10 research outputs found

    Resolving sets for Johnson and Kneser graphs

    Get PDF
    A set of vertices SS in a graph GG is a {\em resolving set} for GG if, for any two vertices u,vu,v, there exists x∈Sx\in S such that the distances d(u,x)≠d(v,x)d(u,x) \neq d(v,x). In this paper, we consider the Johnson graphs J(n,k)J(n,k) and Kneser graphs K(n,k)K(n,k), and obtain various constructions of resolving sets for these graphs. As well as general constructions, we show that various interesting combinatorial objects can be used to obtain resolving sets in these graphs, including (for Johnson graphs) projective planes and symmetric designs, as well as (for Kneser graphs) partial geometries, Hadamard matrices, Steiner systems and toroidal grids.Comment: 23 pages, 2 figures, 1 tabl

    Metric dimension of dual polar graphs

    Full text link
    A resolving set for a graph Γ\Gamma is a collection of vertices SS, chosen so that for each vertex vv, the list of distances from vv to the members of SS uniquely specifies vv. The metric dimension μ(Γ)\mu(\Gamma) is the smallest size of a resolving set for Γ\Gamma. We consider the metric dimension of the dual polar graphs, and show that it is at most the rank over R\mathbb{R} of the incidence matrix of the corresponding polar space. We then compute this rank to give an explicit upper bound on the metric dimension of dual polar graphs.Comment: 8 page

    Metric Dimension of Amalgamation of Graphs

    Full text link
    A set of vertices SS resolves a graph GG if every vertex is uniquely determined by its vector of distances to the vertices in SS. The metric dimension of GG is the minimum cardinality of a resolving set of GG. Let {G1,G2,…,Gn}\{G_1, G_2, \ldots, G_n\} be a finite collection of graphs and each GiG_i has a fixed vertex v0iv_{0_i} or a fixed edge e0ie_{0_i} called a terminal vertex or edge, respectively. The \emph{vertex-amalgamation} of G1,G2,…,GnG_1, G_2, \ldots, G_n, denoted by Vertex−Amal{Gi;v0i}Vertex-Amal\{G_i;v_{0_i}\}, is formed by taking all the GiG_i's and identifying their terminal vertices. Similarly, the \emph{edge-amalgamation} of G1,G2,…,GnG_1, G_2, \ldots, G_n, denoted by Edge−Amal{Gi;e0i}Edge-Amal\{G_i;e_{0_i}\}, is formed by taking all the GiG_i's and identifying their terminal edges. Here we study the metric dimensions of vertex-amalgamation and edge-amalgamation for finite collection of arbitrary graphs. We give lower and upper bounds for the dimensions, show that the bounds are tight, and construct infinitely many graphs for each possible value between the bounds.Comment: 9 pages, 2 figures, Seventh Czech-Slovak International Symposium on Graph Theory, Combinatorics, Algorithms and Applications (CSGT2013), revised version 21 December 201

    Partition dimension of projective planes

    Get PDF
    We determine the partition dimension of the incidence graph G(Πq) of the projective plane Πq up to a constant factor 2 as (2+o(1))log2q≤pd(G(Πq))≤(4+o(1))log2q. © 2017 Elsevier Lt

    Is it possible to determine a point lying in a simplex if we know the distances from the vertices?

    Get PDF
    It is an elementary fact that if we fix an arbitrary set of d + 1 affine independent points {p0,...,pd} in Rd, then the Euclidean distances {|x − pj |}d j=0 determine the point x in Rd uniquely. In this paper we investigate a similar problem in general normed spaces which is motivated by this known fact. Namely, we characterize those, at least d-dimensional, real normed spaces (X, · ) for which every set of d + 1 affine independent points {p0, ...,pd} ⊂ X, the distances {x − pj}d j=0 determine the point x lying in the simplex Conv({p0, ...,pd}) uniquely. If d = 2, then this condition is equivalent to strict convexity, but if d > 2, then surprisingly this holds only in inner product spaces. The core of our proof is some previously known geometric properties of bisectors. The most important of these (Theorem 1) is re-proven using the fundamental theorem of projective geometry

    The localization number and metric dimension of graphs of diameter 2

    Get PDF
    We consider the localization number and metric dimension of certain graphs of diameter 22, focusing on families of Kneser graphs and graphs without 4-cycles. For the Kneser graphs with a diameter of 22, we find upper and lower bounds for the localization number and metric dimension, and in many cases these parameters differ only by an additive constant. Our results on the metric dimension of Kneser graphs improve on earlier ones, yielding exact values in infinitely many cases. We determine bounds on the localization number and metric dimension of Moore graphs of diameter 22 and polarity graphs

    Distance-regular graphs

    Get PDF
    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN' [Brouwer, A.E., Cohen, A.M., Neumaier, A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989] was written.Comment: 156 page
    corecore