16,566 research outputs found

    Autonomic and brain morphological predictors of stress resilience

    Get PDF
    Stressful life events are an important cause of psychopathology. Humans exposed to aversive or stressful experiences show considerable inter-individual heterogeneity in their responses. However, the majority does not develop stress-related psychiatric disorders. The dynamic processes encompassing positive and functional adaptation in the face of significant adversity have been broadly defined as resilience. Traditionally, the assessment of resilience has been confined to self-report measures, both within the general community and putative high-risk populations. Although this approach has value, it is highly susceptible to subjective bias and may not capture the dynamic nature of resilience, as underlying construct. Recognizing the obvious benefits of more objective measures of resilience, research in the field has just started investigating the predictive value of several potential biological markers. This review provides an overview of theoretical views and empirical evidence suggesting that individual differences in heart rate variability (HRV), a surrogate index of resting cardiac vagal outflow, may underlie different levels of resilience toward the development of stress-related psychiatric disorders. Following this line of thought, recent studies describing associations between regional brain morphometric characteristics and resting state vagally-mediated HRV are summarized. Existing studies suggest that the structural morphology of the anterior cingulated cortex (ACC), particularly its cortical thickness, is implicated in the expression of individual differences in HRV. These findings are discussed in light of emerging structural neuroimaging research, linking morphological characteristics of the ACC to psychological traits ascribed to a high-resilient profile and abnormal structural integrity of the ACC to the psychophysiological expression of stress-related mental health consequences. We conclude that a multidisciplinary approach integrating brain structural imaging with HRV monitoring could offer novel perspectives about brain-body pathways in resilience and adaptation to psychological stres

    Alterations in electrodermal activity and cardiac parasympathetic tone during hypnosis

    Get PDF
    Exploring autonomic nervous system (ANS) changes during hypnosis is critical for understanding the nature and extent of the hypnotic phenomenon and for identifying the mechanisms underlying the effects of hypnosis in different medical conditions. To assess ANS changes during hypnosis, electrodermal activity and pulse rate variability (PRV) were measured in 121 young adults. Participants either received hypnotic induction (hypnosis condition) or listened to music (control condition), and both groups were exposed to test suggestions. Blocks of silence and experimental sound stimuli were presented at baseline, after induction, and after de-induction. Skin conductance level (SCL) and high frequency (HF) power of PRV measured at each phase were compared between groups. Hypnosis decreased SCL compared to the control condition; however, there were no group differences in HF power. Furthermore, hypnotic suggestibility did not moderate ANS changes in the hypnosis group. These findings indicate that hypnosis reduces tonic sympathetic nervous system activity, which might explain why hypnosis is effective in the treatment of disorders with strong sympathetic nervous system involvement, such as rheumatoid arthritis, hot flashes, hypertension, and chronic pain. Further studies with different control conditions are required to examine the specificity of the sympathetic effects of hypnosis

    Neuroanatomical substrates for the volitional regulation of heart rate

    Get PDF
    The control of physiological arousal can assist in the regulation of emotional state. A subset cortical and subcortical brain regions are implicated in autonomic control of bodily arousal during emotional behaviors. Here, we combined human functional neuroimaging with autonomic monitoring to identify neural mechanisms that support the volitional regulation of heart rate, a process that may be assisted by visual feedback. During functional magnetic resonance imaging (fMRI), 15 healthy adults performed an experimental task in which they were prompted voluntarily to increase or decrease cardiovascular arousal (heart rate) during true, false, or absent visual feedback. Participants achieved appropriate changes in heart rate, without significant modulation of respiratory rate, and were overall not influenced by the presence of visual feedback. Increased activity in right amygdala, striatum and brainstem occurred when participants attempted to increase heart rate. In contrast, activation of ventrolateral prefrontal and parietal cortices occurred when attempting to decrease heart rate. Biofeedback enhanced activity within occipito-temporal cortices, but there was no significant interaction with task conditions. Activity in regions including pregenual anterior cingulate and ventral striatum reflected the magnitude of successful task performance, which was negatively related to subclinical anxiety symptoms. Measured changes in respiration correlated with posterior insula activation and heart rate, at a more lenient threshold, change correlated with insula, caudate, and midbrain activity. Our findings highlight a set of brain regions, notably ventrolateral prefrontal cortex, supporting volitional control of cardiovascular arousal. These data are relevant to understanding neural substrates supporting interaction between intentional and interoceptive states related to anxiety, with implications for biofeedback interventions, e.g., real-time fMRI, that target emotional regulation

    The Dynamic Role of Breathing and Cellular Membrane Potentials in the Experience of Consciousness

    Get PDF
    Understanding the mechanics of consciousness remains one of the most important challenges in modern cognitive science. One key step toward understanding consciousness is to associate unconscious physiological processes with subjective experiences of sensory, motor, and emotional contents. This article explores the role of various cellular membrane potential differences and how they give rise to the dynamic infrastructure of conscious experience. This article explains that consciousness is a body-wide, biological process not limited to individual organs because the mind and body are unified as one entity; therefore, no single location of consciousness can be pinpointed. Consciousness exists throughout the entire body, and unified consciousness is experienced and maintained through dynamic repolarization during inhalation and expiration. Extant knowledge is reviewed to provide insight into how differences in cellular membrane potential play a vital role in the triggering of neural and non-neural oscillations. The role of dynamic cellular membrane potentials in the activity of the central nervous system, peripheral nervous system, cardiorespiratory system, and various other tissues (such as muscles and sensory organs) in the physiology of consciousness is also explored. Inspiration and expiration are accompanied by oscillating membrane potentials throughout all cells and play a vital role in subconscious human perception of feelings and states of mind. In addition, the role of the brainstem, hypothalamus, and complete nervous system (central, peripheral, and autonomic)within the mind-body space combine to allow consciousness to emerge and to come alive. This concept departs from the notion that the brain is the only organ that gives rise to consciousness

    Complex Brain-Heart Mapping in Mental and Physical Stress

    Get PDF
    Objective: The central and autonomic nervous systems are deemed complex dynamic systems, wherein each system as a whole shows features that the individual system sub-components do not. They also continuously interact to maintain body homeostasis and appropriate react to endogenous and exogenous stimuli. Such interactions are comprehensively referred to functional brain-heart interplay (BHI). Nevertheless, it remains uncertain whether this interaction also exhibits complex characteristics, that is, whether the dynamics of the entire nervous system inherently demonstrate complex behavior, or if such complexity is solely a trait of the central and autonomic systems. Here, we performed complexity mapping of the BHI dynamics under mental and physical stress conditions. Methods and procedures: Electroencephalographic and heart rate variability series were obtained from 56 healthy individuals performing mental arithmetic or cold-pressure tasks, and physiological series were properly combined to derive directional BHI series, whose complexity was quantified through fuzzy entropy. Results: The experimental results showed that BHI complexity is mainly modulated in the efferent functional direction from the brain to the heart, and mainly targets vagal oscillations during mental stress and sympathovagal oscillations during physical stress. Conclusion: We conclude that the complexity of BHI mapping may provide insightful information on the dynamics of both central and autonomic activity, as well as on their continuous interaction. Clinical impact: This research enhances our comprehension of the reciprocal interactions between central and autonomic systems, potentially paving the way for more accurate diagnoses and targeted treatments of cardiovascular, neurological, and psychiatric disorders

    Leave-one-out prediction error of systolic arterial pressure time series under paced breathing

    Full text link
    In this paper we show that different physiological states and pathological conditions may be characterized in terms of predictability of time series signals from the underlying biological system. In particular we consider systolic arterial pressure time series from healthy subjects and Chronic Heart Failure patients, undergoing paced respiration. We model time series by the regularized least squares approach and quantify predictability by the leave-one-out error. We find that the entrainment mechanism connected to paced breath, that renders the arterial blood pressure signal more regular, thus more predictable, is less effective in patients, and this effect correlates with the seriousness of the heart failure. The leave-one-out error separates controls from patients and, when all orders of nonlinearity are taken into account, alive patients from patients for which cardiac death occurred

    Linear and nonlinear parameters of heart rate variability in ischemic stroke patients

    Get PDF
    Introduction Cardiovascular system presents cortical modulation. Post-stroke outcome can be highly influenced by autonomic nervous system disruption. Heart rate variability (HRV) analysis is a simple non-invasive method to assess sympatho-vagal balance. Objectives The purpose of this study was to investigate cardiac autonomic activity in ischemic stroke patients and to asses HRV nonlinear parameters beside linear ones. Methods We analyzed HRV parameters in 15 right and 15 left middle cerebral artery ischemic stroke patients, in rest condition and during challenge (standing and deep breathing). Data were compared with 15 age- and sex-matched healthy controls. Results There was an asymmetric response after autonomic stimulation tests depending on the cortical lateralization in ischemic stroke patients. In resting state, left hemisphere stroke patients presented enhanced parasympathetic control of the heart rate (higher values for RMSSD, pNN50 and HF in normalized units). Right hemisphere ischemic stroke patients displayed a reduced cardiac parasympathetic modulation during deep breathing test. Beside time and frequency domain, using short-term ECG monitoring, cardiac parasympathetic modulation can also be assessed by nonlinear parameter SD1, that presented strong positive correlation with time and frequency domain parameters RMSSD, pNN50, HFnu, while DFA α1 index presented negative correlation with the same indices and positive correlation with the LFnu and LF/HF ratio, indicating a positive association with the sympatho-vagal balance. Conclusions Cardiac monitoring in clinical routine using HRV analysis in order to identify autonomic imbalance may highlight cardiac dysfunctions, thus helping preventing potential cardiovascular complications, especially in right hemisphere ischemic stroke patients with sympathetic hyperactivation

    Stress: Putting the Brain Back Into Medicine

    Get PDF
    Throughout the life course stress plays a major role in health and disease. Although it has long been known that the brain orchestrates the many ways that the body responds to these experiences, a gap exists between health care providers who focus from the head up and those who focus on the head down
    • …
    corecore