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700505-RO Iaşi, Romania
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Highlights:
What are the main findings?

• Principal component regressions revealed the climate sensitivity of Tibetan arid desert scrubs.
• Plant nutrient traits and soil nutrient availability regulate desert scrubs’ climate sensitivity.

What is the implication of the main finding?

• Scrubs’ sensitivity to temperature is mainly regulated by the nitrogen contents of soils and leaves.
• Scrubs’ sensitivity to precipitation is affected by the leaf carbon content of dominant species.
• Neither soil nor plant nutritional properties alone can well explain scrubs’ sensitivity to droughts.

Abstract: Climate models predict the further intensification of global warming in the future. Drylands,
as one of the most fragile ecosystems, are vulnerable to changes in temperature, precipitation, and
drought extremes. However, it is still unclear how plant traits interact with soil properties to regulate
drylands’ responses to seasonal and interannual climate change. The vegetation sensitivity index (VSI)
of desert scrubs in the Qaidam Basin (NE Tibetan Plateau) was assessed by summarizing the relative
contributions of temperature (SGST), precipitation (SGSP), and drought (temperature vegetation
dryness index, STVDI) to the dynamics of the normalized difference vegetation index (NDVI) during
plant growing months yearly from 2000 to 2015. Nutrient contents, including carbon, nitrogen,
phosphorus, and potassium in topsoils and leaves of plants, were measured for seven types of desert
scrub communities at 22 sites in the summer of 2016. Multiple linear and structural equation models
were used to reveal how leaf and soil nutrient regimes affect desert scrubs’ sensitivity to climate
variability. The results showed that total soil nitrogen (STN) and leaf carbon content (LC), respectively,
explained 25.9% and 17.0% of the VSI variance across different scrub communities. Structural
equation modeling (SEM) revealed that STN and total soil potassium (STK) mediated desert scrub’s
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VSI indirectly via SGST (with standardized path strength of −0.35 and +0.32, respectively) while
LC indirectly via SGST and SGSP (with standardized path strength of −0.31 and −0.19, respectively).
Neither soil nor leave nutrient contents alone could explain the VSI variance across different sites,
except for the indirect influences of STN and STK via STVDI (−0.18 and 0.16, respectively). Overall,
this study disentangled the relative importance of plant nutrient traits and soil nutrient availability
in mediating the climatic sensitivity of desert scrubs in the Tibetan Plateau. Integrating soil nutrient
availability with plant functional traits together is recommended to better understand the mechanisms
behind dryland dynamics under global climate change.

Keywords: climate change; dryland ecosystem; leaf nutrient traits; Qaidam Basin; soil nutrient
availability; vegetation sensitivity index

1. Introduction

Drylands cover approximately 41% of the Earth’s land surface [1] and support more
than 38% of the global population [2], although they are sparsely vegetated and with
limited productivity. Recently, drylands have been degraded due to ongoing climate
change and intensifying human disturbance [3,4]. For example, increased droughts mainly
caused by warming are predicted to accelerate the degradation of the Mediterranean
drylands under human overexploitation [5]. More than 75% of drylands in developing
countries are also likely to expand due to further global warming [6]. Consequently, poverty
alleviation will become more challenging in arid undeveloped countries [7]. Therefore, a
better understanding of how drylands respond to changes in climate and other potential
regulators is urgently needed.

Climate change drives dryland dynamics across different spatial scales, including
warming, shifting precipitation regimes, and intensifying droughts. Warming can limit
plant growth and survival via increasing evapotranspiration and intensifying water deficit
in soils [8,9]. Experimental studies have reported that increased precipitation can improve
nutrient availability and facilitate plant growth, development, and reproduction in drylands
via enhancing moisture content in topsoils and vice versa [10,11]. Meanwhile, remote-
sensing-related technologies help monitor large-scale vegetation dynamics [12]. However,
current studies on ecosystem responses to climate change are mainly based on average
climate states but usually ignore the effects of climate variability and extremes [13].

Recently, Seddon et al. [14] have proposed a framework to assess the vegetation
sensitivity index (VSI) to short-term variability in temperature, precipitation, and radi-
ation (cloud mask) from a global perspective. Such an algorithm has been increasingly
applied to reveal the relative importance of different climatic variables in driving the dy-
namics in vegetation coverage, productivity, and phenology within and across various
ecosystems [15–18]. For example, Li et al. [15] assessed the variability of VSI with altitude
gradient in alpine grasslands on the Tibetan Plateau and found that vegetation in higher
altitude regions is more sensitive to climate variability than that in lower altitudes. In
another study, Yuan et al. [18] found that vegetation in Central Asia was more sensitive
to climate variability in spring than other three seasons. These studies have mapped the
differential spatiotemporal patterns of alpine and arid vegetation in response to climate
variability and greatly enhanced our understanding of the vegetation–climate relation-
ship. However, they failed to provide mechanistic explanations for these patterns from the
perspective of plant and soil nutrient properties. Many in situ manipulative experiments
have reported that the vegetation response to climate change can be largely influenced by
plant functional traits and soil nutrient availability. For example, in a climate simulation
study of alpine grasslands, Henn et al. [19] found that alpine plants can adapt to climate
change by shaping leaf traits. In a recent meta-analysis, soil nitrogen availability was found
to be a determinant of terrestrial ecosystem productivity under changing climates [20].
However, the findings from local in situ experiments are always hard to be directly applied
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to large-scale ecosystem management. Therefore, it is necessary to combine remote sensing
technologies and field observations to gain insights into the mechanisms of how vegetation
adapts to changing climate via plant and soil nutritional properties.

Plants can respond specifically and actively to environmental changes rather than only
passively withstand external stresses [21]. According to the community functional ecology
theories [22–24], plant seed germination, seedling growth, and individual development
and survival, along with environmental gradients, are mainly regulated by functional traits
at species and community levels [25–30]. Plant individuals can modify their water require-
ments by reducing leaf size, stomatal conductance, and photosynthetic rates in response
to droughts [3,31,32]. At the community level, plants can alter the C:N:P stoichiometry
among organs above- and belowground to offset physical inhibitions caused by warming
or cooling [33,34], declined moisture [35–37], and changed nutrient availability [38]. For
example, Jiang et al. [39] found that warming could substantially enhance N and P min-
eralization and consequently improve nutrient provision to plants in the Arctic tundra.
Recently, Delgado-Baquerizo et al. [40] and Jiao et al. [41] also found that increased aridity,
mainly due to warming, could reduce the concentrations of C and N but increase that of
P in drylands. Fiedler et al. [42] also found that climate change could indirectly affect the
trade-offs and synergies among different ecosystem functions by affecting soil nutrients
and plant traits. These studies indicated that ecosystem responses to climate change are
complicated and depend on abiotic and biotic factors [43]. Network analyses that include
plant functional traits and physical environments together may improve our prediction
of ecosystem functional changes across space and over time [44–46]. However, our under-
standing of the interactions of plant functional traits with soil nutrients of high-elevated
drylands in response to climate variability is still limited.

In this study, we aimed to improve our understanding of how plant nutrient traits
interact with low soil nutrient availability to regulate the sensitivity of desert scrubs in the
Qaidam Basin, northeastern Qinghai-Tibetan Plateau, in response to climate variability.
Specifically, we have (i) explored the patterns and trends of climate change and desert
scrub coverage in the last decade, (ii) examined the differences in climatic sensitivity and
its components for different desert scrub communities, and finally, (iii) investigated the
networking paths of interactions between plant nutrient traits and soil nutrient availability
to the components of desert scrubs’ sensitivity to climate variability across the entire
Qaidam Basin.

2. Materials and Methods
2.1. Study Area

The Qaidam Basin, with elevations ranging from 2640 m to 6000 m, is surrounded by
the Kunlun, Qilian, and Altun Mountains and located in the northeastern Qinghai-Tibetan
Plateau (90◦16′E~99◦16′E, 35◦00′N~39◦20′N, Figure 1). The area is characterized by an
alpine arid continental climate, where the mean annual temperature (MAT) is generally
below 5 ◦C and mean annual precipitation (MAP) is less than 200 mm [47]. The air relative
humidity is between 30% and 40% throughout the year, while the average yearly sunshine
duration can reach 3000 h in the Qaidam Basin. The annual average evaporation in the
basin is between 1900 mm and 2600 mm [48]. Soil nutrients and moisture availability
are low in desert scrublands in this area [49]. The vegetation has co-evolved with harsh
physical conditions and is dominated by scrubs and semi-scrubs, such as Kalidium foliatum,
Salsola abrotanoides, and Ephedra sinica [50]. Desert plants sprout in May and defoliate in
early October; therefore, this period was usually defined as the plant growing season in
recent studies [51].
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evaluated the correlation between different vegetation indices and vegetation cover ob-
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of desert scrubs. We downloaded the NDVI data with a temporal resolution of 16 days 
and spatial one of 250 m for the Qaidam Basin for the period from 2000 to 2015 (https://lad-
sweb.modaps.eosdis.nasa.gov/, accessed on 1 October 2021). As NDVI is sensitive to soil 
background information, therefore, we used the Savitzky–Golay filter [52] to smooth the 
time-series NVDI and eliminate the contaminations caused by clouds, snow, and ice 
cover, following Li et al. [15]. The pixels whose peak NDVI value was less than 0.05 were 
classified as extremely sparse vegetation or barren lands. Those pixels were manually ex-
cluded from further analyses following the recent study of Yuan et al. [18] in Central Asia. 

Figure 1. Vegetation (A), elevation and major meteorological stations (B), climate (C), and site
locations (black dots) in the Qaidam Basin, Qinghai-Tibetan Plateau. In Panel C, GST and GSP refer to
the average temperature and sum precipitation during the plant growing season, respectively, from
May to October during 2000–2015. TVDI means the temperature vegetation dryness index.

2.2. Remote Sensing Data Collection and Processing

It is the key to choosing a suitable vegetation index for accurately examining and
assessing vegetation dynamics under climate change. Recently, Zhang et al. [50] have
evaluated the correlation between different vegetation indices and vegetation cover ob-
served with UAV in the Qaidam Basin. They found that the Normalized Difference
Vegetation Index (NDVI) performed much better than other indices such as ratio veg-
etation index (RVI), difference vegetation index (DVI), modified vegetation index (MVI),
modified soil-adjusted vegetation index (MSAVI), and normalized difference greenness
index (NDGI)) and normalized difference greenness index (NDGI) in assessing vege-
tation cover. Therefore, in this study, the NDVI of the Moderate Resolution Imaging
Spectroradiometer (MODIS) MOD13Q1 Products was used as a proxy for vegetation pro-
ductivity of desert scrubs. We downloaded the NDVI data with a temporal resolution of
16 days and spatial one of 250 m for the Qaidam Basin for the period from 2000 to 2015
(https://ladsweb.modaps.eosdis.nasa.gov/, accessed on 1 October 2021). As NDVI is
sensitive to soil background information, therefore, we used the Savitzky–Golay filter [52]
to smooth the time-series NVDI and eliminate the contaminations caused by clouds, snow,
and ice cover, following Li et al. [15]. The pixels whose peak NDVI value was less than 0.05
were classified as extremely sparse vegetation or barren lands. Those pixels were manually
excluded from further analyses following the recent study of Yuan et al. [18] in Central Asia.
Finally, the peak monthly NDVI generated by maximum value composites [53] was used to

https://ladsweb.modaps.eosdis.nasa.gov/
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describe the sensitivity and its components of desert scrub vegetation in the Qaidam Basin,
Qinghai-Tibetan Plateau, to the variability of different climate variables.

2.3. Weather Data Collection and Processing

The monthly data of temperature and precipitation of the main meteorological stations
within the Qaidam Basin (Figure 1B) yearly from May to September were downloaded
and mapped for the period of 2000 to 2015. Seasonal and inter-annual fluctuations in
temperature and precipitation, as well as their extreme values, were clearly shown in
the supplementary Figure S1. It makes sense that the weather data from 2000–2015 are
sufficient to reflect the climate fluctuations in the region. Therefore, we downloaded
monthly temperature and precipitation of 200 meteorological stations located within and
around the Qinghai-Tibetan Plateau from the China Meteorological Data Service Centre
(http://data.cma.cn/en, accessed on 5 October 2021) for the plant growing seasons (yearly
from May to October) between 2000 and 2015. First, the average temperature and sum
precipitation during the plant growing seasons (termed as GST and GSP, respectively) were
calculated for each station. In addition to monthly weather records, we interpolated GSP
and GST into rasters with ANUSPLIN (The software is developed by Australian National
University in Australia and the version is 4.3) [54] at a spatial resolution of 250 m to match
the remote sensing data (see details below). A digital elevation model (DEM) with a 30 m
resolution was used as the covariate, following Li et al. [55], who also confirmed that
the interpolated climate rasters matched well the field observations across the northern
Tibetan Plateau.

In this study, we used the temperature vegetation dryness index (TVDI) to explore the
vegetation-drought relationship as recommended by Sandholt et al. [56] because it combines
vegetation greenness (MODIS MOD13A2) and land surface temperature (MOD11A2). TVDI
ranges from 0 to 1, with higher values indicating drier soils. We downloaded monthly
TVDI data from the National Earth System Science Data Center (http://www.geodata.cn,
accessed on 12 October 2021) and resampled it to match the spatial-temporal resolutions
of climate and NDVI data. Finally, we used the Mann–Kendall tests [57,58] to examine
the trends of GST, GSP, NDVI, and TVDI at the pixel scale between 2000 and 2015 (see
more details in Figures S2–S5). The MK test outputs Z-values and slope, with positive and
negative slope values representing increasing and decreasing trends. |Z| > 1.96 reaches a
significant level (α = 0.05).

2.4. Climatic Sensitivity Index of Desert-Scrubs

In this study, we used NDVI as an agent of desert-scrub coverage to explore its
sensitivity to changes in GST, GSP, and TVDI. First, we transformed the time-series NDVI
and climate variables into z-score anomalies using each variable’s mean and standard
deviation (Equation (1)).

Z =
X− X

σ
(1)

where Z is the standard score, X is the raw data, −X is the mean value of data, and σ is
the standard deviation of data. Then, we used a principal component regression (PCR) to
determine the relative importance of each climate variable in driving the monthly NDVI
dynamic at the pixel scale. Principal components with significant relationships to climatic
variables (p < 0.1) were retained for the subsequent VSI calculations.

The climate weights (Wi) were obtained by multiplying the loading scores of each
variable with the corresponding PCR coefficients. Here, the weight of each climate variable
was also rescaled to be between 0 and 1. Then we detrended each time-series variable
and extracted its weight variance. The residuals of the mean-variance relationship be-
tween NDVI and climate variables were fitted using a linear-quadratic model, following
Seddon et al. [14]. The residuals were normalized between 0 and 100. We take the log10-
transformed ratios between NDVI variability and climate variables as the sensitivity metrics

http://data.cma.cn/en
http://www.geodata.cn
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(Si). The NDVI logged for one month was used as the fourth variable to explore the time-lag
effect of vegetation response to climate variability, following Seddon et al. [14].

VSI = ∑3
i=1 Wi × Si (2)

where VSI is the sum of the product of the weights of each climate variable (Wi) and its
sensitivity metrics (Si). We rescaled the VSI between 0 and 100 (unitless), and the larger
the value, the more sensitive to climate variability. We constructed a 500 m buffer centered
on each sample point. Thus, it makes sense that the specific VSI values of the pixels
in the buffer area can serve as repeats for multiple comparisons among different scrub
communities. Moreover, we calculated the VSI average of the pixels in the buffer area for
each site and used it in multiple linear regressions and structural equation modeling across
sites within the study area.

2.5. Plant Nutrient Traits and Soil Nutrient Availability

According to the 1:1,000,000 China Vegetation Atlas, which is available at the Resource
and Environmental Science Data Center, Chinese Academy of Sciences (http://www.resdc.
cn/data.aspx?DATAID=122, accessed on 1 May 2016), our field observations in 2016 at
22 sites covered seven main types of desert scrubs within the Qaidam Basin (Table 1).
Plant nutrient traits and soil nutrient properties were measured to examine their potential
regulating effects on the desert scrubs’ sensitivity to climate variability.

We laid five 5 m × 5 m sample squares evenly along the diagonal in a relatively
homogeneous area of 250 m × 250 m at each site, where the plant community was intact
and undisturbed by human activities while the proportion of desert scrub plants was
higher than 90% in the total vegetation cover. Healthy leaves were collected from at least
five mature individuals for each scrub/semi-scrub species in each quadrat. Plant leaves
were stored in a separate bag for each species during the field campaign and then dried at
70 ◦C for 48 h in the lab to a constant weight. Before chemical analyses, all dried leaves
were grounded into fine powder through a 0.15 mm sieve and kept in brown glass bottles.
Leaf total P (LTP, g kg−1) and K (LTK, g kg−1), respectively, were determined by Mo-Sb
colorimetric method and flame spectrophotometer [59].

We randomly sampled three profiles of the 0–50 cm depth at each site, about a half
kilogram for each sample. Soil samples were air-dried and sieved through a 100-mesh
sieve to remove root fractions and gravel. Then, soils were grounded into fine powders
and stored in brown glasses before chemical analyses [60]. Total soil and leaf nitrogen (STN
and LTN, g kg−1) were determined by Kjeldahl method. Total soil and leaf phosphorus
(STP and LTP, g kg−1) were measured with the Mo-Sb anti-spectrophotometry method,
while total soil and leaf Kalium (STK and LTK, g kg−1) with the flame photometry method.
Soil organic carbon (SOC, g kg−1) and leaf carbon (LC, g kg−1) were determined by the
potassium dichromate oxidation–ferrous sulfate titrimetric method.

http://www.resdc.cn/data.aspx?DATAID=122
http://www.resdc.cn/data.aspx?DATAID=122
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Table 1. Locations, the most dominant species and their relative coverage (DSC), climate conditions, soil properties, and plant nutrient traits at each site sampled in
2016 across the Qaidam Basin. GST and GSP refer to the average temperature and precipitation during the plant growing season. Soil properties included the
contents of organic carbon (SOC), total nitrogen (STN), total phosphorus (STP), and total potassium (STK) of topsoils at the 0–50 cm depth. Plant nutrient traits were
the community weighted means (CWMs) of leaf carbon (LC), total nitrogen (LTN), total phosphorus (LTP), and total potassium (LTK) in the leaves of all plants at
each sampling site.

Site Long
(◦E) Lat. (◦N) Alt. (m) Dominant Species DSC (%) GST

(◦C)
GSP
(mm)

SOC
(g kg−1)

STN
(g kg−1)

STK
(g kg−1)

STP
(g kg−1)

LC
(g kg−1)

LTN
(g kg−1)

LTP
(g kg−1)

LTK
(g kg−1)

Site1 95.091 36.346 2890 Sympegma regelii 53.0 16.4 66 1.48 0.09 14.00 0.45 326.60 20.95 1.00 14.72
Site2 95.267 36.325 2970 Ephedra sinica 65.0 15.8 72 1.21 0.11 14.67 0.43 311.36 16.67 0.45 8.16
Site3 95.703 36.381 2850 Ephedra sinica 48.0 16.8 73 1.76 0.09 15.27 0.46 397.40 15.09 0.65 11.13
Site4 96.126 36.378 2765 Tamarix chinensis 100.0 17.3 79 3.91 0.14 20.46 0.35 348.00 19.25 0.92 7.88
Site5 96.413 36.382 2855 Krascheninnikovia ceratoides 50.0 16.7 92 2.20 0.12 17.29 0.49 307.20 21.28 2.10 18.18
Site6 96.630 36.293 2850 Haloxylon ammodendron 100.0 16.4 101 3.52 0.07 16.27 0.43 132.00 30.45 1.36 28.97
Site7 98.329 36.469 3320 Kalidium foliatum 80.0 12.2 224 3.23 0.44 19.09 0.49 576.00 23.10 1.28 15.68
Site8 98.648 36.536 3530 Kalidium foliatum 59.0 10.4 264 6.16 0.51 18.74 0.46 353.51 22.87 1.63 17.19
Site9 98.883 36.723 3175 Kalidium foliatum 100.0 12.3 261 7.26 1.13 19.84 0.54 375.00 22.20 1.72 16.88

Site10 98.947 36.773 3070 Kalidium foliatum 65.0 13.1 257 4.25 0.43 18.14 0.53 451.50 33.84 1.88 9.71
Site11 98.312 36.962 2945 Sympegma regelii 27.0 14.5 214 4.58 0.40 17.65 0.52 338.68 20.31 1.94 23.31
Site12 98.390 37.017 3130 Kalidium foliatum 61.0 13.0 236 4.58 0.40 17.92 0.49 492.66 21.99 0.80 14.55
Site13 97.886 37.344 3205 Salsola abrotanoides 56.0 12.8 222 6.38 0.58 15.77 0.48 233.33 30.24 1.37 16.91
Site14 97.284 37.366 2970 Sympegma regelii 70.0 14.6 172 5.35 0.38 17.12 0.37 307.80 28.65 2.33 13.93
Site15 97.127 37.258 2860 Krascheninnikovia ceratoides 56.0 16.3 146 2.20 0.29 18.29 0.42 440.00 23.90 1.86 16.50
Site16 97.068 37.333 2905 Kalidium foliatum 83.33 15.8 149 4.90 0.46 19.04 0.44 384.00 26.95 1.83 13.69
Site17 96.623 37.384 2980 Sympegma regelii 60.00 15.7 126 3.30 0.34 19.08 0.47 403.80 23.42 1.36 23.54
Site18 96.135 37.440 3620 Salsola abrotanoides 66.67 11.2 135 6.71 0.58 20.40 0.66 346.67 23.57 1.02 20.15
Site19 95.395 37.855 3310 Sympegma regelii 40.00 13.1 91 7.33 0.39 22.71 0.58 321.60 14.70 2.90 21.44
Site20 95.364 37.800 3190 Krascheninnikovia ceratoides 100.00 13.8 85 12.38 0.29 23.09 0.49 528.00 25.67 1.37 34.63
Site21 95.381 37.565 3185 Krascheninnikovia ceratoides 50.00 14.1 82 3.25 0.13 18.56 0.50 330.00 20.65 3.40 17.60
Site22 95.506 37.328 3035 Ephedra sinica 40.00 15.3 76 2.31 0.12 15.52 0.56 444.60 16.19 2.17 10.66
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2.6. Plant Functional Trait Diversity

Our plant nutrient traits referred to the contents of N, P, K, and C in leaves (LTN,
LTP, LTK, and LC) for all species sampled (Table 1). We calculated community-weighted
means (CWMs) to describe the regulating effects of plant nutrient trait diversity on desert
scrubs’ sensitivity to climate variability (see Equations (2) and (3)). CWMs are essential for
understanding community reorganization in response to environmental filtering [61] and
are widely recommended and used in plant functional ecology research [62].

CWMj = ∑n
i=1 PijTij (3)

where Pij is the relative cover of species i in sample site j; Tij is the mean of trait values of
species i in sample site j; CWMj is the community-weighted mean of traits of each species
in sample site j.

2.7. Statistical Analyses

First, with the Mann–Kendall test [57,58], we examined the trends of GST, GSP, TVDI,
and NDVI between 2000 and 2015 at the pixel scale. Moreover, we extracted the yearly
value and trends of GST, GSP, TVDI, and NDVI based on each site’s geographical coordinate
records at the pixels where we performed field surveys. Thus, we compared the medians
of climate and vegetation variables and their trends among the seven types of desert scrubs
(see more details in Figures S2–S5).

Second, we calculated the VSI of 2000–2015 based on principal component regressions
and used a red–green–blue (RGB) composition map to show the relative contribution of
GST, GSP, and TVDI to the climatic sensitivity of desert scrubs at the pixel scale. We also
extracted the VSI and its components to each site and examined the difference in them at
the community level with the Wilcoxon test [63].

Next, we divided the data into three groups: VSI as the response variable and leaf
traits (LTN, LTP, LTK, LC) and soil attributes (STN, STP, STK, SOC) as potential explanatory
variables. We examined the normality of the data containing response and predictor
variables and normalized these data in R using a scale function (see Equation (1)). Moreover,
we examined the correlation between the responders and predictors using the corrplot
package (version 0.92) [64] in R. The multivariate linear model was applied to investigate
the main effects of leaf and soil nutrient attributes on the variation of VSI. In this step, we
also determined the multicollinearity of each factor based on the variance inflation factor
(VIF) [65]. Thus, the relative importance of each explanatory can be disentangled as the
fraction of the variance VSI explained in the best-fitted model.

Finally, structural equation modeling (SEM) [66] was used to explore how vegetation
traits and soil nutrients drive changes in VSI using the lavaan package (version 0.6.1) [67].
Stepwise backward selections were used to remove the least significant term until the best-
fitted model was picked out. All statistical analyses were performed in R (The software
is developed by R Core Team in Austria and the version is 4.1.1) [68], and maps were
generated with ArcGIS (The software is developed by the Environment System Research
Institute in America and the version is 10.2) [69].

3. Results
3.1. Vegetation Sensitivity Index and Its Contributors

The overall VSI of desert scrubs is low (15.0) and distributed unevenly across the
Qaidam Basin. The VSI was greater than 30 at only 1.18% pixels scattered near the foothills
and riverbanks (Figures 1A and 2A, Table 2). The relative contribution of each climatic vari-
able also varies heterogeneously across space. Specifically, in the western and northeastern
areas, vegetation is more sensitive to changes in GSP. However, the desert scrubs in the
southern and northern areas were mainly affected by temperature dynamics. In the eastern
part, desert scrubs were jointly controlled by GSP and TVDI (Figure 2B). Moreover, the
desert scrubs in the central region were driven by GST and TVDI together.
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Figure 2. Vegetation Sensitivity Index (VSI, (A)) and its contributions (B) from the temperature and
precipitation during the plant growing season (GST and GSP, respectively, in red and blue) and
temperature vegetation dryness index (TVDI, in green).

Table 2. Vegetation Sensitivity Index (VSI) among different desert scrub communities across the
Qaidam Basin.

Haloxylon
ammodendron

(%)

Tamarix
chinensis

(%)

Krascheninnikovia
ceratoides

(%)

Sympegma
regelii

(%)

Ephedra
sinica

(%)

Salsola
abrotanoides

(%)

Kalidium
foliatum

(%)

Others
(%)

Total
(%)

VSI ≤ 10 3.24 1.10 4.57 0.32 0.69 4.07 0.83 2.45 17.32
10 < VSI ≤ 20 8.00 6.96 16.64 1.39 2.88 20.70 5.46 7.88 70.27
20 < VSI ≤ 30 0.96 1.28 2.78 0.16 0.41 3.64 0.80 1.09 11.23

VSI > 30 0.09 0.10 0.36 0.01 0.04 0.40 0.06 0.11 1.18

Communities dominated by Haloxylon ammodendron and Tamarix chinensis were more
sensitive to climate variability than others (Figure 3A). The climatic weights vary among
desert-scrub types. Communities dominated by Tamarix chinensis were more sensitive to
GST than others (Figure 3B), while communities dominated by Haloxylon ammodendron
were more vulnerable to GSP (Figure 3C). In response to changes in TVDI, communities
dominated by Tamarix chinensis were slightly more vulnerable than those dominated by
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Haloxylon ammodendron. However, both communities were more sensitive than other desert
scrub communities across the Qaidam Basin (Figure 3D).
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Figure 3. Comparisons of VSI (A) and its climatic weights among desert scrub communities. Panels
(B–D) displayed the weights of mean temperature and sum precipitation during the plant growing
season (noted as SGST and SGSP, respectively) as well as the temperature vegetation dryness index
(STVDI). Different lowercase letters indicate significant differences among species.

3.2. Effects of Soil and Plant Properties on VSI

We found that VSI strongly correlated with the weights of GST (SGST, r = 0.81) and
droughts (STVDI, r = 0.65, Figure S6). SGST was negatively correlated with STN (r = −0.53)
and LTN (r = −0.51). The weight of GSP (SGSP) was negatively correlated with LC
(r = −0.49). Moreover, SOC had strong correlations with SGST (r = −0.53), STK (r = 0.74),
LTK (r = 0.59), and STN (r = −0.48), respectively. Across different dominant species of the
22 sites surveyed in this study, we only found that SGST declined linearly with increasing
STN and LTN (Figures 4 and 5) while SGSP declined linearly with increasing STP and LC
(Figures 4 and 5).
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However, we also found differential responses, linear, U-shaped, and unimodal, for dif-
ferent top-dominant species along the soil and foliar nutrient gradients (Figures S7 and S8).
When examining the relationships of sensitivity components with soil nutrients, we only
found that the SGST of Kalidium foliatum and STVDI of Sympegma regelii had unimodal rela-
tionships with SOC and STP, respectively, at a marginal significance level (p < 0.1, Figure S7).
When examining the relationships of sensitivity components with foliar nutrimental traits,
we found a significant unimodal relationship between STVDI and LC for Sympegma Regeli
(p < 0.05, Figure S8), a marginally positive linear relationship between SGSP and LTK for
Kalidium foliatum (p < 0.1, Figure S8), a significant unimodal relationship between SGSP and
LTN for Kalidium foliatum, and a marginally positive linear relationship between SGST and
LTP for Krascheninnikovia ceratoides (p < 0.1, Figure S8).

STN and LC explained 42.9% of the variance in VSI across different desert scrubs
(p < 0.05, Table 3). SGST was significantly affected by STN and LC, which accounted for
49.0% of the variance in SGST (p < 0.01, Table 3). In addition to STN and LC, LTN and STK
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affected SGST marginally, respectively, to explain 9.11% and 7.62% of the variance in SGST
(p = 0.053 and 0.073, respectively, Table 3). SGSP was affected by LC and STP marginally,
with 14.0% and 18.9% of its variance explained by LC and STP (p < 0.1, Table 3). Neither
soil nutrients nor plant leaf traits influenced STVDI in this study (p > 0.05, Table 3).

Table 3. Main effects of soil nutrient availability and plant nutrient traits on vegetation sensitivity
index (VSI) of desert scrubs across the Qaidam Basin. Abbreviations were the same as in Table 1.
d.f., the degree of freedom; F, variance ratio; p, significance level; η2, Eta squared, the percentage
of sum squares explained. The difference significant at the 0.01 and 0.05 levels were labeled with
** and *, respectively.

Predictor d.f. VSI, R2 = 0.57 SGST, R2 = 0.74 SGSP, R2 = 0.45 STVDI, R2 = 0.21

F p η2 (%) F p η2 (%) F p η2 (%) F p η2 (%)
SOC 1 0.29 0.597 0.98 0.89 0.362 1.80 0.00 0.970 0.01 0.01 0.910 0.07
STN 1 7.74 0.016 * 25.88 14.87 0.002 ** 29.90 0.07 0.795 0.30 1.54 0.236 8.34
STP 1 0.14 0.710 0.48 2.01 0.180 4.04 4.43 0.055 18.88 0.09 0.764 0.51
STK 1 1.31 0.273 4.39 3.79 0.073 7.62 1.94 0.188 8.25 1.82 0.200 9.83
LTN 1 1.35 0.266 4.53 4.53 0.053 9.11 0.04 0.850 0.16 0.00 0.963 0.01
LTP 1 0.00 0.946 0.02 1.11 0.311 2.23 0.08 0.788 0.32 0.45 0.516 2.41
LTK 1 0.96 0.345 3.22 0.05 0.831 0.10 0.63 0.443 2.67 1.57 0.232 8.50
LC 1 5.09 0.042 * 17.02 9.48 0.009 ** 19.06 3.27 0.094 13.96 0.02 0.903 0.08

3.3. Causal Network of Plant Traits and Soil Nutrients to VSI under Climate Variability

Structural equation modeling revealed the causal networking paths among plant and
soil nutrient traits and climate weights to the sensitivity of desert scrubs across the Qaidam
Basin (Figure 6). STN, LC, and LTN had direct adverse effects on SGST. In contrast, STK
had a significant positive effect on SGST. LC had direct adverse effects on SGSP, accounting
for about 24% of its total variance. STN had direct adverse effects on STVDI, while STK had
a significant positive effect on STVDI. However, STN and STK accounted for only 16% of
the variance in STVDI.
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in Table 1. The orange and dark-green lines represent the positive and negative influences, respectively.
The difference significant at the 0.001 and 0.01 levels were indicated with *** and **, respectively.

4. Discussion
4.1. Climate Sensitivity among Different Desert Scrubs

In this study, we mapped the climate sensitivity of desert scrubs in the Qaidam Basin
using principal component regressions (Figure 2). We found that the climatic sensitivity of
desert scrubs in this study was not high as expected. However, this finding is consistent
with Seddon et al. [14] and Yuan et al. [18], and they found that arid deserts across the
globe and Central Asia, respectively, were not as sensitive to climate dynamics. This
phenomenon may have resulted from the strong memory effect of desert plants (Figure S9).
The vegetation memory effect generally refers to the fact that previous environmental
conditions can strongly influence the current ecosystem [70]. Ogle et al. [71] quantified
ecological memory in vegetation and ecosystem processes in arid and semi-arid regions and
found when the vegetation’s memory effects were considered, 18–28% more of the variance
in a given responsible variable could be explained. Seddon et al. [14] also found such a
strong memory effect in global drylands’ sensitivity to climate change. Moreover, the low
climatic sensitivity of desert scrubs in the Qaidam Basin was also likely due to the relatively
slow warming during the last decade (Figure S2), a rate of only 0.06 ◦C per decade. This
finding was also confirmed by Easterling and Wehner [72] that at the beginning of the
21st century, there would be a 10- to 20-year warming hiatus. Overall, the stable climatic
conditions may be another explanation for the low climate sensitivity of desert scrubs in
the Qaidam Basin.

Although the desert scrubs were not sensitive as expected to climate change, we also
found high species-dependency for the seven community types involved in this study.
Specifically, we found that scrub communities with tall plant individuals, such as Tamarix
chinensis communities and Haloxylon ammodendron communities, were more sensitive to
climate change (Figure 3). Similarly, Zhu et al. [73] have found that northern China’s trees
and tall shrubs are more vulnerable to climate change. This is because taller plants have
predictably wider water-conducting conduits, so they are more vulnerable to conduction-
blocking embolisms [74]. Therefore, the response of different plant communities to climate
change is influenced by the functional traits evolved to adapt to long-term environmen-
tal changes. However, vegetation also reacts and adjusts positively to environmental
stresses [21]. Environmental-vegetation interactions have shaped scrub communities with
different tolerance, and the response of these scrub communities to climate variability
varies widely in the Qaidam Basin. The environmental filtering hypothesis predicts that,
excluding biotic interactions, only the species that have already evolved with specific func-
tional or phenotypic traits for survival, such as tolerance or avoidance of dryland plants to
extreme water deficits [21,75]. This might be the reason for the differences in the relative
weight of temperature (SGST), precipitation (SGSP), and drought (STVDI) found among the
top-dominant species (Figure 3).

4.2. Desert-Scrubs’ VSI Correlated with Soil and Leaf Nutrients

Warming is one of the important drivers for community structural and functional
changes in drylands. Here, we found that STN, STK, LTN, and LC were closely related to
the SGST of vegetation (Table 3) and together explained more than 65% of the variance in
SGST (Table 3). This might be because warming can enhance soil microorganism activities,
promote SOM decomposition and N mineralization, and thereby increase the supply and
availability of soil nutrients [76–78]. In addition to STN and STK, warming can also enhance
the activity and supply of K ions in soil solution [79].

In addition to soil nutrients, we also found that SGST generally declined with increasing
LTN and LC (Figure 5), indicating a high photosynthetic rate with high LTN and LC can
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mitigate the negative effects of warming. LTN and LC are usually used to descript the
photosynthetic activity under manipulated stresses in experimental studies [80,81]. Our
findings were partly consistent with Li et al. [15] that high-elevated grasslands have greater
SGST than those in low-elevations on the Tibetan Plateau. Dryland plants can increase leaf
photosynthetic enzymes by enhancing LTN to promote photosynthetic rate and water use
efficiency [82–84]. Moreover, our findings confirmed that the relationships of sensitivity
climatic components with soil and foliar nutrients varied among different top-dominant
species (Figures S7 and S8), likely due to species niche overlapping and differentiation.

Water availability is the main limiting factor for desert vegetation, and we found that
STP and LC were the main factors affecting vegetation SGSP, explaining 18.8% and 13.96%
of the variation in SGSP, respectively. P is an important element that affects vegetation
growth, development, and metabolism; however, it can be readily combined with Ca2+

in arid soils and then is hard to be uptaken by plants. Pulsed precipitation in drylands
can influence P transport, transformation, and availability through biochemical processes
that control organophosphorus mineralization [85,86]. This might be the reason for the
declining SGSP with increasing STP (Figure 4) in our study.

LC is closely related to the photosynthesis of vegetation. Under drought conditions,
vegetation reduces its water loss by decreasing leaf area and lowering light saturation
point, which results in impaired ATP synthesis and reduced carboxylase activity, resulting
in impaired leaf photosynthesis and thus reduced LC fixation [87]. Pulsed precipitation
can briefly mitigate vegetation drought conditions and provide good moisture conditions
for vegetation photosynthesis, thus increasing LC accumulation. This is why we also
found that SGSP declined with increasing LC content across different species (Figure S8). In
addition, we also found that the LC of the seven arid scrub species was concentrated in
the 300–400 g kg−1 interval, which may imply the coexistence of species has evolved with
overlapped niches to successfully survive in the Qaidam Basin, Qinghai-Tibetan Plateau.

It is worthy to note that neither soil nor plant nutritional properties alone can well
explain the variance in STVDI, which describes the availability of soil moisture, in other
words, the combining effects of temperature and precipitation. In this study, we found
that STVDI could be associated with STN and STK at the same time (Figure 6). Both
STN and STK could explain 16% of the variance in STVDI across different species and
sites. Soil water deficit caused by decoupling temperature and precipitation can limit
soil microbial activity and slow down soil N mineralization [88]. Moreover, a drying
environment with high temperatures and limited precipitation can also exacerbate the
volatilization of gaseous N and lead to high evaporative demand [89], which in turn reduces
the availability of STN [90]. Dry conditions can enhance soil inorganic N content [91];
however, they are hardly taken up by plants due to diffusion limitations [92]. The uptake
of potassium by vegetation is dependent on soil moisture [93]; soil water deficit reduces
soil potassium release capacity and availability [94] and inhibits soil potassium mobility,
limiting potassium uptake by vegetation.

4.3. The Networks of Direct and Indirect Environmental Influences on VSI

The response of vegetation to climate change is characterized by the integrated effect
of multiple factors and processes, forming complex and specific climate-species relation-
ships [95,96]. In this study, we found that soil and foliar nutrient properties affect the scrub
communities’ climate sensitivity by regulating different climate sensitivity components.
Even more, such regulating effects are dependent on the spatial scale, across sites, or for
a given species. Finally, we found that the effect of soil nutrient effectiveness on VSI was
greater compared to leaf nutrient effectiveness. The path strength of STK and STN on
SGST were greater than that of LC and LTN (Figure 6), and the explanatory power of STK
and STN on the variance in SGST (37.52%) was greater than that of LC and LTN (28.17%,
Table 3). Soil nutrients provide indispensable nutrients for the growth and development
of vegetation, and the decoupling of soil nutrient cycles due to climate warming may
negatively affect dryland ecosystem services [40]. We should pay attention to the role of



Remote Sens. 2022, 14, 4601 16 of 20

soil nutrients in drylands to maintain ecosystem stability. Therefore, in the future, the
dependent and combining effects of biotic and abiotic factors on vegetation’s sensitivity
and vulnerability should be well examined and disentangled.

4.4. Limitations and Future Work

In this study, we integrated remote sensing data and field measurements together
to investigate the mechanisms behind desert scrub’s sensitivity to climate change in the
Qaidam Basin, Qinghai-Plateau. However, there are still several uncertainties in this study.
First, there might be a scaling-mismatch problem between remote sensing data and field
measurements. Indeed, NDVI can be used to reflect the information on all vegetation in
the whole region. Limited by budgets, only dominant desert scrub plants were sampled
and measured for functional traits. Herbaceous plants were not fully considered in field
observations. This may affect the accuracy of CWMs of plant functional traits and lead to
some bias in the interpretation of community climate sensitivity. In further studies, both
scrubs and herbaceous plants should be well considered because they have differential
strategies to adapt to changes in physical circumstances.

In addition, this study only considered several soil nutrients and failed to take into
account the effects of microorganisms and trace elements in soils. A recent review suggests
that soil microbes dominate soil life activities by mediating nutrient cycling, decomposing
organic matter, inhibiting plant diseases, influencing soil structure, and maintaining vege-
tation productivity, are major drivers of soil ecosystem change, and have game-changing
potential in restoring soil function [97]. Moreover, soil trace elements are directly involved
in the metabolic activities of organisms and influence the growth and development of
vegetation, and have received increasing attention globally [98]. Therefore, future stud-
ies should also integrate the effects of multiple factors to obtain a more comprehensive
understanding of the vegetation–climate relationship.

5. Conclusions

This study assessed and disentangled the sensitivity and its components of desert
scrubs to climate variability with the time series of NDVI and weather data at the large
scale crossing the Qaidam Basin. The regulatory mechanisms of plant and soil func-
tional/nutrimental traits behind the desert scrub’s climate sensitivity were investigated
and compared among multiple communities dominated by different plant species. The
results confirmed that the sensitivity of vegetation to temperature change was mainly
regulated by the contents of leaf carbon and nitrogen as well as soil nitrogen and potas-
sium. In contrast, the sensitivity of vegetation to precipitation change was regulated by
the contents of leaf carbon and soil total nitrogen. Neither soil nutrients nor plant foliar
traits alone can well explain scrubs’ sensitivity to droughts. Plant foliar traits and soil
nutrient properties indirectly regulate the different components of vegetation’s climate
sensitivity. Due to harsh physical circumstances in the Qaidam Basin and limited available
funds, a scaling-mismatch problem might still exist between remote-sensing data and
field measurements in this study. Anyway, this study combined soil and plant functional
traits together to provide a new perspective to investigate the mechanisms behind desert
vegetation dynamics under climate change when assessed with large-scale remote-sensing
data. These findings also highlighted the necessity to make management and conservation
strategies specifically according to the different factors that regulate the vegetation–climate
relationship among different plant communities.

Supplementary Materials: The following supporting information can be downloaded at: https:
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