
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

Propagating Piecewise-Linear Weights in Temporal Networks

Luke Hunsberger∗
Computer Science Department

Vassar College – Poughkeepsie, NY USA
hunsberger@vassar.edu

Roberto Posenato
Dipartimento di Informatica

Università degli Studi di Verona, Italy
roberto.posenato@univr.it

Abstract

This paper presents a novel technique using piecewise-linear
functions (PLFs) as weights on edges in the graphs of two
kinds of temporal networks to solve several previously open
problems. Generalizing constraint-propagation rules to accom-
modate PLF weights requires implementing a small handful
of functions. Most problems are solved by inserting one or
more edges with an initial weight of δ (a variable), then using
the modified rules to propagate the PLF weights. For one kind
of network, a new set of propagation rules is introduced to
avoid a non-termination issue that arises when propagating
PLF weights. The paper also presents two new results for
determining the tightest horizon that can be imposed while
preserving a network’s dynamic consistency/controllability.

Introduction
Planning and scheduling applications have used Simple Tem-
poral Networks (STNs) for many years (Dechter, Meiri, and
Pearl 1991; Gerevini, Saetti, and Serina 2006; Casanova,
Pralet, and Lesire 2015). Unlike fixed-time schedules, STNs
enable flexible management of common types of temporal
constraints (e.g., release times, deadlines, and duration con-
straints). Polynomial-time algorithms can check the consis-
tency of STNs and manage their real-time execution; however,
STNs cannot deal with uncertainty. This paper focuses on
extensions of STNs that accommodate two kinds of uncer-
tainty. A Simple Temporal Network with Uncertainty (STNU)
uses contingent links to represent actions whose durations are
uncertain, but within known bounds; a Conditional Simple
Temporal Network (CSTN) uses observation time-points to
represent test actions that generate information during ex-
ecution. An STNU is dynamically controllable if there is
a strategy for executing its time-points that guarantees that
all relevant constraints will be satisfied no matter how the
contingent durations turn out; a CSTN is dynamically con-
sistent if there is a strategy for executing its time-points that
guarantees that all relevant constraints will be satisfied no
matter what true-or-false answers the test actions generate.
These related properties are both abbreviated by DC.
∗This work was funded in part by grants from the Lucy Maynard

Salmon Research Fund and the University of Verona (Programma
COOPERINT 2018).
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Different flavors of the DC property for STNUs and
CSTNs depend on the assumptions made about the ability
of the system to react to observations. The original version
of DC assumes that the system can react after any arbitrar-
ily small, positive delay. Another version assumes that the
system can react instantaneously. Finally, an ε-DC property
has been defined for CSTNs that assumes that the system’s
reaction time is bounded below by some fixed ε > 0. An
ε-DC property can also be defined for STNUs.

DC-checking algorithms have been given for most flavors
of DC for STNUs and CSTNs (Morris 2006; Cairo, Huns-
berger, and Rizzi 2018; Cairo and Rizzi 2016; Hunsberger
and Posenato 2018b). The fastest DC-checking algorithm for
STNUs has cubic time (Morris 2014), but the DC-checking
problem for CSTNs is PSPACE-complete (Cairo and Rizzi
2016). However, propagation-based algorithms for CSTNs
have shown promise (Hunsberger and Posenato 2018b).

Despite the many DC-checking algorithms for STNUs and
CSTNs, many open problems remain, including: (1) given
any time-points X and Y , what is the strongest constraint,
Y −X ≤ δ, that can be added to the network while preserv-
ing the DC property?; (2) after executing the zero time-point
Z, how much time can elapse before some other time-point
must be executed?; and (3) if the reaction time of the dynamic
strategy is bounded below by some fixed ε > 0, what is the
maximum value of ε that will preserve the DC property? And,
for STNUs: (4) how much can the bounds on a contingent
link be loosened while preserving the DC property?

This paper introduces a novel technique that can be used to
solve all of the problems listed above. The technique gener-
alizes the numerical weights of edges in an STNU or CSTN
to piecewise-linear functions (PLFs). Although there may be
many PLF weights in a given network, the domain of each
PLF is the same. Thus, each PLF is a function over the same
variable δ.1 By extending the constraint-propagation rules
for existing DC-checking algorithms to accommodate PLF
weights, our technique is able to answer the sorts of ques-
tions listed above by determining the bounds on δ needed to
preserve the DC property. Our algorithm computes an exact
value for δ, whereas an approach based on binary search

1For this reason, our technique is completely different from prior
work on STNs with preferences or fuzzy constraints (Kumar 2004;
Morris et al. 2005; Rossi, Venable, and Yorke-Smith 2006).

223

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Catalogo dei prodotti della ricerca

https://core.ac.uk/display/223233318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Z

A C

X
50

20

−4
c:3

5

Z

A C

X
50

δ

20

min{δ + 8,−4} c:3

5
δ + 5

min{δ + 28, 16}

Figure 1: A sample STNU (a, left) before, and (b, right) after
propagating edge-weights involving the variable δ

would compute an approximate value with a computation
time dependent on the granularity of the temporal domain.

Overview of our Approach
In temporal networks, each constraint has a numerical weight.
Our approach is more general in that it allows the weights of
edges to be piecewise-linear functions—with the important
caveat that all of the PLFs must be functions of the same
variable, δ. To illustrate the need for PLFs, consider the net-
work in Fig. 1a, which is a fragment of an STNU that can
easily be checked to be DC. In this network, the interval
from A to C is a contingent link with a minimum duration
of 3, represented by the edge from A to C labeled by c:3.2
Given that Z is fixed at 0, we can ask, “What is the maximum
amount that the execution of X can be delayed?” To answer
this question, we first insert a new edge from X to Z labeled
not by a number, but by a variable δ, as shown in Fig. 1b.
We seek the minimum value of δ that will preserve the DC
property. (A more negative value of δ represents a greater
lower bound for X .) Since any δ < −50 would introduce
a negative loop from Z to X to Z, corresponding to an un-
satisfiable constraint, we must have δ ≥ −50. And since all
time-points are implicitly assumed to occur at or after Z, we
set the initial domain for δ to be the interval [−50, 0].

Next, we propagate this new kind of constraint/edge across
the network, not for one value of δ, but for all values
of δ simultaneously. We do this by making slight mod-
ifications to a well known set of constraint-propagation
rules for STNUs (Morris, Muscettola, and Vidal 2001;
Morris and Muscettola 2005). For example, applying one
of those rules to the edges from C to X to Z generates a new
edge from C to Z of length δ+5, indicated by a dashed arrow
in the figure. More interestingly, the next propagation, ap-
plied to the edges from A to C to Z, involves the lower-case
edge from A to C. In this case, the propagation applies only
if the weight of the edge from C to Z is negative. Therefore,
the generated edge from A to Z has length δ + 8—but only
if δ + 5 < 0 (i.e., only if δ < −5).

With numerical weights, when a new edge from A to Z
is generated, processing the new edge is easy: if the weight
of the new edge is less than the weight of the pre-existing
edge from A to Z (or if there is no pre-existing edge), then
the new edge is added to the network, replacing the old edge;
otherwise, the new edge is discarded. However, when the
weights are piecewise-linear functions, the weight on the new
edge may be stronger than the pre-existing weight for some
values of δ, but weaker for others. As a result, the proper

2Contingent links and constraint-propagation rules for STNUs
are addressed lightly here, but in great detail in the next section.

−18 −16 −14 −12 −10 −8 −6 −4 −2 0

−10

−5

0
δ + 8 (for δ < −5) −4

min{δ + 8 (for δ < 5),−4}

δ

W
ei

gh
to

n
A
Z

Figure 2: Taking the minimum of piecewise-linear functions

update is to set the weight of the edge to be the PLF obtained
by taking the minimum of the old PLF and new PLF. In our
example, the pre-existing edge from A to Z has weight −4
(constant, for all values of δ), while the new weight is δ + 8,
but only for δ < −5. Hence, the appropriate update is to set
the edge’s weight to be min{δ + 8,−4}, as shown in Fig. 2.

Finally, the path from Z to A to Z generates a self-loop at
Z whose weight is min{δ+8,−4}+20 = min{δ+28, 16}.
Since a negative loop represents an unsatisfiable constraint,
the PLF weight on the loop at Z must be non-negative to
preserve the DC property. In this case, δ + 28 ≥ 0 (i.e.,
δ ≥ −28) must hold. In this way, constraint propagation
caused the set of possible values for δ to shrink, which is
a key feature of our approach. The implication for this toy
example is that the greatest lower bound for X is 28.

Although this example focused on determining the greatest
lower bound for a time-point X in a DC STNU, the same
technique of using PLFs to represent the weights in a tempo-
ral network can be used to answer all of the kinds of questions
listed earlier. Although this paper will focus on STNUs and
CSTNs, the same techniques can be applied to CSTNUs—
since prior work has shown how to reduce any DC CSTNU
to an equivalent CSTN (Hunsberger and Posenato 2018c).
Piecewise-Linear Functions (PLFs). In general, a
piecewise-linear function can take many forms; however,
for our approach, it suffices to restrict attention to PLFs with
the following characteristics.
• Each PLF is a non-decreasing function f : R→ R of δ.
• The domain of each PLF is a union of adjacent intervals,

each of the form [a, b)—hence, no holes in the domain.
For efficiency, the portion of the domain of a PLF f where
f(δ) =∞, which, given the above assumptions, must be an
interval of the form [a,∞), is not explicitly represented.

To propagate edges whose weights are represented by
PLFs, we need to be able to compute the following for any
PLFs f and g, and any x ∈ R:
• sum(f, x), min(f, x), max (f, x); (a PLF and a number)
• sum(f, g), min(f, g), max (f, g); (two PLFs)

• δf≥0min = min{δ | f(δ) ≥ 0} ∈ R;

• f |<0: the PLF that is the same as f except that it includes
only the portion of f ’s domain where f(δ) < 0.

• f |δ≥x: the PLF that is the same as f except that it includes
only the portion of f ’s domain where δ ≥ x.

• merge(f): same as f except that any adjacent intervals in
its domain that involve the same function are merged.

224

0 = A2 C2

C1A1 X

Y
c2:1

C2:−10
c1:1

C1:−3

8 −8

−2

4

12

Figure 3: A sample STNU

Note: the superscript in f |<0 stipulates that it is the function
values that must be negative, whereas the subscript in f |δ≥x
stipulates that it is the domain values that must be at least x.

Simple Temporal Networks with Uncertainty
Simple Temporal Networks with Uncertainty (STNUs) ex-
tend STNs to include contingent links which can be used to
represent actions with uncertain durations (Morris, Muscet-
tola, and Vidal 2001). Each contingent link has the form
(A, x, y, C). A is called the activation time-point, C is called
the contingent time-point, and 0 < x < y <∞. The link is
activated when A is executed. After that, the execution of C
is determined not by the executing agent (controller), but by
the (possibly adversarial) environment. But the environment
must execute C some time after A, such that C −A ∈ [x, y].
The duration C −A is controlled by the environment, and is
unknown to the controller until C is actually executed.

Graphically, a contingent link is represented by two labeled
edges, a lower-case edge from A to C with label c:x, and an
upper-case edge from C to A with label C:−y. The graph
for an STNU with two contingent links, (A1, 1, 3, C1) and
(A2, 1, 10, C2), is shown in Fig. 3. The value of A2 is fixed
at 0 (i.e., A2 is serving as the zero time-point Z).

An STNU is dynamically controllable (DC) if there exists
a dynamic strategy for the controller to execute all of the non-
contingent (a.k.a., executable) time-points such that all of the
constraints in the network are guaranteed to be satisfied no
matter how the durations of the contingent links are chosen
by the environment. The strategy can be dynamic in that the
execution time it chooses for each executable time-point X
can only depend on the durations of contingent links that have
already completed (i.e., the strategy’s execution decisions
must not depend on future events). The STNU in Fig. 3 is
DC since the following dynamic strategy ensures that all of
its constraints will be satisfied: Execute A2 and X at 0. If
C2 executes at or before 2, then execute A1 at 6 and Y at 8;
otherwise, execute A1 at 7 and Y at 12.

The DC-checking problem for STNUs is that of deter-
mining whether any given STNU is DC. The fastest DC-
checking algorithms for STNUs rely on rules for propagating
constraints. Table 1 lists five constraint-propagation rules for
STNUs that will be used in this paper. The first four rules are
from Morris and Muscettola (2005); the last rule (i.e., LR+)
combines their Label Removal (LR) rule with the General Un-
ordered Reduction (GUR) from Morris et al. (2001). The No
Case (NC) rule is the constraint-propagation rule for STNs.
The Upper Case (UC) rule generates a conditional wait con-
straint that guards against the contingent link (A, x, y, C)
taking on its maximum value. The Lower Case (LC) rule
generates an ordinary edge that guards against the contin-
gent link taking on its minimum value. The Cross Case rule

NC: X Y W
f g

f + g

UC: X Y A
f C:g

C:f + g

LC: A C Y
c:x g

x+ g
g < 0

CC: A C A′
c:x C′:g

C′:x+ g

C 6≡ C ′
g < 0

LR+: Y A C
C:f c:x

max{f,−x}

Table 1: Known constraint-propagation rules for STNUs

guards against one contingent link taking on its minimum
value, while another takes on its maximum. The LR+ rule
specifies an unconditional (ordinary) constraint derived from
a conditional (upper-case) constraint. This collection of rules
is sound and complete for the STNU DC-checking problem.
The edge-weights in these rules are all real numbers.

Our novel approach to answering a variety of open ques-
tions about STNUs employs a simple, but powerful technique:
allowing the weight on a constraint/edge to be a piecewise-
linear function, and then modifying the STNU constraint-
propagation rules to accommodate PLFs.
Modifying STNU propagation rules for PLFs. The rules
in Table 1 can be modified to accommodate weights that are
PLFs, as follows, where, now, f and g are the respective
PLFs for the lefthand and righthand pre-existing (ordinary
or upper-case) edges in the rules. (A numerical weight is a
special case of a PLF with only one piece.)
• No Case: sum(f, g);
• Upper Case: sum(f, g), generated edge labeled by C;
• Lower Case: sum(g|<0, x);
• Cross Case: sum(g|<0, x), generated edge labeled by C;
• Label Removal/General Unordered Red’n: max (f,−x).
In addition, whenever a rule generates an edge, say, from X
to Y whose weight is the PLF h, the appropriate update is
determined as follows. First, h is replaced by merge(h) (i.e.,
adjacent pieces of h that represent the same linear function
are merged). Next, if there is no pre-existing edge, then the
(merged) h becomes the weight of a new edge from X to
Y . However, if there is a pre-existing edge from X to Y
with weight H (another PLF), then the new weight for that
edge is min(h,H) (i.e., the minimum of the new and old
PLFs). Finally, if a self loop with weight h is generated, then
any values δ for which h(δ) < 0 must be excluded from
the domain of every PLF appearing in the network. In other
words, δh≥0min becomes the new lower bound for every PLF in
the network (i.e., each f is replaced by f |

δ≥δh≥0
min

).

⇒ Restricting the global domain for δ is what determines
the minimum value of δ that preserves the DC property.

How much can an edge be tightened? Consider the edge
from C1 to Y . To compute the minimum weight for this

225

0 = A2 C2

C1A1 X

Y
c2:1

C2:−10
c1:1

C1:−3

8 −8

−2

δ

12

(a) Finding the tightest constraint, δ, between C1 and Y

Z

X1

X2

X3

X4

δ

δ
δ

δ

(b) Finding the maximum delay

Z

X1

X2

X3

X4

δ

δ
δ
δ

(c) Finding the tightest horizon

Figure 4: Solving different problems for a single STNU

edge that will preserve the DC property, we replace the nu-
merical weight by the variable δ, as shown in Fig. 4a. Ex-
haustively propagating the rules from Table 1 generates the
semi-reducible loop shown in Fig. 5. In the figure, the edges
generated by the rules are dashed, and the name of the rule ap-
pears to the left of the corresponding labeled value. For exam-
ple, the last propagation, which generates the loop from A2

to A2, is annotated by UC: max{2δ − 3, δ − 12}, for δ < 2,
indicating that the Upper-Case rule generated this edge. Since
the weight on a self-loop must be non-negative, we must have
2δ − 3 ≥ 0 (i.e., δ ≥ 3

2) to preserve the DC property. The
reason that a network with only integer weights could lead
to a fractional answer is that, in an STNU graph, a shortest
semi-reducible path can involve multiple occurrences of a
single edge (Hunsberger 2013). The worst case is a magic
loop, in which a single edge can appear 2k−1 times, where k
is the number of contingent links. In our case, the edge from
C1 to Y appears twice in the shown semi-reducible loop. As
a result, each unit decrease in its weight leads to two units of
tightening of the semi-reducible loop.
Delaying initial executions. Consider the problem of deter-
mining how much the execution of the other time-points in
the network can be delayed after Z = 0. To find out, we insert
an edge from each executable time-point to Z, as illustrated
in Fig. 4b, and then exhaustively apply the propagation rules
from Table 1. For the sample STNU from Fig. 3,A2 plays the
role of Z, and exhaustive propagation leads to the result that
δ ≥ −3 (i.e., once A2 has been executed, some executable
time-point—here, X—must execute at or before time 3).
Computing maximum reaction time. Given some ε > 0,

LCε: A C Y
c:x g

x+ g
g < ε

CCε: A C A′
c:x C′:g

C′:x+ g

C 6≡ C ′
g < ε

Table 2: STNU propagation rules for ε-DC checking

an execution strategy is called ε-dynamic if it is only able
to react to an observation of a contingent execution after a
delay of ε; and an STNU is called ε-dynamically controllable
(ε-DC) if it admits an ε-dynamic strategy that guarantees
the satisfaction of all relevant constraints no matter how the
contingent durations turn out.3 A sound-and-complete ε-DC-
checking algorithm can be obtained by making slight changes
to the LC and CC rules from Table 1, as shown in Table 2.4
Using those rules, it can be shown that the sample STNU
from Fig. 3 is ε-DC for ε = 2, but not for ε = 8.

For any STNU S , let ε̂(S) denote the maximum value of ε
for which S is ε-DC.5 Our approach can be used to compute
ε̂(S) for any STNU, as follows. First, let ε ∈ (0,∞) be the
sole parameter, and view the (initial) weight of each edge as a
constant function of ε. Now, consider an application of the LC
rule from Table 2 where x = 2 and g = 4. The applicability
condition g < ε (i.e., 4 < ε) stipulates that the generated edge
of length 2 + 4 = 6 is valid only for ε > 4. Therefore, if the
pre-existing weight on that edge was, say, 9, then the updated
weight for this edge would be the step function, f(ε) = 9, for
ε ∈ (0, 4]; 6, otherwise. Similarly, applications of the CCε
rule from Table 2 can result in step functions. It follows that,
since all edge weights were initially constants, and the only
use of ε is by the LCε and CCε rules to restrict the domain
of an edge weight, all generated edges will necessarily be
step functions (i.e., PLFs for which each piece is a constant
function). As always, should any rule application generate a
self-loop, then the values of ε for which the weight of that
loop is negative must be excluded from the global domain.
For example, applying our approach to the STNU from Fig. 3
determines that the maximum reaction time that will preserve
the DC property is ε̂ = 5. Fig. 6 shows the negative loop

3Bhargava et al. (2018) defined delay controllability, where con-
tingent links can have different delays. Our ε-DC for STNUs as-
sumes a fixed lower bound ε for a strategy’s reaction time.

4The rules are from Bhargava et al. (2018), but with fixed delays.
5Our definition of ε̂(S) for STNUs mirrors the definition of ε̂(S)

for CSTNs (Comin and Rizzi 2015).

A2 C2 C1 A1 C1 Y X C1 A1 C1 Y C2 A2
8 C1:−3 c1:1 δ −8 −12 C1:−3 c1:1 δ −2 C2:−10c2:1

NC: δ − 2

LC: δ − 1, if δ < 2

UC: C2:δ − 11, if δ < 2

UC:C1:5; LR*:5 NC:δ − 8

LC:δ − 7, if δ < 8

NC:δ − 2, if δ < 8

LC:δ − 1, if δ < 8

NC:δ + 11, if δ < 2

UC:C1:δ + 8, if δ < 2; LR*:max{δ + 8,−1}, if δ < 2

UC:max{2δ − 3, δ − 12}, if δ < 2

Figure 5: A propagation on the sample STNU from Fig. 4

226

A2 C2 C1 A1 C1 Y C2 A2
c2:1 8 C1:−3 c1:1 4 −2 C2:−10

5, ε > 4C1:5

6, ε > 5

11, ε > 5

C2:−12

C2:−1, ε > 5

Figure 6: A negative loop from A2 to A2 that arises if ε > 5

that results for any ε > 5. (To ensure that all PLFs are non-
decreasing, which simplifies our implementation, we let δ =
−ε.) Finally, we observe a new result: since the only use
of ε is to restrict the global domain, it follows that if the
original network S contains only integer edge weights, then
ε̂(S) must also be an integer. As will be seen in the next
section, this is a very different result from that for CSTNs.
Relaxing bounds on contingent links. Another previously
open problem that our approach can solve is that of comput-
ing how much the bounds on a contingent link can be relaxed
while preserving the DC property. For example, to determine
how much the upper bound on (A1, 1, 3, C1) can be relaxed,
we first replace the labeled value on the upper-case edge from
C1 to A1 by C1:δ, and then propagate using the rules from
Table 1. Doing so yields the answer 11

2 . Similarly, if we want
to determine how much the lower bound on that contingent
link can be relaxed, we instead replace the labeled value on
the lower-case edge from A1 to C1 by c1:δ, and then propa-
gate.6 For the sample STNU, the lower bound on A1C1 can
be reduced to 0 without threatening the DC property.
Determining the tightest horizon. Our approach could
also be used to compute the tightest horizon (equivalently,
the shortest makespan) that can be applied to the network
while preserving the DC property. In other words, if ev-
ery time-point is constrained to occur before time h, as
illustrated in Fig. 4c, then what is the smallest value of
h that will preserve the DC property? However, for this
particular problem, there is a more direct approach based
on lower-bound values drawn from the All-Pairs Shortest-
Semi-Reducible-Paths matrix (Morris and Muscettola 2005;
Hunsberger 2015), as explicated by the following new result.
Theorem 1. Let S be a DC STNU with time-points in T ;
and let D∗ be its All-Pairs Shortest-Semi-Reducible-Paths
matrix. Then h∗ = max{−D∗(X,Z) | X ∈ T } is the tight-
est horizon for S that will preserve the DC property.

Proof. Let H be the actual tightest horizon. Choose X ∈ T
such that−D∗(X,Z) = h∗. Then in the situation where each
contingent duration takes its maximum, X ≥ h∗ must hold.
Hence, H ≥ h∗. Next, suppose H > h∗. Then inserting an
edge of length h∗ from Z to some Y must create a negative
semi-reducible (SR) loop L. If LY is the sub-path of L from
Y to Z, then |LY | < −h∗. SinceD∗(Y,Z) ≥ −h∗, LY must
not be SR. Let AC be the first lower-case edge in LY that
cannot be reduced away in LY . Since L is SR, AC must be

6Theorem 5 in Hunsberger (2015) ensures that, for the problem
of relaxing the lower bound of (A, x, y, C), the LR+ rule can use
max{f, 0} instead of max{f,−δ} when applied to upper-case
edges labeled by C, thereby avoiding introducing decreasing PLFs.

ZP?X Q? Y

W?
50

−13
50

−13

〈1, q〉

〈−3,¬q〉

〈2, pw〉

〈−5,¬p¬w〉

−20

Figure 7: A sample CSTN graph

reducible using a negative-length sub-path of L from C to Z
to Y to some W . Since any suffix of an SR path is SR, the
suffix of LCW from Y to W , whose length is less than −h∗,
is SR. But then appending the pre-existing zero-length edge
fromW to Z onto that suffix would create an SR path from Y
to Z of length less than −h∗, contradicting D∗(Y,Z) ≥ −h∗.
Thus, H = h∗.

For the STNU in Fig. 3, the tightest horizon is h∗ = 12 =
−D∗(Y,Z), because C2 might be 10, and Y ≥ C2 + 2.
Interestingly, this computed value is much smaller than the
theoretically determined upper bound, h =M(n− 1) = 50,
whereM is the maximum absolute value of any negative edge
in the original network and n is the number of time-points.7

Conditional Simple Temporal Networks
Tsamardinos et al. (2003) introduced Conditional Simple
Temporal Networks (CSTNs) that extend STNs to include
observation time-points (OTPs) and their associated proposi-
tional letters. In a CSTN, the execution of an OTP P? gener-
ates a truth value for its associated proposition p. For exam-
ple, P? might represent the time at which a patient’s blood
pressure was measured, and p = true might represent that
the patient’s blood pressure was higher than normal. Each
constraint in a CSTN can be labeled by a conjunction of
propositional literals that specify the scenarios in which that
constraint must be satisfied.8 (A scenario specifies a truth
value for each propositional letter.) For example, the labeled
constraint (Y − X ≤ 5, p¬q) represents that Y − X ≤ 5
must hold in scenarios where p = true and q = false .
Definition 1 (CSTN). A Conditional Simple Temporal Net-
work (CSTN) is a tuple, 〈T ,P, C,OT ,O〉, where: T is a
finite set of real-valued variables (time-points); P is a finite
set of propositional letters, and P∗ is the set of consistent con-
junctions of literals from P; C is a set of labeled constraints,
each having the form, (Y −X ≤ δ, α), where X,Y ∈ T ,
δ ∈ R, and α ∈ P∗; OT ⊆ T is a set of observation time-
points (OTPs); andO : P → OT is a bijection that associates
a unique OTP P? to each propositional letter p.
Each constraint, (Y −X ≤ δ, α), is represented by the la-
beled value 〈δ, α〉 on the edge from X to Y ; and each edge
may have many labeled values. Fig. 7 shows a sample CSTN.

An execution strategy for a CSTN specifies when time-
points will be executed, but cannot affect which truth values

7Cairo et al. (2017) proved the M(n − 1) bound for the hori-
zon of a DC CSTN. However, since any STNU can be translated
into a DC-equivalent CSTN (Hunsberger and Posenato 2018c), the
M(n− 1) bound must also hold for a DC STNU.

8Time-points in CSTNs may also have propositional labels, but
Cairo et al. (2017) showed that no loss of generality results from
restricting attention to CSTNs whose time-points are unlabeled.
Therefore, this paper does not consider labels on time-points.

227

LP: X Y Z
〈u, α〉 〈v, β〉

〈u+ v, αβ〉
if αβ ∈ P∗, u+ v < 0

qR0: P? Z
〈w,αp̃〉

〈w,α〉
if w < 0; α ∈ Q∗,
p̃ ∈ {p,¬p, ?p}

qR∗3: P? Z Y
〈w,α〉

〈m,α ? β〉

〈v, βp̃〉 if w < 0, α, β ∈ Q∗,
p̃ ∈ {p,¬p, ?p}

In qR0/qR∗3 , p does not appear inα or β. In qR∗3 ,m = max{v, w}.

Table 3: Propagation rules for the π-DC-checking algorithm

qLP+: X Y T
〈u, α〉 〈v, β〉

〈u+ v, α ? β〉

Only if u+ v < 0 and
u < 0 or α ? β ∈ P∗

qR+
0 : P? T

〈w,αp̃〉

〈w,α〉
(same as for qR0)

qR+
3 : P? T Y

〈w,α〉

〈m,α ? β〉

〈v, βp̃〉
(same as for qR∗3)

qInf: X〈v, α〉 〈−∞, α〉 Only if v < 0; α ∈ Q∗\P∗

In qR+
0 /qR+

3 , p does not appear in α or β; and m = max{v, w}.
Generated labels 〈v, α〉, where v ≥ 0 and α 6∈ P∗, are discarded.

Table 4: An alternative set of rules for π-DC checking

will be generated for propositional letters. However, a dy-
namic strategy can react to observations. A CSTN is dynami-
cally consistent (DC) if it admits a dynamic execution strat-
egy that guarantees the satisfaction of all relevant constraints
no matter which outcomes are observed during execution.

Different versions of DC make different assumptions about
how reactive a dynamic strategy can be. Cairo et al. (2016)
defined π-DC, which assumes that a strategy can react in-
stantaneously. Hunsberger and Posenato (2018a) presented a
sound-and-complete π-DC-checking algorithm based on the
propagation rules in Table 3, where Z is the zero time-point.
Note that the expression α ? β in the qR∗3 rule can generate
a new kind of label, called a q-label. Each q-label is a con-
junction of q-literals; each q-literal has the form p,¬p or
?p. A constraint labeled by ?p need only hold as long as the
truth value of p is unknown (i.e., while P? is unexecuted).
The ? operator extends conjunction to q-labels. Intuitively,
if constraint C1 is labeled by p, and C2 by ¬p, then both
C1 and C2 must hold as long as the value of p is unknown,
represented by the q-label, p?¬p = ?p. The set of all q-labels
is notated Q∗ ⊇ P∗. For any p ∈ P , ?p |= p and ?p |= ¬p;
and for any scenario s, s 6|= ?p.

The π-DC-checking algorithm is sound and complete, and
guaranteed to terminate, but anecdotal evidence suggests that
incorporating more rules can speed it up, particularly for
CSTNs with negative q-loops (i.e., negative loops with mutu-
ally inconsistent edge-labels). For example, the loop from P?
to X to P? in Fig. 7 is a negative q-loop. To avoid excessive
propagations due to negative q-loops, Table 4 introduces a
new set of propagation rules. Its first three rules are more
general than their counterparts from Table 3 in that each can
generate edges pointing at any T ∈ T , not just Z. The qLP+

rule is also more general because, when u < 0, it can gen-

erate q-labeled edges. Finally, the qInf rule avoids needless
cycles of propagation by replacing the weight on a negative
self-loop with −∞ in cases where the label α ∈ Q∗\P∗. (If
α ∈ P∗, then the network would necessarily be non-DC.)
The labeled value 〈−∞, α〉 can then be propagated by the
other rules—another way that they are more general.9

For numerical weights, qR+
0 and qR+

3 can be proven to be
sound by replacing Z by any T ∈ T in the soundness proofs
for qR0 and qR∗3 (Hunsberger and Posenato 2018a).

Theorem 2. The qLP+ rule is sound for numerical weights.

Proof. The case, α?β = αβ ∈ P∗, is trivial. Hence, suppose
that u < 0 and α ? β ∈ Q∗. Let σ be a dynamic and valid
strategy that satisfies the pre-existing edges from X to Y ,
and Y to T , but not the generated edge from X to T .

Case 1: v < 0. In this case, u, v and u+ v are all negative.
Therefore, the semantics for satisfying a q-labeled constraint
applies (Hunsberger and Posenato 2018a). Hence, for every
scenario s, conditions (1) and (2) below must hold, while for
some scenario ŝ, condition (3) must hold.10

(1) (Xs ≥ Ys − u) (1a)
or (∃ã ∈ α such that A? ≺s X and s 6|= ã) (1b)

(2) (Ys ≥ Ts − v) (2a)
or (∃b̃ ∈ β such that B? ≺s Y and s 6|= b̃) (2b)

(3) (Xŝ < Tŝ − u− v) (3a)
and (∀c̃ ∈ α ? β: X ≺ŝ C? or ŝ |= c̃) (3b)

Henceforth, fix s = ŝ. Thus, (1), (2) and (3) hold for s = ŝ.
Henceforth, the subscript s (or ŝ) shall be dropped.

If a ∈ α, then a or ?a must be in α ? β; if ¬a ∈ α, then
¬a or ?a must be in α ? β; and if ?a ∈ α, then ?a ∈ α ? β.
Since s 6|=?p for any ?p, (1b) contradicts (3b). So (1a) holds.

Since (1a) and (2a) imply X ≥ Y − u ≥ T − u − v,
which contradicts (3a), (2b) must hold. Let b̃ ∈ β such that
B? ≺ Y and s 6|= b̃. Then B? ≺ Y ≤ X + u < X , whence
B? ≺ X . But b̃ ∈ β implies that either b̃ or ?b is in α ? β,
which contradicts (3b), since s 6|= ?b.

Case 2: v ≥ 0. Here, β ∈ P∗ and satisfying the con-
straint (T − Y ≤ v, β) implies that for every scenario s,
either (2a) above holds, or (2b†) s 6|= β holds. As in Case 1,
for s = ŝ, (1a) must hold, but (2a) must not hold. Hence,
(2b†) must hold. Then, (1a) yields: Y < Y − u ≤ X . Next,
for any p ∈ β for which s(p) = false (resp., any ¬p ∈ β
for which s(p) = true) (3b) implies that X ≺ P?. Let s′
be the same scenario as s, except that s′(p) = true for
every p ∈ β for which s(p) = false, and s′(p) = false
for every ¬p ∈ β for which s(p) = true. By construc-
tion, s′ |= β and Y < X ≺s P? for all such p; hence,
Ys′ = Y and Xs′ = X . And since s′ |= β, (2a) must
hold for s′, which, together with Y ′ = Y , u + v < 0 and
(1a), yield: Ts′ ≤ Ys′ + v = Y + v < Y − u ≤ X ≺ P?.
But then T = Ts′ ≤ X . And then (3a) and u + v < 0
yield the contradiction, T ≤ X < T − u− v < T .

9It is trivial for the implementation to accommodate 〈−∞, α〉.
10Xs denotes the value σ assigns to X in the scenario s; for any

p ∈ P , p̃ ∈ {p,¬p, ?p}; andA? ≺s X represents thatA? preceded
X in the scenario s in the sense of the π-DC semantics (Cairo,
Comin, and Rizzi 2016; Hunsberger and Posenato 2018a).

228

Q?(a) P? X P? Z Q?1.99 〈−3,¬q〉 〈1, q〉 −13 −13

qLP+:〈−12, q〉; qR+
0 :− 12

qLP+:〈−15,¬q〉
qLP+:〈−13.001,¬q〉; qR+

0 :−13.001

Q? P? X P? X P? Z(b) δ 〈−3,¬q〉 〈1, q〉 〈−3,¬q〉 〈1, q〉 −13

qLP+:〈δ − 3,¬q〉; qR+
0 :δ − 3, if δ < 3

qLP+:〈δ − 2, q〉, if δ < 3; qR+
0 :δ − 2, if δ < 2

qLP+:〈−2, ?q〉; qInf:〈−∞, ?q〉
qLP+:〈−∞, ?q〉

qLP+:〈−∞, ?q〉, if δ < 2; qR+
0 :−∞, if δ < 2

Figure 8: Propagations for the CSTN from Fig. 7 starting with an edge from Q? to P? labeled by: (a) 1.99; and (b) δ

To prove the soundness of rules that manipulate labeled
values such as 〈−∞, α〉 requires the following definition.
Definition 2. σ satisfies the constraint, (T −X ≤ −∞, α),
if for each scenario s: (∃ã ∈ α) s.t. A? ≺s X and s 6|= ã.
Such a constraint is necessarily unsatisfiable if α ∈ P∗. Note
that the satisfaction conditions depend only on X and α.
Theorem 3. The qInf rule is sound.

Proof. Suppose σ satisfies the pre-existing loop in the qInf
rule (i.e., (X −X ≤ v, α), where v < 0). Then, for each
scenario s, either X − X ≤ v or (∃ã ∈ α) such that
A? ≺s X and s 6|= ã. Since 0 = X − X ≤ v < 0 is
unsatisfiable, the existential clause must hold.

Theorem 4. The qLP+ rule is sound when −∞ ∈ {u, v}.

Proof. Case 1: u = −∞. Suppose σ satisfies the constraint,
(Y −X ≤ −∞, α). Then for each scenario s, (∃ã ∈ α) such
that A? ≺s X and s 6|= ã. Then ã ∈ α ? β or ?a ∈ α ? β
(even if ã =?a). Since s 6|= ã and s 6|=?a, it follows that σ
satisfies the generated constraint, (T −X ≤ −∞, α ? β).

Case 2: u < 0 and v = −∞. Suppose σ satisfies
(Y −X ≤ u, α) and (T − Y ≤ −∞, β), but not the gener-
ated edge (T −X ≤ −∞, α ? β). Then, for all scenarios s,
(1) and (2) below hold, while for some ŝ, (3) below holds.

(1) X ≥ Y − u (1a)
or (∃ã ∈ α such that A? ≺s X and s 6|= ã) (1b)

(2) (∃b̃ ∈ β such that B? ≺s Y and s 6|= b̃)

(3) (∀c̃ ∈ α ? β, X ≺ŝ C? or s |= c̃).

Henceforth, let s = ŝ. Let b̃ be such that (2) holds. Then
b̃ ∈ α ? β or ?b ∈ α ? β (even if b̃ =?b), s 6|= b̃, s 6|=?b, and
B? ≺s Y . Then (3) impliesX ≺s B?. Thus,X ≺s B ≺s Y .
Hence, (1a) cannot hold, since X ≥ Y − u > Y contradicts
X ≺s Y . Thus, (1b) holds, whence ã ∈ α ? β or ?a ∈ α ? β,
s 6|= ã, s 6|=?a, and A? ≺s X together contradict (3).

Soundness proofs for qR+
0 and qR+

3 involving −∞ are
similar, but space limitations preclude giving them here.
Storing labeled values. Since each CSTN edge could have
up to 4|P| different labeled values, it is important to store
them efficiently. With numerical weights, labeled values can
be stored in a subsumption hierarchy, where 〈v, α〉 subsumes
(i.e., is more general than) 〈w, β〉 iff β |= α (i.e., the literals
in α are a subset of those in β) and w < v. For example,

〈3, p¬qr〉 subsumes 〈2, p¬q(?r)s〉. (Recall that ?r |= r.)
The root of the hierarchy is a labeled value 〈w,�〉, where
w ∈ (−∞,∞]. The insertion point for a new labeled value is
found by descending from the root node, looking for most spe-
cific subsumers, then updating parent/child links as needed.

For PLFs f and g, it may happen that g(δ) < f(δ) for
some, but not all, values of δ. Therefore, for PLFs, we say
that 〈f, α〉 subsumes 〈g, β〉 if β |= α and g(δ) < f(δ) for
at least some values of δ. Therefore, our implementation
for CSTNs defines a predicate, ltSomewhere?, that returns
true if its first input is less than its second input on some
non-empty portion of the domain.
How much can a given edge weight be tightened? For
the CSTN in Fig. 7, the strongest weight that can be put onto
a new edge from P? to Q? can be computed by inserting an
edge from P? toQ? with a weight of δ, and then propagating.
The answer is −37, because a more negative weight would
create a negative loop from P? to Q? to Z to P?.

In contrast, the strongest weight that can be put onto a
new edge from Q? to P? is 2. However, for this version of
the problem, the negative q-loop between X and P? causes
the three-rule algorithm to cycle indefinitely, its lower bound
for δ approaching, but never reaching, the limit, 2.11 To see
why, consider the simpler case where the edge from Q? to
P? has the numerical weight, 1.99. As shown in the top of
Fig. 8, it takes nine rule applications to decrease the weight
on the edge from Q? to Z from its initial value of −13 to
−13.01. Hence, 900 rule applications would be required to
decrease the weight on that edge from−13 to−14. Similarly,
if the initial weight on the edge from Q? to P? were 1.9999,
it would take 90, 000 rule applications to achieve the same
result. When using PLFs involving values of δ that can be
arbitrarily close to 2, the 3-rule algorithm will cycle indefi-
nitely. To avoid the non-termination problem, the four rules
from Table 4 can be used instead. They find the answer in
nine rule applications, as shown in the bottom half of Fig. 8.
What is the maximum delay after Z? Consider the CSTN
in Fig. 7. Suppose that Z has been executed at 0. The maxi-
mum delay before some other time-point must be executed
can be found by inserting edges from each time-point to Z

11The π-DC-checking algorithm is guaranteed to terminate for
CSTNs with numerical weights (Hunsberger and Posenato 2018b);
however, with PLF weights, it can fail to terminate. In contrast, the
rule-set in Table 4 is guaranteed terminate even for PLF weights.

229

A?

B?

C?

〈1
,
a
b〉

〈−
2,
¬a
〉

〈2,
¬a
〉

〈2,¬
b〉〈−

2,¬
b〉

(a) A CSTN, ε̂ = 1
2

A?

B?

C? F?

D?

E?

〈1
,
a
b〉

〈−
2,
¬a
〉〈2,

¬a
〉

〈2,¬
b〉〈−

2,¬
b〉

〈−5, c〉

〈5, c〉

〈−5,¬cde〉

〈5,¬cde〉

〈−
5,
cd
e〉

〈5,
cd
e〉

〈−
5,¬
c〉〈5,¬

c〉

〈2,¬
e〉〈−

2,¬
e〉

〈−
2,
¬d
〉

〈2,
¬d
〉

(b) A more complex CSTN, ε̂ = 1
4

Figure 9: Sample CSTN graphs (A? ≡ Z)

A? C? B? A? A?
〈1, ab〉 〈−2,¬b〉 〈−2,¬a〉 0

qRε3:−ε
LP:〈−2− ε,¬b〉; qRε3:−2ε

LP:〈1− 2ε, ab〉 1− 2ε ≥ 0⇒ ε ≤ 1
2

Figure 10: An upper-bound for ε for the CSTN in Fig. 9a

with weight δ, as shown in Fig. 4b. After ten rounds of propa-
gation, involving a complex interplay among the LP, qR0 and
qR∗3 rules, it is discovered that δ ≥ −43 (i.e., the maximum
delay before another time-point must be executed is 43).
CSTNs with Bounded Reaction Time. For any CSTN S,
Comin and Rizzi (2015) defined ε̂(S) to be the maximum
value of ε for which S is ε-DC (i.e., for any ε ∈ [0, ε̂(S)],
S is ε-DC). They proved that for a DC CSTN with integer
weights, ε̂(S) cannot be smaller than 1

n2k
(i.e., the agent need

not be infinitesimally reactive), where n is the number of time-
points and k is the number of observation time-points. They
also showed that the bound is “almost tight” by presenting
CSTNs for which ε̂(S) = 1

2k/3
. However, the actual value of

ε̂(S) is typically much larger than this worst-case bound.
The ε-DC-checking algorithm due to Hunsberger and Pose-

nato (2018a) uses three rules that are identical to the rules
in Table 3 except that the qR∗3 rule can be applied whenever
w < ε, and the value of m is given by max{v, w − ε} =
max{v, w + δ}, where δ = −ε. (The resulting rule is called
qRε3.) As with the ε-DC-checking algorithm for STNUs, it
suffices to implement a function that can compute this max-
imum where v and w can be any combination of numbers,
+∞ or PLFs. As with STNUs, there is no need to insert PLF
edges into the initial CSTN; instead, occurrences of ε are in-
serted automatically when the qRε3 rule is applied. Applying
the PLF-version of the ε-DC-checking algorithm to the CSTN
from Fig. 7 computes ε̂(S) to be 12.5, which is much greater
than the theoretically determined bound of 1

n2k
= 1

6·23 = 1
48 .

The CSTNs in Fig. 9, all of whose time-points are observa-
tion time-points (including Z ≡ A), are adapted from Cairo
and Rizzi (2016). For the CSTN in Fig. 9a, the ε-DC rules cor-
rectly determine that ε̂ = 1

2 . The key propagation sequence is
shown in Fig. 10. Since the final generated edge is a self-loop,
its weight must be non-negative (i.e., 1 − 2ε ≥ 0), which
leads to the restriction, ε ≤ 1

2 . For the CSTN in Fig. 9b the
ε-DC rules compute ε̂ = 1

4 . These examples illustrate that
CSTNs with integer weights can have a fractional value of ε̂.

Computing the tightest horizon. As with STNUs, our ap-
proach could also be used to compute the tightest horizon
that could be imposed on a DC CSTN—namely, by insert-
ing upper-bound constraints for all time-points, as shown
in Fig. 4c, and then propagating. However, the following
new result offers a more direct approach. It is based on
computing for each time-point X its effective lower bound,
ELB(X) (Hunsberger and Posenato 2018b). This value
equals the absolute value of the length of the most nega-
tive edge from X to Z in the fully propagated network and,
hence, represents the greatest lower bound for X implied by
the labeled constraints in the original network.
Theorem 5. Let S be a DC CSTN, and T its set of time-
points. Then h∗ = max{ELB(X) | X ∈ T } is the tightest
horizon that can be imposed on S preserving the DC property.

Proof. Let X be any time-point in T for which ELB(X) =
h∗. Then there exists an edge from X to Z in the fully propa-
gated network, with length h∗ and labeled by some α ∈ P∗.
Therefore, in any scenario where α is true,X ≥ h∗ must hold.
Hence, the tightest horizon cannot be smaller than h∗. On the
other hand, the earliest-execution strategy, which executes
each time-point X at or before its ELB value, is guaranteed
to be valid and dynamic (Hunsberger and Posenato 2018b).
Therefore, the tightest horizon cannot be larger than h∗.

For the CSTN in Fig. 7, the computed tightest horizon is
25, which is not at all obvious from the structure of the graph.
It derives from the complex interplay among the propagation
rules. Note that this value is much smaller than the theoretical
bound M(n− 1) = 20 · 5 = 100 due to Cairo et al. (2017),
whereM is the maximum absolute value of any negative edge
in the original network, and n is the number of time-points.

Conclusions and Related Work
This paper presented a novel technique of using piecewise-
linear functions as weights on STNU and CSTN edges to
solve previously open problems. Generalizing propagation
rules to accommodate PLF weights required implementing
a small handful of functions. Most problems were solved
by inserting one or more edges with an initial weight of δ,
and then using the modified rules to propagate PLF weights.
For ε-DC checking, no new edges were added; instead, the
modified rules automatically introduced PLF weights, which
could then be propagated. In the case of CSTNs with negative
q-loops, a new set of propagation rules was introduced to
avoid needless cycles of propagation caused by the PLFs.
The paper also proved two new results for computing the
tightest horizon for a DC STNU or CSTN.

Yu et al. (2017) address tightening contingent links in over-
constrained temporal problems with choice nodes (CCTPU)
and contingent links with probabilistic durations (cc-pCCTP).
Their Best-First Conflict-Directed Relaxation (BCDR) algo-
rithm computes continuous relaxations for over-constrained
temporal problems having different types of constraints.

Cui et al. (2015) address the problem of finding the bounds
on the ordinary edges in a DC STNU that optimize a given
objective function while preserving the DC property. They
formulate the DC constraints as a disjunctive linear model

230

having up to O(n3) constraints and O(kn2) variables. Al-
though their approach could be used to solve some of the
STNU problems presented in this paper, it is not clear whether
their technique of reducing the number of variables in their
model would yield an advantage given that “any link with
bounds constrained in the input STNU must be represented”.
In contrast, our approach uses only one variable, δ. In addi-
tion, their approach has not been applied to CSTNs.

Currently, we are working on techniques for speeding up
our algorithm based on lazy computation of PLFs.

References
Bhargava, N.; Muise, C.; Vaquero, T.; and Williams, B. 2018.
Delay controllability: Multi-agent coordination under com-
munication delay. Technical Report MIT-CSAIL-TR-2018-
02, MIT.
Cairo, M., and Rizzi, R. 2016. Dynamic controllability of
conditional simple temporal networks is pspace-complete. In
23rd Int. Symp. on Temporal Representation and Reasoning
(TIME-2016), 90–99.
Cairo, M.; Hunsberger, L.; Posenato, R.; and Rizzi, R. 2017.
A Streamlined Model of Conditional Simple Temporal Net-
works - Semantics and Equivalence Results. In 24th Int.
Symp. on Temporal Representation and Reasoning (TIME
2017), volume 90 of LIPIcs, 10:1–10:19.
Cairo, M.; Comin, C.; and Rizzi, R. 2016. Instantaneous
reaction-time in dynamic-consistency checking of condi-
tional simple temporal networks. In 23rd Int. Symp. on Tem-
poral Representation and Reasoning (TIME 2016), 80–89.
Cairo, M.; Hunsberger, L.; and Rizzi, R. 2018. Faster dy-
namic controllablity checking for simple temporal networks
with uncertainty. In 25th Int. Symp. on Temporal Represen-
tation and Reasoning (TIME 2018), volume 120 of LIPIcs,
8:1–8:16.
Casanova, G.; Pralet, C.; and Lesire, C. 2015. Managing
dynamic multi-agent simple temporal network. In 2015 Int.
Conf. on Autonomous Agents and Multiagent Systems, AA-
MAS 2015, 1171–1179. ACM.
Comin, C., and Rizzi, R. 2015. Dynamic consistency of
conditional simple temporal networks via mean payoff games:
a singly-exponential time dc-checking. In 22st Int. Symp. on
Temporal Representation and Reasoning (TIME 2015), 19–
28.
Cui, J.; Yu, P.; Fang, C.; Haslum, P.; and Williams, B. C.
2015. Optimising bounds in simple temporal networks with
uncertainty under dynamic controllability constraints. In 25th
Int. Conf. on Automated Planning and Scheduling (ICAPS-
2015).
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal Constraint
Networks. Artificial Intelligence 49(1-3):61–95.
Gerevini, A.; Saetti, A.; and Serina, I. 2006. An approach
to temporal planning and scheduling in domains with pre-
dictable exogenous events. J. Artif. Intell. Res. 25:187–231.
Hunsberger, L., and Posenato, R. 2018a. Reducing ε-DC
Checking for Conditional Simple Temporal Networks to DC

Checking. In 25th Int. Symp. on Temporal Representation and
Reasoning (TIME 2018), volume 120 of LIPIcs, 15:1–15:15.
Hunsberger, L., and Posenato, R. 2018b. Simpler and faster
algorithm for checking the dynamic consistency of condi-
tional simple temporal networks. In 26th Int. Joint Conf. on
Artificial Intelligence, (IJCAI-2018), 1324–1330.
Hunsberger, L., and Posenato, R. 2018c. Sound-and-
Complete Algorithms for Checking the Dynamic Controlla-
bility of Conditional Simple Temporal Networks with Uncer-
tainty. In 25th Int. Symp. on Temporal Representation and
Reasoning (TIME 2018), volume 120 of LIPIcs, 14:1–14:17.
Hunsberger, L. 2013. Magic Loops in Simple Temporal
Networks with Uncertainty–Exploiting Structure to Speed
Up Dynamic Controllability Checking. In 5th Int. Conf. on
Agents and Artificial Intelligence, ICAART 2013, volume 2,
157–170.
Hunsberger, L. 2015. Efficient execution of dynamically
controllable simple temporal networks with uncertainty. Acta
Informatica 53(2):89–147.
Kumar, T. K. S. 2004. A polynomial-time algorithm for
simple temporal problems with piecewise constant domain
preference functions. In 19th National Conf. on Artificial
Intelligence (AAAI-04), 67–72.
Morris, P. H., and Muscettola, N. 2005. Temporal dynamic
controllability revisited. In 20th National Conf. on Artificial
Intelligence (AAAI-05), 1193–1198.
Morris, R.; Morris, P.; Khatib, L.; and Yorke-Smith, N. 2005.
Temporal constraint reasoning with preferences and probabil-
ities. In IJCAI-05 Multidisciplinary Workshop on Advances
in Preference Handling, 150–155.
Morris, P. H.; Muscettola, N.; and Vidal, T. 2001. Dynamic
control of plans with temporal uncertainty. In 17th Int. Joint
Conf. on Artificial Intelligence (IJCAI-01), 494–502.
Morris, P. 2006. A Structural Characterization of Tempo-
ral Dynamic Controllability. In Principles and Practice of
Constraint Programming (CP 2006), volume 4204, 375–389.
Morris, P. 2014. Dynamic controllability and dispatchability
relationships. In Integration of AI and OR Techniques in
Constraint Programming, volume 8451 of LNCS. 464–479.
Rossi, F.; Venable, K.; and Yorke-Smith, N. 2006. Uncer-
tainty in soft temporal constraint problems: a general frame-
work and controllability algorithms for the fuzzy case. Jour-
nal of Artificial Intelligence Research 27:617–674.
Tsamardinos, I.; Vidal, T.; and Pollack, M. E. 2003. CTP:
A new constraint-based formalism for conditional, temporal
planning. Constraints 8:365–388.
Yu, P.; Williams, B.; Fang, C.; Cui, J.; and Haslum, P. 2017.
Resolving over-constrained temporal problems with uncer-
tainty through conflict-directed relaxation. Journal of Artifi-
cial Intelligence Research 60:425–490.

231

