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Abstract
A Simple Temporal Network (STN) consists of time points modeling temporal events and constraints
modeling the minimal and maximal temporal distance between them. A Simple Temporal Network
with Decisions (STND) extends an STN by adding decision time points to model temporal plans
with decisions. A decision time point is a special kind of time point that once executed allows for
deciding a truth value for an associated Boolean proposition. Furthermore, STNDs label time points
and constraints by conjunctions of literals saying for which scenarios (i.e., complete truth value
assignments to the propositions) they are relevant. Thus, an STND models a family of STNs each
obtained as a projection of the initial STND onto a scenario. An STND is consistent if there exists
a consistent scenario (i.e., a scenario such that the corresponding STN projection is consistent).
Recently, a hybrid SAT-based consistency checking algorithm (HSCC) was proposed to check the
consistency of an STND. Unfortunately, that approach lacks experimental evaluation and does not
allow for the synthesis of all consistent scenarios. In this paper, we propose an incremental HSCC
algorithm for STNDs that (i) is faster than the previous one and (ii) allows for the synthesis of all
consistent scenarios and related early execution schedules (offline temporal planning). Then, we
carry out an experimental evaluation with Kappa, a tool that we developed for STNDs. Finally, we
prove that STNDs and disjunctive temporal networks (DTNs) are equivalent.
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1 Introduction

Context and motivations. Temporal networks are a possible formalism to model temporal
plans and check the coherence of temporal constraints that impose lower and upper bounds
on the temporal distance of the modeled events. A Simple Temporal Network (STN, [11]) is
a formalism able to model an unconditional temporal plan in which all components (events
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16:2 HSCC Algorithms for STNDs

and their time distances) are under control. Temporal events are modeled as time points and
their occurrence is modeled by executing the corresponding time points (i.e., by assigning
them real values).

A temporal plan is consistent if we can schedule all the events, each at a specific time
instant, such that all constraints are satisfied. If this is possible, a schedule can be synthesized
for both offline planning (the plan is available before starting) or online planning (the plan is
generated while executing). The difference between these two planning approaches is that in
the former the consistency checking algorithm returns a solution, whereas in the latter the
algorithm returns a minimal network to generate any solution.

However, STNs fail to model temporal plans where the occurrence of some events or
the satisfaction of some constraints must happen only if some decision has been made. The
decisions we are interested in have Boolean domain1. Thus, a temporal plan subject to
decisions would ask us (not) to execute some time points or to satisfy some constraints
depending on what decisions we have made.

A few proposals to handle decisions within the temporal network formalisms built on top
of STNs have been put forth. For instance, Drake [9] provides an executive for temporal plans
with choices based on Labeled STNs that do not specify decision points (in a node-sense),
whereas Temporal Plan Networks (TPNs, [21]) extend STNs with decision nodes and model
decisions as outgoing edges from such nodes. Simple Temporal Networks with Decisions
(STNDs, [4, 29]) extend STNs by adding decision points that can influence both the execution
of time points and the satisfaction of constraints. Several (possibly different) STNs may arise
when projecting an STND onto a scenario that models the complete interpretation of the
decisions. For any scenario, we are only interested in executing the time points and satisfy
the constraints entailed by it.

So far, only one hybrid SAT-based consistency checking algorithm (HSCC ) has been
devised to check the consistency of an STND [4]. If the algorithm finds a consistent scenario,
i.e., a scenario for which the STN projection is consistent, then a solution (scenario plus
schedule) exists. In this case, any schedule in the solution set involves the STN-projection
corresponding to the related scenario.

This algorithm allows for an offline planning where all decisions are made before starting
and the corresponding schedule is already known. However, this algorithm has never been
implemented nor evaluated, and it does not allow for the synthesis of all consistent scenarios.

Contributions. Our contribution is three-fold. First, we provide STND-HSCC2, a novel HSCC
algorithm for STNDs that (i) is faster than the existing algorithm as it rules out inconsistent
scenarios as early as possible, and (ii) allows for the synthesis of all consistent scenarios and
related early execution schedules (offline temporal planning). The algorithm is hybrid because
a SAT-solver and a shortest path algorithm mutually influence each other (the output of
the former becomes the input of the latter and vice versa continuously). Second, we discuss
Kappa, a tool that we developed for STNDs for the experimental evaluation and in which,
as a minor contribution, we adapted the previous algorithm to support the synthesis of all
consistent scenarios. Third, we prove that STNDs are equivalent to disjunctive temporal
networks (DTNs).

1 This is not a restriction as every finite set {0, 1, 2, . . . , n − 1} ⊂ N of different discrete choices (i.e.,
decisions) can be represented in an equivalent binary notation by using dlogne bits where if the ith

bit is 1 (respectively, 0), then it means that the ith decision holds (respectively, does not hold). Of
course this binary representation may express more than n possibilities (e.g., to express {0, 1, 2} we
need dlog 3e = 2 bits with which we can also express “3” when all bits are set). Again, this is not a
problem if we add unsatisfiable constraints for all combinations representing numbers ≥ n (if any).
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Organization. Section 2 provides background on STNs and STNDs, and the current con-
sistency checking algorithm for STNDs. Section 3 discusses STND-HSCC2, a faster HSCC
algorithm for STNDs. Section 4 discusses Kappa and the related experimental evalutation.
Section 5 proves that STNDs are equivalent to DTNs. Section 6 discusses related work.
Section 7 sums up and discusses future work.

2 Background

A Simple Temporal Network (STN, [11]) is a pair 〈T , C〉, where T = {X, . . . } is a set of
time points (continuous variables) and C = {(Y −X ≤ k), . . . } is a set of constraints, for
X,Y ∈ T , k ∈ R ∪ ±{∞}.

An STN is consistent if there exists an assignment of real values to the time points such
that all constraints are satisfied.

Given a consistent STN, a schedule is a function S : T → R assigning real values to time
points such that if X is executed before Y , then S(X) ≤ S(Y ). An early execution of an
STN consists of finding a schedule executing the time points as soon as possible (e.g., by
using the Floyd-Warshall algorithm [11]).

Given a set P = {d, . . . } of Boolean propositions, a label ` = λ1 . . . λn is any finite
conjunction of literals λi, where a literal is either d (positive literal) or ¬d (negative literal),
and we omit the ∧ connective to ease reading. The empty label is denoted by �. The label
universe of P , denoted by P∗, is the set of all possible (consistent) labels drawn from P ; e.g.,
if P = {d, e}, then P∗ = {�, d, e,¬d,¬e, de, d¬e,¬de,¬d¬e}. Two labels `1, `2 are consistent
if their conjunction `1`2 is satisfiable. A label `1 entails a label `2 (written `1 ⇒ `2) if all
literals in `2 appear in `1 too (i.e., if `1 is more specific than `2). For instance, if `1 = d¬e
and `2 = d, then `1 and `2 are consistent since d¬ed is satisfiable, and `1 entails `2 since
d¬e⇒ d.

A scenario is a mapping s : P → {>,⊥} assigning a truth value to each d ∈ P . A scenario
satisfies a label ` (in symbols s |= `) if ` evaluates to true under the interpretation given by
s (e.g., if s(d) = > and s(e) = ⊥, then s |= d¬e).

I Definition 1. A Simple Temporal Network with Decisions (STND, [4, 29, 33]) is a tuple
S = 〈T ,DT ,P, O, L, C〉, where:
T = {X, . . . , Z} is a finite set of time points.
DT ⊆ T = {D!, . . . ,H!} is a finite set of decision time points.
P = {d, . . . , g} is a finite set of Boolean propositions.
O : P → DT is a bijection assigning a unique proposition to each decision time point D!
that controls the truth value assignment to d (O−1 : DT → P models the inverse).
L : T → P∗ is a function assigning labels to time points.
C is a finite set of labeled constraints (Y −X ≤ k, `) where X,Y ∈ T , k ∈ R ∪ ±{∞}
and ` ∈ P∗.

The STN-projection of an STND S with respect to a scenario s (written πs(S)) is an STN
〈Ts, Cs〉 built as follows:
Ts = {X | X ∈ T ∧ s |= L(X)}
Cs = {(Y −X ≤ k) | (Y −X ≤ k, `) ∈ C ∧ s |= `}

S is consistent if there exists a scenario s such that πs(S) is consistent. A solution is a pair
〈s, S〉, where s is a scenario, S is a schedule with domain Ts, and S(Y )− S(X) ≤ k holds
for each (Y −X ≤ k) ∈ Cs. Checking consistency of STNDs is NP-complete [4].

TIME 2019
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(a) Simple Temporal Network with Decisions.
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(b) STN-Projection onto s(a) = s(b) = s(c) = >.
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(c) STN-Projection onto s(a) = s(b) = >, s(c) = ⊥.
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(d) STN-Projection onto s(a) = >, s(b) = ⊥,
s(c) ∈ {>,⊥}.
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(e) STN-Projection onto s(a) = ⊥, s(b),
s(c) ∈ {>,⊥}.

Figure 1 An example of STND and related STN-projections (where thick red edges highlight
negative cycles).

We represent an STND graphically by extending the distance graph of an STN into a
labeled distance (multi)graph. The set of nodes still coincides with the set of time points,
whereas each edge X → Y labeled by 〈k, `〉 represents (Y − X ≤ k, `) ∈ C. Time points’
labels are shown below the nodes. Many 〈k, `〉 can be specified for the same X → Y provided
their ` are different (if two labels are equal, we keep the smallest k). Figure 1a shows an
example of STNDs, whereas Figures 1b–1e show its STN-projections.

A label ` labeling a time point or a constraint is honest if for each literal d or ¬d in `
we have that ` ⇒ L(D!), where D! = O(d) is the decision time point associated to d; ` is
dishonest otherwise. For example, consider L(C!) = ab in Figure 1a. C! appears in a solution
only if s(a) = s(b) = >. However, deciding > for b implies that B! appears in the solution
too, which in turn requires that A! appears (before B!) in the same solution with > decided
for a. Thus, an honest ` containing b or ¬b should also contain a. A label on a constraint
is coherent if it is at least as expressive as the labels of the time points appearing in the
constraint (i.e., ` contains all literals in the labels of the two connected time points).

I Definition 2 (Well-definedness). An STND is well-defined [17, 29, 33] if
L(X)⇒ L(O(d)) and (O(d)−X ≤ 0) ∈ C for each X ∈ T and {d,¬d} ∈ L(X), and
` ⇒ L(Y ) ∧ L(X) for each (Y − X ≤ k, `) ∈ C, and ` ⇒ L(O(d)) for each literal
{d,¬d} ∈ `.

Figure 1a is an example of well-defined STND modeling a temporal plan with 3 decisions
(A!, B! and C!) and two (instantaneous) activities (D and E). A! is the first time point
to execute. We execute B! if and only if we decided > for a (L(B!) = a) and C! if we
further decided > for b too (L(C!) = ab). Instead, A!, D and E are always executed
(L(A!) = L(D) = L(C) = �). We can execute B! (if we decide so) after at least 2 (B!→ A!
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Algorithm 1 STND-HSCC1(S).

Input: An STND S = 〈T ,DT ,P, O, L, C〉.
Output: A solution 〈s, S〉 for S if S is consistent; “inconsistent” if S is inconsistent.

STN-CC is a consistency checking algorithm for STNs.
1 ϕ←

∧
p∈P(p ∨ ¬p) . Make every assignment possible

2 while true do
3 s← SAT-SOLVE(ϕ) . Try to find a satisfying assignment s
4 if ϕ is unsatisfiable then
5 return inconsistent
6 〈Ts, Cs〉 ← πs(S) . Project S onto s
7 if STN-CC(〈Ts, Cs〉) then
8 return 〈s, S〉 . where S is an early schedule for 〈Ts, Cs〉
9 ϕ← ϕ ∧ CUT-SCENARIO(S, 〈Ts, Cs〉) . Exclude this scenario

labeled by 〈−2, a〉) and within 5 time units since A! was executed (A! → B! labeled by
〈5, a〉). The same happens for C! with respect to B! (after 1 and within 2 time units since
B!). Instead, we always execute D after minimum 5 time units since A! (D → A! labeled by
〈−5,�〉) and E after 7 time units since D (E → D labeled by 〈−7,�〉). Furthermore, if we
decide
⊥ for a, then we must execute E within 10 time units since A! (A! → E labeled by
〈10,¬a〉),
> for a and ⊥ for b, then we must execute E within 6 time units since B! (B! → E

labeled by 〈6, a¬b〉),
> for both a and b and ⊥ for c, then we must execute E within 4 time units since C!
(C!→ E labeled by 〈4, ab¬c〉).

Therefore negative values on edges model delays, positive ones model deadlines.
To check the consistency of an STND, we can use the hybrid SAT-based consistency

checking (HSCC) algorithm proposed in [4]. STND-HSCC1, specified in Algorithm 1, (STND-CC
in [4]) maintains a formula ϕ specifying CNF clauses over propositions in P. Initially, ϕ
allows for all truth value assignments. In each round of the algorithm we ask the SAT
solver for a truth value assignment making ϕ true. Such an assignment (if any) corresponds
to a scenario s over which we can project the STND and check if the resulting STN is
consistent (“SAT-solver influences directed weighted graph algorithm”). If so, we return
this scenario and a valid schedule for the projected STN (i.e., a solution). Otherwise, we
apply De Morgan’s rules to the negation of the relevant part of the scenario containing the
negative cycle (CUT-SCENARIO in Algorithm 2) and add the resulting clause to ϕ and go ahead
with the next round (“directed weighted graph algorithm influences the SAT-solver”). This
makes the approach hybrid. If ϕ has become unsatisfiable it means that all STN-projections
are inconsistent and therefore the STND is inconsistent. Similar approaches are described
in [23, 28].

An example of round for the network in Figure 1a is as follows. Suppose that
SAT-SOLVE(ϕ) = ab¬c (i.e., s(a) = s(b) = > and s(c) = ⊥). Since the STN πab¬c(S)
is inconsistent (Figure 1c admits a negative cycle), we add to ϕ the clause ¬(a ∧ b ∧ ¬c),
which simplifies to (¬a∨¬b∨ c), to ask the SAT solver for a different truth value assignment
excluding this projection (if any). Figure 1a is consistent if and only if s(a) = s(b) = s(c) = >.
A possible schedule for Figure 1b is S(A!) = 0, S(B!) = 2, S(C!) = 3, S(D) = 5, S(E) = 12.
Any other combination leads to a projection containing a negative cycle (Figures 1c-1e).

TIME 2019
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Algorithm 2 CUT-SCENARIO(S, 〈Ts, Cs〉).

Input: An STND S = 〈T ,DT ,P, O, L, C〉 and one of its STN-projections 〈Ts, Cs〉
Output: A clause ψ expressing the cut of the relevant part of the scenario.

1 ψ ← > . ψ will contain the relevant part of s
2 foreach constraint c ∈ Cs do
3 ψ ← ψ ∧ `c . where `c is the corresponding label of c in S
4 return DeMorgan(¬(ψ)) . the clause expressing the cut of ψ

3 A Faster HSCC Algorithm for STNDs

STND-HSCC1 is correct [4], but it suffers from the limitation that projections are tested only
when the SAT solver returns a complete truth value assignment. Consider Figure 1a and
assume that the SAT solver starts on the formula ϕ = (a∨¬a)∧(b∨¬b)∧(c∨¬c), which makes
every truth value assignment possible. Suppose that in the search tree the SAT solver decides
⊥ for a proposition d going down to the left and > going down to the right in the search
tree, and assume that the order of visit is left then right. The first truth value assignment
returned is a = ⊥, b = ⊥ and c = ⊥ (corresponding to the scenario s(a) = s(b) = s(c) = ⊥).
Now STND-HSCC1 would project the STND in Figure 1a onto s to obtain the STN shown
in Figure 1e and eventually detect the negative cycle. However, the negative cycle could
have been detected much earlier, say, when a was assigned ⊥. Indeed, all projections of
any scenario containing s(a) = ⊥ boil down to Figure 1e (no matter which Boolean values
are assigned to b and c). Therefore, a clever implementation of this algorithm calls for an
early detection of negative cycles. Before proceeding with it, we must refine the concept of
scenario and projection so that they support “unknown” propositions (i.e., propositions that
have not been assigned a value yet).

I Definition 3. A scenario is (now) a mapping s : P → {>,⊥,−} assigning either true,
false or unknown to each proposition d ∈ P. A scenario s satisfies a label ` if ` evaluates to
true under the following interpretation given by s:
1. s |= λ iff (λ = d ∧ s(d) = >) or (λ = ¬d ∧ s(d) = ⊥),
2. s |= ` iff s |= λ1 and . . . and s |= λn for ` = λ1 . . . λn.
Note that s never satisfies a label containing a literal for which the corresponding proposition
is unknown in s.

The definition of STN projection remains the same as that given in Definition 1 but
extended to the new definition of scenario. As a result, Figure 1e now becomes a representative
also for any scenario s such that s(a) = ⊥ and s(b), s(c) ∈ {>,⊥,−}. Another example is
Figure 1d, extending s(c) ∈ {>,⊥} to s(c) ∈ {>,⊥−}. Now we have everything we need to
hunt down inconsistent scenarios as early as possible.

STND-HSCC2 (Algorithm 3) is a brand new algorithm to check the consistency of STNDs.
It allows for the synthesis of a single or all scenarios admitting a consistent schedule for
the corresponding STN-projection. STND-HSCC2 still initializes a CNF formula ϕ making all
truth value assignments possible. Then, it starts the SAT-solver and hooks a listener to the
corresponding run. Such a listener is able to operate on ϕ by adding CNF clauses on the fly
if needed and is triggered by two main events: assume and solution found.

An assume (d = > or d = ⊥) event (Algorithm 3, lines 8-12) triggers an action of the
listener to “look ahead” if the STN-projection obtained by projecting the STND onto the
scenario built from the current truth value assignment and extended with this assumption
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Algorithm 3 STND-HSCC2(S, all).

Input: An STND S = 〈T ,DT ,P, O, L, C〉 and a Boolean value all meaning all consistent
scenarios iff all = >.

Output: A single or all scenarios s along with schedule(s) S for the projection πs(S) if S is
consistent, “inconsistent” otherwise.

1 ϕ←
∧

p∈P(p ∨ ¬p) . Make every assignment possible
2 Sols = ∅ . The set of (all) consistent scenarios (global variable)
3 Hook a listener to the run of the SAT solver and make it detect negative cycles as early as

possible (on blocks (below) define the event-driven behavior).
4 SAT-SOLVE(ϕ)
5 if Sols = ∅ then
6 return inconsistent
7 return Sols
8 on assume d = > or assume d = ⊥: . Partial model
9 Build a scenario s from the current truth value assignment extended with s(d) = > or

s(d) = ⊥ (depending on the case)
10 〈Ts, Cs〉 ← πs(S) . Get the STN projection
11 if BellmanFord(〈Ts, Cs〉) detects a negative cycle then
12 ϕ← ϕ ∧ CUT-SCENARIO(S, 〈Ts, Cs〉) . Add clause

13 on solution found: . Complete model
14 Build a scenario s from the current truth value assignment
15 〈Ts, Cs〉 ← πs(S) . Get the STN projection
16 if BellmanFord(〈Ts, Cs〉) does not detect any negative cycle then
17 Sols ← Sols ∪ {〈s, S〉} . S is an early schedule for 〈Ts, Cs〉
18 if BellmanFord(〈Ts, Cs〉) detects negative cycle or all is true then
19 ϕ← ϕ ∧ CUT-SCENARIO(S, 〈Ts, Cs〉) . Add clause

contains a negative cycle. If so, we extend ϕ by adding (on the fly) a CNF clause modeling
the negation of the part of s containing a negative cycle in order to avoid getting the same
scenario again. If the projection is consistent, STND-HSCC2 does nothing and lets the run go.

A solution found event (Algorithm 3, lines 13–19) extends the behavior of the listener
described for assume as follows. When triggered, the listener builds a scenario from the
current truth value assignment (which does not need to be extended with anything else this
time). Then, it checks if the corresponding STN-projection contains a negative cycle. If it
does not, then it computes an (early) schedule S for the STN projected onto s and adds the
pair 〈s, S〉 to the set of solutions. If it detects a negative cycle (or all consistent scenarios
are sought), then it acts as for assume events.

Eventually, when the run of the SAT solver ends, either Sols = ∅ (and thus the starting
STND is inconsistent), or Sols contains at least 1 solution (scenario-schedule).

Like STND-HSCC1, STND-HSCC2 is sound and complete because it is based on a SAT-solver
that allows us to iterate on all the models. Whenever we add a clause, we exclude a relevant
part of a scenario that we do not want to get anymore. The sooner, the better.

Besides the SAT solver, all other internal sub-procedures (mostly, algorithms for directed
weighted graphs) are well known to be sound and complete, and run in polynomial time.

TIME 2019
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4 Experimental Evaluation

We developed Kappa, a tool for STNDs that takes in input a specification of an STND and
acts both as a solver and as a solution verifier. Kappa relies on SAT4J [3], a Java library
compliant with the IPASIR interface that specifies how to interact with a SAT solver [1].

Kappa implements both STND-HSCC1 and STND-HSCC2. We extended STND-HSCC1 so
that it allows for the synthesis of all consistent scenarios as well. In this way, we could carry
out a more accurate experimental evaluation comparing the two algorithms when seeking
single or all consistent scenarios.

We randomly generated 2200 STNDs partitioned in benchmark 11 sets, each one containing
100 consistent STNDs and 100 inconsistent STNDs. Regardless of the set, each STND has
exactly 100 time points. The first set (100TimePoints/10Decisions) specifies 10 decision
time points, the second set (100TimePoints/11Decisions) specifies 11 decision time points
and so on, up to the eleventh one (100TimePoints/20Decisions) that specifies 20 decision
time points. Each STND has a maximum number of constraints of |T | × |DT |. Time points
and constraints are randomly labeled so that the resulting STND is well defined. The weights
on labeled edges range from −100 to 100. See the link “Supplement Material” before Section 1
to get Kappa and these benchmark sets.

We ran Kappa on these benchmark sets without imposing any limit to collect data (time
and space) for both STND-HSCC1 and STND-HSCC2 when seeking a single or all consistent
scenarios.

We graphically show the results in Figure 2, where x-axes always represent the number
(#) of decision time points (i.e., the set under analysis) and y-axes represent either the
average time elapsed or space consumed when analyzing the instances in that set.

Figure 2a shows the results of the analysis run on the sets containing consistent STNDs
when seeking a single consistent scenario. The graph shows that STND-HSCC2 is significantly
faster than STND-HSCC1 for STNDs specifying more than 16 decision time points. Figure 2b
shows the results of the same analysis when seeking all consistent scenarios: despite a normal
general worsening of performances (all consistent scenarios are sought and not just one)
STND-HSCC2 is faster than STND-HSCC1 for STNDs specifying 20 decisions. Figure 2c shows
the results of the analysis on the sets containing inconsistent STNDs. STND-HSCC2 has
no competitors here, whereas STND-HSCC1 starts having a serious exponential blow up for
STNDs specifying more than 14 decisions. Figure 2d shows the average space consumed
when synthesizing all consistent scenarios. The curve grows exponentially according to the
number of decision time points (recall that STND-HSCC1 and STND-HSCC2 return the same set
of consistent scenarios in such an analysis, therefore we only show the data for STND-HSCC2).

We verified all synthesized solutions. No constraint was violated.

5 Equivalence with Disjunctive Temporal Networks

Disjunctive temporal networks (DTNs, [25]) allow for disjunctions of temporal constraints
(i.e., alternatives) in a temporal problem and are a possible formalism to model the disjunctive
temporal problem (DTP). For example, we might want that once an event modeled by a
time point X happened, another event modeled by a time point Y happens either after 10
(seconds, minutes, hours, . . . ) or within 5. Such a constraint would look like

(X − Y ≤ −10) ∨ (Y −X ≤ 5)

Any assignment of real values to X and Y satisfies the constraint if it satisfies (at least) one
disjunct.
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Figure 2 Experimental evaluation with Kappa.

Differently from the initial proposal in [11], where disjunctions of intervals were allowed
on the same pairs of time points only, the work we consider here is the one in [25], not having
such a restriction.

I Definition 4. A disjunctive temporal network (DTN) is a pair 〈T , C〉, where
T is the usual finite set of time points, and
C is a finite set of temporal constraints each one having the form

(Y1 −X1 ≤ k1) ∨ · · · ∨ (Yn −Xn ≤ kn)︸ ︷︷ ︸
n disjuncts (atoms)

where Xi, Yi ∈ T and ki ∈ R. A temporal constraint is non-disjunctive if and only if it
contains one disjunct, disjunctive otherwise.
A DTN is consistent if there exists an assignment of real values to all time points (i)
always satisfying all non-disjunctive constraints and (ii) satisfying at least one disjunct
for each disjunctive constraint.

We write D(i) to shorten the ith disjunctive constraint and more specifically D(i, j) to
refer to the jth disjunct of the ith disjunctive constraint [25].

We represent a DTN graphically through a colored multi graph, where black edges model
non-disjunctive constraints (i.e., those constraints that must always hold), whereas colored
edges (different from black) model disjunctive constraints (i.e., those D(i)s for which at least
one disjunct must hold). Each disjunctive constraint is assigned to a different color (we also
use a unique line pattern for each color).

To give an example, consider the following DTN, whose corresponding colored multi
graph is shown in Figure 3a.
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Figure 3 Representing and encoding DTNs into STNDs.

T = {X,Y,W}

C = {
must always hold︷ ︸︸ ︷

(Y −X ≤ 5), (X −W ≤ −2),

D(1)︷ ︸︸ ︷
D(1,1)︷ ︸︸ ︷

(Y −X ≤ 4)∨

D(1,2)︷ ︸︸ ︷
(W − Y ≤ −7),

(X − Y ≤ −2)︸ ︷︷ ︸
D(2,1)

∨ (Y −W ≤ 10)︸ ︷︷ ︸
D(2,2)︸ ︷︷ ︸

D(2)

}

The DTN in Figure 3a is consistent, and, for example, the assignment X = 0, Y = 3 and
W = 5 satisfies:

all non-disjunctive constraints (solid black edges),
D(1, 1) but not D(1, 2) for the disjunctive constraints D(1) (dashed blue edges),
D(2, 1) and also D(2, 2) for the disjunctive constraint D(2) (dashdotted purple edges).

We now proceed by proving that STNDs and DTNs are equivalent. We first give a
strongly polynomial time encoding from DTNs to STNDs and then the vice versa (and we
provide examples throughout this discussion).

5.1 Encoding DTNs into STNDs
We encode the DTN in Figure 3a into the corresponding STND in Figure 3b as follows.

We generate a “core” STND containing all time points and all non-disjunctive constraints
of the starting DTN and labeling them by �, since all time points must always be assigned a
value and all non-disjunctive constraints must always be satisfied.

For each disjunctive constraint D(i) in the DTN, we add to the STND as many decision
time points Dij ! as the number of disjuncts D(i, j). These decision time points are not
constrained to any other time point in the STND (i.e., free to take any value). Any disjunct
D(i, j) in the DTN appears as a constraint in the STND labeled by dij (the proposition
associated to Dij !) so that when dij = >, the disjunct of the DTN (labeled constraint in the
STND) must hold and when dij = ⊥ we are not obliged to satisfy it. Moreover, we impose
that at least one disjunct D(i, j) for any disjunctive constraint D(i) must hold (otherwise, it
would be possible to disable them all by setting all dij to ⊥). We enforce this condition by
adding a negative self loop labeled by ¬dij1 . . .¬dijn

on any time point of the STND.
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In Figure 3b we added four decision time points D11!, D12!, D21! and D22! and the labeled
constraints X → Y labeled by 〈4, d11〉, Y → W labeled by 〈−7, d12〉, Y → X labeled by
〈−2, d21〉 and W → Y labeled by 〈10, d22〉 to switch on and off the disjuncts D(1, 1), D(1, 2),
D(2, 1) and D(2, 2) through the truth value assignments to d11, d12, d21 and d22. Finally,
we added two negative self loops Y → Y labeled by 〈−1,¬d11¬d12〉 and 〈−1,¬d21¬d22〉 to
prevent a disjunctive constraint D(i) from being excluded (red self loop at Y ). Note that
the “−1” is meaningless: any negative number (e.g., −3, −159 or −ε) is fine for this purpose.
Likewise, the choice of time point Y is meaningless too. Any time point would be fine for
this purpose (e.g., X → X labeled by the same constraints). Negative self loops are the more
intuitive way to enforce these conditions. However, nothing would have prevented us from
creating cycles of negative sum with respect to these labels involving many time points.

To ease reading and understand “what goes where”, we colored the STND in Figure 3b
with the same colors of the DTN in Figure 3a and showed the added negative cycles in red.

This encoding is strongly polynomial. The number of time points in the STND is equal
to the number of time points in the DTN plus as many decision time points as the number
of disjuncts D(i, j) contained in all disjunctive constraints D(i) in the DTN. The number of
constraints in the STND is equal to the the number of non-disjunctive constraints plus as
many constraints as the number of disjuncts D(i, j) contained in all disjunctive constraints
D(i) in the DTN plus as many constraints as the number of disjunctive constraints D(i) to
model negative loops.

Any consistent scenario in the STND says which disjuncts (at least one for each disjunctive
constraint) are satisfied for the solution. If the STND is inconsistent, then so is the DTN.

5.2 Encoding STNDs into DTNs

We encode the STND in Figure 4a into the corresponding STND in Figure 4b as follows.
First of all, if the STND has labels on nodes we convert it to its streamlined version having

only label on edges. The process of streamlining a temporal network was first discussed in
[5] for CSTNs. However, that process works for STNDs as well (as consistency is basically
entailed by controllability). Then, we generate a “core” DTN having the same set of time
points of the STND (we drop all “!” from the names) and all constraints labeled by � in the
STND as non-disjunctive constraints in the DTN.

For each proposition d associated to a decision time point D! in the STND, we add to
the DTN a time point d and the disjunctive constraint

(d−D ≤ 0)︸ ︷︷ ︸
means d = ⊥

∨ (D − d ≤ −1)︸ ︷︷ ︸
means d = >

where the former says that d “occurs within” D, whereas the latter says that d occurs at
least 1 after D (a way to to simulate a Boolean condition).

Now, every constraintX → Y labeled by 〈k, d¬ef . . . 〉 (in the STND) implies the following
“meta constraint” in the DTN:

(D − d ≤ −1︸ ︷︷ ︸
d

∧ e− E ≤ 0︸ ︷︷ ︸
¬e

∧F − f ≤ −1︸ ︷︷ ︸
f

. . . )⇒ Y −X ≤ k

which can be rewritten as

¬(D − d ≤ −1 ∧ e− E ≤ 0 ∧ F − f ≤ −1 . . . ) ∨ Y −X ≤ k
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Figure 4 Encoding STNDs into DTNs.

and finally simplified to

(d−D ≤ 0)︸ ︷︷ ︸
¬d

∨ (E − e ≤ −1)︸ ︷︷ ︸
e

∨ (f − F ≤ 0)︸ ︷︷ ︸
¬f

· · · ∨ (Y −X ≤ k)

Note that for any D and d (in the DTN) we define ¬(D − d ≤ −1) as d − D ≤ 0 and
¬(d−D ≤ 0) as D − d ≤ −1 since they are abstracting Boolean conditions only and we are
not therefore interested in a specific numeric value. Therefore, for any labeled constraint in
the STND we add such a disjunctive constraint to the DTN.

In Figure 4b we add two time points a and b and the following constraints:
B −A ≤ 10 (solid black edges),
D(1) : (a−A ≤ 0) ∨ (A− a ≤ −1) (dashed blue edges),
D(2) : (b−B ≤ 0) ∨ (B − b ≤ −1) (dashdotted purple edges),
D(3) : (A− a ≤ −1) ∨ (b−B ≤ 0) ∨ (B −A ≤ 7) (loosely dashed green edges),
D(4) : (B − b ≤ −1) ∨ (C −B ≤ −5) (zigzag orange edges),
D(5) : (b−B ≤ 0) ∨ (A− C ≤ −3) (snake magenta edges).

We show the “colored” DTN graph in Figure 4b. Now, the DTN is consistent if and only
if the STND is so. A solution of the DTN corresponds to a consistent scenario in the STND.
The truth value assignment to the propositions in the STND depends on the real value
assignments to the time points modeling those propositions in the DTN. For any proposition
d in the STND, d is false iff in the DTN the time point d has a value not greater than D!
and d is true in the STND iff in the DTN the value of time point d is greater than D! (the
assignment to the other time points defines a schedule consistent for the scenario).

This encoding is strongly polynomial. The number of time points in the DTN is the same
of that in the STND plus as many time points as the number of propositions in the STND.
The number of constraints in the DTN is given by the number of unlabeled constraints in
the STND (non-disjunctive constraints in the DTN), plus as many disjunctive constraints as
the number of labeled constraints in the STND (whose labels are different from �). Also, for
any disjunctive constraint D(i) in the DTN, the number of disjuncts of D(i) is n+ 1 where n
is the number of literals contained in the label of the corresponding constraint in the STND
and the “+1” refers to the inequality.
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6 Related Work

STNs [11] model fully-controllable plans but do not employ decisions. Drake [9] is an
executive for temporal plans with choices modeled as Labeled STNs that extend STNs by
labeling constraints with environments (set of instantiated discrete variables). There are no
decision points and time points are unlabeled. During execution, choices are discriminated by
generating conflicts according to the timing Drake decides to schedule some event. STNDs
differ from Drake in their specification and in how decisions are made. STNDs rely on a
more structured approach by using labels instead of environments, labeling time points to
prevent them from being executed when some literal in the label is still unknown, enforcing
well-defined properties and making decisions only upon the execution of the related decision
time points. A Disjunctive Temporal Network (DTN) [25] extends an STN with disjunctive
constraints. Any solution to a DTN must satisfy all non-disjunctive constraints (i.e., STN-
constraints) and at least one disjunct for each disjunctive constraint. Labeled STNs and
DTNs are equivalent [9]. DTNs and STNDs are equivalent too, therefore, Labeled STNs are
equivalent to STNDs as well.

Temporal Plan Networks (TPNs) [21] extend STNs by adding decision nodes and symbolic
constraints to model temporal plans with controllable choices modeled as outgoing edges from
a decision node. Taking one of these outgoing edges means making a particular decision. Time
points are not labeled and activities are modeled as pair of non-decision nodes (start,end).
A symbolic constraint is either Ask(c) (is c true?) and Tell(c) (c is true!) where c a literal.
Symbolic constraints may exclude activities from being executed. A plan is consistent if
it satisfies both temporal and symbolic constraints. TPNs do not specify more than one
temporal constraint on the same edge. Consistency is checked by visiting the nodes of the
graph from start to end taking one edge (modeling a decision) at a time. If the resulting
STN-projection is inconsistent, the algorithm backtracks to the last decision node that
still has unexplored outgoing edges. STNDs label nodes and consistency is checked in a
hybrid way.

A Controllable Conditional Temporal Problem (CCTP) [28] is an optimization problem
for temporal plans with choices and thus incomparable with STNDs.

Pike [22] is an executive for temporal plans with both controllable and uncontrollable
choices modeled as Temporal Plan Networks with Uncertainty (TPNUs), which extend TPNs
with uncontrollable choices. Pike adapts its controllable choices to the uncontrollable ones
made by a human. STNDs do not have uncontrollable choices. CCTPs with Uncertainty
(CCTPUs) [27] address temporal plans with controllable choices and uncontrollable dura-
tions, whereas in [18], TPNUs are extended to support uncontrollable durations (strong
controllability only). In both works, relaxation techniques are used to restore controllability
of an uncontrollable plan. STNDs do not have uncontrollable parts.

Several extensions of STNs address uncertain domains. For example, Simple Temporal
Networks with Uncertainty (STNUs, [24]) add uncontrollable (but bounded) durations by
means of a finite set of contingent links, whereas Conditional Simple Temporal Networks
(CSTNs, [17]), and the Conditional Temporal Problem (CTP, [26]) considered formerly, extend
STNs by turning the constraints conditional with uncontrollable truth value assignments
observable upon the execution of some special kind of time points called observations. Finally,
Conditional Simple Temporal Networks with Uncertainty (CSTNUs, [16, 15]) merge STNUs
and CSTNs, whereas Conditional Simple Temporal Networks with Uncertainty and Decisions
(CSTNUDs, [29, 33]) add conditional constraints with controllable truth value assignments
decidable upon the execution of some special kind of time points called decision. CSTNUDs
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STN

STNDSTNU CSTN

CSTNDSTNUD CSTNU

CSTNUD

Figure 5 A hierarchy of simple temporal networks. Acronyms containing D (resp., C) mean that
formalisms deal with controllable (resp., uncontrollable) conditionals, whereas those containing U,
mean that formalisms deal with uncontrollable durations. We highlight uncontrollable parts in red.

encompass all previous formalisms. All these networks extend STNs by adding at least an
uncontrollable part. In this work, we do not address any uncontrollable part. STNDs derive
from [4] by removing uncontrollable conditionals and from [29, 33] by removing uncontrollable
conditionals and uncontrollable durations. This work extends [4] by providing STND-HSCC2
both to speed up the consistency checking phase and to allow for the synthesis of all consistent
scenarios. This work is, however, incomparable with [29, 33] as that work employs timed
game automata. Figure 5 provides a hierarchy of simple temporal networks.

There also have been attempts to consider time and resources together, e.g., Access
Controlled Temporal Networks (ACTNs, [6]) and Conditional Simple Temporal Networks
with Uncertainty and Resources (CSTNURs, [7]), which were preceded by an initial proposal
in [8]. However, neither ACTNs nor CSTNURs employ decision time points. Research on
temporal networks has inspired a recent line of work in which controllability analysis focused
on resource allocation under uncertainty employing a qualitative temporal approach instead
of a quantitative one. This is the case of access controlled workflows investigated in [31, 36]
and of extensions of constraint networks proposed in [34, 35], where Constraint Networks
Under Conditional Uncertainty (CNCUs) are introduced (see also [32]). As we said, temporal
relations are only qualitative (specifically, “before/after”) and these proposals do not employ
decision time points. A short summary of temporal and resource controllability based on
constraint networks and considered either in isolation or simultaneously can be found in [30].

Planning as satisfiability was formally introduced in [19, 20] and relies on a set of axioms
where any model corresponds to a valid plan. Before that, planning was based on deduction.
Recently, more performant SAT encodings have been provided (e.g., [14]). However, none of
these approaches is incremental and thus they are incomparable with ours.

Gocht and Balyo [13] provide an incremental SAT solving approach for SAT-based
planning and prove that incremental SAT solving outperforms the non-incremental one but
they do not address temporal constraints. Our work does not model “transitions” but applies
shortest path algorithms, incrementally, on STN-projections.

Temporal induction is an incremental technique to check safety properties on finite state
machines and it is strongly related to bounded model checking [12]. It is similar to SAT-based
planning and allows for the detection of the unreachability of a goal. Our analysis is not
bounded with respect to the “depth”.

Satisfiability modulo theory (SMT, [2]) can describe STNDs by using a fragment of Linear
Real Arithmetic called Difference Logic. However, SMT-solvers do not guarantee to find
early schedules. A run of an HSCC algorithm and a run of an SMT-solver are not guaranteed
to return the same consistent scenarios (Boolean part). A fairer comparison is when both
HSCC-algorithms and SMT-solvers seek all consistent scenarios, but then we should make
sure that the SMT-solver does not return more than one schedule for each consistent scenario.
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Figure 6 Possible encodings of a temporal workflow (a) into STNDs (b) and into DTNs (c). Note
that (c) is the DTN equivalent to (b) streamlined. That is, (b) without labels on time points and
plus the constraints (T2 − T1 ≤ 2, d), (T1 − T2 ≤ −3,¬d), (T3 − T1 ≤ 2,¬d) and (T1 − T3 ≤ −3, d).
There, we chose 2 as an horizon (see [5] for more details on how to streamline a temporal network).

Incremental task planning adopts incremental features of SMT-solvers to extend a
constraint-based task planning to motion domains [10]. Our approach is not probabilistic
and does not consider a motion domain.

7 Conclusions and Future Work

We provided STND-HSCC2, a novel hybrid SAT-based consistency checking algorithm for
STNDs. This new version of the algorithm still relies on a SAT solver but differently from
the previous one, it exploits partial truth value assignments to hunt down negative cycles
in STN-projections as early as possible. The previous algorithm tested STN-projections for
negative cycles by iterating on complete models returned by the SAT solver. When the SAT
solver makes an assumption, we project the STND over the current truth value assignment
of the propositions (i.e., partial model) extended with this new assumption. If the projected
STN is inconsistent, we add a clause to the SAT solver to exclude that scenario, else we
let the solver go. We implemented our approach and provided Kappa, a tool for STNDs
that implements STND-HSCC1 and STND-HSCC2 both supporting the synthesis of single or all
consistent scenarios2 and we compared the results. The more inconsistent STN-projections
an STND admits, the better STND-HSCC2 performs. The solutions saved to file allow for
an offline planning in which all decisions are made before starting and all time points have
already been scheduled to execute as soon as possible. Finally, we proved that STNDs
and DTNs are equivalent. Considering this equivalence result, one could fairly wonder why
use STNDs instead of DTNs. Here is a possible reason: STNDs offer a more “structured”
language, which, exploiting labels, allows for an easier modeling of temporal workflows with
controllable conditional paths (see Figure 6 for a comparison of workflow modeling methods).

As future work, we plan to investigate optimizations to reduce the size of the CNF
clauses added on the fly. We also plan to give a metric suggesting the best algorithm to use
depending on the form of the STND in input.

2 Another minor contribution is the extension of STND-HSCC1 in our tool to support the synthesis of all
consistent scenarios.
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