5,942 research outputs found

    Annual Report 2020 of the Institute for Thermal Energy Technology and Safety

    Get PDF
    The annual report of the Institute for Thermal Energy Technology and Safety of KIT summarizes its research activities and provides some highlights of each working group, like thermal-hydraulic analyses for fusion reactors, accident analyses for light water reactors, and research on innovative energy technologies: liquid metal technologies for energy conversion, hydrogen technologies and geothermal power plants. The institute has been engaged in education and training in energy technologies

    Annual Report 2020 of the Institute for Thermal Energy Technology and Safety (KIT Scientific Reports ; 7762)

    Get PDF
    The annual report of the Institute for Thermal Energy Technology and Safety of KIT summarizes its research activities and provides some highlights of each working group, like thermal-hydraulic analyses for fusion reactors, accident analyses for light water reactors, and research on innovative energy technologies: liquid metal technologies for energy conversion, hydrogen technologies and geothermal power plants. The institute has been engaged in education and training in energy technologies

    NUCLEAR POWER AND ELECTRIC GRID RESILIENCE: CURRENT REALITIES AND FUTURE PROSPECTS

    Get PDF
    Life as we know it in modern society relies on the smooth functioning of the electric Grid – the Critical Infrastructure system that generates and delivers electricity to our homes, businesses, and factories. Virtually all other Critical Infrastructure systems depend on the Grid for the electricity they require to execute other essential societal functions such as telecommunications, water supply and waste water services, fuel delivery, etc. This study examines the concepts of Critical Infrastructure and electric Grid resilience, and the role nuclear power plants do and might play in enhancing U.S. Grid resilience. Grid resilience is defined as the system’s ability to minimize interruptions of electricity flow to customers given a specific load prioritization hierarchy. The question of whether current U.S. nuclear power plants are significant Grid resilience assets is examined in light of this definition. Despite their many virtues and their “fuel security,” the conclusion is reached that current U.S. nuclear power plants are not significant Grid resilience assets for scenarios involving major Grid disruptions. The concept of a “resilient nuclear power plant” or “rNPP” – a nuclear power plant that is intentionally designed, sited, interfaced, and operated in a manner to enhance Grid resilience – is presented. Two rNPP Key Attributes and Six rNPP Functional Requirements are defined. Several rNPP design features (system architectures and technologies) that could enable a plant to achieve the Six rNPP Functional Requirements are described. Four specific applications of rNPPs are proposed: (1) rNPPs as flexible electricity generation assets, (2) rNPPs as anchors of hybrid nuclear energy systems, (3) rNPPs as Grid Black Start Resources, and (4) rNPPs as anchors of Resilient Critical Infrastructure Islands. The last two applications are new concepts for enhancing U.S. strategic resilience. Finally, a few key unresolved issues are discussed and recommendations for future research are offered. Study results support the overall conclusion that successful development and deployment of rNPPs could significantly enhance U.S. Grid, Critical Infrastructure, and societal resilience, while transforming the value proposition of nuclear energy in the 21st century

    Critical Infrastructures: Enhancing Preparedness & Resilience for the Security of Citizens and Services Supply Continuity: Proceedings of the 52nd ESReDA Seminar Hosted by the Lithuanian Energy Institute & Vytautas Magnus University

    Get PDF
    Critical Infrastructures Preparedness and Resilience is a major societal security issue in modern society. Critical Infrastructures (CIs) provide vital services to modern societies. Some CIs’ disruptions may endanger the security of the citizen, the safety of the strategic assets and even the governance continuity. The European Safety, Reliability and Data Association (ESReDA) as one of the most active EU networks in the field has initiated a project group on the “Critical Infrastructure/Modelling, Simulation and Analysis – Data”. The main focus of the project group is to report on the state of progress in MS&A of the CIs preparedness & resilience with a specific focus on the corresponding data availability and relevance. In order to report on the most recent developments in the field of the CIs preparedness & resilience MS&A and the availability of the relevant data, ESReDA held its 52nd Seminar on the following thematic: “Critical Infrastructures: Enhancing Preparedness & Resilience for the security of citizens and services supply continuity”. The 52nd ESReDA Seminar was a very successful event, which attracted about 50 participants from industry, authorities, operators, research centres, academia and consultancy companies.JRC.G.10-Knowledge for Nuclear Security and Safet

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Resilience: A New Paradigm of Nuclear Safety: From Accident Mitigation to Resilient Society Facing Extreme Situations

    Get PDF
    nuclear safety; decision makin

    Annual Report 2019 of the Institute for Nuclear and Energy Technologies (KIT Scientific Reports ; 7759)

    Get PDF
    The annual report of the Institute for Nuclear and Energy Technologies of KIT summarizes its research activities and provides some highlights of each working group, like thermal-hydraulic analyses for fusion reactors, accident analyses for light water reactors, and research on innovative energy technologies: liquid metal technologies for energy conversion, hydrogen technologies and geothermal power plants. The institute has been engaged in education and training in energy technologies

    A framework to study the resilience of organizations: a case study of a nuclear emergency plan

    Get PDF
    El desarrollo de la resiliencia es un campo de investigación importante en ámbitos como el Management, la Ingeniería, la Psicología o la Ecología. La importancia del estudio de la resiliencia se ha visto desarrollada por el aumento tanto de desastres naturales como antropogénicos, así como por el desarrollo de conciencia acerca de sus efectos. Estas razones de peso han influido en que los Gobiernos estén invirtiendo recursos en la mejora de la resiliencia de organizaciones, infraestructuras, ciudades, individuos, etc. Sin embargo, a pesar de su importancia, el número de trabajos de investigación que se centran en el desarrollo de metodologías específicas para el diseño de organizaciones resilientes es reducido. El principal objetivo de esta investigación es mejorar este aspecto introduciendo un marco para el diseño de organizaciones resilientes. Para alcanzar este objetivo, se explica cómo emplear el Modelo de Sistemas Viables para el diseño de estas organizaciones. Nos hemos centrado en uno de los aspectos clave de la resiliencia: las comunicaciones. Para ello, se ha usado el caso de estudio del plan de emergencia de una central nuclear en España. Las comunicaciones en una organización pueden modelarse como un proceso de difusión en redes multiplex. Buscamos arquitecturas aplicables a nuestro caso de estudio. Sin embargo, no se ha encontrado ninguna que cumpliera con los requisitos que se necesitaban. Este hecho, nos ha llevado a proponer una nueva arquitectura, que además de permitir estudiar la difusión de información en una organización, permite estudiar otros procesos de difusión en redes multiplex.Departamento de Organización de Empresas y Comercialización e Investigación de MercadosDoctorado en Ingeniería Industria

    A new resilient risk management model for offshore wind turbine maintenance

    Get PDF
    The objective of this study is to implement the principles of Resilience Engineering (RE) for the maintenance management of Offshore Wind Turbine (OWT) systems by taking into account human and organizational factors. Resilience concepts are integrated into existing maintenance management elements and a resilient model is developed and applied to OWT in order to manage the maintenance related risks. The four main capabilities proposed by RE, i.e. responding, monitoring, anticipating and learning, are linked to a three level resilience system in order to prevent or mitigate OWT maintenance failures. The paper presents the applicability and effectiveness of RE in preventing accidents/incidents and system failures, and learning activities
    corecore