5,788 research outputs found

    Resolving Over-Constrained Temporal Problems with Uncertainty through Conflict-Directed Relaxation

    Get PDF
    Over-subscription, that is, being assigned too many things to do, is commonly encountered in temporal scheduling problems. As human beings, we often want to do more than we can actually do, and underestimate how long it takes to perform each task. Decision makers can benefit from aids that identify when these failure situations are likely, the root causes of these failures, and resolutions to these failures. In this paper, we present a decision assistant that helps users resolve over-subscribed temporal problems. The system works like an experienced advisor that can quickly identify the cause of failure underlying temporal problems and compute resolutions. The core of the decision assistant is the Best-first Conflict-Directed Relaxation (BCDR) algorithm, which can detect conflicting sets of constraints within temporal problems, and computes continuous relaxations for them that weaken constraints to the minimum extent, instead of removing them completely. BCDR is an extension to the Conflict-Directed A* algorithm, first developed in the model-based reasoning community to compute most likely system diagnoses or reconfigurations. It generalizes the discrete conflicts and relaxations, to hybrid conflicts and relaxations, which denote minimal inconsistencies and minimal relaxations to both discrete and continuous relaxable constraints. In addition, BCDR is capable of handling temporal uncertainty, expressed as either set-bounded or probabilistic durations, and can compute preferred trade-offs between the risk of violating a schedule requirement, versus the loss of utility by weakening those requirements. BCDR has been applied to several decision support applications in different domains, including deep-sea exploration, urban travel planning and transit system management. It has demonstrated its effectiveness in helping users resolve over-subscribed scheduling problems and evaluate the robustness of existing solutions. In our benchmark experiments, BCDR has also demonstrated its efficiency on solving large-scale scheduling problems in the aforementioned domains. Thanks to its conflict-driven approach for computing relaxations, BCDR achieves one to two orders of magnitude improvements on runtime performance when compared to state-of-the-art numerical solvers.We would like to acknowledge financial support from the Boeing Company under grant MIT-BA-GTA-1; the Defense Advanced Research Projects Agency under contract number HR0011-15-C-0098; the Defense Advanced Research Projects Agency meta program under contract number 6923548; and the Australian Research Council Discovery Project Grant DP140104219

    Resolving Over-constrained Probabilistic Temporal Problems through Chance Constraint Relaxation

    Get PDF
    When scheduling tasks for field-deployable systems, our solutions must be robust to the uncertainty inherent in the real world. Although human intuition is trusted to balance reward and risk, humans perform poorly in risk assessment at the scale and complexity of real world problems. In this paper, we present a decision aid system that helps human operators diagnose the source of risk and manage uncertainty in temporal problems. The core of the system is a conflict-directed relaxation algorithm, called Conflict-Directed Chance-constraint Relaxation (CDCR), which specializes in resolving over-constrained temporal problems with probabilistic durations and a chance constraint bounding the risk of failure. Given a temporal problem with uncertain duration, CDCR proposes execution strategies that operate at acceptable risk levels and pinpoints the source of risk. If no such strategy can be found that meets the chance constraint, it can help humans to repair the over-constrained problem by trading off between desirability of solution and acceptable risk levels. The decision aid has been incorporated in a mission advisory system for assisting oceanographers to schedule activities in deep-sea expeditions, and demonstrated its effectiveness in scenarios with realistic uncertaintyBoeing Company (Grant MIT-BA-GTA-1

    Optimising Flexibility of Temporal Problems with Uncertainty

    Get PDF
    Temporal networks have been applied in many autonomous systems. In real situations, we cannot ignore the uncertain factors when using those autonomous systems. Achieving robust schedules and temporal plans by optimising flexibility to tackle the uncertainty is the motivation of the thesis. This thesis focuses on the optimisation problems of temporal networks with uncertainty and controllable options in the field of Artificial Intelligence Planning and Scheduling. The goal of this thesis is to construct flexibility and robustness metrics for temporal networks under the constraints of different levels of controllability. Furthermore, optimising flexibility for temporal plans and schedules to achieve robust solutions with flexible executions. When solving temporal problems with uncertainty, postponing decisions according to the observations of uncertain events enables flexible strategies as the solutions instead of fixed schedules or plans. Among the three levels of controllability of the Simple Temporal Problem with Uncertainty (STPU), a problem is dynamically controllable if there is a successful dynamic strategy such that every decision in it is made according to the observations of past events. In the thesis, we make the following contributions. (1) We introduce an optimisation model for STPU based on the existing dynamic controllability checking algorithms. Some flexibility and robustness measures are introduced based on the model. (2) We extend the definition and verification algorithm of dynamic controllability to temporal problems with controllable discrete variables and uncertainty, which is called Controllable Conditional Temporal Problems with Uncertainty (CCTPU). An entirely dynamically controllable strategy of CCTPU consists of both temporal scheduling and variable assignments being dynamically decided, which maximize the flexibility of the execution. (3) We introduce optimisation models of CCTPU under fully dynamic controllability. The optimisation models aim to answer the questions how flexible, robust or controllable a schedule or temporal plan is. The experiments show that making decisions dynamically can achieve better objective values than doing statically. The thesis also contributes to the field of AI planning and scheduling by introducing robustness metrics of temporal networks, proposing an envelope-based algorithm that can check dynamic controllability of temporal networks with uncertainty and controllable discrete decisions, evaluating improvements from making decisions strongly controllable to temporally dynamically controllable and fully dynamically controllable and comparing the runtime of different implementations to present the scalability of dynamically controllable strategies

    Collaborative Diagnosis of Over-Subscribed Temporal Plans

    Get PDF
    PhD thesisOver-subscription, that is, being assigned too many tasks or requirements that are too demanding, is commonly encountered in temporal planning problems. As human beings, we often want to do more than we can, ask for things that may not be available, while underestimating how long it takes to perform each task. It is often difficult for us to detect the causes of failure in such situations and then find resolutions that are effective. We can greatly benefit from tools that assist us by looking out for these plan failures, by identifying their root causes, and by proposing preferred resolutions to these failures that lead to feasible plans. In recent literature, several approaches have been developed to resolve such over-subscribed problems, which are often framed as over-constrained scheduling, configuration design or optimal planning problems. Most of them take an all-or-nothing approach, in which over-subscription is resolved through suspending constraints or dropping goals. While helpful, in real-world scenarios, we often want to preserve our plan goals as much possible. As human beings, we know that slightly weakening the requirements of a travel plan, or replacing one of its destinations with an alternative one is often sufficient to resolve an over-subscription problem, no matter if the requirement being weakened is the duration of a deep-sea survey being planned for, or the restaurant cuisine for a dinner date. The goal of this thesis is to develop domain independent relaxation algorithms that perform this type of slight weakening of constraints, which we will formalize as continuous relaxation, and to embody them in a computational aid, Uhura, that performs tasks akin to an experienced travel agent or ocean scientists. In over-subscribed situations, Uhura helps us diagnose the causes of failure, suggests alternative plans, and collaborates with us in order to resolve conflicting requirements in the most preferred way. Most importantly, the algorithms underlying Uhura supports the weakening, instead of suspending, of constraints and variable domains in a temporally flexible plan. The contribution of this thesis is two-fold. First, we developed an algorithmic framework, called Best-first Conflict-Directed Relaxation (BCDR), for performing plan relaxation. Second, we use the BCDR framework to perform relaxation for several different families of plan representations involving different types of constraints. These include temporal constraints, chance constraints and variable domain constraints, and we incorporate several specialized conflict detection and resolution algorithms in support of the continuous weakening of them. The key idea behind BCDR's approach to continuous relaxation is to generalize the concepts of discrete conflicts and relaxations, first introduced by the model-based diagnosis community, to hybrid conflicts and relaxations, which denote minimal inconsistencies and minimal relaxations to both discrete and continuous relaxable constraints

    Hybrid SAT-Based Consistency Checking Algorithms for Simple Temporal Networks with Decisions

    Get PDF
    A Simple Temporal Network (STN) consists of time points modeling temporal events and constraints modeling the minimal and maximal temporal distance between them. A Simple Temporal Network with Decisions (STND) extends an STN by adding decision time points to model temporal plans with decisions. A decision time point is a special kind of time point that once executed allows for deciding a truth value for an associated Boolean proposition. Furthermore, STNDs label time points and constraints by conjunctions of literals saying for which scenarios (i.e., complete truth value assignments to the propositions) they are relevant. Thus, an STND models a family of STNs each obtained as a projection of the initial STND onto a scenario. An STND is consistent if there exists a consistent scenario (i.e., a scenario such that the corresponding STN projection is consistent). Recently, a hybrid SAT-based consistency checking algorithm (HSCC) was proposed to check the consistency of an STND. Unfortunately, that approach lacks experimental evaluation and does not allow for the synthesis of all consistent scenarios. In this paper, we propose an incremental HSCC algorithm for STNDs that (i) is faster than the previous one and (ii) allows for the synthesis of all consistent scenarios and related early execution schedules (offline temporal planning). Then, we carry out an experimental evaluation with KAPPA, a tool that we developed for STNDs. Finally, we prove that STNDs and disjunctive temporal networks (DTNs) are equivalent

    Propagating Piecewise-Linear Weights in Temporal Networks

    Get PDF
    This paper presents a novel technique using piecewise-linear functions (PLFs) as weights on edges in the graphs of two kinds of temporal networks to solve several previously open problems. Generalizing constraint-propagation rules to accom- modate PLF weights requires implementing a small handful of functions. Most problems are solved by inserting one or more edges with an initial weight of \u3b4 (a variable), then using the modified rules to propagate the PLF weights. For one kind of network, a new set of propagation rules is introduced to avoid a non-termination issue that arises when propagating PLF weights. The paper also presents two new results for determining the tightest horizon that can be imposed while preserving a network\u2019s dynamic consistency/controllability

    Finite Element Models of Elastic Earthquake Deformation

    Get PDF
    The Earth’s surface deforms in response to earthquake fault dislocations at depth. Deformation models are constructed to interpret the corresponding ground movements recorded by geodetic data such GPS and InSAR, and ultimately characterize the seismic ruptures. Conventional analytical and latest numerical solutions serve similar purpose but with different technical constraints. The former cannot simulate the heterogeneous rock properties and structural complexity, while the latter directly tackles these challenges but requires more computational resources. As demonstrated in the 2015 M7.8 Gorkha, Nepal earthquake and the 2016 M6.2 Amatrice, Italy earthquake, we develop state-of-art finite element models (FEMs) to efficiently accommodate both the material and tectonic complexity of a seismic deformational system in a seamless model environment. The FEM predictions are significantly more accurate than the analytical models embedded in a homogeneous half-space at the 95% confidence level. The primary goal of this chapter is describe a systematic approach to design, construct, execute and calibrate FEMs of elastic earthquake deformation. As constrained by coseismic displacements, FEM-based inverse analyses are employed to resolve linear and nonlinear fault-slip parameters. With such numerical techniques and modeling framework, researchers can explicitly investigate the spatial distribution of seismic fault slip and probe other in-depth rheological processes

    Mission and Motion Planning for Multi-robot Systems in Constrained Environments

    Get PDF
    abstract: As robots become mechanically more capable, they are going to be more and more integrated into our daily lives. Over time, human’s expectation of what the robot capabilities are is getting higher. Therefore, it can be conjectured that often robots will not act as human commanders intended them to do. That is, the users of the robots may have a different point of view from the one the robots do. The first part of this dissertation covers methods that resolve some instances of this mismatch when the mission requirements are expressed in Linear Temporal Logic (LTL) for handling coverage, sequencing, conditions and avoidance. That is, the following general questions are addressed: * What cause of the given mission is unrealizable? * Is there any other feasible mission that is close to the given one? In order to answer these questions, the LTL Revision Problem is applied and it is formulated as a graph search problem. It is shown that in general the problem is NP-Complete. Hence, it is proved that the heuristic algorihtm has 2-approximation bound in some cases. This problem, then, is extended to two different versions: one is for the weighted transition system and another is for the specification under quantitative preference. Next, a follow up question is addressed: * How can an LTL specified mission be scaled up to multiple robots operating in confined environments? The Cooperative Multi-agent Planning Problem is addressed by borrowing a technique from cooperative pathfinding problems in discrete grid environments. Since centralized planning for multi-robot systems is computationally challenging and easily results in state space explosion, a distributed planning approach is provided through agent coupling and de-coupling. In addition, in order to make such robot missions work in the real world, robots should take actions in the continuous physical world. Hence, in the second part of this thesis, the resulting motion planning problems is addressed for non-holonomic robots. That is, it is devoted to autonomous vehicles’ motion planning in challenging environments such as rural, semi-structured roads. This planning problem is solved with an on-the-fly hierarchical approach, using a pre-computed lattice planner. It is also proved that the proposed algorithm guarantees resolution-completeness in such demanding environments. Finally, possible extensions are discussed.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Working Notes from the 1992 AAAI Spring Symposium on Practical Approaches to Scheduling and Planning

    Get PDF
    The symposium presented issues involved in the development of scheduling systems that can deal with resource and time limitations. To qualify, a system must be implemented and tested to some degree on non-trivial problems (ideally, on real-world problems). However, a system need not be fully deployed to qualify. Systems that schedule actions in terms of metric time constraints typically represent and reason about an external numeric clock or calendar and can be contrasted with those systems that represent time purely symbolically. The following topics are discussed: integrating planning and scheduling; integrating symbolic goals and numerical utilities; managing uncertainty; incremental rescheduling; managing limited computation time; anytime scheduling and planning algorithms, systems; dependency analysis and schedule reuse; management of schedule and plan execution; and incorporation of discrete event techniques
    • …
    corecore