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a r t i c l e i n f o a b s t r a c t

A set of vertices S in a graph G is a resolving set for G if, for
any two vertices u, v, there exists x ∈ S such that the distances
d(u, x) ≠ d(v, x). In this paper, we consider the Johnson graphs
J(n, k) and Kneser graphs K(n, k), and obtain various constructions
of resolving sets for these graphs. As well as general constructions,
we show that various interesting combinatorial objects can be used
to obtain resolving sets in these graphs, including (for Johnson
graphs) projective planes and symmetric designs, as well as (for
Kneser graphs) partial geometries, Hadamard matrices, Steiner
systems and toroidal grids.

.

1. Introduction and preliminaries

In this paper, we consider graphs G = (V (G), E(G)) that are finite, simple and connected. As usual,
the distance between two vertices u and v is denoted by dG(u, v), or simply d(u, v) if the graph G is
clear. A vertex x ∈ V (G) is said to resolve a pair u, v ∈ V (G) if dG(u, x) ≠ dG(v, x). A set S ⊆ V (G)
is a resolving set for G if any pair of vertices of G can be resolved by some vertex in S. If the set S is as
small as possible, then it is called a metric basis and its cardinality β(G) is the metric dimension of the
graph G.
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Metric bases and resolving sets were first introduced to the graph theory literature in the 1970s
by Slater [34] and independently by Harary and Melter [22]. (However, the definition of a metric
basis for an arbitrary metric space was known in the geometry literature at least 20 years earlier; see
Blumenthal [7, Definition 39.1], for instance.) In his seminal paper, Slater mentioned the following
potential application: a moving point in a graph may be located by finding the distances from the
point to a collection of sonar or LORAN stations which have been judiciously positioned in the graph.

Subsequently, many other applications of resolving sets and metric dimension have appeared
in the literature. For example, the study of resolvability in hypercubes is closely related to a coin-
weighing problem (see [32] for details); strategies for the Mastermind game use resolving sets
in Hamming graphs [16]; resolving sets in triangular, rectangular and hexagonal grids have been
proposed to study digital images [29]; a method based on resolving sets for differentiating substances
with the same chemical formula is given in [15]. Mathematical applications of closely-related
parameters were given by Babai in the study of the graph isomorphism problem [1] and in obtaining
bounds on the possible orders of primitive permutation groups [2] (see also [3]).

Since the problem of computing the metric dimension of a graph is NP-complete (see [26]), many
efforts have been focused on finding either exact values or good bounds for the metric dimension of
certain classes of graphs. Examples include trees [22,34], wheels [33], unicyclic graphs [31], Cayley
digraphs [18] and cartesian products [12], among others.

A lower bound on the metric dimension of a graph G can be obtained by considering its
automorphism group Aut(G). A base for a group acting on a set is a collection of points, chosen so
that the only group element fixing all of those points is the identity element; equivalently, every
group element is uniquely specified by its action on those points. (See [14] for more background on
bases.) Recently, in the case where the group is the automorphism group of a graph G, bases have
been referred to as determining sets for G, and the least cardinality of a base for Aut(G) has become
known as the determining number of G, denoted by Det(G) (see [3,8]). It is straightforward to verify
the following result (see, for instance, [3, Proposition 3.8]).

Proposition 1. For any finite, connected graph G, we have Det(G) ≤ β(G).

We refer the reader to [3,11] for further information on the relationship between the two
parameters.

In this paper, we are interested in the metric dimension of Johnson and Kneser graphs, which we
now introduce.

1.1. Johnson and Kneser graphs

The Kneser graph K(n, k) (where n > k) has the collection


[n]
k


of all k-subsets of the n-set

[n] = {1, . . . , n} as vertices, and edges connecting disjoint subsets. As an example, the Petersen graph
is the Kneser graph K(5, 2). Like Kneser graphs, the vertices of the Johnson graph J(n, k), with n > k,
are the k-subsets of [n], but two k-subsets are adjacent when their intersection has size k − 1.

It is easy to see that the Kneser graph K(n, k) is connected if and only if n > 2k: if n < 2k, there
are no edges, while if n = 2k, the Kneser graph is a perfect matching. Also, it is not difficult to show
that the Johnson graphs J(n, k) and J(n, n − k) are isomorphic. Consequently, in the remainder of the
paper, we shall only consider Kneser graphs with n > 2k and Johnson graphs with n ≥ 2k.

A consequence of the definition is that in the Johnson graph J(n, k) there is a one-to-one
correspondence between intersection sizes and distances: specifically, the distance between two
vertices U andW in J(n, k) is given by

d(U,W ) = |U \ W | = |W \ U| = k − |U ∩ W |. (1)

From this, it is clear that J(n, k) has diameter k. Furthermore, one can show that the Johnson graph
J(n, k) is distance-transitive, i.e. for any vertices U,W , X, Y with d(U,W ) = d(X, Y ), there is an
automorphismmapping U to X andW to Y (see [9] for more details). In general, Kneser graphs do not
have this property, as the correspondence between distances and intersection sizes does not arise.
However, there are two exceptional families, and both are ‘‘extreme’’ cases. First, the Kneser graph



738 R.F. Bailey et al. / European Journal of Combinatorics 34 (2013) 736–751

K(n, 2) is the complement of the corresponding Johnson graph J(n, 2), and both graphs have diameter
2, so if dK(n,2)(U,W ) = 1 then dJ(n,2)(U,W ) = 2, and vice versa. Second, there is the Kneser graph
K(2k + 1, k) (known as the Odd graph; see [6] for details). The notation Ok+1 is often used to denote
this graph, with the subscript k+ 1 being chosen as it is the valency of the graph; this family includes
the Petersen graph as O3. The distance between two vertices in an Odd graph is determined exactly
by the size of the intersection of the corresponding k-subsets, but by a different rule:

d(U,W ) = 2r ⇐⇒ |U ∩ W | = k − r;
d(U,W ) = 2r + 1 ⇐⇒ |U ∩ W | = r.

In general, the distance between two vertices of a Kneser graphK(n, k) is specified by the size of the
intersection of the corresponding k-subsets (but notwith a one-to-one correspondence). If n ≥ 3k−1,
it is not difficult to see that two non-adjacent vertices of K(n, k) share a common neighbour, and thus
the distance between vertices U andW is either 1 or 2, depending on whether U ∩W is empty or not.
More generally, if we write n = 2k + b, it was shown in [35] that distances in K(2k + b, k) are given
by the following formula:

d(U,W ) = min

2


k − s
b


, 2

 s
b


+ 1


(2)

for U,W ∈ V (K(2k + b, k)) and s = |U ∩ W |.
In this paper, we are concerned with constructing resolving sets for Johnson and Kneser graphs. To

begin, we show that resolving sets for the two families of graphs are related in a straightforward way.

Lemma 2. Suppose n > 2k. Any resolving set S for the Kneser graph K(n, k) is a resolving set for J(n, k).
Thus β(J(n, k)) ≤ β(K(n, k)).

Proof. Suppose that the vertex X in the Kneser graph K(n, k) resolves the pair U,W ∈ V (K(n, k)).
Clearly then |X ∩ U| ≠ |X ∩ W |. By Eq. (1), U and W are also resolved by X in J(n, k), and therefore
the result follows. �

The converse of this lemma is not true in general, apart from the two exceptional families of
Kneser graphs listed above, namely K(n, 2) and K(2k + 1, k). In the first of those cases, any resolving
set for J(n, 2) is also a resolving set for K(n, 2), and hence β(J(n, 2)) = β(K(n, 2)); likewise, any
resolving set for J(2k + 1, k) is also a resolving set for the Odd graph Ok+1 = K(2k + 1, k), and hence
β(J(2k + 1, k)) = β(K(2k + 1, k)).

For n > 2k, the Johnson graph J(n, k) and Kneser graph K(n, k) have the same automorphism
group, namely the symmetric group Sym(n) in its action on the k-subsets of [n] (see [3, Sections 2.5
and 3.8]). (If n = 2k, then Aut(J(2k, k)) ∼= Sym(2k) × Z2: the extra automorphisms arise from being
able to interchange a k-subset with its complement.) Thus, for n > 2k, Det(J(n, k)) = Det(K(n, k)). A
summary of results about Det(J(n, k)) and Det(K(n, k)) can be found in [3, Section 2.5]; in particular,
in [10] the following result was obtained.

Theorem 3 (Cáceres et al. [10]). Suppose n >


k+1
2


, and let d be an integer such that 3 ≤ k + 1 ≤ d.

Then whenever the inequality
(d − 1)(k + 1)

2


< n − 1 ≤


d(k + 1)

2


is satisfied, it follows that Det(J(n, k)) = Det(K(n, k)) = d.

By Proposition 1, these provide a lower bound of approximately 2n/k on the metric dimension of
these graphs. We note that for fixed values of k, this lower bound is linear in n.

The metric dimension of the Johnson graph J(n, 2), and thus also the Kneser graph K(n, 2), were
determined precisely in [3]: the values depend on congruence classes modulo 3.
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Theorem 4 ([3, Corollary 3.33]). Suppose n ≥ 6. Then for the metric dimension of the Johnson graph
J(n, 2) and Kneser graph K(n, 2), where n ≡ i (mod 3) (for i = 0, 1, 2), we have β(J(n, 2)) =

β(K(n, 2)) =
2
3 (n − i) + i.

In fact, for n ≡ 0 (mod 3), equality is achieved in Proposition 1, while in the other cases we have a
difference of 1 between the determining number and metric dimension (see [3] for details).

Our goal in this paper is not to obtain exact values for the metric dimension of Johnson and Kneser
graphs, but rather to (i) give explicit constructions of resolving sets, and (ii) demonstrate how various
interesting combinatorial and geometric structures may be used as resolving sets for these graphs. In
particular, some of our constructions provide good upper bounds on the metric dimension of J(n, k)
and/or K(n, k).

The remainder of the paper is organized into four sections: in Section 2 we give some general
constructions; Sections 3 and 4 are devoted to Johnson and Kneser graphs, respectively; Section 5 has
some concluding remarks.

2. General constructions: partitioning the set [n]

In this section, we give some constructions for resolving sets of Johnson and Kneser graphs, for
arbitrary values of n and k. Each of these constructions involves specifying an appropriate partition of
the set [n], and taking subsets of the parts as the vertices of a resolving set. We give two related but
different constructions of resolving sets, considering Johnson and Kneser graphs separately; however,
in the case k = 2, the two constructions coincide, and each generalizes the construction in [3] which
yields Theorem 4. We then give an improved construction for Kneser graphs of diameter 3.

2.1. A partitioning construction for Johnson graphs

Recall from Eq. (1) that the distance between two vertices U andW in the Johnson graph J(n, k) is
given by

d(U,W ) = |U \ W | = |W \ U| = k − |U ∩ W |.

Thus, a vertex X ∈ V (J(n, k)) resolves the pair U,W ∈ V (J(n, k)) if and only if |X ∩ U| ≠ |X ∩ W |,
which is equivalent to |X ∩ (U \W )| ≠ |X ∩ (W \U)|. A straightforward consequence is the following
lemma.

Lemma 5. A set of vertices S is a resolving set for J(n, k) if and only if for any two disjoint non-empty sets
U,W ⊂ [n] such that |U| = |W | ≤ k, there exists a vertex X ∈ S satisfying |X ∩ U| ≠ |X ∩ W |.

Our construction of a resolving set yields the following result.

Theorem 6. For the Johnson graph J(n, k) with n ≥ 2k, we have that

β(J(n, k)) ≤


k

k + 1
(n + 1)


.

Proof. As we have already noted, the case k = 2 was considered in [3] (see Theorem 4), so we will
suppose that k > 2.Wewill divide our construction into two separate cases. First, wewill assume that
n = r(k+1) for some positive integer r , as our construction is more straightforward in that situation;
later, we will suppose otherwise.

Consider the set [n] = {1, . . . , n}, and partition it into r subsets [n] = N1 ∪ · · · ∪ Nr where
Ni = {(i − 1)(k + 1) + 1, . . . , i(k + 1)} and 1 ≤ i ≤ r . For each i ∈ {1, . . . , r}, let Si be the set of all
k-subsets of Ni, but with one arbitrarily-chosen set removed. Note that any X ∈ Si can be specified by
the unique element of Ni which is not in X . Our claim is that S = S1 ∪ · · · ∪ Sr is a resolving set for
J(n, k).

Let U and W be two distinct vertices of J(n, k), and consider how they intersect with the sets
N1, . . . ,Nr . They can be partitioned into U = U1 ∪· · ·∪Ur andW = W1 ∪· · ·∪Wr , where Ui = U ∩Ni
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and Wi = W ∩ Ni; note that some of these intersections may be empty. Our goal is to find a vertex
X ∈ S which resolves U andW , that is, |X ∩U| ≠ |X ∩W |. Note that if X ∈ Si, we have X ∩U = X ∩Ui,
so it suffices to show that |X ∩ Ui| ≠ |X ∩ Wi|.

Since U ≠ W , there exists an index i ∈ {1, . . . , r} such that Ui ≠ Wi. Then the following
possibilities may occur.

Case 1. Suppose first that Ui = ∅ and Wi ≠ ∅. In this case, there exists some X ∈ Si which resolves
U and W , since X ∩ Ui = ∅ and we can choose an X so that X ∩ Wi ≠ ∅.

Case 2. Now suppose that both Ui and Wi are non-empty and have different sizes; without loss of
generality, we may assume that 0 < |Ui| < |Wi|. We may also assume that |Wi| < k, as
otherwise, there exists j ≠ i where Wj = ∅ and Uj ≠ ∅, where we can apply Case 1. Pick an
element a ∉ Wi so that X = Ni \ {a} ∈ Si (such an element exists, since |Wi| < k); note that
this implies Wi ⊂ X . Then we have |X ∩ Ui| ≤ |Ui| < |Wi| = |X ∩ Wi|, and thus X resolves U
and W .

Case 3. Finally, suppose that |Ui| = |Wi| andboth are non-empty. Then there exist elements a ∈ Wi\Ui
and b ∈ Ui \ Wi. Now, X = Ni \ {a} resolves U and W , since |X ∩ Ui| = |Ui|, but
|X ∩ Wi| = |Wi| − 1; similarly, X ′

= Ni \ {b} resolves U and W , since |X ′
∩ Wi| = |Wi|,

but |X ′
∩ Ui| = |Ui| − 1. At least one of X, X ′

∈ Si.

Since S is a resolving set for J(n, k) with kr elements and r =
n

k+1 , the result follows.
Now we consider the case where n is not divisible by k + 1, i.e. where n = r(k + 1) + j with

1 ≤ j ≤ k. In this case, we partition the set [n] as follows: let [n] = N1 ∪ · · · ∪ Nr ∪ N∗, where
N1, . . . ,Nr are as before, and where N∗

= {n − j + 1, . . . , n}. Then let S′
= S ∪ S∗, where S is as

defined above, and where the set S∗ contains all sets of the form {1, 2, . . . , k − 1} ∪ {x}, for x ∈ N∗.
We claim that S′ is a resolving set for J(n, k).

Let U andW be two distinct vertices of J(n, k). Similar to the above, we partition U into U1 ∪ · · · ∪

Ur ∪U∗, whereUi = U∩Ni andU∗
= U∩N∗; likewise, we partitionW intoW = W1∪· · ·∪Wr ∪W ∗. If

U∗
= W ∗

= ∅, then S clearly resolves U andW by the arguments above; hence it suffices to consider
the case in which either U∗ orW ∗ are non-empty.

If j = k, it is possible that one of U = N∗ or W = N∗; without loss of generality assume that
U = N∗, in which case any X ∈ S with X ∩ W ≠ ∅ resolves U and W . Otherwise, we must have that
Ui and Wi are non-empty for some i ∈ {1, . . . , r}.

If Ui ≠ Wi for some index i, then the vertices can be resolved by some X ∈ S as shown in Cases 1–3
above. Only when Ui = Wi for all i ∈ {1, . . . , r} is it necessary to choose a vertex from S∗. However,
since U ≠ W , we have U∗

≠ W ∗ and both are non-empty. Also, |U∗
| = |W ∗

|, so there exists an
element x ∈ U∗

\ W ∗. Then X = {1, 2, . . . , k − 1} ∪ {x} ∈ S∗, with

|X ∩ U| = |{1, . . . , k − 1} ∩ U| + 1
= |{1, . . . , k − 1} ∩ W | + 1
= |X ∩ W | + 1.

Hence X resolves U andW .
To conclude, S′

= S ∪ S∗ is a resolving set for J(n, k) of size

rk + j = rk +


k

k + 1
(j + 1)


=


k

k + 1
(n + 1)


,

and the proof is complete. �

We remark that this construction has been adapted for the Grassmann graphs (see [4, Section 3]),
the so-called ‘‘q-analogue’’ of the Johnson graphs, where the vertices are the k-dimensional subspaces
of the vector spaceFn

q and two vertices are adjacent if they intersect in a (k−1)-dimensional subspace.
Subsequently, this construction was further adapted for various related classes of graphs, including
the bilinear forms graphs, the doubled Grassmann graphs and twisted Grassmann graphs; see [19,21].We
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also remark that Guo, Wang and Li have independently obtained the same bound as in Theorem 6 for
the special case of J(2k + 1, k); see [21, Theorem 2.2].

2.2. A partitioning construction for Kneser graphs

Inspired by the construction abovewhich gives resolving sets for Johnson graphs, in this subsection
we obtain a construction of resolving sets for Kneser graphs. In a Kneser graph K(n, k) with n > 2k,
we observe that for vertices U,W , if another vertex X satisfies X ∩ U = ∅ and W ∩ X ≠ ∅, then X
resolves U and W (since X is adjacent to U but not adjacent to W ). If n ≥ 3k − 1, this is the only way
for a pair of vertices to be resolved (since K(n, k) has diameter 2 in that case). When n < 3k − 1, we
give a variation on the construction below which gives an improved bound.

Theorem 7. For the Kneser graph K(n, k) with n > 2k, we have that

β(K(n, k)) ≤


n

2k − 1

 
2k − 1

k


− 1


.

Proof. Suppose n = r(2k − 1) + j, where 0 ≤ j ≤ 2k − 2. Partition the set {1, . . . , n − j}
into parts N1, . . . ,Nr , each of size 2k − 1. For each i ∈ {1, . . . , r}, let Si be the collection of all
k-subsets of Ni but with one arbitrarily-chosen set removed; then let S = S1 ∪ · · · ∪ Sr . If j ≠ 0,
let Nr+1 = {1, . . . , 2k − j − 1} ∪ {n − j + 1, . . . , n}, and let T denote the collection of all k-subsets
from Nr+1 but with one arbitrarily-chosen set removed. In this case, we let S = S1 ∪ · · · ∪ Sr ∪ T .

In either situation, it is clear that the size of S is
n

2k − 1

 
2k − 1

k


− 1


.

We claim that S is a resolving set for K(n, k). To prove this claim, we need to show for any distinct pair
of k-subsets U,W ∈ V (K(n, k)) that either one of U or W is in S, or there is a set in S that intersects
exactly one of U and W .

Now, if there exists an i such that U ∩ Ni ≠ ∅ and W ∩ Ni = ∅ (or conversely U ∩ Ni = ∅ and
W ∩ Ni ≠ ∅), then any k-subset of Ni that intersects with U will not intersect with W . The set S will
certainly contain many such subsets of Ni.

If the above does not hold, then for any i, if U ∩ Ni ≠ ∅ then W ∩ Ni ≠ ∅. Since U ≠ W ,
there is an i such that U ∩ Ni and W ∩ Ni are distinct, and both are non-empty. Now we consider
three cases:

Case 1. If U ∩ Ni = U andW ∩ Ni = W then at least one of U and W will be in S.
Case 2. If U ∩ Ni = U and |W ∩ Ni| ≤ k − 1 then there is another part Ni′ that intersects with W but

not U , and we are done.
Case 3. Assume |U ∩Ni| ≤ k− 1. Then |W ∩Ni| ≤ k− 1, since otherwise there would exist an i′ such

that U ∩ Ni′ ≠ ∅ and W ∩ Ni′ = ∅, and again we are done.

Since U ∩ Ni ≠ W ∩ Ni, at least one element from the complement U ∩ Ni is in W , and since
|U ∩ Ni| ≥ k, there is a k-subset of U ∩ Ni that intersectsW but not U . Similarly, there is a k-subset of
W ∩ Ni that intersects U but notW . At least one of these k-subsets is in S. �

2.3. An improved construction for Kneser graphs of diameter 3

For n < 3k − 1, the diameter of the Kneser graph K(n, k) is greater than 2, and consequently it
should be possible to refine our construction from the previous subsection, in order to obtain smaller
resolving sets when the diameter is larger. When ⌊5k/2⌋ ≤ n ≤ 3k − 2, it follows from [35] that
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K(n, k) has diameter 3, and that for two vertices U,W the distance between them in K(n, k) is as
follows:

d(U,W ) = 0 ⇐⇒ |U ∩ W | = k;
d(U,W ) = 1 ⇐⇒ |U ∩ W | = 0;
d(U,W ) = 2 ⇐⇒ 3k − n ≤ |U ∩ W | ≤ k − 1;
d(U,W ) = 3 ⇐⇒ 1 ≤ |U ∩ W | ≤ 3k − n − 1.

Theorem 8. For the Kneser graph K(n, k) where n and k are integers such that ⌊5k/2⌋ ≤ n ≤ 3k − 2,
we have

β(K(n, k)) ≤ 2

n − k
k


.

Proof. We define N1,N2 ⊆ [n] = {1, . . . , n} to be the overlapping subsets

N1 = {1, 2, . . . , n − k}, N2 = {k + 1, k + 2, . . . , n}.

Then let Si be the collection of all k-subsets of Ni, and set S = S1 ∪ S2. Clearly the size of S is 2


n−k
k


,

and we claim that S is a resolving set for K(n, k). To do so, we must show that for any two distinct
vertices U,W of K(n, k), there is a vertex X ∈ S satisfying d(U, X) ≠ d(W , X).

We remark that, since n ∈ {⌊5k/2⌋, . . . , 3k − 2}, we have that n − k ∈ {⌊3k/2⌋, . . . , 2k − 2} and
that 3k − n − 1 ∈ {1, . . . , ⌈k/2⌉ − 1}. Also, we observe that if either U or W is properly contained
in either N1 or N2, then one of U and W belongs to S, so we may assume otherwise. For i = 1, 2, we
define Ui = U ∩Ni andWi = W ∩Ni; by our assumption, we have |Ui| ≤ k−1 and |Wi| ≤ k−1. Since
U and W are distinct, Ui ≠ Wi for some i, so without loss of generality we will assume that U1 ≠ W1.
Once again, there are several cases to consider.

Case 1(a). If |U1| ≤ k/2 and W1 ⊂ U1, then choose X to be any k-subset of N1 that contains one
element from U1 \ W1 and all other elements from N1 \ (U1 ∪ W1) (this is possible since
|N1 \ (U1 ∪ W1)| ≥ k). Then d(U, X) = 3 and d(W , X) = 1.

Case 1(b). If |U1| ≤ k/2 andW1 ⊈ U1, let X be a k-subset of N1 \U1 that contains at least one element
fromW1. In this case, d(U, X) = 1 and d(W , X) = 2 or 3.

Clearly, if |W1| ≤ k/2 then this case also holds.

Case 2. Now we must suppose that k/2 < |U1| ≤ k − 1 and k/2 < |W1| ≤ k − 1; note that the lower
bound also implies that |U1| > 3k− n− 1 and |W1| > 3k− n− 1. Without loss of generality,
we may assume that |U1| ≥ |W1|. There are three subcases to consider, and in each of these
we construct a vertex X with d(U, X) = 2 and d(W , X) = 3.
(a) If |U1∩W1| = 3k−n−1, define X to be a k-subset containing all ofU1 and k−|U1| elements

from N1 \ (U1 ∪ W1). For such a set X to exist, we need to show that |N1 \ (U1 ∪ W1)| is
sufficiently large. This is straightforward since

|N1 \ (U1 ∪ W1)| = (n − k) − (|U1| + |W1| − |U1 ∩ W1|)

≥ n − k − |U1| − (k − 1) + (3k − n − 1)
= k − |U1|.

(b) If |U1 ∩ W1| < 3k − n − 1, then we can choose X to be a k-subset that contains all of
U1, (3k−n−1)−|U1∩W1| elements fromW1\U1 (this is possible since |W1| > 3k−n−1)
and k − |U1| − (3k − n − 1 − |U1 ∩ W1|) elements from N1 \ (U1 ∪ W1). Again, for
such a set X to exist we need to show that |N1 \ (U1 ∪ W1)| is sufficiently large; this
follows because

|N1 \ (U1 ∪ W1)| = (n − k) − |U1| − |W1| + |U1 ∩ W1|

≥ n − k − |U1| − (k − 1) + |U1 ∩ W1|

= k − |U1| − (3k − n − 1) + |U1 ∩ W1|.
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(c) If |U1 ∩W1| > 3k−n−1 thenwe can set X to be a k-subset with 3k−n−1 elements from
U1 ∩W1, all of U1 \W1 (this is not empty since |U1| ≥ |W1|) and k− (3k−n−1)−|Ui \Wi|

elements from N1 \ (U1 ∪ W1). To show that this last requirement can be met, consider
|N1 \ (U1 ∪ W1)| = (n − k) − |U1 \ W1| − |W1|

≥ n − k − |U1 \ W1| − (k − 1)
= k − (3k − n − 1) − |Ui \ Wi|.

In all cases, we find that d(U, X) = 2 and d(W , X) = 3, and thus X resolves U andW .

This completes the proof. �

3. Resolving sets for Johnson graphs: an algebraic approach

3.1. A matrix method

In this subsection, we introduce a useful technique based on incidence matrices that can be used
to show that certain families of k-subsets of [n] are resolving sets for the Johnson graph J(n, k).

Let S be a subset of [n]. The incidence vector of S is the vector (v1, . . . , vn) ∈ Rn whose entries are

vi =


1 if i ∈ S,
0 otherwise.

Now suppose we have a family of subsets (or a set system) S = {S1, . . . , St}, where each Si is a subset
of [n] with a fixed cardinality. Then the incidence matrix of S is the t × n matrix whose rows are the
incidence vectors of S1, . . . , St .

So given any subset of the vertex set of J(n, k), we can write down an incidence matrix for it. This
approach gives a straightforward method of verifying that a given set system is a resolving set for
J(n, k), with the following lemma being a straightforward, yet crucial, observation.

Lemma 9. Let A be the incidence matrix of a set system S1, . . . , St formed of subsets of [n], and let
v = (v1, . . . , vn) be the incidence vector of an arbitrary subset U ⊆ [n]. Suppose b = (b1, . . . , bt)
is the vector obtained as Av = b. Then, for all i, we have bi = |Si ∩ U|.

Lemma 9 gives us an algebraic definition of resolving sets for J(n, k). Let S = {S1, . . . , St} be a
resolving set for J(n, k). Since S is a resolving set for J(n, k), for any two k-subsets U,W of [n], there
exists some Si ∈ S with |Si ∩ U| ≠ |Si ∩ W |. Consequently, we have

(|S1 ∩ U|, |S2 ∩ U|, . . . , |St ∩ U|) = (|S1 ∩ W |, |S2 ∩ W |, . . . , |St ∩ W |)

if and only if U = W . Now let M denote the set of incidence vectors of k-subsets of [n], and suppose
A is the incidence matrix of S. From Lemma 9 it follows that for all u, v ∈ M , we have Au = Av if and
only if u = v.

Now, if the matrix A represents a linear transformation which is one-to-one, then we are
guaranteed that Au = Av if and only if u = v for all u, v ∈ Rn, not just incidence vectors. This
leads us to the following result.

Theorem 10. Suppose S is a family of k-subsets of [n] whose incidence matrix has rank n. Then S is a
resolving set for the Johnson graph J(n, k).

Proof. Suppose that |S| = t , and that A is the incidencematrix of S. Since rank(A) = n, it follows that
t ≥ n. Let τ : Rn

→ Rt be the linear transformation represented by the matrix A. By the rank-nullity
theorem, τ is one-to-one. Thus for all vectors u, v ∈ Rn, we have Au = Av if and only if u = v. In
particular, this holds for incidence vectors of k-subsets, so by the above argument, S is a resolving set
for J(n, k). �

If we happen to have a n× n incidence matrix with rank n, the matrix would have to be invertible.
As a corollary to the above, we show that such an invertible matrix always exists.
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Corollary 11. For any values of n and k, the metric dimension of the Johnson graph J(n, k) is at most n.

Proof. To show this, we just need to exhibit a set system of size nwith an invertible incidencematrix,
which we shall construct. As is usual, In denotes the n × n identity matrix, and Jn denotes the n × n
matrix with all entries equal to 1. Then let A be the following n × nmatrix:

A =


Jk+1 − Ik+1 0

B In−k−1

 , where B =


1 1 · · · 1 0 0
1 1 · · · 1 0 0
...

...
...

...
...

...
1 1 · · · 1 0 0

 .

Clearly the rows of A are 0–1 vectors of weight k. Also, this matrix is clearly invertible, as its
determinant is

det(A) = det(Jk−1 − Ik−1) det(In−k−1) = (−1)kk,

which is obviously not zero.
The set system which corresponds to this matrix is then

{1, . . . , k + 1}
k


∪ {{1, . . . , k − 1, x} : x ∈ {k + 2, . . . , n}} . �

As an example, the following is a resolving set for J(9, 3) of size 9:

{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 2, 7}, {1, 2, 8}, {1, 2, 9}, {1, 3, 4}, {2, 3, 4}.

We remark that this approach has also been adapted for the Grassmann graphs; see [4, Theorem 5]
for details.

3.2. Symmetric designs

We can use the approach developed in the previous subsection to demonstrate that a particularly
interesting class of set systems provides resolving sets for J(n, k) of size n.

A 2-designwith parameters (n, k, λ) is a pair (X, B), where X is a set of n points, and B is a family
of k-subsets of X , called blocks, such that any pair of distinct points are contained in exactly λ blocks.
The incidence matrix of a 2-design is the 0–1 matrix with rows indexed by the points and columns
indexed by the blocks of the 2-design, where the (p, B) entry is 1 if the point p is in the block B and 0
otherwise.

A well-known result is Fisher’s inequality (see [28, Theorem 1.9]), which asserts that the number
of blocks is at least the number of points n. If the number of blocks is in fact equal to n, we have
a symmetric design. If we have a symmetric design with parameters (n, k, λ) and incidence matrix A,
thenAT must also be the incidencematrix of a symmetric designwith those parameters. Consequently,
in a symmetric design, any pair of distinct blocks must intersect in exactly λ points. A table listing
families of symmetric designs can be found in [17, Section II.6.9].

Incidence matrices are a powerful tool in the study of symmetric designs (see [28], for instance).
The most well-known existence result for symmetric designs, the Bruck–Ryser–Chowla theorem
(which gives strong necessary conditions for their existence; see [28, Theorem 2.1]), is obtained using
them. For our purpose, we can use incidence matrices to show the following.

Theorem 12. The blocks of a symmetric design D with parameters (n, k, λ) form a resolving set for
J(n, k).

Proof. Suppose A is the incidence matrix of D . By [28, Proposition 1.2], we have | det(A)| =

k


(k − λ)n−1, and this equals 0 if and only if λ = k. However, in a symmetric design this can only
happen if n = k (see [28, Proposition 1.1]), which is trivial.

Hence D has an invertible incidence matrix, so by Theorem 10 is a resolving set for J(n, k). �
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Three particular classes of symmetric designs are worthmentioning here. First, symmetric designs
withλ = 1 are precisely the finite projective planes [23]. For these to exist, wemust have n = q2+q+1
and k = q + 1 for some positive integer q, which is called the order of the projective plane.
Projective planes are known to exist for any prime-power order, and it is conjectured that these are
the only orders possible. The most famous example is the Fano plane which is a symmetric design
with parameters (7, 3, 1), and thus can be used as a resolving set for the Johnson graph J(7, 3). In
Section 4.1, we shall see that (with the exception of the Fano plane) projective planes do not give
resolving sets for Kneser graphs.

Symmetric designs with λ = 2 are known as biplanes [13]. For a biplane to exist, we must have
n =


k
2


+ 1. Unlike the case of projective planes, there are no known infinite families of biplanes.

In fact only 16 examples are known (see [24]), the largest having n = 79 points and blocks of size
k = 13.

Another important class of symmetric designs are those arising from Hadamard matrices, which
will be discussed in Section 4.2.

4. Resolving sets for Kneser graphs: combinatorial and geometric approaches

In this section we discuss a number approaches to the construction of resolving sets for various
classes of Kneser graphs. These constructions, which may appear on the surface to be something of a
‘‘mixed bag’’, demonstrate the variety of techniques which may be employed. Our constructions are
inspired by finite and discrete geometry, as well as combinatorial design theory. We also discuss the
implications of the algebraic techniques from the previous section for Kneser graphs.

4.1. Partial geometries

A partial geometry with parameters (s, t, α), or pg(s, t, α), is a pair (P , L), consisting of a set of
points P and a set of lines L, satisfying the following conditions:

(i) any line is incident with s + 1 points, and the intersection of any two lines is at most a single
point;

(ii) any point is incident with t + 1 lines, and any two points with at most one line;
(iii) if the point p and the line L are not incident, then exactly α points of L are collinear with p (and

so also exactly α lines incident with p are concurrent with L).

This is a very general geometric structure, with many well-known objects (including projective
and affine planes, generalized quadrangles, etc.) occurring as special cases. (For additional
background material about partial geometries, see [5].) We remark that given any partial geometry
pg(s, t, α), its dual is a partial geometry pg(t, s, α), obtained by interchanging the roles of points and
lines. Also, in a partial geometry pg(s, t, α), the number of points v and the number of lines b are
given by

v =
(s + 1)(st + α)

α
and b =

(t + 1)(st + α)

α
.

Ourmain result in this subsection, wherewe use partial geometries to obtain resolving sets for Kneser
graphs, is as follows.

Theorem 13. Let Γ be a partial geometry pg(s, t, α) with point set P and line set L, and where t > s.
Then L is a resolving set for the Kneser graph K(v, s + 1).

Proof. Let Γ be the partial geometry pg(s, t, α) given by the set of linesL = {L1, . . . , Lb} over the set
of pointsP = {1, . . . , v}. Note that the lines can be viewed as vertices of the Kneser graph K(v, s+1).
Consider two distinct vertices U,W ∈ V (K(v, s + 1)), a point p ∈ P such that p ∈ U \ W and the
t +1 lines incident with p. Since any two of these lines only intersect in p and t > s, there exists a line
Li ∈ L containing p and not intersecting W . Thus d(Li,U) > 1 and d(Li,W ) = 1, and so Li resolves U
and W . Hence L is a resolving set for K(v, s + 1). �
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Note that, by Lemma 2, the partial geometries of Theorem 13 are also resolving sets for the Johnson
graphs J(v, s + 1).

Partial geometries where α = s+1 = t are affine planes of order s+1. Since affine planes of order
q are known to exist whenever q is a prime power (see [5]), we have the following upper bound for
the metric dimension of K(q2, q) for prime powers q.

Corollary 14. If q ≥ 3 is a prime power, then β(K(q2, q)) ≤ q2 + q.

Proof. Apply Theorem 13 for values s = q − 1, t = q and α = q, noting that v = q2. �

Whenα = 1,we obtain the so-called generalized quadrangles (see for instance [30]). Their existence
is known for many values of (s, t), including the classical ones: (q − 1, q + 1), (q, q2) and (q2, q3) for
a prime power q. Thus, Theorem 13 gives upper bounds on the metric dimension of some further
families of Kneser graphs, such as the following ones.

Corollary 15. If q is a prime power, then:

(i) β(K(q3, q)) ≤ q2(q + 2);
(ii) β(K((q + 1)(q3 + 1), q + 1)) ≤ (q2 + 1)(q3 + 1);
(iii) β(K((q2 + 1)(q5 + 1), q2 + 1)) ≤ (q3 + 1)(q5 + 1).

A partial geometry pg(q, q, q+1)with q ≥ 2 is a projective plane of order q. Since affine planes are
resolving sets for an infinite family of Kneser graphs, it prompts the question of whether projective
planes are also. However, the next result shows that the answer to this question is negative.

Proposition 16. Given a projective plane of order q > 2, the set L of lines does not resolve the Kneser
graph K(q2 + q + 1, q + 1).

Proof. A projective plane of order q > 2 has v = q2 + q + 1 points and every line contains exactly
q + 1 points, so we are dealing with Kneser graphs K(q2 + q + 1, q + 1). Clearly, the diameter of
K(q2 + q + 1, q + 1) is two: since q > 2, we have q2 + q + 1 ≥ 3q + 2. Consider a line L ∈ L and
two points p, p′

∈ L. In a projective plane, there exist exactly q + 1 distinct lines incident with p, say
{L, L1, . . . , Lq}, and exactly q + 1 distinct lines incident with p′, say {L, L′

1, . . . , L
′
q}. Also, any two lines

intersect, and so we can consider the set of points {pi = Li ∩ L′

i : i = 1, . . . , q}. Note that these must
all be distinct.

We will show that the vertices U = {p, p1, . . . , pq} and W = {p′, p1, . . . , pq} are not resolved
by any line of L. Indeed, since the diameter of K(q2 + q + 1, q + 1) is two, any line X resolving U
and W should intersect only one of these two vertices. Thus, X must be disjoint from {p1, . . . , pq},
and contains only one of p and p′. So L cannot resolve U and W , and every line other than L
incident with either p or p′ also intersects {p1, . . . , pq}. This proves that L is not a resolving set for
K(q2 + q + 1, q + 1). �

We remark that the above proof excludes the case of q = 2, where the unique projective plane is
the Fano plane. It transpires that the Fano plane actually does give a resolving set for the Odd graph
K(7, 3): this is discussed in the following subsection.

4.2. Odd graphs and Hadamard matrices

In Section 1, we saw that for the Odd graph Ok+1 (i.e. the Kneser graph K(2k+ 1, k)), any resolving
set for the corresponding Johnson graph J(2k + 1, k) will also resolve Ok+1. Consequently, the results
we obtained in the previous section can be applied directly to Odd graphs. In particular, Corollary 11
(using incidence matrices) implies that β(J(2k+ 1, k)) = β(Ok+1) ≤ 2k+ 1, while Theorem 6 (using
our ‘‘partitioning’’ construction) yields β(J(2k + 1, k)) = β(Ok+1) ≤ 2k.

While incidencematrices give a (slightly) weaker bound here, there is however an interesting class
of symmetric designs which can be used here. A Hadamard matrix is an n × n square matrix H with
entries ±1 and the property that HHT

= nIn. For such a matrix to exist, we must have n = 1, n = 2
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or n being a multiple of 4; it is conjectured that they exist for all such values, with the smallest size
for which existence is unknown being n = 668 (see [25]). Any Hadamard matrix may be normalized
so that the first row and column have all entries +1. Given a normalized 4m × 4m Hadamard matrix,
by deleting the first row and column and replacing the entries −1 with 0, one obtains the incidence
matrix of a symmetric design with parameters (4m− 1, 2m− 1,m− 1) (see [28, Section 1.2]), called
a Hadamard design. Note that for m = 2, the unique Hadamard design is the Fano plane, while for
m = 3, we obtain the unique biplane on 11 points.

In particular, where k = 2m− 1 and there exists a 4m× 4m Hadamard matrix, Theorem 12 shows
that we can use a Hadamard design as a resolving set for J(2k + 1, k). By the observation above, such
a design may also be used as a resolving set for the Odd graph Ok+1. As an example, the Fano plane is
a resolving set for K(7, 3) = O4.

4.3. Steiner systems

The Fano plane, which as we have seen is a resolving set for K(7, 3), is an example of an important
class of combinatorial objects known as Steiner systems. In this subsection,we show that these objects
may be used as resolving sets for Kneser graphs more widely.

Let n, k, t, λ be integers with n > k > t > 1. A t-(n, k, λ) design (or a t-design) is a pair (X, B),
where X is a set of n points, and B is a family of k-subsets of X , called blocks, such that any t-subset
of distinct points are contained in exactly λ blocks. From the definition, it follows that the number of
blocks in a t-design is necessarily

λ
n
t

 
k
t


. (3)

Usually we take X = [n]. For t = 2, we recover the definition of 2-designs from Section 3.2. A Steiner
system S(t, k, n) is a t-design with λ = 1, i.e. any t-subset of [n] is contained in exactly one block.
(See [17, Section II.5] for more background on Steiner systems.)

Some important subclasses of Steiner systems are as follows: projective planes of order q, which are
Steiner systems S(2, q+1, q2 + q+1); affine planes of order q, which are Steiner systems S(2, q, q2);
Steiner triple systems, denoted as STS(n), which are Steiner systems S(2, 3, n); and Steiner quadruple
systems, denoted as SQS(n), which are Steiner systems S(3, 4, n). We will be interested in Steiner
systems S(k − 1, k, n).

It is straightforward to show that for a Steiner triple system to exist, the number of points must
be n ≡ 1, 3 (mod 6); we call n the order of the Steiner triple system. The number of blocks in an
STS(n) is n(n−1)/6. In 1847, Kirkman [27] showed that Steiner triple systems exist for all admissible
values of n ≥ 7. The unique STS(7) is the Fano plane. Also, it is known that Steiner quadruple systems
exist if and only if n ≡ 2, 4 (mod 6) (see [17, Theorem II.5.24]). Unfortunately, no existence result is
known for Steiner systems in general; a table of parameters of known Steiner systems can be found in
[17, Table II.5.17]. Very few Steiner systems are known for k ≥ 5.

Given a Steiner system S(k−1, k, n) and an (k−1)-subset of [n], its completion is defined to be the
unique block in the system that contains that subset. For example, in a Steiner triple system STS(n),
one can complete any pair of elements to a unique block.

The main result of this subsection is as follows.

Theorem 17. Suppose there exists a Steiner system S(k−1, k, n), where n ≥ 4k−2. Then its blocks form
a resolving set for K(n, k), and consequently

β(K(n, k)) ≤
1
k


n

k − 1


.

Proof. Let S be a Steiner system S(k − 1, k, n). Suppose U andW are two distinct vertices of K(n, k),
and let a ∈ U \ W . We can assume that U,W are not blocks of S. Now, one can choose a set of k − 3
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points Y = {y1, . . . , yk−3} disjoint from U ∪ W , and then a further k + 1 points x1, . . . , xk+1 from
[n] \ (U ∪W ∪ Y ). For each xi, form the completions of the (k− 1)-subsets {a} ∪ {y1, . . . , yk−3} ∪ {xi}:
these are blocks of S formed by including an additional point bi. Since S is a Steiner system, it follows
that each of the elements b1, . . . , bk+1 are distinct (otherwise, {a} ∪ {y1, . . . , yk−3} ∪ {bi} would be a
subset of more than one block). By the pigeonhole principle, at least one of these elements bj is not in
W . Consequently, the block X = {a} ∪ {y1, . . . , yk−3} ∪ {xj} ∪ {bj} is disjoint fromW but not U , and so
d(X,U) = 1 while d(X,W ) ≠ 1. Hence X resolves U and W .

The bound follows from evaluating Eq. (3) in the case where λ = 1 and t = k − 1. �

In particular, in the special case of Steiner triple systems, our result has the following form.

Corollary 18. Let n be an integer such that n ≡ 1, 3 (mod 6) and n ≥ 13, and let S be a Steiner triple
system of order n. Then the blocks of S form a resolving set for K(n, 3), and thusβ(K(n, 3)) ≤ n(n−1)/6.

We remark that this result does not include the Steiner triple systems of orders 7 and 9. However,
the unique STS(7) is the Fano plane, which we know from the previous subsection to be a resolving
set for K(7, 3). Also, the unique STS(9) is an affine plane, which we know from Corollary 14 to be a
resolving set for K(9, 3).

4.4. Toroidal grids

In this subsection, we obtain resolving sets for Kneser graphs K(n, 4), K(n, 5), K(n, 6), provided
n is sufficiently large, by using a construction in toroidal grids. Although this construction does not
apply directly to K(n, k)where k ≥ 7, we suspect that similar ideas could be developed to cover other
values of the parameter k.

A toroidal grid is the graph H = Ca�Cb with n = ab vertices obtained as the cartesian product of
two cycles, Ca and Cb, with a and b vertices respectively. A straight path in H is a set of vertices such
that all of them share the first coordinate, or all of them share the second coordinate. If x is a vertex
of H and k ≥ 1, there are four straight paths with k vertices having x as an end-point: we will denote
these as (x, k)-paths. Fixing a cyclic ordering of the vertices of the cycles Ca and Cb, we can say that an
(x, k)-path in H goes right if the first coordinates of its vertices, beginning on vertex x, increase (thus
the second coordinates are equal, by definition of straight path). Analogously, the path goes up if the
second coordinates, beginning on x, increase. In a similar manner, we can describe (x, k)-paths going
down or left. Note that the total number of straight paths in Ca�Cb is 2ab.

Theorem 19. Let H be the toroidal grid Ca�Cb with a, b ≥ 10. If n = ab, the set of all straight paths in H
with 4 vertices is a resolving set for K(n, 4). Therefore, for such values of n, we have β(K(n, 4)) ≤ 2n.

Proof. We identify the set [n] with the ab vertices of H , so a vertex of K(n, 4) is simply a 4-subset of
V (H). Consider two such subsets U,W with U ≠ W . We will show that there exists a straight path in
H that meets just one of them.

Since U ≠ W , there exists x such that x ∈ U \W . Denote by p1, p2, p3, p4 the (x, 4)-paths which go
right, up, left and down respectively. If there exists pi such that pi ∩ W = ∅, we are done, so suppose
that pi ∩ W ≠ ∅ for i = 1, 2, 3, 4. Note that pi ∩ pj = x (i ≠ j), so it is clear that pi ∩ W = {yi} with
yi ≠ yj (i ≠ j) and therefore that the setW must beW = {y1, y2, y3, y4} (see Fig. 1(a)).

Assume, without lost of generality, that y1 ∉ U . Denote the (y1, 4)-paths as q1, q2, q3, q4, going
right, up, left and down respectively. Note that x belongs to q3. If there exists qi such that qi ∩ U = ∅,
we are done, so suppose that qi ∩ U ≠ ∅ for i = 1, 2, 3, 4. Again, qi ∩ U = {xi} with xi ≠ xj (i ≠ j)
(note that a, b ≥ 10), and U = {x1, x2, x = x3, x4} (see Fig. 1(b)).

Now we observe that y2 ∉ U and the (y2, 4)-path going left meets W but it does not meet U (see
Fig. 1(b)). Hence this path has the desired property. �

In a similarway, given any pair of distinct 5-subsets (or of 6-subsets) of V (H), we can find a straight
path with 5 vertices (or with 6 vertices, respectively) that meets just one of them, provided that the
toroidal grid H is large enough. So we obtain the following results about the metric dimension of
K(n, 5) and K(n, 6).
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(a) Vertices of W (in black) and
the (x, 4)-paths.

(b) The white vertices are in U and black vertices
are in W . The y2-path meets W but does not
meet U .

Fig. 1. Construction for K(n, 4).

Fig. 2. The white vertex is in U , black vertices are in W and grey vertices are in both of them. Vertices U,W ∈ V (K(n, 7))
cannot be resolved using straight 7-paths.

Theorem 20. Let H be the toroidal grid Ca�Cb with a, b ≥ 13. If n = ab, the set of all straight paths in H
with 5 vertices is a resolving set for K(n, 5). Therefore, for such values of n, we have β(K(n, 5)) ≤ 2n.

Theorem 21. Let H be the toroidal grid Ca�Cb with a, b ≥ 16. If n = ab, the set of all straight paths in H
with 6 vertices is a resolving set for K(n, 6). Therefore, for such values of n, we have β(K(n, 6)) ≤ 2n.

Unfortunately, this construction using straight paths in a toroidal grid does not work for K(n, k)
with k ≥ 7. In these cases, there are vertices in the Kneser graph that cannot be resolved using such
paths (see Fig. 2).

5. Final remarks

In this paper, our emphasis has been on finding constructions of resolving sets for Johnson and
Kneser graphs, using various algebraic, combinatorial and geometric approaches. Nevertheless, these
constructions provide bounds on the metric dimension of J(n, k) and K(n, k). We summarize these
bounds in Table 1. In the table, q denotes a prime power.

Note that many of the bounds in Table 1 are conditioned on the existence of certain objects, or
require parameters to be sufficiently large. However, we expect that these bounds hold more widely.
In particular, we conjecture that for the Kneser graph K(n, k) there is a bound of β(K(n, k)) = O(n)
independent of k.

Also, the question of determining the exact values of β(J(n, k)) and β(K(n, k)) remains open for
k > 2. This is likely to be quite challenging in general. As part of our investigations,we conducted some
computer searches using the GAP system [20]. One pattern that emerged was that, for the Johnson
graph J(2k, k), the metric dimension appeared to equal k+1: we also conjecture that this is the exact
value.
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Table 1
A summary of bounds on the metric dimension of J(n, k) and K(n, k).

The metric dimension of . . . Using . . . Is bounded by . . .

J(n, 2), K(n, 2) where n ≡ i (mod 3) [3, Corollary 3.33] 2
3 (n − i) + i

J(n, k)

Partitioning [n]

⌊k(n + 1)/(k + 1)⌋
K(2k + 1, k) = Ok+1 2k
K(n, k) ⌈

n
2k−1 ⌉


2k−1

k


− 1


K(n, k), diameter 3 2


n−k
k


J(n, k) k-set systemwhose incidencematrix has rank n n

(n, k, λ) symmetric design

J(q2 + q + 1, q + 1) Projective plane of order q q2 + q + 1

J(4m−1, 2m−1), K(4m−1, 2m−1) = O2m Hadamard design 4m − 1

K(n, 3) Steiner triple system STS (n) n(n − 1)/6

K(n, k) Steiner system S(k − 1, k, n)
 n
k−1


/k

K(v, s + 1), v = (s + 1)(st + α)/α Partial geometry pg(s, t, α) (t + 1)(st + α)/α

K(q2, q) Affine plane of order q q(q + 1)

K(q3, q)
Generalized quadrangle

q2(q + 2)
K((q + 1)(q3 + 1), q + 1) (q2 + 1)(q3 + 1)
K((q2 + 1)(q5 + 1), q2 + 1) (q3 + 1)(q5 + 1)

K(n, 4)
Toroidal grid Ca�Cb 2ab = 2nK(n, 5)

K(n, 6)
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