224 research outputs found

    Ear-Slicing for Matchings in Hypergraphs

    Full text link
    We study when a given edge of a factor-critical graph is contained in a matching avoiding exactly one, pregiven vertex of the graph. We then apply the results to always partition the vertex-set of a 33-regular, 33-uniform hypergraph into at most one triangle (hyperedge of size 33) and edges (subsets of size 22 of hyperedges), corresponding to the intuition, and providing new insight to triangle and edge packings of Cornu\'ejols' and Pulleyblank's. The existence of such a packing can be considered to be a hypergraph variant of Petersen's theorem on perfect matchings, and leads to a simple proof for a sharpening of Lu's theorem on antifactors of graphs

    CALCULATION OF THE ZERO-SEQUENCE CURRENT DISTRIBUTION ALONG TRANSMISSION LINES

    Get PDF

    How many matchings cover the nodes of a graph?

    Full text link
    Given an undirected graph, are there kk matchings whose union covers all of its nodes, that is, a matching-kk-cover? A first, easy polynomial solution from matroid union is possible, as already observed by Wang, Song and Yuan (Mathematical Programming, 2014). However, it was not satisfactory neither from the algorithmic viewpoint nor for proving graphic theorems, since the corresponding matroid ignores the edges of the graph. We prove here, simply and algorithmically: all nodes of a graph can be covered with k2k\ge 2 matchings if and only if for every stable set SS we have SkN(S)|S|\le k\cdot|N(S)|. When k=1k=1, an exception occurs: this condition is not enough to guarantee the existence of a matching-11-cover, that is, the existence of a perfect matching, in this case Tutte's famous matching theorem (J. London Math. Soc., 1947) provides the right `good' characterization. The condition above then guarantees only that a perfect 22-matching exists, as known from another theorem of Tutte (Proc. Amer. Math. Soc., 1953). Some results are then deduced as consequences with surprisingly simple proofs, using only the level of difficulty of bipartite matchings. We give some generalizations, as well as a solution for minimization if the edge-weights are non-negative, while the edge-cardinality maximization of matching-22-covers turns out to be already NP-hard. We have arrived at this problem as the line graph special case of a model arising for manufacturing integrated circuits with the technology called `Directed Self Assembly'.Comment: 10 page
    corecore