
Resolving Over-constrained Probabilistic Temporal Problems
through Chance Constraint Relaxation

Peng Yu and Cheng Fang and Brian Williams
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Laboratory
32 Vassar Street, Cambridge, MA 02139
{yupeng,cfang,williams}@mit.edu

Abstract
When scheduling tasks for field-deployable systems,
our solutions must be robust to the uncertainty inherent
in the real world. Although human intuition is trusted to
balance reward and risk, humans perform poorly in risk
assessment at the scale and complexity of real world
problems. In this paper, we present a decision aid sys-
tem that helps human operators diagnose the source of
risk and manage uncertainty in temporal problems. The
core of the system is a conflict-directed relaxation algo-
rithm, called Conflict-Directed Chance-constraint Re-
laxation (CDCR), which specializes in resolving over-
constrained temporal problems with probabilistic du-
rations and a chance constraint bounding the risk of
failure. Given a temporal problem with uncertain du-
ration, CDCR proposes execution strategies that oper-
ate at acceptable risk levels and pinpoints the source
of risk. If no such strategy can be found that meets the
chance constraint, it can help humans to repair the over-
constrained problem by trading off between desirability
of solution and acceptable risk levels. The decision aid
has been incorporated in a mission advisory system for
assisting oceanographers to schedule activities in deep-
sea expeditions, and demonstrated its effectiveness in
scenarios with realistic uncertainty.

Introduction
From transit times to weather changes, uncertainty exists
in every real world scheduling problems. For example, in
deep-sea expeditions, the unbounded uncertainty in the envi-
ronment, the underwater vehicles and the crew performance
make it impossible to find a plan that offers a 100% guaran-
tee of success. Therefore, correct handling of uncertainties
and management of risk are essential requirements for the
ocean scientist who manages expedition plans. The scientist
should use models of uncertainty to generate schedules that
will operate successfully within specified risk bounds. When
the problem is over-constrained, that is, no solution exists
that satisfies all temporal constraints within the acceptable
risk level, the scientist should make trade-offs between risk
and performance to restore the feasibility of the mission.

Such a problem can be modeled by the chance-
constrained probabilistic simple temporal problem (cc-

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

pSTP) formulation, first presented in (Fang, Yu, and
Williams 2014). A solution to a cc-pSTP is a strategy for
executing its activities such that the chance of violating any
temporal constraints is lower than the chance constraint. If,
however, no feasible solution exists for the problem, we
would like to pinpoint sources of risk, and to explore res-
olutions to the problem that trade off risk with performance.
Acceptable risk levels in a mission may be negotiable: in
some urgent situations, the scientists are willing to make
compromises by taking more risk in order to complete a top
priority task. This motivates us to develop a decision aid that
can automatically identify the causes of failure and recom-
mend good resolutions in such over-constrained situations. It
works like an experienced mission planner and helps the sci-
entists tackle problems of larger scale and complexity, find
better solutions, and speed up the mission planning process.

In this paper, we present the key algorithm of the de-
cision aid, Conflict-Directed Chance-constraint Relaxation
(CDCR), which computes preferred trade-offs between tem-
poral and chance constraint relaxations for over-constrained
cc-pSTPs. In the literature, several methods have been in-
troduced for scheduling cc-pSTPs (Fang, Yu, and Williams
2014; Tsamardinos 2002), or resolving over-constrained
temporal problems (STPs (Beaumont et al. 2001; 2004),
DTPs (Moffitt and Pollack 2005), CCTPs (Yu and Williams
2013) and STNUs (Yu, Fang, and Williams 2014)). Our ap-
proach leverages prior work on both probabilistic schedul-
ing and temporal relaxation. The key idea is to diagnose the
source of risks by grounding pSTPs to STNUs through risk
allocation over probabilistic uncertain durations, then apply
controllability checking and conflict extraction algorithms to
identify conflicting constraints from the grounded problem.
Resolutions to these conflicts can then guide us to find (1)
adjustments for the risk allocation; (2) relaxations for tem-
poral constraints; or (3) relaxations for the chance constraint.
This resolution process is iterative: CDCR continues to dis-
cover and resolve new conflicts, until (a) a feasible grounded
STNU is found, which indicates that the current resolution
repairs all conflicts in the problem; or (b) no resolution can
be found for all known conflicts, which indicates that the
cc-pSTP cannot be resolved.

For example, a scientist is planning to deploy an under-
water robot to survey a volcano eruption on the sea floor.
The eruption will occur at around 10:00, following a normal

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78058264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

distribution with a variance of 30 minutes. It is 8:00 now,
and the robot needs to arrive at the site before the start of
the eruption. In addition, at least 45 minutes is required for
traversing to the site, and 30 minutes for collecting samples.
The scientist wants the mission to complete in 3 hours, with
less than 5% risk of violating any constraints, such as being
late or missing the event. We can capture this problem using
a cc-pSTP (Figure 1). After evaluating all the requirements,
the decision aid (DA) determines that no solution exists that
meets all requirements. It immediately engages the scientist
(ST) and initiates a discussion to resolve this problem.

Start
8:00

End

[0,3]

Eruption

Arr. Site Dep. Site

>0.75 >0.75>0.5>0

μ=2,σ=0.5

Figure 1: The cc-pSTP for the underwater robot’s mission

DA: I cannot meet all requirements due to the limited mis-
sion time and the uncertainty in eruption. Can you extend
the mission to 4 hours and 10 minutes.

ST: You can have at most 4 hours for this mission.
DA: May I increase the risk bound for this mission to

7.3% in order to meet the duration requirement?
ST: I do not want to take that much risk on this task.
DA: Ok, can you shorten the traversal time from the site

to the ship by 6 minutes? My plan can then cover 95% of the
possible eruption time, between 8:45 and 10:51.

ST: That’s fine. Thanks.

This example demonstrates the desired features of CDCR:
diagnosing over over-constrained cc-pSTPs and compute
resolutions through trade-offs between relaxations over
chance and temporal constraints. More importantly, it works
collaboratively with the users during the process, proposing
alternatives and learning new requirements, in order to find
better resolutions for them. CDCR has been incorporated
as part of a mission advisory system for helping oceanog-
raphers manage their expeditions. It assists in the planning
for underwater vehicle activities while maintaining an ac-
ceptable risk level and maximizing the missions’ scientific
return. In the following sections, we present the design, im-
plementation and empirical results of the CDCR algorithm.

Problem Statement
The CDCR algorithm takes cc-pSTPs as inputs. cc-pSTP is
an extension to the Simple Temporal Problem formulation
(STP (Dechter, Meiri, and Pearl 1991)). In addition to the
simple temporal constraints in STPs, it adds two new types
of constraints to the problem: probabilistic temporal con-
straints for modeling uncertain durations, and chance con-
straint for specifying the acceptable level of risk. Compared
to the set-bounded contingent constraints used in the Simple
Temporal Networks with Uncertainty formulation (STNUs
(Vidal and Fargier 1999)), the probabilistic representation

of uncertain durations allows cc-pSTP to more accurately
model uncertainty in real world activities. In addition, the
chance constraint allows a quantified bound on risk taken to
be specified, which is more flexible and intuitive than the
criteria of controllability. Here, we repeat the definition of
cc-pSTP from (Fang, Yu, and Williams 2014) for reference.

Definition 1. A cc-pSTP is a pair 〈N+,∆t〉, where:

• N+ is a probabilistic Simple Temporal Network (pSTN),
defined as a 4-tuple 〈Xb, Xe, Rc, Rd〉, where:
– Xb is a set of controllable events whose times can be

assigned by the agent.
– Xe is a set of uncontrollable events whose times are

assigned by the external world.
– Rc is a set of requirement constraints between con-

trollable events. Each cxy ∈ Rc is of type (y − x) ∈
[lxy, uxy], where x, y ∈ Xb ∪Xe.

– Rd is a set of probabilistic uncertain durations. Each
dxy ∈ Rd is a random variable describing the differ-
ence (y − x), where x ∈ Xb and y ∈ Xe.

• ∆t ∈ [0, 1] is the chance constraint that sets the upper
bound on the risk of failure, for the set of requirement
constraints Rc in N+.

Definition 2. A cc-pSTP solution is a pair 〈Ng, Ex〉, where:

• Ng is a grounded STNU of the cc-pSTP. It specifies the al-
located risk over each probabilistic duration: the lower
and upper bounds allocated for each duration indicate
the range of outcomes covered. The total amount of un-
covered outcomes across all probabilistic durations must
be smaller than the chance constraint.

• Ex is an execution strategy for Ng . It covers all control-
lable events in the cc-pSTP, and is controllable with re-
gards to Ng .

Given a cc-pSTP P with chance constraint ∆t, if we ex-
ecute the controllable events using Ex in its solution, the
chance of violating any temporal constraints in P is guar-
anteed to be less than ∆t. The policy Ex could be a static
schedule (with a strongly controllableNg), or a dynamic ex-
ecution policy (with a dynamically controllable Ng). In this
paper, we attempt to find dynamic execution policies to al-
low for flexibility in responding to the outcomes of uncertain
durations.

If a cc-pSTP is over-constrained, no solution exists that
can meet all temporal constraints within the risk bound. In
other words, there is noNg that is controllable and takes less
risk than the chance constraint. This occurs when the user
specifications are too restrictive, for example when the de-
sired time bounds are too tight, or when the user is overly
cautious in setting the chance constraint. These problems
can be resolved through constraint relaxations. We thus de-
fine a relaxable version of the cc-pSTP formulation that al-
lows some of its temporal and chance constraints to be re-
laxed at a cost.

Definition 3. A relaxable cc-pSTP contains all elements
from a cc-pSTP plus four additional elements, rRc, frc,
R∆t and f∆, where:

• rRc is a set of requirement constraints whose temporal
bounds can be relaxed, rRc ⊆ Rc.

• frc : (cxy, c
′
xy) → R+ is a function that maps the re-

laxation to a relaxable constraint, cxy → c′xy where
cxy ∈ rRc, to a positive cost value.

• r∆t ∈ [T, F] is a boolean value that indicates if the
chance constraint can be relaxed to a higher value.

• f∆ : (∆t,∆
′
t) → R+ is a function that maps the relax-

ation to the chance constraint, ∆t → ∆′
t where ∆t ≤

∆′
t ≤ 1, to a positive cost value.

Definition 4. A valid resolution for an over-constrained cc-
pSTP, P , is a 3-tuple 〈R′

c,∆
′
t, Nalloc〉, where:

• R′
c is a set of relaxations (in terms of relaxed lower and

upper bounds) to constraints in rRc of P .
• ∆′

t is a relaxation for the chance constraint ∆t of P , and
∆′

t ≥ ∆t.
• Nalloc is a STNU generated from P by grounding

all probabilistic durations with fixed lower and upper
bounds.

such that Nalloc is dynamically controllable and covers
more than 1−∆′

t of the uncertain durations’ outcomes.
Note that there are usually more than one valid resolutions

to a cc-pSTP due to the continuous property of temporal and
chance constraint relaxations. It is important to prioritize the
resolutions and enumerate only preferred ones of lower costs
for the users. In addition, the users may reject a resolution
proposed by the decision aid, and ask for an alternative one
with additional requirements. These newly added require-
ments should be respected by all future resolutions. Finding
a good resolution usually requires a considerable amount of
negotiation since the users may not have encoded all their
constraints in the input problem. The decision aid needs to
learn about them through the interaction before reaching an
agreement with the user.

Approach
In this section, we present the design and implementation
of the CDCR algorithm that resolves over-constrained cc-
pSTPs. CDCR leverages ideas and methods from probabilis-
tic scheduling and relaxation algorithms in the literature: it
leverages the ideas from (Fang, Yu, and Williams 2014) for
grounding probabilistic pSTPs into deterministic STNUs,
and uses the conflict-directed framework from (Yu, Fang,
and Williams 2014) for efficient conflict detection and reso-
lution. We start with an overview of CDCR, then discuss the
three major procedures of the algorithm: conflict detection,
risk allocation and constraint relaxation.

Conflict-Directed Chance-constraint Relaxation
The input to the CDCR algorithm is a relaxable cc-pSTP.
Given such a problem, CDCR enumerates feasible resolu-
tions in best-first order: a resolution is a collection of relax-
ations for temporal and chance constraints, and each resolu-
tion supports a grounded STNU whose risk is bounded by
the relaxed chance constraint. CDCR (Algorithm 1) takes a
conflict-directed relaxation and allocation approach: given

the grounded STNU of a cc-pSTP that represents a specific
risk allocation, the algorithm identifies conflicts between
constraints and uses their resolutions to guide the search
towards feasible risk allocation and constraint relaxations.
This is similar to the framework used by the CDRU algo-
rithm (Yu, Fang, and Williams 2014), with two key modifi-
cations.

• First, an additional step of risk-allocation is required for
grounding the probabilistic input problem to a STNU.
This allows us to check the feasibility and extract conflicts
between constraints using existing STNU algorithms.

• Second, in addition to temporal constraint relaxations, the
conflict resolution step also adjusts risk allocation and
adds necessary relaxations in order to resolve all known
conflicts while maintaining the risk-taken below the (re-
laxed) chance constraint. Note that this step may require
a non-linear optimization solver if the probabilistic distri-
bution of any uncertain duration is non-linear.

Input: A cc-pSTP 〈N+,∆t, rRc, frc, r∆t, f∆〉.
Output: A relaxation 〈R′

c,∆
′
t, Nalloc〉 that minimizes frc + f∆.

Initialization:
1 Cand← 〈Rcand,∆cand, Ncand, Cr〉; the first candidate;
2 Q← {Cand}; a priority queue of candidates;
3 C ← {}; the set of all known conflicts;

Algorithm:
4 while Q 6= ∅ do
5 Cand←Dequeue(Q);
6 currCft←UNRESOLVEDCONFLICT(Cand,C);
7 if currCft == null then
8 newCft←DYNAMICCONTROLLABLE?(Cand);
9 if newCft == null then

10 return Cand;
11 else
12 C ← C ∪ {newCft};
13 Q← Q ∪ {Cand};
14 endif
15 else
16 Q← Q∪EXPANDONCONFLICT{Cand, currCft};
17 endif
18 end
19 return null;

Algorithm 1: The CDCR algorithm

CDCR is implemented with a priority queue for enumer-
ating resolutions in best-first order. The algorithm starts with
an empty candidate (Line 1) that has no relaxations over
temporal constraints (Rcand) and chance constraint (∆cand),
and an empty set of resolved conflicts (Cr). The candidate
is associated with a risk allocation over all probabilistic un-
certain durations, which is represented by a STNU (Ncand).
The initial allocation is computed from a non-linear solver
and is conservative enough to meet the chance constraint.
The initial candidate is the only element in the queue before
search starts (Line 2).

Within the main loop, CDCR first dequeues the best can-
didate (Line 5) and checks if it resolves all known con-
flicts (Line 6). If not, a conflict currCft will be returned
by function UNRESOLVEDCONFLICT. The unresolved con-

flict is then used for expanding Cand (Line 16). All child
candidates returned by function EXPANDONCONFLICT re-
solve currCft, and are added back to the queue for future
evaluation and expansion.

If Cand resolves all known conflict, CDCR will proceed
to check the controllability of its grounded STNU (func-
tion DYNAMICCONTROLLABLE?, Line 8). If controllable,
Cand will be returned as the best resolution to the cc-pSTP
(Line 10). Otherwise, a new conflict will be returned by this
function and recorded for expanding candidates (Line 12).
Cand will also be added back to Q since it now has an un-
resolved conflict (Line 13).

Conflict Learning from Controllability Checking
Conflict learning is the key for resolving over-constrained
cc-pSTPs. Conflicts explain the cause of failure and pro-
vide guidance for computing necessary relaxations. A con-
flict is represented by a conjunctive set of linear expressions.
Each expression is a necessary constituent of the conflict,
and is defined over the lower and upper bounds of some
requirement and contingent constraints, with integer coeffi-
cients. CDCR learns new conflicts iteratively from grounded
STNUs with different risk allocations. The method for learn-
ing conflict from controllability checking algorithms was in-
troduced in (Yu, Fang, and Williams 2014). Here we present
a brief review of the method using a simple dynamic con-
trollability example (Figure 2).

E2E1
[10,15]

E3
[1,1]

A B

Figure 2: The original STNU

E2E1'
[0,5]

E3
[1,1]

E1
[10,10]

Figure 3: The normalized STNU

E2E1' E3E1
10 (AL)

-10 (-AL)

5 (AU-AL)

0

-1 (-BL)

1 (BU)

e2:0

E2:-5 (AL-AU)

Figure 4: The equivalent distance graph of the STNU

There are three events, E1, E2 and E3, in this example
STNU. These events are connected by two constraints A
and B: A is uncontrollable with a bound of [10,15], while
B is controllable with a bound of [1,1]. The first step of
controllability checking is to map the STNU to a normal-
ized form (Morris and Muscettola 2005), which decouples
the lower bounds from each uncontrollable duration (Figure
3). We can then generate the equivalent distance graph using

the normalized STNU. Note that each distance edge in the
graph, including conditional edges, is labeled with a linear
expression over constraints. The expression represents the
source of its weight value (Figure 4).

Next, we identify and reduce all moat paths in the dis-
tance graph using the iterative method introduced in (Morris
2006). In this example, there is only one valid moat path:
E1′ → E2 → E3. This path has a negative weight, starts
with a lower-case edge, and can be reduced to a single edge
using a lower-case reduction. The reduced edge (represented
by a dotted arrow in Figure 5) of the moat path has a weight
of -1, and is supported by a linear expression that combines
the expressions of all edges in the moat path.

E2E1' E3E1
10 (AL)

-10 (-AL)

5 (AU-AL)

0

-1 (-BL)

1 (BU)

e2:0

E2:-5 (AL-AU)

-1 (-BL)

Figure 5: The distance graph with a reduced edge

After all applicable reductions, the final step is to run all
max consistency check on the graph, which excludes all
lower-case edges. It reveals any negative cycle in the re-
duced graph, whose existence indicates that the STNU is
not dynamically controllable. In this example, one nega-
tive cycle can be detected that contains edge E3 → E2,
E2 → E1′, and the reduced edge E1′ → E3. From this
cycle, we can identify the linear expression that caused this
conflict from all distance edges in the cycle: BU + AL −
AU − BL ≤ 0. In addition, there is another subtle but nec-
essary element of this conflict: the reduction that adds edge
E1′ → E3. The negative cycle would not exist without this
reduced edge. Therefore, the expression that supports the re-
duction, −BL ≤ 0, which guarantees a negative weight for
the moat path, is included in the conflict. The conflict we
can extract from the STNU is a conjunction of two linear
expressions: BU +AL −AU −BL ≤ 0 and −BL ≤ 0.

In summary, learning conflicts from STNUs requires
recording the supporting expression for each distance edge
and reduction. Once a negative cycle is detected, we can ex-
tract a conflict by collecting (1) the expressions for each
edge in the cycle; and (2) the expressions required by the
reductions that added edges to the cycle. The conflict is a
conjunction of these linear expressions, which are all nega-
tive and defined over the temporal bounds of constraints.

Risk Allocation and Constraint Relaxation
Conflicts provide guidance for CDCR to resolve over-
constrained problems. A conflict may be resolved in mul-
tiple ways: it is eliminated if any of its linear expressions is
made non-negative. For example, we can resolve the conflict
in Figure 5 using the following two approaches:
• Set BU +AL −AU −BL ≥ 0, e.g. increasing AL to 15.
• Set −BL ≥ 0, e.g. lowering BL to 0.

Intuitively, to resolve a conflict we can directly require the
weight of a previously negative cycle to be non-negative, or
we can make sure the reduction which adds an edge never
occurs. This choice in resolution is unique to dynamic con-
trollability conflicts: a conflict from consistency or strong
controllability checking only has one linear expression. It
provides more flexibility in conflict resolution, although it
also increases the complexity of the problem: to enumer-
ate resolutions in best-first order, CDCR may need to evalu-
ate all possible repairs for all conflicts. The search branches
each time CDCR expands on a conflict. If a quick response
is desired by the user, CDCR can be implemented with any-
time search strategies.

Given a set of conflicts, we can formulate a constrained
optimization problem and compute the resolutions using a
non-linear optimization solver. There are three categories of
variables in the optimization problem: relaxations for tem-
poral constraints (rc′iL and rc′iU), relaxations for chance
constraint (∆′

t), and the allocation of lower and upper
bounds for probabilistic durations (rd′iL and rd′iU). Each
category of variables represents a type of conflict resolu-
tions: re-allocating risk over probabilistic durations, relaxing
chance constraint, and relaxing temporal constraints. These
are given in Problem 1.

Problem 1 (Conflict resolution).

min
∆′

t,rcj∈rRc

f∆(∆′
t −∆t) +

|rRc|∑
j=1

frc(rcj) (1)

s.t. rd′iL − rd′iU < 0 (2)

rc′jL − rcjL ≤ 0, rc′jU − rcjU ≥ 0 (3)

rc′kL − rckL = 0, rc′kU − rckU = 0 (4)
Conflictm ≥ 0 (5)∑
rd∈Rd

RISK(rdiL, rdiU) ≤ ∆′
t, ∆′

t ∈ [∆t, 1) (6)

The constraints in the optimization problem enforce the
necessary properties. For lower and upper bound variables
of probabilistic durations, their value can be freely assigned
as long as the lower bound is smaller than the upper bound,
encoded by (2). For relaxable requirement constraints, their
new temporal bounds must be no tighter than the original
bounds, as in (3). For requirement constraints that are not
relaxable, their temporal bounds remain unchanged as in (4).

The resolution constraints in (5) are added to ensure that
all known conflicts are repaired by the resolution. Given
m conflicts, the same number of resolution constraints will
be added, each representing the negation of one linear ex-
pression in each conflict. For example, given two conflicts
AL − 5BU + 2CL < 0 and 2BL + CL + DU < 0, the
resolution constraints will be AL − 5BU + 2CL ≥ 0 and
2BL + CL + DU ≥ 0. Variables covered by these con-
straints are the lower and upper bounds of both requirement
constraints and probabilistic durations, with integer coeffi-
cients.

Finally, we add risk allocation constraint to ensure that
the risk taken meets the chance constraint. This constraint is

defined over the lower and upper bound variables of all prob-
abilistic durations. Given distributions of each probabilistic
duration and the uncertainty bounds chosen, the RISK func-
tion computes the probability mass of the regions outside the
uncertainty bounds. CDCR uses the union bound to upper-
bound the total risk taken across all uncertain durations, as
this does not rely on assumptions of independence. If the
chance constraint is relaxable, we further require that the
relaxed chance constraint is lower-bounded by the original
chance constraint and 1. This gives us the flexibility to make
trade-offs between risk and performance, if no solution can
be found that resolves all conflicts while meeting the current
chance constraint. These are described by (6).

The objective function, given in (1), is defined over f∆

and frc for minimizing the cost of temporal and chance
constraint relaxations. In the optimization problem, all do-
main and conflict resolution constraints are linear, while the
chance constraint may be non-linear depending on the prob-
abilistic distributions. CDCR uses the Interior Point Opti-
mizer (IPOPT (Wchter and Biegler 2006)) to compute opti-
mal resolutions. If a resolution is returned by IPOPT, func-
tion EXPANDONCONFLICT will construct a new candidate
with its constraint relaxations and the risk allocations. This
candidate will then be added as a new branch to CDCR’s
search tree.

Incorporating User Inputs

Finally, we present the implementation of CDCR that takes
user responses to improve existing solutions. This feature al-
lows CDCR to accept new requirements from the user during
the search, and incorporate them in all future solutions. It is
achieved through adding a step to the algorithm presented in
preceding section (Algorithm 2): if the user rejects the cur-
rent solution, CDCR records their inputs as a new conflict
and add it to the known conflicts list C (Line 11). Allowed
responses are adjustments to both temporal constraints and
risk allocations, such as ”This mission must complete in 10
hours instead of 15”, or ”Task A is not as important, increase
risk allowance from 5% to 10%”.

Initialization:
1 Sol← 〈R′

c,∆
′
t, Nalloc〉; a solution to P ;

2 C ← {}; the set of all known conflicts;
Algorithm:

3 while true do
4 Sol←CDCR(C);
5 if Sol == null then
6 return null;
7 else
8 if Accepted?(Sol) then
9 return Sol;

10 else
11 C ← C∪PARSEINPUTS{UserResponse}
12 endif
13 endif
14 end
Algorithm 2: Addition to CDCR for Incorporating Inputs

Once an input has been recorded and inserted into the
known conflict set, it will be used to expand future candi-
dates. This guarantees that all future solutions respect this
newly added requirement. CDCR also adds the current solu-
tion back to the queue, as it does not resolve the new conflict.
It then restarts the search (Line 4) for solution that resolves
all conflicts while minimizing cost.

Application and Experimental Results
The CDCR algorithm has been incorporated as part of a
mission advisory system for helping oceanographers sched-
ule tasks in deep-sea expeditions. Their missions are usually
weeks long, and involve the operations of several underwa-
ter robots. Each robot usually performs ten to fifteen dives
in a mission, and a dive may last anytime between 6 to 16
hours. During each dive, a robot is tasked with a set of sur-
vey locations on the sea floor: the robot needs to traverse to
each location, take samples and images, and return before
running out of power. Due to unexpected ocean currents and
incomplete terrain data, the traversal time between survey
sites is highly uncertain and difficult to estimate. It is almost
impossible for the oceanographers to correctly assess the un-
certainty of each dive and plan tasks accordingly to meet the
risk bound and a large set of operational constraints.

The advisory system simplifies the oceanographers’ tasks
and significantly reduced their workload in these missions.
The advisor can check the feasibility of a mission plan and
search for valid risk allocations that meet the risk require-
ment. If no such allocation can be found, the decision aid
will explain the cause of failure using the conflicts detected
during the search, and propose preferred relaxations to re-
solve the over-constrained plan. If the users are not satisfied
with the results, they can ask the mission advisor to adjust
the solutions given their new inputs.

In the rest of the section, we present experimental re-
sults that demonstrate the run-time performance of CDCR
on problems with different size and complexity. The test
cases were generated using a mission simulator for under-
water expeditions. Given a set of target locations on a map,
the simulator generates survey tasks around them and con-
nects these locations with transit activities. Each test case de-
scribes a dive of multiple survey tasks: the traversals are rep-
resented by probabilistic durations, while the survey times
and battery restrictions are modeled by simple temporal con-
straints. The operational risk limit is specified by the chance
constraints in the cc-pSTPs. In addition, multiple underwa-
ter robots may be deployed and working in parallel during
a dive: each robot may have different speed and power stor-
age. Depending on the distance and vehicles, probabilistic
durations of different traversals and robots may have differ-
ent distributions.

In total, we created 2000 test cases using randomly gen-
erated numbers of vehicles, risk bounds, task locations and
mission length. For each problem, we run CDCR to find a
grounded STNU of the cc-pSTP that is dynamically con-
trollable while meeting the chance constraint, or a set of re-
laxations for the cc-pSTP that will enable such a STNU. The
timeout for each test is 30 seconds, which is usually the max-
imum duration that users are willing to wait for.

Results
We benchmarked CDCR on each problem twice: the first run
assumes normal distribution over the uncertain durations,
and the second run assumes uniform distribution. The cut-
off for the uniform distribution is selected using µ ± 2σ. In
each test, the time consumption of the first solution returned
was recorded. The results are shown in Figure 6.

Figure 6: Runtime of CDCR (first solution)

In total, 453 of 2000 normal distribution tests were solved
by CDCR in 30 seconds, while the number for uniform dis-
tribution tests is 1640 of 2000. As can be seen from the fig-
ure, CDCR performs much better on problems with uniform
distribution, since all constraints are linear during conflict
resolution in uniform distribution tests (we used the union
bound approximation). This requires significantly less com-
putation compared to normal distribution tests. Solving the
optimization problems for conflict resolution is the most ex-
pensive operation in the CDCR algorithm, which takes up
to 90% of the total computation time. Problems with normal
distribution durations add a highly non-linear chance con-
straint during conflict resolution, making it much harder for
the optimizer to solve.

On the other hand, normal distribution is a better model
for the uncertainty in some real world activities, for exam-
ple the timing of natural phenomena. Even though it requires
much more computation than uniform distribution problems
of the same size, CDCR resolved most of the problems with
less than 100 constraints in 30 seconds. This is enough for
modeling a 10-hour survey mission of several robots work-
ing in parallel. In general, the algorithm configuration and
modeling should be different from one application to an-
other. The choice of distributions to use is thus application
dependent, although these results suggest that tractability
must be considered when selecting density functions.

Contribution
In this paper, we presented the Conflict-Directed Chance-
constraint Relaxation algorithm, the first approach for re-
solving over-constrained probabilistic temporal problems
with chance constraints. CDCR leverages prior work on
probabilistic scheduling and temporal relaxation to diagnose
the source of risks and enumerate preferred resolutions with
bounded risk. It allows the users to resolve conflicts by trad-
ing off between safety margins and performance, provid-
ing flexibility for risk management in real world scenarios.
CDCR has been incorporated in a mission advisory system

for assisting oceanographers to plan and schedule activities
in deep-sea expeditions, with input from the user. We have
numerically demonstrated that the computational time re-
quired by CDCR is tractable for a class of underwater sur-
vey missions. The CDCR algorithm thus provides a prin-
cipled decision-making assistance for scheduling under un-
certainty, working with human operators to produce policies
with probabilistic guarantees on temporal consistency.

Acknowledgments
Thanks to Eric Timmons, David Wang, Richard Camilli and
Scott Smith for their support. This project is funded by the
Boeing Company under grant MIT-BA-GTA-1.

References
Beaumont, M.; Sattar, A.; Maher, M.; and Thornton, J. 2001.
Solving overconstrained temporal reasoning problems. In
Proceedings of the 14th Australian Joint Conference on Ar-
tificial Intelligence (AI-2001), 37–49.
Beaumont, M.; Thornton, J.; Sattar, A.; and Maher, M. 2004.
Solving over-constrained temporal reasoning problems us-
ing local search. In Proceedings of the 8th Pacific Rim Con-
ference on Artificial Intelligence (PRICAI-2004), 134–143.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61–95.
Fang, C.; Yu, P.; and Williams, B. 2014. Chance-constrained
probabilistic simple temporal problems. In Proceedings
of the Twenty-Eighth AAAI Conference on Artificial Intel-
ligence (AAAI-14), 2264–2270.
Moffitt, M. D., and Pollack, M. E. 2005. Partial constraint
satisfaction of disjunctive temporal problems. In Proceed-
ings of the 18th International Florida Artificial Intelligence
Research Society Conference (FLAIRS-2005), 715–720.
Morris, P., and Muscettola, N. 2005. Temporal dynamic
controllability revisited. In Proceedings of the 20th National
Conference on Artificial Intelligence (AAAI-2005), 1193–
1198.
Morris, P. 2006. A structural characterization of temporal
dynamic controllability. In Proceedings of the 12th Interna-
tional Conference on Principles and Practice of Constraint
Programming (CP-2006), 375–389.
Tsamardinos, I. 2002. A probabilistic approach to robust
execution of temporal plans with uncertainty. In Methods
and Applications of Artificial Intelligence: Proceedings of
the Second Hellenic Conference on Artificial Intelligence,
volume 2308 of Lecture Notes in Computer Science, 97–
108.
Vidal, T., and Fargier, H. 1999. Handling contingency in
temporal constraint networks: from consistency to control-
labilities. Journal of Experimental and Theoretical Artificial
Intelligence 11:23–45.
Wchter, A., and Biegler, L. T. 2006. On the implementa-
tion of an interior-point filter line-search algorithm for large-
scale nonlinear programming. Mathematical Programming
106:25–57.

Yu, P., and Williams, B. 2013. Continuously relaxing over-
constrained conditional temporal problems through gener-
alized conflict learning and resolution. In Proceedings of
the 23th International Joint Conference on Artificial Intelli-
gence (IJCAI-2013), 2429–2436.
Yu, P.; Fang, C.; and Williams, B. 2014. Resolving un-
controllable conditional temporal problems using continu-
ous relaxations. In Proceedings of the Twenty-fourth Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS-2014), 341–349.

