

Understanding habitat selection of wild yak Bos mutus on the Tibetan Plateau

\mathbf{n}
2
- 1
<u> </u>

- 5 Wildlife Conservation Society
- 6 China programme
- 7 Room 401, Unit2, Tower2, Ronghuashijia,
- 8 No.29 Xiaoyingbeilu, Chaoyang District, Beijing
- 9 <u>xliang@wcs.org</u>
- 10

5

- 12 Wildlife Conservation Society
- 13 China programme
- 14 Room 401, Unit2, Tower2, Ronghuashijia,
- 15 No.29 Xiaoyingbeilu, Chaoyang District, Beijing
- 16 <u>akang@wcs.org</u>
- 17
- 18 Nathalie Pettorelli
- 19 Zoological Society of London
- 20 Institute of Zoology
- 21 Regent's Park, London NW1 4RY, UK
- 22 <u>Nathalie.Pettorelli@ioz.ac.uk</u>
- 23

24	Correspondence should be sent to: Nathalie Pettorelli
25	Phone: (+44) 0207 449 6334
26	Email: <u>Nathalie.Pettorelli@ioz.ac.uk</u>

- 27
- 28 Type of article: *Standard*
- 29 Abstract: 113 words; Main text: 4307 words

31	Abstract: This study tests a series of hypotheses on drivers of habitat selection in
32	wild yak Bos mutus by combining distribution-wide sighting data with species
33	distribution modelling approaches. Results unveil climatic conditions as being of
34	paramount importance to shaping wild yak's distribution on the Tibetan Plateau.
35	Habitat selection patterns were seasonal, with wild yaks <u>appearing</u> to select areas
36	closer to villages during the vegetation-growing season. Unexpectedly, our index of
37	forage quantity had a limited effect in determining the distribution of the species.
38	Altogether, our work suggests that expected changes in climate for this region could
39	strongly impact habitat availability for wild yaks, calling for more attention to be
40	provided to the unique wildlife found in this ecosystem.
41	
42	Keywords: Climate change, GAM, highland, large herbivore, MaxEnt, Random forest,

seasonal habitats, species distribution model

45 Introduction

46 The wild yak (Bos mutus) is a rare yet iconic large herbivore species inhabiting one of 47 the highest places on Earth, namely the Tibetan plateau. Being among the largest bovids on Earth, wild yaks are also the largest native animal in their range, which 48 49 used to include China (Gansu, Sichuan, Xinjiang, Tibet, Qinghai), northern India 50 (Ladak), and Nepal (Schaller & Liu, 1996). Mainly due to excessive hunting, wild yak numbers collapsed in the 20th century; the total number of mature individuals was last 51 52 estimated to be around 15,000 in 1995 (Schaller, 1998). The species is currently 53 classified as Vulnerable by the IUCN; most of the remaining individuals are found in 54 isolated and fragmented populations in the central and northern parts of Tibetan 55 plateau. Remnant populations face escalating threats from anthropogenic activities, 56 such as increasing competition with livestock for good grazing areas and expanding 57 road systems that cause degradation of their habitats (Leslie & Schaller, 2009). 58 Climate change is also expected impact the long-term availability of suitable habitats 59 for the species (Schaller, 1998), although little quantified and spatially-explicit 60 information is currently available to inform discussions on potential management

61	options. More broadly, quantitative information on the factors driving patterns in the
62	seasonal distribution of wild yaks is still rare. Existing studies on any Tibetan
63	herbivore species rarely include data from the entire species' distribution range
64	(Sharma et al., 2004; Singh et al., 2009; St-louis & Côté, 2014), which prevents the
65	identification of concrete environmental management actions to alleviate further
66	pressures on wild yak populations at the scale relevant for large species' conservation.
67	The present study aims to fill this gap in knowledge by combining recent advances in
68	species distribution modelling (SDM) with a set of sighting data collected across most
69	of the known distribution range of the wild yak. We expect (i) the species to show
70	distinct habitat selection patterns between seasons, a distinction that has been
71	previously suggested to occur but that has not been assessed in a quantitative manner
72	(Harris & Miller, 1995; Schaller, 1998). In particular, we expect preferred habitats of
73	wild yaks during the vegetation growing season to be found at higher altitudes, in
74	more rugged terrains, and closer to glaciers (Schaller, 1998). We then expect (ii) the
75	species to select for forage quantity over forage quality at the distribution-range scale,
76	given that wild yaks are non-selective grazers (Jarman, 1974). We moreover expect

77	(iii) predation risk, herein captured by anthropogenic disturbances due to the general
78	lack of natural predators for wild yaks in the area (Schaller, 1998), to be a significant
79	factor shaping habitat selection patterns, with wild yaks being expected to avoid areas
80	near human communities (Leslie & Schaller, 2009). The knowledge derived from this
81	study will be used to predict seasonal habitat availability in the context of climate
82	change; this will help highlight future global conservation challenges on the Tibetan
83	plateau.

85 Study Area

86	The considered study area (Figure 1) covers around 1.1 million km ² on the Tibetan
87	plateau (WGS84, 78.5°E to 95.5°E, and 29.5°N to 37.0°N). It encompasses the entire
88	Tibet Interior region defined by Kunlun in the north and Gangdise and
89	Nyainqentanglha Ranges in the south, with slight eastward extension to incorporate
90	part of Sanjiangyuan region in the Qinghai province of China. This part of the world
91	includes most of the known current distribution range of the wild yak (Leslie &
92	Schaller, 2009). There, average annual precipitation follows a decreasing gradient

93	from east to west and from south to north, ranging from around 500 mm in the South
94	East to less than 50 mm in the North West. Average annual temperatures vary from 0
95	C° to -6 C°, with winter extremes < -40 C°. The <i>Tibetan Steppe</i> is the main ecoregion
96	present in the study area. Sparsely-distributed vegetation types are common, found on
97	the alpine meadows, alpine steppes, semi-arid steppes and cold deserts (Schaller, 1998;
98	Miller, 2003).

100 Methods

101 **Data**

102 Presence data

Presence data were collected by the Wildlife Conservation Society (WCS) and its partners in the years 2006, 2008, 2009, 2011, 2012, and 2013. Most of the surveys were conducted within areas known to hold wild yaks; however, the surveys were not primarily designed to collect information on wild yaks and sightings were thus opportunistic. Sightings were geo-referenced by trained staff, following the field

108	protocol established by WCS China. Ancillary data (e.g. collection of sighting data
109	while in vehicle or on foot; number of observers; survey efforts) were not
110	systematically collected and could therefore not be taken into account in subsequent
111	analyses. Vehicle surveys were not based on existing road systems; however, survey
112	effort was shaped by the local topography as well as the distribution of seasonal rivers.
113	While conducting surveys, the speed of the vehicle was required to be below 20km
114	per hour to avoid disturbing wildlife as much as possible.
115	The total number of independent occurrences within our dataset was 755. Five
116	hundred and sixty nine of these sightings were collected during the non-growing
117	season (October to March; Yu et al., 2012), the rest (n=186) being collected during the
118	vegetation growing season (April to September).
119	Environmental variables
120	This study adopted a methodological framework that distinguishes limiting factors
121	(i.e., climatic and topographic factors), disturbance (i.e., anthropogenic influence),
122	and resources' distribution (i.e., forage and fresh water availability) to categorise the

123 environmental variables to be considered when exploring habitat selection patterns

124	(Guisan & Thuiller, 2005; Austin, 2007). The spatial resolution of all the
125	environmental variables considered was set to 1 km ² . All the candidate variable layers
126	were cropped to the extent of the study area, and if necessary, resampled to a 1 $\rm km^2$
127	spatial resolution using the 'Nearest Neighbour' method in the 'raster' library
128	(Hijmans & Etten, 2012) in R (version 3.0.2; R Development Core Team, 2014).
129	Climate
130	The 19 Bioclim variables (representative of the years 1950 to 2000) from the
131	WorldClim dataset (Version 1.4; Hijmans et al., 2005) were used to capture current
132	climatic conditions in the study area. To predict future trends in habitat availability,
133	the Bioclim layers for the year 2070 were downloaded under two Representative
134	Concentration Pathways (RCP), namely, RCP26 and RCP85. These were derived
135	from the 'HadGEM2-ES' climate model, an updated version of the 'HADGEM' that
136	has been reported to adequately help predict the Tibetan climate (Hao et al., 2013).
137	Topography

138 Topography is known to cause variation in forage quantity and quality for large

139	herbivores, as well as shaping local predation risk (Brown, 1999; Illius & O'Connor,
140	2000). The Topographic Ruggedness Index (TRI), a measurement developed by Riley
141	and colleagues. (1999) to quantify the total altitudinal change across a given area, was
142	calculated based on the downloaded Digital Elevation Model layer GTOPO30 from
143	the U.S. Geological Survey's Long Term Archive website
144	(https://lta.cr.usgs.gov/GTOPO30). Calculations were performed in QGIS (Version
145	2.2.0-Valmiera; Quantum GIS Development Team, 2014).

146 Anthropogenic influence

147 Although natural predators do exist for wild yaks on the Tibetan plateau (see e.g. 148 Schaller, 1998; Xu et al., 2006; Leslie & Schaller, 2009), human presence and activity 149 are considered to primarily shape predation risk for this species (Leslie & Schaller, 150 2009). The distribution of human communities within our study area is relatively 151 dense in the south of N33° and sparse in the north. Livestock rearing is the common 152 livelihood. Long-distance nomadism is now seldom, whereas pastoral activities 153 normally take place in designated grazing areas near villages (Sheehy et al., 2006). 154 The linear distance between the centre of any given pixel and the nearest village was

155 used as a proxy for anthropogenic disturbance and calculated for all pixels. 156 Calculations were conducted in QGIS using the Proximity function. The shapefile 157 detailing the distribution of villages in the area was provided by WCS China. 158 Fresh water availability 159 Glaciers have important effects on the hydrological cycle of high-altitude regions 160 (Nogués-Bravo et al., 2007). The melting ice and snowpack provide seasonal fresh 161 water and soil moisture critical to local vegetation communities (Schaller, 1998). The 162 linear distance between the centre of any given pixel and the nearest glacier was 163 therefore estimated for all pixels, using the Proximity QGIS function. The shapefile of 164 glacier distribution acquired from GLIMS Glacier Database was the 165 (http://nsidc.org/data/nsidc-0272). 166 Forage

167 The Normalized Difference Vegetation Index (NDVI), one of the most intensely 168 studied and widely used vegetation indices (Pettorelli, 2013), was considered as a 169 proxy for forage availability. MODIS Terra NDVI products (MOD13A2, monthly

170	data of years 2001-2013) were downloaded using the USGS MODIS Reprojection
171	Tool Web Interface (https://mrtweb.cr.usgs.gov). As the reflected light waves captured
172	by satellite sensors can be influenced by a variety of natural phenomena (Achard &
173	Estreguil, 1995), the downloaded data layers were processed in R to (i) convert all
174	negative values to zeros; (ii) adjust the anomalous values, which were assumed to
175	reflect atmospheric 'noise' involved in the MOD13A2 dataset (see Garonna et al.,
176	2009 for full methdology).

177 Modelling approach

178 SDMs are numerical tools to assist in quantifying species-environment relationships; 179 they are increasingly used for gaining ecological insights and predicting species 180 distributions at large spatial scales (Guisan & Zimmermann, 2000). There are 181 different types of SDMs that can be used in combination with presence data to assess 182 habitat suitability; the predictive power of a given modelling approach can yet be 183 context-specific and may vary depending on the study area, variables and resolution 184 considered, as well as the amount of presence data available (Guisan & Zimmermann, 2000). To overcome uncertainties linked to the choice of SDM to be considered, we 185

186	decided to conduct three different analytical approaches that have been widely
187	employed in species distribution modelling exercises, namely, Generalized Additive
188	Models (GAMs; Yee & Mitchell, 1991), Maximum Entropy (MaxEnt; Elith et al.,
189	2011), and Random Forests (RF; Breiman, 2001). All models were developed in R
190	using the package 'biomod2' (Version 3.1-48; Thuiller et al., 2014).
191	We firstly explored the importance of the climatic and topographic variables in
192	shaping the current distribution of wild yak. Because habitat selection was expected to
193	be seasonal, models were run 40 times for the growing ("G_I") and non-growing
194	("NG_I") season, respectively (Table 1). In a second step, current yak distribution was
195	considered as a function of climatic conditions, topographic factors, forage
196	availability, glacier distribution and anthropogenic influences. Again, these models
197	were run for the growing ("G_II") and non-growing ("NG_II") seasons (Table 1).
198	Multicollinearity was checked using the Variance Inflation Factor (VIF) analysis (R
199	library 'usdm'; O'Brien, 2007). Some candidate variables were excluded to mitigate
200	the effects of inflation caused by the high correlations amongst the predictor variables
201	(Dormann et al., 2012).

202	Yak presence data was independently split into 70% for training and 30% for testing
203	(Araújo et al., 2005). Ten thousands background points (representing pseudo-absence
204	for GAM) were randomly selected throughout the study area. GAM was set with four
205	degrees of freedom for smoothing (Austin, 2007). When performing MaxEnt, species
206	prevalence was set to 0.1 (Elith et al., 2011). The maximum decision trees of RF was
207	set to 500 (Cutler et al., 2007). Three evaluation methods, namely Kappa (Cohen
208	1960), TSS (Allouche et al., 2006) and AUC (Swets, 1988), were employed to assess
209	model performance. The "Excellent" classification of model predictions were
210	recommended to be measured by Kappa >0.75 (Fleiss, 1981), TSS >0.8 (Thuiller et
211	al., 2009), or AUC >0.90 (Swets, 1988).

Predictions of species presence probability from the best-performing model were converted to presence-absence predictions using a transforming threshold selected as the one that maximises TSS scores (Allouche et al., 2006; Lobo et al., 2008). Variable importance was estimated using a variable permutation algorithm (Breiman, 2001).
Information on altitude, terrain ruggedness, and distance to the nearest village and glacier was extracted from all predicted presence pixels for both seasons under the

best model of current habitat suitability distribution for wild yaks; these values were
then compared between seasons using Wilcoxon one-tailed sum rank tests (Hollander
& Wolfe, 1973).

Results

223	RF models generally outperformed GAM and MaxEnt ones (Table 2). In accordance
224	with our first prediction, wild yaks showed distinct seasonal patterns of habitat
225	selection; climatic conditions were strong determinants of these patterns at the spatial
226	scale considered (Figure 2). During the growing season, wild yaks appeared to select
227	areas with low levels of fluctuations in monthly precipitation; they also appeared to
228	favor areas with relatively abundant precipitations in the peak summer month (i.e.,
229	July). During the non-growing season, drier areas with greater fluctuations in monthly
230	precipitation and less extreme winter temperatures were more likely to be preferred
231	(Figure 2). Preferred habitats during the growing season were found at higher
232	altitudes (W=2061875023, p<0.001), closer to glaciers (W=344529388, p<0.001) and
233	in more rugged terrain (W=1800769226, p<0.001) than those used during the

234	non-growing season (see Appendix I for details on the topographic features of suitable
235	habitats per season). Contrary to our third hypothesis, however, wild yaks tended to
236	be found closer to villages during the growing season than during the non-growing
237	season (W=716972327, p<0.001). Interestingly, all the NDVI-based variables
238	considered were comparatively of much lower importance to defining habitat
239	selection patterns than the top climatic variables_(Figure 2).
240	Based on these results, it is likely that under the RCP26 scenario, the distribution of
241	suitable habitats for wild yaks would expand by 146% and 35% by the year 2070 in
242	the growing and non-growing seasons, respectively. Under the RCP85 scenario,
243	however, the distribution of suitable habitats during the growing season would expand
244	by 194%, while the availability of suitable habitats during the non-growing season is
245	expected to decrease by 76% (Figure 3). Shifts in the distribution of suitable habitats
246	are also expected to occur. Based on our analyses, the present distribution of suitable
247	habitats during the growing season could shrink by 69% (RCP26) and 74% (RCP85),
248	respectively. Likewise, the present distribution of suitable habitats during the
249	non-growing season could shrink by 49% (RCP26) and 98% (RCP85), respectively

250 (Appendix III).

Discussion

253	Our results largely support current expectations about the factors shaping wild yak
254	distribution on the Tibetan plateau, showing that habitat selection patterns for the
255	species are seasonally distinct and are largely driven by climatic factors. Yet two of
256	our predictions were not well supported by our findings. The first pertains to the
257	importance of forage quantity in driving habitat selection of wild yaks. Wild yaks are
258	non-selective grazers (Schaller, 1998), and are therefore not expected to select forage
259	quality over forage quantity (Jarman, 1974). Although we expected forage biomass to
260	be key in determining wild yak occurrence, our results show that most NDVI-based
261	variables play no, or very little, role in shaping wild yak distribution. Unlike the
262	previously reported successful cases where NDVI could be linked to large herbivore
263	distribution (see Pettorelli 2013 for a review), NDVI-based variables may have not
264	correctly capture <u>d</u> vegetation dynamics in our study area_due to issues associated with

265	high soil reflectance (Pettorelli et al. 2011). But these results could also suggest that
266	wild yak select for forage quality over forage quantity to an extent beyond our initial
267	expectation. The highly nutritious Kobresia-dominant moist meadows, favoured by
268	wild yaks in summer according to empirical observations (Harris & Miller, 1995), are
269	indeed not as productive in terms of vegetation biomass than other vegetation types
270	such as Stipa grasslands, which are more widely distributed in our study area
271	(Schaller, 1998). Pixels with higher NDVI values would thus fail to capture the
272	distribution of these favoured, yet less productive, meadows. Interestingly, low level
273	of fluctuations in monthly precipitation and abundant precipitations in July (the two
274	conditions identified as being key to capture wild yak distribution during the growing
275	period), are also key factors determining the biomass and nutrient value of
276	Kobresia-dominant moist meadows (Yu et al., 2012). These meadows are indeed
277	associated with high levels of vapor loss (Körner, 1999), therefore being strongly
278	dependent on water availability to prevent desiccation. In July, in particular,
279	vegetation on the Kobresia-dominant moist meadows is normally at its early
280	phenological stages (Schaller. 1998); timely and abundant precipitation could thus be

281	particularly beneficial to plant development in these meadows. Studies from other
282	parts of the plateau on the Tibetan argali Ovis ammon hodgsoni (Singh et al., 2010)
283	and kiang Equus kiang (St-louis & Côté, 2014) similarly suggest that forage quality
284	can be a key factor shaping habitat selection patterns for these large herbivores. At
285	this stage, it is difficult to conclude on the role of forage quantity and quality in
286	driving wild yak habitat selection; further research is clearly needed.
287	The second prediction that our results failed to support is that wild yaks avoid human
288	settlements, especially during the period when forage is relatively abundant and when
289	there is thus no need to take bigger risk associated with proximity to humans (Frid &
290	Dill _a 2002; Creel et al. _a 2005). The low influence of anthropogenic disturbances on
291	wild yak distribution may suggest that individuals in the area are basically unaffected
292	by human distribution during the growing season; but this result may also be
293	underpinned by the spatial proximity between villages and Kobresia-dominant moist
294	meadows. Another potential explanation comes from the distribution of domestic yaks,
295	found near villages. Habitat selection patterns of polygynous male herbivores is likely
296	to be dependent on the spatio-temporal distribution of females during the mating

297	season (Jarman, 1974; Clutton-Brock, 1989). One can expect wild male yaks to be
298	attracted by the frequent presence of large number of domestic females without
299	apparent competitors. This hypothesis is supported by the increasingly reported
300	wild-domestic yak mingling and hybridization in Tibet (Leslie & Schaller, 2009)
301	There are a number of caveats associated with our data and modelling work. First,
302	apart from yak sighting coordinates and group size, no other observation at the
303	sightings are available from the survey teams (eg. topography, climatic conditions,
304	primary productivity). Therefore, all the environmental information used for analyses
305	are derived from global products, which have not been validated locally. We believe
306	future research should groundtruth these products to ascertain the robustness of our
307	conclusions. Second, our proxy of anthropogenic disturbance does not differentiate
308	disturbance resulting from human presence from disturbance resulting from livestock.
309	This lack of differentiation is due to the current lack of information on the spatial
310	distribution of people and livestock in the area. As these data become available, it
311	would be interesting to contrast the influence of humans and livestock on the
312	distribution of wild yak. Third, the considered dataset might have been biased by the

313	survey methods. In the growing season, in particular, limited accessibility to various
314	areas can limit survey efforts to regions closer to villages, which means that our
315	dataset may not capture the full range of environmental conditions where yaks can be
316	found during that period. This sampling bias could lead to the distribution and size of
317	suitable habitats during the growing-season being underestimated, as well as the
318	ecological forces shaping the distribution of the species being misidentified (Syfert et
319	al., 2013). Based on a series of correlative modelling approaches, this study moreover
320	intrinsically assumes that wild yaks are living in equilibrium with their environment
321	(Pearson & Dawson, 2003); the observed yak distribution may however not reflect the
322	optimal patterns of habitat selection but rather habitat use as being constrained by a
323	number of factors, including those associated with the presence of livestock. To
324	address this, future large-scale studies should attempt to incorporate information on
325	the distribution of domestic yaks while modelling wild yak distribution. Various biotic
326	interactions and yaks' dispersal ability need to be taken into account, in order to
327	identify scale-dependent limiting factors and consequent patterns in habitat selection
328	(Pearson & Dawson, 2003). Another limitation to this study comes from the fact that

329	our work did not consider the influence of sex. Dimorphic ruminants can be
330	substantially divergent in their niche requirements (Kie & Bowyer, 1999). We were
331	unable to explore differences in habitat selection patterns between males and females
332	due to the gender of the individuals sighted not being reliably recorded. Our identified
333	seasonal patterns should thus be understood as "averaged" results based on the dataset
334	of unknown gender mixture. Finally, uncertainties associated with the modelling
335	approaches considered should be acknowledged (Araújo et al., 2005). Predictions
336	derived from these models vary quite substantially; for example, if we adopt GAM's
337	predictions (which is also acceptable in terms of AUC and TSS), the importance of
338	factors such as altitude and mean temperature in determining suitable habitats for wild
339	yaks in summer would be much higher than suggested by the random forest model
340	(see Appendix II for details); suitable habitats for both seasons would also be much
341	larger in size (Appendix III). These method-induced differences highlight the
342	importance of interpreting model outputs with caution.

An important contribution made by this study resides in its quantification of thepossible impact of climate change on the availability of suitable habitats for wild yaks.

345	According to our current knowledge, wild yaks are mostly found between 33°N-36°N;
346	these regions are likely to be severely impacted by climate change. In terms of
347	conservation priorities for the species, suitable habitats for wild yaks in autumn and
348	winter appear to be more susceptible to climate change than suitable habitats in spring
349	and summer. Yet the total area of suitable habitats during the non-growing season can
350	be far smaller than the total area of suitable habitats during the growing season; a
351	lower winter to summer habitat ratio may represent a high risk to population stability
352	owing to the "bottle neck effect" (Illius & O'Connor, 2000). Interestingly, the
353	distribution of future suitable habitat during the growing season is more likely to be
354	threatened by anthropogenic activities than by climate change. Any increase in the
355	distribution of suitable habitats can represent an interesting set of economic
356	opportunities for domestic yak herders. This could create serious resource competition
357	between wild and domestic yaks at local scales, while increasing the potential for
358	disease transmission between groups (Hardin, 1960; Leslie & Schaller, 2009). The
359	increased frequency of hybridization cases could moreover heighten genetic
360	contamination of wild populations (Leslie & Schaller, 2009).

361	Altogether, our results suggest that increasing dispersal opportunities for local yak
362	populations should be a key component of any conservation scheme aiming to
363	mitigate the impact of climatic change, helping them to "track" shifting climatic zones
364	and colonise new suitable territories. They also suggest that the number of domestic
365	yak holdings should be more strictly controlled in communities adjacent to the known
366	wild yak populations. The livestock grazing activities should be limited to designated
367	areas that compete for winter resources of wild yaks to the minimum level. These two
368	points are especially relevant for two regions that include parts of the Ali (81.7°E,
369	83°E, 30.5°E, 31.3°N) and Naqu prefectures (87.7°E, 88.8°E, 32.1°E, 33.2°N), where
370	high densities of wild yak populations can currently be found. The regions are likely
371	to remain suitable for the species under both RCP scenarios during the growing
372	season; however, they may not remain so during the non-growing season. These areas
373	are beyond any extant Protected Area borders, and experience high levels of human
374	activities. Conservation interventions in these areas could be necessary, and we
375	suggest establishing monitoring systems as soon as possible in these areas, to assess
376	any direct threats, such as illegal hunting. In addition, current patterns of land use

377	(e.g., grazing sites for domestic yaks) within these regions should be evaluated and,
378	possibly, re-arranged in a manner that takes wild yaks' habitat needs into
379	consideration. Lastly, we recommend the rapid definition and implementation of a
380	plan to connect these regions to the nearest protected areas that contain other wild yak
381	populations.

383 Acknowledgements

384 Special thanks are due to Dr. George Schaller, Dr. Madhu Rao, Dr. Manuel Mejia, Dr.

Marcus Rowcliffe, Prof. Joel Berger, Clare Duncan, Dr. Xueyan Li, Josephine Arthur

and two anonymous reviewers for their generous help in developing this study and

387 valuable comments on previous drafts of the manuscript.

388

389 **References**

- Achard, F. & Estreguil, C. (1995) Forest Classification of Southeast Asia Using
 NOAA AVHRR Data. *Remote Sensing Environment*, 54, pp.198–208.
- Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species
 distribution models: prevalence, kappa and the true skill statistic (TSS). *Journal of Applied Ecology*, 43(6), pp.1223–1232.

- Araújo, M.B., Pearson, R.G., Thuiller, W. & Erhard, M. (2005) Validation of
 species–climate impact models under climate change. *Global Change Biology*,
 11, pp.1–10.
- Austin, M. (2007) Species distribution models and ecological theory: A critical
 assessment and some possible new approaches. *Ecological Modelling*, 200(1-2),
 pp.1–19.
- 401 Breiman, L.E.O.(2001) Random Forests. *Machine Learning*, 45, pp.5–32.
- Brown, J.S. (1999) Vigilance, patch use and habitat selection: Foraging under
 predation risk. *Evolutionary Ecology Research*, 1, pp.49–71.
- 404 Clutton-Brock, T.H. (1989) Mammalian mating system. In *Proceedings of the Royal*405 *Society of London, B. Biological Sciences.* p. 236: 339–372.
- 406 Cohen, J. (1960) A coefficient of agreement for nominal scales. *Educ. Psychol. Meas.*,
 407 20, pp.37–46.
- 408 Creel, S., Winnie J.J., Maxwell, B., Hamlin, K. & Creel, M. (2005) Elk alter habitat
 409 selection as an antipredator response to wolves. *Ecology*, 86(12), pp.3387–3397.
- Cutler, D.R., Edwards, T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J. & Lawler,
 J.J. (2007) Random forests for classification in ecology. *Ecology*, 88(11),
 pp.2783–92.
- 413 Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R.
- 414 G., Gruber, B., Lafourcade, B., Leitão, P.J., Münkemüller, T., McClean, C.,
- 415 Osborne, P.E., Reineking, B., Schröder, B., Skidmore, A.K., Zurell, D. &
- 416 Lautenbach, S. (2012) Collinearity: a review of methods to deal with it and a
- 417 simulation study evaluating their performance. *Ecography*, 36(1), pp.27–46.
- Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E. & Yates, C.J. (2011) A
 statistical explanation of MaxEnt for ecologists. *Diversity and Distributions*,
 17(1), pp.43–57.

- Fleiss, J.L. (1981) *Statistical methods for rates and proportions*. 2nd ed., New York:
 John Wiley.
- Frid, A. & Dill, L. (2002) Human-caused Disturbance Stimuli as a Form of Predation
 Risk. *Conservation Ecology*, 6(1).
- Garonna, I., Fazey, I., Brown, M.E., & Pettorelli, N. (2009). Rapid primary
 productivity changes in one of the last coastal rainforests: the case of Kahua,
 Solomon Islands. *Environmental Conservation*, 36(03), pp.253–260.
- Guisan, A., Edwards, T., Jr, & Hastie, T. (2002) Generalized linear and generalized
 additive models in studies of species distributions : setting the scene. *Ecological Modelling*, 157, pp.89–100.
- Guisan, A., Broennimann, O., Engler, R., Vust, M., Yoccoz, N.G., Lehmann, A., &
 Zimmermann, N.E. (2006) Using Niche-Based Models to Improve the Sampling
- 433 of Rare Species. *Conservation Biology*, 20(2), pp.501–511.
- Guisan, A. & Thuiller, W. (2005) Predicting species distribution: offering more than
 simple habitat models. *Ecology Letters*, 8(9), pp.993–1009.
- Guisan, A. & Zimmermann, N.E. (2000) Predictive habitat distribution models in
 ecology. *Ecological Modelling*, 135(2-3), pp.147–186.
- Hao, Z., Ju, Q., Jiang, W., & Zhu, C. (2013) Characteristics and scenarios projection
 of climate change on the Tibetan Plateau. *The Scientific World Journal*, 2013,
 pp.1–9.
- Hardin, G. (1960) The Competitive Exclusion Principle. *Science (New Series)*,
 131(3409), pp.1292–1297.
- Harris, R.B. & Miller, D.J. (1995) Overlap Summer Habitats and diets of Tibetan
 Plateau ungulates. *Mammalia*, 59, 197–212.

445	Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., & Jarvis, A. (2005) Very high
446	resolution interpolated climate surfaces for global land areas. International
447	Journal of Climatology, (25), pp.1965–1978.
448	Hijmans, R.J. & Etten, J. van (2012) Raster: Geographic analysis and modeling with
449	raster data. R package version 2.0-12. http://cran.r-project.org/package=raster.
450	Hollander, M. & Wolfe, D.A.(1973) Nonparametric Statistical Methods., New York:
451	John Wiley & Sons.
452	Illius, A.W. & O'Connor, T.G. (2000) Resource heterogeneity and ungulate
453	population dynamics. Oikos, 89(2), pp.283–294.
454	Jarman, P.J. (1974) The social organisation of antelope in relation to their ecology.
455	<i>Behaviour</i> , 48, pp.215–266.
456	Kie, J. & Bowyer, R. (1999) Sexual segregation in white-tailed deer:
457	Density-dependent changes in use of space, habitat selection, and dietary niche.
458	Mammalogy, 80(3), pp.1004–1020.
459	Körner, C. (1999) Alpine Plant Life-Functional Plant Ecology of High Mountain
460	Ecosystems, Springer, Verlag Berlin Heidelberg.
461	Leslie, D.M. & Schaller, G.B. (2009) Bos grunniens and Bos mutus (Artiodactyla:
462	Bovidae). In Mammalian Species. the American Society of Mammalogists, pp.
463	1–17.
464	Lobo, J.M., Jiménez-Valverde, A. & Real, R. (2008) AUC: a misleading measure of
465	the performance of predictive distribution models. Global Ecology and
466	<i>Biogeography</i> , 17(2), pp.145–151.
467	Miller, D. (2003) Tibet Environmental analysis, Background paper in preparation for
468	USAID's program, http://www.case.edu/affil/tibet

469	Nogués-Bravo, D., Araújo, M.B., Errea, M.P. & Martínez-Rica, J.P. (2007) Exposure
470	of global mountain systems to climate warming during the 21st Century. Global
471	Environmental Change, 17(3-4), pp.420–428.
472	O'brien, R.M. (2007) A Caution Regarding Rules of Thumb for Variance Inflation
473	Factors. Quality & Quantity, 41(5), pp.673-690.
474	Pearson, R.G. & Dawson, T.P. (2003) Predicting the impacts of climate change on the
475	distribution of species: are bioclimate envelope models useful? Global Ecology
476	and Biogeography, 12(5), pp.361–371.
477	Pettorelli, N., 2013. The Normalized Difference Vegetation Index, OUP Oxford.
478	Pettorelli, N., Ryan, S., Mueller, T., Bunnefeld, N., Jedrzejewska, B., Lima, M. &
479	Kausrud, K. (2011) The Normalized Difference Vegetation Index (NDVI):
480	unforeseen successes in animal ecology. Climate Research, 46(1), pp.15–27.
481	Quantum GIS Development Team, 2014. Quantum GIS Geographic Information
482	System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org.
483	R Development Core Team, 2014. R: A language and environment for statistical
484	computing., http://www.r-project.org.
485	Riley, S.J., DeGloria, S.D. & Elliot., R. (1999) A terrain ruggedness index that
486	quantifies topographic heterogeneity. Intermountain. Intermountain Journal of
487	Sciences, 5, pp.1–4.
488	Schaller, G.B. (1998) Wildlife of the Tibetan Steppe, The University of Chicago.
489	Schaller, G.B. & Liu, W. (1996) Distribution, status, and conservation of wild yak
490	Bos grunniens. Biological Conservation, 76(1), pp.1-8.
491	Sharma, B.D., Clevers, J., Graaf, R.D. & Chapagain, N.R. (2004) Mapping Equus
492	kiang (Tibetan Wild Ass) Habitat in Surkhang, Upper Mustang, Nepal. Mountain
493	Research and Development, 24(2), pp.149–156.

494	Sheehy, D.P., Miller, D. & Johnson, D.A. (2006) Transformation of traditional
495	pastoral livestock systems on the Tibetan steppe. Secheresse, 17, pp.142–151.
496	Singh, N.J., Yoccoz, N. G., Lecomte, N., Côté, S. D. & Fox, J. L. (2010) Scale and
497	selection of habitat and resources: Tibetan argali (Ovis ammon hodgsoni) in
498	high-altitude rangelands. Canadian Journal of Zoology, 88(5), pp.436–447.
499	Singh, N.J., Yoccoz, N.G., Bhatnagar, Y.V. & Fox, J.L. (2009) Using habitat
500	suitability models to sample rare species in high-altitude ecosystems: a case
501	study with Tibetan argali. <i>Biodiversity and Conservation</i> , 18(11), pp.2893–2908.
502	St-louis, A. & Côté, S.D. (2014) Resource selection in a high-altitude rangeland
503	equid, the kiang (Equus kiang): influence of forage abundance and quality at
504	multiple spatial scales. Canadian Journal of Zoology, 92, pp.239–249.
505	Swets, J.A. (1988) Measuring the accuracy of diagnostic systems. Science, 240(4857),
506	pp.1285–1293.
507	Syfert, M.M., Smith, M.J. & Coomes, D.A. (2013) The effects of sampling bias and
508	model complexity on the predictive performance of MaxEnt species distribution
509	models. <i>PloS one</i> , 8(2), p.e55158.
510	Thuiller, W., Georges, D. & Engler, R. (2014) biomod2: Ensemble platform for
511	species distribution modeling. R package version 3.1-64.
512	http://cran.r-project.org/package=biomod2.
513	Thuiller, W., Lafourcade, B., Engler, R., & Araújo M.B. (2009) BIOMOD - a
514	platform for ensemble forecasting of species distributions. Ecography, 32,
515	369–373
516	Xu, A., Jiang, Z., Li, C., Guo, J., Wu, G. & Cai, P. (2006) Summer food habits of
517	brown bears in Kekexili Nature Reserve , Qinghai-Tibetan plateau , China.
518	Ursus, 17(2), pp.132–137.
519	Yee, T.W. & Mitchell, N.D. (1991) Generalized additive models in plant ecology.
520	Veg. Sci., 2, pp.587–602.

- 521 Yu, H., Luedeling, E. & Xu, J. (2012) Seasonal response of grasslands to climate
- 522 change on the Tibetan Plateau. *PloS one*, 7(11), p.e49230.

Table 1. Predictor variables used in this study. G_I (growing season) and NG_I
(non-growing season) groups used only topographic and climatic variables; G_II
(growing season) and NG_II (non-growing season) also included variables capturing
information on anthropogenic influence, glacier distribution, and forage availability.

Variable	Group	Range Min ~ Max (mean)	Definition (unit)			
Alt	G_I NG_ G_II NG_	I 242 ~ 7423 II (4775)	Altitude (m)			
TRI	G_I NG_ G_II NG_	I II 0 ~ 1080 (76)	Topographic Ruggedness Index (m)			
Bio3	G_I NG_ G_II NG_	$1 \\ 11 \\ 28 \sim 46 (38)$	Isothermality (The mean diurnal range divided by the Annual Temperature Range *100)			
Bio15	G_I NG_ G_II NG_	I II 35 ~ 154 (105)	Precipitation Seasonality (Coefficient of Variation*100)			
Bio8	G_I G_II	-84 ~283 (65)	Mean Temperature of Wettest Quarter (°C * 10)			
Bio13	G_I G_II	6 ~ 618 (69)	Precipitation of Wettest Month (mm)			
Bio11	NG_ NG_	I -282 ~ 160 II (-136)	Mean Temperature of Coldest Quarter (°C * 10)			
Bio14	NG_ NG_	$1 = 0 \sim 38 (1.7)$	Precipitation of Driest Month (mm)			
V_distance	G_II NG_	II 0 ~ 412 (57)	Nearest village distance (km)			
G_distance	G_II NG_	II 0 ~ 259 (53)	Nearest glacier distance (km)			
Change_AM	G_II	-1503 ~ 3975 (100)	Changes in NDVI values between April and May			
Change_MJ	G_II	-2122 ~ 5164 (442)	Changes in NDVI values between May and June (* 10,000)			
Change_JA	G_II	-3156 ~ 2549 (95)	Changes in NDVI values between July and August (* 10,000)			
Change_AS	G_II	-3232 ~ 3835 (-367)	Changes in NDVI values between August and September (* 10,000)			
Ave_allmon	G_II	0 ~ 8521 (1237)	Averaged NDVI values across years (* 10,000)			

Table 2. Model performance. This study makes use of three analytical approaches that
have been widely employed in species distribution modelling exercises, namely,
Generalized Additive Models (GAMs), Maximum Entropy (MaxEnt), and Random
Forests (RF). Each model considered was run 40 times for each season; model
performance was evaluated independently for each run.

	М	Growing s Tean (Standa	eason ard deviation)	Non-growing season Mean (Standard deviation)					
	AUC	TSS	KAPPA	AUC	KAPPA				
RF	0.985	0.91	0.87	0.95	0.77	0.62			
	(0.01)	(0.04)	(0.03)	(0.007)	(0.02)	(0.03)			
GAM	0.98	0.90	0.68	0.92	0.73	0.39			
	(0.007)	(0.02)	(0.04)	(0.005)	(0.01)	(0.02)			
MaxEnt	Ent 0.97 0.82		0.63	0.92	0.74	0.38			
	(0.01)	(0.03)	(0.05)	(0.006)	(0.02)	(0.02)			

552 Figures

553

Figure 1. Study area. The considered area covers around 1.1 million km2 on the plateau, encompassing the entire Tibet Interior region defined by Kunlun in the north and Gangdise and Nyainqentanglha Ranges in the south, with slight eastward extension to incorporate part of Sanjiangyuan region in the Qinghai province of China.

559

Figure 2. Variable importance in predicting wild yak distribution, under the best
model. (a) Growing season results. (b) Non-growing season results. The best model
was run 40 times for each season; variable importance was evaluated independently
for each run.

564

Figure 3. Predicted distributions of suitable habitats for wild yaks. (a) and (b) show
current distributions in the growing season and non-growing season, respectively; (a1)
and (b1) were potential distributions under RCP26 scenario for both seasons; (a2) and
(b2) showed potential distributions under RCP85 scenarios for both seasons.

569

570

571

572

Legend

- · Wild yak presence
- Province border (China)
- Tibetan county border (China)

574

575

576 Figure 1

585	Appendix I:	Topographic	features	of suitable	habitats of	wild yaks
	11	1 0 1				2

Habitat features	Growing season Min - Median - Max	Non-growing season Min - Median - Max			
Altitude (m)	2783 - 5243 - 6215	4001 - 4990 - 6142			
Ruggedness (TRI; m)	0 - 48 - 428	0 - 23 - 571			
Distance to nearest glacier (km)	0 - 13 - 181	0 - 54 - 245			
Distance to nearest village (km)	0 - 32 - 290	0 - 70 - 377			

Appendix II: Variable importance derived from different modelling approaches. (a) and (b) are the GAM outputs for the growing season and non-growing season; respectively; (c) and (d) are the MaxEnt outputs for the growing season and non-growing season; respectively.

- 592
- 593

Appendix III: Changes in habitat distribution for wild yaks on the Tibetan Plateau under two climate change scenarios (RCP26 & RCP85), by the year 2070. Three analytical approaches were considered, namely, Generalized Additive Models (GAMs), Maximum Entropy (MaxEnt), and Random Forests (RF). Models were run independently for the growing (G) and non-growing (NG) season.

RCP scenario	Seasons	Total area of suitable habitat (pixels)			Habitat gain			
		RF	GAM	MaxEnt	RF	GAM	MaxEnt	RI
Current	Growing	24,222	81,092	745,463	/	/	/	/
Current	Non-growing	169,539	266,793	445,140	/	/	/	/
RCP26	Growing	59,610	94,527	612,210	146%	17%	-18%	-69
	Non-growing	228,776	294,194	407,691	35%	10%	-8%	-49
DODOS	Growing	71,252	156,422	522,930	194%	93%	-30%	-74
RCP85	Non-growing	40,306	46,803	102,947	-76%	-82%	-77%	-98

630 Appendix IV: Topographic features of suitable habitats of wild yaks by 2070 (RF

631 predictions).

632

	Growing seasonal habitats							Non-growing season habitats				
	Alt	Min	25%	Median	75%	Max		Min	25%	Median	75%	Max
RCP26		2913	5059	5152	5289	6175		4159	4949	5076	5194	6272
Kei 20	TRI	Min	25%	Median	75%	Max		Min	25%	Median	75%	Max
		0.00	21.25	33.88	52.75	457.75		0.00	16.63	30.13	47.75	373.28
	A 1+	Min	25%	Median	75%	Max		Min	25%	Median	75%	Max
PCD85	Alt	3800	5088	5162	5283	6091		542	5068	5150	5245	6343
NCF 0J	трі	Min	25%	Median	75%	Max		Min	25%	Median	75%	Max
	INI	0.00	20.75	32.63	49.75	382.13		0.00	25.25	36.88	50.50	336.50