nih.gov/pubmed/36983213
https://doi.org/10.1016/0090-3019(85)90006-0
https://www.ncbi.nlm.nih.gov/pubmed/3992457
https://doi.org/10.1227/00006123-198809000-00010
https://www.ncbi.nlm.nih.gov/pubmed/3226512


Mathematics 2023, 11, 4133 19 of 19

12. Rosenørn, J. The Risk of Ischaemic Brain Damage during the Use of Self-Retaining Brain Retractors. Acta Neurol. Scand. 1989, 79,
1–30. [CrossRef] [PubMed]

13. Hoeckelmann, M.; Rudas, I.J.; Fiorini, P.; Kirchner, F.; Haidegger, T. Current Capabilities and Development Potential in Surgical
Robotics. Int. J. Adv. Robot. Syst. 2015, 12, 61. [CrossRef]

14. DeLorenzo, C.; Papademetris, X.; Staib, L.H.; Vives, K.P.; Spencer, D.D.; Duncan, J.S. Volumetric Intraoperative Brain Deformation
Compensation: Model Development and Phantom Validation. IEEE Trans. Med. Imaging 2012, 31, 1607–1619. [CrossRef] [PubMed]

15. Dai, Z. Improvement of General Design Theory and Methodology with Its Application to Design of a Retractor for Ventral Hernia
Repair Surgery. Master’s Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2019.

16. Yokoh, A.; Sugita, K.; Kobayashi, S. Clinical Study of Brain Retraction in Different Approaches and Diseases. Acta Neurochir. 1987,
87, 134–139. [CrossRef] [PubMed]

17. Dujovny, M.; Wackenhut, N.; Kossovsky, N.; Leff, L.; Gómez, C.; Nelson, D. Biomechanics of Vascular Occlusion in Neurosurgery.
Acta Neurol. Lat. 1980, 26, 123–127.

18. Song, K.-Y.; Behzadfar, M.; Zhang, W.-J. A dynamic pole motion approach for control of nonlinear hybrid soft legs: A preliminary
study. Machines 2022, 10, 875. [CrossRef]

19. Coats, B.; Margulies, S.S. Material Properties of Porcine Parietal Cortex. J. Biomech. 2006, 39, 2521–2525. [CrossRef] [PubMed]
20. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
21. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic Policy Gradient Algorithms. In Proceedings

of the 31st International Conference on Machine Learning, Beijing, China, 22–24 June 2014.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1111/j.1600-0404.1989.tb08017.x
https://www.ncbi.nlm.nih.gov/pubmed/2922987
https://doi.org/10.5772/60133
https://doi.org/10.1109/TMI.2012.2197407
https://www.ncbi.nlm.nih.gov/pubmed/22562728
https://doi.org/10.1007/BF01476064
https://www.ncbi.nlm.nih.gov/pubmed/3673692
https://doi.org/10.3390/machines10100875
https://doi.org/10.1016/j.jbiomech.2005.07.020
https://www.ncbi.nlm.nih.gov/pubmed/16153652

	Introduction 
	Problem Statement 
	Control Proposal 
	Environment 
	Agent 
	Actor 
	Critic 

	Terminal Conditions 
	Reward Function 

	Experimental Results 
	Conclusions 
	References

