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Abstract

A wireless sensor network can become partitioned due to node failure, requiring the deployment of additional

relay nodes in order to restore network connectivity. This introduces an optimisation problem involving a tradeoff

between the number of additional nodes that are required and the costs of moving through the sensor field for the

purpose of node placement. This tradeoff is application-dependent, influenced for example by the relative urgency

of network restoration. We propose four heuristic algorithms which integrate network design with path planning,

recognising the impact of obstacles on mobility and communication. We conduct an empirical evaluation of the four

algorithms on random connectivity and mobility maps, showing their relative performance in terms of node and path

costs, and assessing their execution speeds. Finally, we examine how the relative importance of the two objectives

influences the choice of algorithm.
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1. Introduction

Wireless Sensor Networks are becoming increasingly important for monitoring phenomena in remote or hazardous

environments, including pollution monitoring, chemical process sensing, disaster response, and battlefield monitoring.

As these environments are uncontrolled and may be volatile, the network may suffer damage, from hazards, direct

attack or accidental damage from wildlife and weather. They may also degrade through battery depletion or hardware

failure. The failure of an individual sensor node may mean the loss of particular data streams generated by that node;

more significantly, node failure may partition the network, meaning that many data streams cannot be transmitted to

the sink. This creates the network repair problem, in which we must place new radio nodes in the environment to

restore connectivity to the sink for all sub-partitions.

There are four main subtasks in the problem: (i) determining what damage has occurred (i.e. which nodes have

failed and what radio links have been blocked); (ii) determining what changes, if any, have happened to the accessibil-

ity of the environment (i.e. what positions can be reached, and what routes are possible between those positions); (iii)

deciding on the positions for the new radio nodes; and (iv) planning and following a route through the environment

to place those nodes. The problem thus involves both exploration and optimisation, and may require the placement of

nodes before the changes to connectivity and accessibility have been fully mapped. We assume possible locations for

new radio nodes are limited to a finite set of positions where a node can be securely placed and which can be accessed.

Radio nodes are expensive, and so solutions which require fewer nodes are preferred. Physically moving around the

environment may be expensive in energy use, may take significant time, or may expose the agent placing the nodes to

danger, and so solutions which allow cheaper path plans are also preferred. Depending on the application, either one
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of the two objectives may be more important: placing expensive nodes in, for example, agricultural pollution moni-

toring favours solutions with fewer nodes, while restoring connectivity during disaster response favours solutions that

can be deployed quickly even if they require more nodes. Thus the network repair problem is multi-objective.

We introduce the problem of simultaneous network repair and autonomous exploration and route planning in the

presence of unknown obstacles. We assume a set of locations from which sensor data is required by the network, and

we assume the agent has knowledge of the network and accessibility prior to the damage occurring. The objective is

to connect as many as possible of these locations, placing extra sensors if required, while minimising the number of

radio nodes and the mobility costs. We consider two different priorities for the multi-objective problem: minimising

mobility costs, and minimisng the number of radio nodes. For each one, we develop a greedy approach and a global

approach. In each case, the agent computes a plan (or partial plan), and then starts to execute it. When the agent

discovers new information about accessibility or connectivity, it recomputes the plan from its current location, and

then continues. We evaluate the approaches on randomly generated problems, and analyse their effectiveness under

different assumptions.

2. The Network Exploration and Restoration Problem

We assume a rectilinear grid of locations G, in which a subset Gb ⊆ G of grid squares are candidate locations

for wireless nodes. The centre of each square is a potential position for a wireless node. We assume an agent can

move from a square to one of its 4 rectilinear neighbours, unless that neighbour is blocked. The set of blocked squares

before damage is Bb, while the set of blocked squares after damage is Ba, such that Bb ⊆ Ba ⊆ G. We assume a node

can sense its own square plus neighbouring squares at a distance of Rs, and has a maximum communication range of

Rt (e.g. if Rt = 1, then the node can communicate with at most its 8 immediate neighbours). We assume a set of Cb of

potential radio links, where each potential link can connect two endpoints {gi ∈ Gb, g j ∈ Gb}. After damage, the set

of candidate locations is Ga ⊆ Gb and the set of potential links is Ca ⊆ Cb and a set of live nodes is GA ⊆ Ga. The

set τ represents terminals, the squares from which we need sensed data. A set I ⊂ GA of active nodes where it still

has connection to wider network. We assume the starting location of the agent is at L ∈ I. Figure 1 shows example

of pre-damage, current and actual maps of the network. At the start of the problem, we assume the agent knows τ, I,

L, Bb, Gb, and Cb. As the agent explores the environment, it will maintain: Gk, the locations where it knows nodes

are active; Ge, locations where knows no node exists; Ck, the radio links it knows are possible; Ce, the radio links it

knows are broken; Bk, the squares it knows to be blocked; S e, squares it knows to be free; and Lk, its own current

location.

Pre-damage map Actual map (after the damage) Current map

Notation

UNKNOWN square

BLOCK square

FREE square

Candidate location

Terminal location

Location with an alive node

Location with node placed

Potential radio link Established radio link

Agent’s location

Figure 1: Example network conditions before and after damage.

We assume the agent is able to probe neighbouring squares up to a distance of k, to determine whether or not

they are blocked (but cannot probe a distant neighbour if there is a blocked square inbetween). A probe costs α units

per square. The agent is able to test a radio link by listening for transmission from an active node. When the agent

discovers a new live radio node, it will also be told all of that node’s live multi-hop neighbours. There is no cost for

listening for transmissions. The agent can detect whether or not there is a sensor node on its current location, and may

drop a new node at the centre of that square. The cost of moving one square is m, while the cost of placing a node is

w. The objective is to connect as many as possible of the squares in τ to I, placing nodes in those squares if necessary,

minimising the sum of the mobility costs and the probe costs, and minimising the number of nodes placed.
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3. Approach

We propose two strategies for solving the problem. The first prioritises mobility cost, and prefers cheap paths that

would allow the agent to restore connectivity. The second prioritises node cost, and first prefers plans that require few

nodes and then finds cheap paths for visiting those locations. For each strategy we consider two approaches: a greedy

method, which first picks a terminal to connect, generates a plan, executes it, and then selects the next terminal, and

a global method, which generates a plan for reconnecting all terminals before it begins to execute the plan. In all

cases, the process is iterative. The first plan is generated based on the pre-damage map. As the agent starts to move

through the environment, it discovers information about mobility and connectivity, and updates its knowledge. When

the current plan is considered too expensive, a new plan is generated, and the process repeats.

3.1. Strategy 1: Prioritising Mobility Cost
Greedy Mobility(GM): The agent builds a weighted connectivity graph, augmenting each link in Cb with the cost

of the cheapest mobility path between the two candidate locations in Gb. The agent first finds the closest terminal

using A∗ search in the grid,i.e. A* uses a best-first search and finds a least-cost path from a start node to a goal node.

It then searches the weighted connectivity graph for the cheapest path which connects the terminal to the network,

again using A*, and then determines the cheapest route from its current location to either end of this path. The agent

then begins to execute the plan, until it discovers a blocked square or blocked radio links, or it discovers live nodes.

At that point it updates its knowledge of the environment, and recomputes, possibly finding a new terminal and a new

path.

Global Cheapest Path (GCP): using the same weighted connectivity graph as GM, the agent searches for a low-

cost Stenier tree using the Steiner-MST heuristic [1] to find a set of nodes which connects all unconnected terminals

to the network. Then, at each stage, the agent finds the shortest path to the closest one of these nodes using A*. As

before, when the agent discovers new information that would change the cost, it recomputes, and continues from its

current location.

3.2. Strategy 2: Prioritising Node Cost
Greedy Node (GN): The agent first builds a directed weighted connectivity graph. Each candidate location will be

a vertex, with connected components merged into supernodes. Each potential link will be represented by two directed

edges. An edge connecting a live node to a candidate location will have cost 1, while an edge in the other direction has

cost 0. The agent then runs Dijkstra’s algorithm to find the cheapest path from the current network to each terminal,

where the cheapest path will be the one with fewest additional nodes. The agent then selects the terminal which

requires the fewest nodes. Then, at each stage, the agent finds a path to the closest one of these nodes using A*. As

above, if the agent discovers information that changes the node costs (live nodes found, broken links in the current

node plan), it recomputes.

Global Fewest Node (GFN): Using the same directed weighted graph as GN, the agent finds a Steiner node set

connecting all terminals using Steiner-MST. Then, at each stage, the agent finds a path to a closest one of these nodes

using A*. As before , when the agent discovers new knowledge that would change the node costs, it recomputes.
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4. Experiments

The algorithms presented above are heuristic, and take different approaches to a multi-objective problem. There-

fore, we evaluate them empirically on randomly generated maps, to compare their runtimes and the quality of their

solutions for both objectives. We assume a pre-damage grid map consisting of n × m squares each of size 10 units.

We randomly select c grid squares to be candidate locations, and g squares to be blocked. For each pair of candidate

locations separated by less than 25 units we allow a potential radio link with probability 0.85. For the map after dam-

age, we randomly select a of the candidate locations to be live nodes, and select t candidate locations to be terminals

9 (locations for which we require sensor data). We randomly pick b additional squares to be blocked, and remove r%

of the radio links. For this paper, we ensure that the problems are feasible - i.e. it is possible for the agent to visit a set

of locations where placing nodes would reconnect all the terminals. In each case, the algorithms only probe a square

that the agent intends to move into. In all experiments, the results are the average of 50 runs at each data point.

First, we consider the effect of varying c,the number of candidates from 40 to 80, while we fix the number of

terminals, t, to 6 and the damage level to < b = 10, r = 10% >. The results are shown in the top row of Fig.2. The

number of candidates has little impact on the number of nodes required. However, the mobility costs rise to peak

at c = 60: as we increase locations, there are more options to explore, requiring more backtracking on discovering

damage, until there are enough locations to offer easy alternatives. The runtimes of all heuristics increase with the

number of candidate locations. GM has the highst runtime, because it is repeatedly forced to recompute on failure.

We note that the greedy mobility heuristic has lower mobility cost than the global heuristic, and that the greedy node

heuristic requiries fewer nodes than the global node heuristic. We believe this is the effect of exploration, as the greedy

heuristics are better able to adapt their plans once damage is found.

Secondly, we vary the number of terminals, t, from 4 to 12, while fixing c to 60 and the damage to < 10, 10 >. The

results are shown in the second row of Fig.2. The number of required nodes increases with the number of terminals

to a peak, but then declines. We believe this decline is because as more terminals are required, more of the area must

be explored, which reveals more existing live nodes and ultimately simplified the connectivity problem. As expected,

the mobility costs continue to rise. Again, GM requires the longest runtime.

Thirdly, we vary the damage level from < 10, 10 > to < 40, 40 >, fixing the candidate locations at 60 and the

number of terminals at 6. Varying the damage has little impact on the number of new nodes required, but the mobility

costs rise to a peak and then fall, as there are fewer deep dead ends for the agent to explore.

Finally, we note that the mobility costs are associated only with the distance travelled. For real scenarios, there is

a tradeoff between the speed at which connectivity is restored and the cost of the extra nodes. We assume that it takes

the agent 30s to position a new node. We then consider two scenarios, one representing a small robot which moves

at 0.1ms−1, and the second representing a larger vehicle moving over rough terrain at 4ms−1. We fix the size of the

grid quare to be 10m × 10m. The total time to restore the network is thus time to place the new nodes plus the time to

move along the path plus the computation time. The results are shown in Fig.3. We can see that for the slow agent,

prioritising mobility cost is most important, with the gain in reduced movement from GM more than compensating for

the increased runtime; alternatively, for the faster agent, prioritising the numder of nodes gives a faster repair, since

the time to place the new nodes outweights the mobility costs. Thus the WSN restoration problem is subtle, with the
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Figure 2: The effect of varying the number of candidate locations, terminals and damage level.
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Figure 3: The effect of different agent speeds

choice of approach clearly dependent on the details of the specific problem. Solution methods must take into account

the main objectives (minimising infrastructure and minimise time), but also consider the capabilities of the agent that

will implement the eventual solution.

5. Related Work

The subject of network restoration for wireless sensor networks has been an active area of research. The different

approaches can be classified as (i) deploying redundant nodes so as to be able to cope with a pre-determined number
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of failures, (ii) use of mobile (actor) nodes that can be moved into position in order to restore connectivity, (iii) dis-

patching mobile nodes in a pre-emptive manner to avoid failures in connectivity, and (iv) the deployment of additional

nodes to restore connectivity after failures have occurred. The latter work is closest to our research but is different

in two respects, firstly in that we optimise both the number of additional nodes as well as the path length needed for

their deployment, and secondly in that we explicitly take into account the impact of obstacles that can alter both the

available paths and the ability of nodes to communicate directly. We now provide a summary of the related papers.

In [2],[3] the goal is to deploy k-1 redundant nodes with the intention of achieving k-connectivity, for example by

placing nodes at the intersection between the communication range of each pair of nodes. The number of additional

nodes required by these approaches is prohibitive. Several papers consider the use of mobile actor nodes in network

restoration, e.g. [4], [5], [6],[7]. The papers propose different strategies to choose the moving actors, for example,

based on estimating the shortest moving distance and/or degree of connectivity. The solution space is limited, focused

on dealing with a single failure and re-connecting just two networks at a time, and with an assumption that mobility

is unimpeded by obstacles. [8] proactively deploys additional helper mobile nodes, controlling their trajectories in

response to predicted network disconnection events. The work assumes that the mobile nodes are always fast enough

to reach the desired destination in case of a predicted disconnection event, and that a full map of the physical terrain

and radio environment is available. Details of how to determine the number of mobile nodes that are needed and

the related path planning are not provided. [9] and [10] assume multiple simultaneous failures involving many failed

nodes and a network that is partitioned into many segments. The approach is to re-connect those segments in a

centralized manner with the main objective of using the smallest number of additional nodes. [9] uses a spider web

approach to reconnect the segments while [10] forms a connectivity chain from each segment toward a centre point

and then seeks to optimize the number of additional nodes that are needed.

6. Conclusion

We have defined the new problem of simultaneous network repair and autonomous exploration and route planning

in the presence of unknown obstacles. We represent the problem as a multi-objective problem of minimising the

number of required nodes and mobility costs. We present two strategies, prioritising mobility costs andprioritising

the number of nodes, and for each we develop two heuristic approaches, one greedy and one with a global view.

In all cases, the agent computes a plan based on some initial knowledge and begins to execute it. As it moves, it

discovers more knowledge of the environemnt, and modifies its plan as required. We evaluate the approaches in

simulation, assessing the impact of increasing damage, increasing nodes to be connected, and increasing locations

for radio nodes. In addition, we show that different agent speeds have a significant impact on performance, and must

be taken into account when selecting the algorithm. In future work we will explore a wider range of environments,

consider continually spreading damage, and investigate the use of teams of agents working in parallel.

Acknowledgment

This work is part of the Irish Higher Education Authority PRTLIIV funded NEMBES project.

[1] B. Y. Wu, K.-M. Chao, Spanning Trees and Optimization Problems, Chapman & Hall / CRC Press, USA, 2004.

[2] B. Khelifa, H. Haffaf, M. Merabti, D. Llewellyn-Jones, Monitoring connectivity in wireless sensor networks., in: ISCC, IEEE, 2009.

[3] H. M. Almasaeid, A. E. Kamal, On the minimum k-connectivity repair in wireless sensor networks., in: ICC, IEEE, 2009, pp. 1–5.

[4] K. Akkaya, F. Senel, Detecting and connecting disjoint sub-networks in wireless sensor and actor networks, Ad Hoc Netw. 7.

[5] A. Abbasi, M. Younis, U. Baroudi, Restoring connectivity in wireless sensor-actor networks with minimal topology changes, in: Communi-

cations (ICC), 2010 IEEE International Conference on, 2010, pp. 1 –5.

[6] K. Akkaya, F. Senel, A. Thimmapuram, S. Uludag, Distributed recovery from network partitioning in movable sensor/actor networks via

controlled mobility, IEEE Trans. Comput. 59 (2010) 258–271.

[7] M. Sir, I. Senturk, E. Sisikoglu, K. Akkaya, An optimization-based approach for connecting partitioned mobile sensor/actuator networks, in:

Computer Communications Workshops (INFOCOM WKSHPS), 2011 IEEE Conference on, 2011, pp. 525 –530.

[8] L. Dai, V. Chan, Helper node trajectory control for connection assurance in proactive mobile wireless networks, in: Computer Communica-

tions and Networks, 2007. ICCCN 2007. Proceedings of 16th International Conference on, 2007, pp. 882 –887.

[9] F. Senel, M. Younis, K. Akkaya, A robust relay node placement heuristic for structurally damaged wireless sensor networks, in: Local

Computer Networks, 2009. LCN 2009. IEEE 34th Conference on, 2009, pp. 633 –640.

[10] S. Lee, M. Younis, Recovery from multiple simultaneous failures in wireless sensor networks using minimum steiner tree, Journal of Parallel

Distributed Computing 70 (2010) 525–536.


