1,696 research outputs found

    Restoring wireless sensor network connectivity in damaged environments

    Get PDF
    A wireless sensor network can become partitioned due to node failure, requiring the deployment of additional relay nodes in order to restore network connectivity. This introduces an optimisation problem involving a tradeoff between the number of additional nodes that are required and the costs of moving through the sensor field for the purpose of node placement. This tradeoff is application-dependent, influenced for example by the relative urgency of network restoration. We propose four heuristic algorithms which integrate network design with path planning, recognising the impact of obstacles on mobility and communication. We conduct an empirical evaluation of the four algorithms on random connectivity and mobility maps, showing their relative performance in terms of node and path costs, and assessing their execution speeds. Finally, we examine how the relative importance of the two objectives influences the choice of algorithm

    Autonomous discovery and repair of damage in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks in volatile environments may suffer damage, and connectivity must be restored. The repairing agent must discover surviving nodes and damage to the physical and radio environment as it moves around the sensor field to execute the repair. We compare two approaches, one which re-generates a full plan whenever it discovers new knowledge, and a second which attempts to minimise the required number of new radio nodes. We apply each approach with two different heuristics, one which attempts to minimise the cost of new radio nodes, and one which aims to minimise the travel distance. We conduct extensive simulation-based experiments, varying key parameters, including the level of damage suffered, and comparing directly with the published state-of-the-art. We quantify the relative performance of the different algorithms in achieving their objectives, and also measure the execution times to assess the impact on being able to make autonomous decisions in reasonable time

    Repairing Wireless Sensor Network connectivity with mobility and hop-count constraints

    Get PDF
    Wireless Sensor Networks can become partitioned due to node failure or damage, and must be repaired by deploying new sensors, relays or sink nodes to restore some quality of service. We formulate the task as a multi-objective problem over two graphs. The solution specifies additional nodes to reconnect a connectivity graph subject to network path-length constraints, and a path through a mobility graph to visit those locations. The objectives are to minimise both the cost of the additional nodes and the length of the mobility path. We propose two heuristic algorithms which prioritise the different objectives. We evaluate the two algorithms on randomly generated graphs, and compare their solutions to the optimal solutions for the individual objectives. Finally, we assess the total restoration time for different classes of agent, i.e. small robots and larger vehicles, which allows us to trade-off longer computation times for shorter mobility paths

    Multi-objective hierarchical algorithms for restoring Wireless Sensor Network connectivity in known environments

    Get PDF
    A Wireless Sensor Network can become partitioned due to node failure, requiring the deployment of additional relay nodes in order to restore network connectivity. This introduces an optimisation problem involving a tradeoff between the number of additional nodes that are required and the costs of moving through the sensor field for the purpose of node placement. This tradeoff is application-dependent, influenced for example by the relative urgency of network restoration. We propose a family of algorithms based on hierarchical objectives including complete algorithms and heuristics which integrate network design with path planning, recognising the impact of obstacles on mobility and communication. We conduct an empirical evaluation of the algorithms on random connectivity and mobility graphs, showing their relative performance in terms of node and path costs, and assessing their execution speeds. Finally, we examine how the relative importance of the two objectives influences the choice of algorithm. In summary, the algorithms which prioritise the node cost tend to find graphs with fewer nodes, while the algorithm which prioritise the cost of moving find slightly larger solutions but with cheaper mobility costs. The heuristic algorithms are close to the optimal algorithms in node cost, and higher in mobility costs. For fast moving agents, the node algorithms are preferred for total restoration time, and for slow agents, the path algorithms are preferred

    Integration of node deployment and path planning in restoring network connectivity

    Get PDF
    A wireless sensor network can become partitioned due to node failure, requiring the deployment of additional relay nodes in order to restore network connectivity. This introduces an optimisation problem involving a tradeoff between the number of additional nodes that are required and the costs of moving through the sensor field for the purpose of node placement. This tradeoff is application-dependent, influenced for example by the relative urgency of network restoration. We propose two heuristic algorithms which integrate network design with path planning, recognising the impact of obstacles on mobility and communication. We conduct an empirical evaluation of the two algorithms on random connectivity and mobility graphs, showing their relative performance in terms of node and path costs, and assessing their execution speeds. Finally, we examine how the relative importance of the two objectives influences the choice of algorithm

    Demo: Deploying a drone to restore connectivity in a WSN

    Get PDF
    This paper describes our demonstration of a network repair problem where a drone places a new sensor node to replace a failed node in order to heal the connectivity for a Wireless Sensor Network (WSN). It serves to show the potential of our published solutions for automated network repair when the repairing agent is a drone

    Determination of Collection Points for Disjoint Wireless Sensor Networks

    Get PDF

    Is There Light at the Ends of the Tunnel? Wireless Sensor Networks for Adaptive Lighting in Road Tunnels

    Get PDF
    Existing deployments of wireless sensor networks (WSNs) are often conceived as stand-alone monitoring tools. In this paper, we report instead on a deployment where the WSN is a key component of a closed-loop control system for adaptive lighting in operational road tunnels. WSN nodes along the tunnel walls report light readings to a control station, which closes the loop by setting the intensity of lamps to match a legislated curve. The ability to match dynamically the lighting levels to the actual environmental conditions improves the tunnel safety and reduces its power consumption. The use of WSNs in a closed-loop system, combined with the real-world, harsh setting of operational road tunnels, induces tighter requirements on the quality and timeliness of sensed data, as well as on the reliability and lifetime of the network. In this work, we test to what extent mainstream WSN technology meets these challenges, using a dedicated design that however relies on wellestablished techniques. The paper describes the hw/sw architecture we devised by focusing on the WSN component, and analyzes its performance through experiments in a real, operational tunnel

    Contents

    Get PDF
    • …
    corecore