308 research outputs found

    Linkages between Atmospheric Circulation, Weather, Climate, Land Cover and Social Dynamics of the Tibetan Plateau

    Get PDF
    The Tibetan Plateau (TP) is an important landmass that plays a significant role in both regional and global climates. In recent decades, the TP has undergone significant changes due to climate and human activities. Since the 1980s anthropogenic activities, such as the stocking of livestock, land cover change, permafrost degradation, urbanization, highway construction, deforestation and desertification, and unsustainable land management practices, have greatly increased over the TP. As a result, grasslands have undergone rapid degradation and have altered the land surface which in turn has altered the exchange of heat and moisture properties between land and the atmosphere. But gaps still exist in our knowledge of land-atmosphere interactions in the TP and their impacts on weather and climate around the TP, making it difficult to understand the complete energy and water cycles over the region. Moreover, human, and ecological systems are interlinked, and the drivers of change include biophysical, economic, political, social, and cultural elements that operate at different temporal and spatial scales. Current studies do not holistically reflect the complex social-ecological dynamics of the Tibetan Plateau. To increase our understanding of this coupled human-natural system, there is a need for an integrated approach to rendering visible the deep interconnections between the biophysical and social systems of the TP. There is a need for an integrative framework to study the impacts of sedentary and individualized production systems on the health and livelihoods of local communities in the context of land degradation and climate change. To do so, there is a need to understand better the spatial variability and landscape patterns in grassland degradation across the TP. Therefore, the main goal of this dissertation is to contribute to our understanding of the changes over the land surface and how these changes impact the plateau\u27s weather, climate, and social dynamics. This dissertation is structured as three interrelated manuscripts, which each explore specific research questions relating to this larger goal. These manuscripts constitute the three primary papers of this dissertation. The first paper documents the significant association of surface energy flux with vegetation cover, as measured by satellite based AVHRR GIMMS3g normalized difference vegetation index (NDVI) data, during the early growing season of May in the western region of the Tibetan Plateau. In addition, a 1°K increase in the temperature at the 500 hPa level was observed. Based on the identified positive effects of vegetation on the temperature associated with decreased NDVI in the western region of the Tibetan Plateau, I propose a positive energy process for land-atmosphere associations. In the second paper, an increase in Landsat-derived NDVI, i.e., a greening, is identified within the TP, especially during 1990 to 2018 and 2000 to 2018 time periods. Larger median growing season NDVI change values were observed for the Southeast Tibet shrublands and meadows and Tibetan Plateau Alpine Shrublands and Meadows grassland regions, in comparison to the other three regions studied. Land degradation is prominent in the lower and intermediate hillslope positions in comparison to the higher relative topographic positions, and change is more pronounced in the eastern Southeast Tibet shrublands and meadows and Tibetan Plateau Alpine Shrublands and Meadows grasslands. Geomorphons were found to be an effective spatial unit for analysis of hillslope change patterns. Through the extensive literature review presented in third paper, this dissertation recommends using critical physical geography (CPG) to study environmental and social issues in the TP. The conceptual model proposed provides a framework for analysis of the dominant controls, feedback, and interactions between natural, human, socioeconomic, and governance activities, allowing researchers to untangle climate change, land degradation, and vulnerability in the Tibetan Plateau. CPG will further help improve our understanding of the exposure of local people to climate and socio-economic and political change and help policy makers devise appropriate strategies to combat future grassland degradation and to improve the lives and strengthen livelihoods of the inhabitants of the TP

    Remote Sensing of Land Surface Phenology

    Get PDF
    Land surface phenology (LSP) uses remote sensing to monitor seasonal dynamics in vegetated land surfaces and retrieve phenological metrics (transition dates, rate of change, annual integrals, etc.). LSP has developed rapidly in the last few decades. Both regional and global LSP products have been routinely generated and play prominent roles in modeling crop yield, ecological surveillance, identifying invasive species, modeling the terrestrial biosphere, and assessing impacts on urban and natural ecosystems. Recent advances in field and spaceborne sensor technologies, as well as data fusion techniques, have enabled novel LSP retrieval algorithms that refine retrievals at even higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. Meanwhile, rigorous assessment of the uncertainties in LSP retrievals is ongoing, and efforts to reduce these uncertainties represent an active research area. Open source software and hardware are in development, and have greatly facilitated the use of LSP metrics by scientists outside the remote sensing community. This reprint covers the latest developments in sensor technologies, LSP retrieval algorithms and validation strategies, and the use of LSP products in a variety of fields. It aims to summarize the ongoing diverse LSP developments and boost discussions on future research prospects

    Vegetation Dynamics Revealed by Remote Sensing and Its Feedback to Regional and Global Climate

    Get PDF
    This book focuses on some significant progress in vegetation dynamics and their response to climate change revealed by remote sensing data. The development of satellite remote sensing and its derived products offer fantastic opportunities to investigate vegetation changes and their feedback to regional and global climate systems. Special attention is given in the book to vegetation changes and their drivers, the effects of extreme climate events on vegetation, land surface albedo associated with vegetation changes, plant fingerprints, and vegetation dynamics in climate modeling

    Satellite-based monitoring of pasture degradation on the Tibetan Plateau: A multi-scale approach

    Get PDF
    The Tibetan Plateau has been entitled Third-Pole-Environment'' because of its outstanding importance for the global climate and the hydrological system of East and Southeast Asia. Its climatological and hydrological influences are strongly affected by the local vegetation which is supposed to be subject to ongoing degradation. The degradation of the Tibetan pastures was investigated on the local scale by numerous studies. However, because methods and scales substantially differed among the previous studies, the overall pattern of degradation on the Tibetan Plateau is hitherto unknown. Consequently, the aims of this thesis are to monitor recent changes in the grassland degradation on the Tibetan Plateau and to detect the underlying driving forces of the observed changes. Therefore, a comprehensive remote sensing based approach is developed. The new approach consists of three parts and incorporates different spatial and temporal scales: (i) the development and testing of an indicator system for pasture degradation on the local scale, (ii) the development of a MODIS-based product usable for degradation monitoring from the local to the plateau scale, and (iii) the application of the new product to delineate recent changes in the degradation status of the pastures on the Tibetan Plateau. The first part of the new approach comprised the test of the suitability of a new two-indicator system and its transferability to spaceborne data. The indicators were land-cover fractions (e.g.,~green vegetation, bare soil) derived from linear spectral unmixing and chlorophyll content. The latter was incorporated as a proxy for nutrient and water availability. It was estimated combining hyperspectral vegetation indices as predictors in partial least squares regression. The indicator system was established and tested on the local scale using a transect design and textit{in situ} measured data. The promising results revealed clear spatial patterns attributed to degradation, indicating that the combination of vegetation cover and chlorophyll content is a suitable indicator system for the detection of pasture degradation on local scales on the Tibetan Plateau. To delineate patterns of degradation changes on the plateau scale, the green plant coverage of the Tibetan pastures was derived in the second part. Therefore, an upscaling approach was developed. It is based on satellite data from high spatial resolution sensors on the local scale (WorldView-type) via medium resolution data (Landsat) to low resolution data on the plateau scale (MODIS). The different spatial resolutions involved in the methodology were incorporated to enable the cross-validation of the estimations in the new product against field observations (over 600 plots across the entire Tibetan Plateau). Four methods (linear spectral unmixing, spectral angle mapper, partial least squares regression, and support vector machine regression) were tested on their predictive performance for the estimation of plant cover and the method with the highest accuracy (support vector machine regression) was applied to 14 years of MODIS data to generate a new vegetation coverage product. In the third part, the changes in vegetation cover between the years 2000 and 2013 and their driving forces were investigated by comparing the trends in the new vegetation coverage product against climate variables (precipitation from tropical rainfall measuring mission and 2 m air temperature from ERA-Interim reanalysis data) on the entire Tibetan Plateau. Large areas in southern Qinghai were identified where vegetation cover increased as a result of positive precipitation trends. Thus, degradation did not proceed in these regions. Contrasting with this, large areas in the central and western parts of the Tibetan Autonomous Region were subject to an ongoing degradation. This degradation can be attributed to the coincidence of rising temperatures and anthropogenic induced increases in livestock numbers as a consequence of local land-use change. In those areas, the ongoing degradation influenced local precipitation patterns because sensible heat fluxes were accelerated above degraded pastures. In combination with advected moist air masses at higher atmospheric levels, the accelerated heat fluxes led to an intensification of local convective rainfall. The ongoing degradation detected by the new remote sensing approach in this thesis is alarming. The affected regions encompass the river systems of the Indus and Brahmaputra Rivers, where the ongoing degradation negatively affects the water storage capacities of the soils and enhances erosion. In combination with the feed-back mechanisms between plant coverage and the changed precipitation on the Tibetan Plateau, the reduced water storage capacity will exacerbate runoff extremes in the middle and lower reaches of those important river systems

    Energy and Water Cycles in the Third Pole

    Get PDF
    As the most prominent and complicated terrain on the globe, the Tibetan Plateau (TP) is often called the “Roof of the World”, “Third Pole” or “Asian Water Tower”. The energy and water cycles in the Third Pole have great impacts on the atmospheric circulation, Asian monsoon system and global climate change. On the other hand, the TP and the surrounding higher elevation area are also experiencing evident and rapid environmental changes under the background of global warming. As the headwater area of major rivers in Asia, the TP’s environmental changes—such as glacial retreat, snow melting, lake expanding and permafrost degradation—pose potential long-term threats to water resources of the local and surrounding regions. To promote quantitative understanding of energy and water cycles of the TP, several field campaigns, including GAME/Tibet, CAMP/Tibet and TORP, have been carried out. A large amount of data have been collected to gain a better understanding of the atmospheric boundary layer structure, turbulent heat fluxes and their coupling with atmospheric circulation and hydrological processes. The focus of this reprint is to present recent advances in quantifying land–atmosphere interactions, the water cycle and its components, energy balance components, climate change and hydrological feedbacks by in situ measurements, remote sensing or numerical modelling approaches in the “Third Pole” region

    Understanding habitat selection of wild yak Bos mutus on the Tibetan Plateau

    Get PDF
    We tested a series of hypotheses on drivers of habitat selection by the Vulnerable wild yak Bos mutus, combining distribution-wide sighting data with species distribution modelling approaches. The results indicate that climatic conditions are of paramount importance in shaping the wild yak's distribution on the Tibetan Plateau. Habitat selection patterns were seasonal, with yaks appearing to select areas closer to villages during the vegetation-growing season. Unexpectedly, our index of forage quantity had a limited effect in determining the distribution of the species. Overall, our results suggest that expected changes in climate for this region could have a significant impact on habitat availability for wild yaks, and we call for more attention to be focused on the unique wildlife in this ecosystem

    Mapping forests in monsoon Asia with ALOS PALSAR 50-m mosaic images and MODIS imagery in 2010.

    Get PDF
    Extensive forest changes have occurred in monsoon Asia, substantially affecting climate, carbon cycle and biodiversity. Accurate forest cover maps at fine spatial resolutions are required to qualify and quantify these effects. In this study, an algorithm was developed to map forests in 2010, with the use of structure and biomass information from the Advanced Land Observation System (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) mosaic dataset and the phenological information from MODerate Resolution Imaging Spectroradiometer (MOD13Q1 and MOD09A1) products. Our forest map (PALSARMOD50 m F/NF) was assessed through randomly selected ground truth samples from high spatial resolution images and had an overall accuracy of 95%. Total area of forests in monsoon Asia in 2010 was estimated to be ~6.3 × 10(6 )km(2). The distribution of evergreen and deciduous forests agreed reasonably well with the median Normalized Difference Vegetation Index (NDVI) in winter. PALSARMOD50 m F/NF map showed good spatial and areal agreements with selected forest maps generated by the Japan Aerospace Exploration Agency (JAXA F/NF), European Space Agency (ESA F/NF), Boston University (MCD12Q1 F/NF), Food and Agricultural Organization (FAO FRA), and University of Maryland (Landsat forests), but relatively large differences and uncertainties in tropical forests and evergreen and deciduous forests

    Decreasing net primary production due to drought and slight decreases in solar radiation in China from 2000 to 2012

    Get PDF
    Terrestrial ecosystems have continued to provide the critical service of slowing the atmospheric CO2 growth rate. Terrestrial net primary productivity (NPP) is thought to be a major contributing factor to this trend. Yet our ability to estimate NPP at the regional scale remains limited due to large uncertainties in the response of NPP to multiple interacting climate factors and uncertainties in the driver data sets needed to estimate NPP. In this study, we introduced an improved NPP algorithm that used local driver data sets and parameters in China. We found that bias decreased by 30% for gross primary production (GPP) and 17% for NPP compared with the widely used global GPP and NPP products, respectively. From 2000 to 2012, a pixel-level analysis of our improved NPP for the region of China showed an overall decreasing NPP trend of 4.65 Tg C a−1. Reductions in NPP were largest for the southern forests of China (−5.38 Tg C a−1), whereas minor increases in NPP were found for North China (0.65 Tg C a−1). Surprisingly, reductions in NPP were largely due to decreases in solar radiation (82%), rather than the more commonly expected effects of drought (18%). This was because for southern China, the interannual variability of NPP was more sensitive to solar radiation (R2 in 0.29–0.59) relative to precipitation (R2 \u3c 0.13). These findings update our previous knowledge of carbon uptake responses to climate change in terrestrial ecosystems of China and highlight the importance of shortwave radiation in driving vegetation productivity for the region, especially for tropical forests

    Climate Sensitivity of the Arid Scrublands on the Tibetan Plateau Mediated by Plant Nutrient Traits and Soil Nutrient Availability

    Get PDF
    Climate models predict the further intensification of global warming in the future. Drylands, as one of the most fragile ecosystems, are vulnerable to changes in temperature, precipitation, and drought extremes. However, it is still unclear how plant traits interact with soil properties to regulate drylands’ responses to seasonal and interannual climate change. The vegetation sensitivity index (VSI) of desert scrubs in the Qaidam Basin (NE Tibetan Plateau) was assessed by summarizing the relative contributions of temperature (SGST), precipitation (SGSP), and drought (temperature vegetation dryness index, STVDI) to the dynamics of the normalized difference vegetation index (NDVI) during plant growing months yearly from 2000 to 2015. Nutrient contents, including carbon, nitrogen, phosphorus, and potassium in topsoils and leaves of plants, were measured for seven types of desert scrub communities at 22 sites in the summer of 2016. Multiple linear and structural equation models were used to reveal how leaf and soil nutrient regimes affect desert scrubs’ sensitivity to climate variability. The results showed that total soil nitrogen (STN) and leaf carbon content (LC), respectively, explained 25.9% and 17.0% of the VSI variance across different scrub communities. Structural equation modeling (SEM) revealed that STN and total soil potassium (STK) mediated desert scrub’s VSI indirectly via SGST (with standardized path strength of −0.35 and +0.32, respectively) while LC indirectly via SGST and SGSP (with standardized path strength of −0.31 and −0.19, respectively). Neither soil nor leave nutrient contents alone could explain the VSI variance across different sites, except for the indirect influences of STN and STK via STVDI (−0.18 and 0.16, respectively). Overall, this study disentangled the relative importance of plant nutrient traits and soil nutrient availability in mediating the climatic sensitivity of desert scrubs in the Tibetan Plateau. Integrating soil nutrient availability with plant functional traits together is recommended to better understand the mechanisms behind dryland dynamics under global climate change
    corecore