
Title Demo: Deploying a drone to restore connectivity in a WSN

Author(s) Truong, Thuy T.; Brown, Kenneth N.; Sreenan, Cormac J.

Publication date 2016-02

Original citation Truong, T. T., Brown, K. N. and Sreenan, C. J. (2016) 'Demo:
Deploying a Drone to Restore Connectivity in a WSN', Proceedings of
the 2016 International Conference on Embedded Wireless Systems and
Networks, Graz, Austria, 15-17 February, Canada: Junction Publishing,
pp. 239-240.

Type of publication Article (peer-reviewed)
Conference item

Link to publisher's
version

https://dl.acm.org/citation.cfm?id=2893752
Access to the full text of the published version may require a
subscription.

Rights © 2016 Copyright is held by the authors; Junction Publishing,
Canada ©2016. Permission is granted for indexing in the ACM
Digital Library. This is the authors' version of the work.

Item downloaded
from

http://hdl.handle.net/10468/5103

Downloaded on 2018-08-23T18:57:30Z

https://dl.acm.org/citation.cfm?id=2893752
http://hdl.handle.net/10468/5103


Demo: Deploying a Drone to Restore Connectivity in a WSN
Thuy T. Truong, Kenneth N. Brown and Cormac J. Sreenan

CTVR, Department of Computer Science, University College Cork, Ireland
Email: {t.truong, k.brown, cjs}@cs.ucc.ie

Abstract
This paper describes our demonstration of a network re-

pair problem where a drone places a new sensor node to re-
place a failed node in order to heal the connectivity for a
Wireless Sensor Network (WSN). It serves to show the po-
tential of our published solutions for automated network re-
pair when the repairing agent is a drone.
Keywords

Drone, Wireless Sensor Network, Network Repair

1 Introduction
Many applications for wireless networks will be in set-

tings where network damage can be expected to occur, e.g.
battlefield sensing, fire detection, etc. In addition, many sen-
sor nodes are powered by batteries, and so they may fail as
batteries deplete. The loss of nodes might cause network
partitioning, thus leading to longer delivery delays and/or
lost packets. To overcome node failure and to restore net-
work connectivity, network repair should be initiated where
we must place new nodes in the environment to restore net-
work connectivity. Our prior published work [2] presented
solutions for automated repair of damaged wireless sensor
networks. In this demo we use a simple star topology to show
the potential for using a drone as the WSN repair agent.

The goal of robotic network repair is to restore connec-
tivity for a partitioned wireless network. A repairing agent
is deployed to discover network damage, RF environment
characteristics, and physical access constraints, and run al-
gorithms for optimisation of radio equipment use, network
service quality, and physical deployment plans. Recent re-
search shows the potential of using drones in many areas, e.g.
journalism, traffic surveillance, delivery, agriculture, etc. [1]
. In this paper, we demonstrate a scenario where a drone,
controlled by a Raspberry Pi, carries a new sensor node and
flies to the area where an existing node has failed and tries to
find a location in that area to replace that failed node.

2 System Description
The scenario is based on a star topology WSN which con-

sists of a Personal Area Network (PAN) coordinator (PC)
forming a network and four end devices (ED) associating

PC

ED0 ED1

ED2 ED3

PC

ED0 ED1

ED2 ED3

ED5

PC

ED0 ED1

ED2 ED3

ED5

(a) An original connected network 
(assuming a simple star topology)

(b) Node ED0 has failed, and PC sends a request 
to the repairing agent. The repairing agent 
picks up a new sensor node ED5.

(c) The repairing agent carries node ED5

to the failed area.

(d) The repairing agent drops ED5 in the requested 
area, re-establishing the network connectivity.

PC

ED0 ED1

ED2 ED3
ED5

An end device node A pan coordinator node A failed node A repairing agent

Figure 1. Scenario

with the PC to join the network (Figure 1). The communica-
tion is based on IEEE 804.15.4 standard. The EDs monitor
the regions they are in, and send the detected data to the PC.
The PC will show the received data on the screen. Incidents
(e.g. physical breakdown or batteries depleted, etc.) might
occur which cause any of the EDs fails to perform the sens-
ing task. Because of that, the PC no longer receives data
reports from those nodes, and thus the corresponding data
streams disappear on the screen. At this time, the PC will
send a REQUEST to the repairing agent which will place
a new ED node in the failed region. In this demonstration,
our repairing agent is capable of carrying only one node at a
time, therefore, the repairing process will be sequential.

We build our prototype for the repairing agent combining
a Raspberry Pi model B+, a Raspbee radio module, an EPM
device (electromagnet permanent device) and an Iris+ drone.

Figure 2. The repairing agent: the Iris+ drone carries the
Pi on top and the EPM (with a sensor node) at bottom.

We have a Raspberry Pi attached with a Raspbee ra-
dio module to communicate with the network using IEEE
802.15.4 (Figure 3-Left). We implement new firmware to
the Raspbee, forcing the Raspbee to follow IEEE 804.15.4
standard. The Raspbee communicates with the Pi via a seria
UART port. With these features, the Pi can receive requests



for repairing a failed node from the sensor network and com-
municate with the network when repairing. The Pi is also
responsible for controlling the movement of the drone.

For picking up, carrying and dropping a new node in re-
pairing the network, we use the EPM device (Figure 3). The
EPM device, which connects to the PI via the GPIO on the
PI, draws the power from there and also receives on/off com-
mands from the Pi for magnetising/demagnetising its mag-
nets to hold/release a new sensor sensor node (for picking
up/dropping down a sensor sensor node).

Figure 3. Left: A Pi with a Raspbee. Middle: An EPM
device and a Tmote sky (attached with a metal plate).
Right: the EPM holding a sensor node with its magnets.

3 Implementation
We implement a star topology Wireless Sensor Network

with a PAN Coordinator (PC) as a sink node and four end
devices (EDs), each ED will be placed in each region. The
communication between the devices is shown in Figure 4.

The PC: The PC acts as a sink node, starts a network with
selected PAN ID and CHANNEL and broadcasts its beacons
for association. For initial setup, it keeps track of the region
of each end device. When an ED sends request for associ-
ation, the PC will accept the request, allocate a new short
address for the ED node and then send that information to
the ED. The short address is used for communication later
on. The PC will receive DATA messages periodically from
the EDs. The PC also connects to a laptop via serial USB
port. It then sends the received data to the laptop which ex-
tracts the values needed and displays them on the screen. The
screen shows live streaming data for each region in the net-
work, and thus we can easily notice if an ED is missing, e.g.
no data stream for the region that the missing node is in.

If the PC does not receive update from a node in a certain
time, it sends a REQUEST message containing the node’s
ID and region to the Pi. After that, it might receive the LO-
CATING message from the Pi indicating that a new node is
being located in the requested region. At this time, the PC
will check if it receives DATA message from that node; if
so, it will send GOODLOCATION message to the Pi. After
that, if the PC receives a DROPPING message from the Pi
(i.e. the new node has been dropped), it associates this node
with the requested region and start updating the data from
the node. At this point, the data stream from the requested
region should be restored back on the screen.

The ED: The end device always tries to associate with
the PC in selected PANID and CHANNEL network, and if
SUCCESS, it will periodically sense the phenomena (light,
humidity and temperature) and pack the data into an IEEE
802.15.4 frame and send to the PC.

The Pi: The Pi is attached to the drone to control its move-
ment. Upon receiving a REQUEST message, the Pi extracts

Screen PC Pi – Raspbee
(serial port - uart)

Drone New ED

Data stream for 
each ED/region Lost node i in region r 

*Go to next GPSLoc in region r

* Arrives at GPSLoc in region r 

Try to associate
to a network and
send data to the
PC if SUCCESS

SIGNAL_OK

* LOCATING message

COOR_PI_REQUEST_MESSAGE

PI_COOR_LOCATING_NODE_MTYPE

New node in region r 
Check the signal

Instruct the EPM 
device to drop node

DROPPING message

Data stream for the 
list region is back

Go home

Return home
I’m home

If SUCCESS, 
periodically send 
data to the PC

Timer.on()

* 
Timer.fired

NODE_COOR_DATA_MTYPE

802.15.4 radio 2.4GHz
Telemetry radio 433MHz

PI_COOR_DROPPING_NODE_MTYPE

COOR_PI_GOODLOCATION_MTYPE

Timer.fired()*: if not receive SIGNAL_OK then repeat all the steps with (*)

Figure 4. Communication between the devices.

the content of the message to get the requested region. It
then instructs the drone to move to a GPS location in that
region. For simplicity, the Pi has a list of target GPS loca-
tions in each region so that it knows exactly where to send
the drone to. When the drone arrives at the first target loca-
tion, the Pi will send a LOCATING message to the PC and
then wait for a GOODLOCATION message from the PC. If
the Pi does not receive a GOODLOCATION message after a
timeout, it instructs the drone to move to the next target loca-
tion, repeating the steps until it hears a GOODLOCATION.
At this time, the Pi commands the EPM to demagnetise its
magnets to release the carrying sensor node. It then sends a
DROPPING message to the PC indicating that the node has
been dropped. Finally, it instructs the drone to go home. In
this topology, the Pi communicates with the PC via peer-to-
peer communication using IEEE 802.15.4 technology (in a
single hop) thank to the Raspbee module.

The drone: The drone always follows the instructions
from the Pi. We have 6 commands for the drone: (i)
arm and takeoff tells the drone to switch to GUIDED mode,
do the safety check, arm the throttle and then take off to a
given altitude; (ii) moveto moves the drone to a specific GPS
location at a specific altitude; (iii) rtl (return to launch) com-
mands it to return to its launch location; (iv) setHome tells
the drone to update its home location; (v) hold altitude com-
mands the drone to hold at a given altitude; and (vi) land tells
it to land at the current GPS location.
4 Conclusion

This demo shows a scenario in robotic network repair
where a drone prototype system is deployed to heal con-
nectivity in a star topology WSN for a single node failure.
Future work includes a larger scale network with multiple
failures including radio link and node failures.
Acknowledgment

This project is funded by the SFI Centre CTVR.
5 References
[1] M. E. Abid, T. Austin, D. Fox, and S. S. Hussain. Drones, UAVs,

and RPAs. An Analysis of a Modern Technology. Technical report,
Worcester Polytechnic Institue, Massachusetts, US, May 2014.

[2] T. T. Truong, K. N. Brown, and C. J. Sreenan. Multi-objective hierar-
chical algorithms for restoring wireless sensor network connectivity in
known environments. Ad Hoc Network, 33(C):190–208, 2015.


