1,262 research outputs found

    Modeling, Control, and Optimization for Diesel-Driven Generator Sets

    Get PDF

    Exhaust Recirculation Control for Reduction of NOx from Large Two-Stroke Diesel Engines

    Get PDF

    Optimal air and fuel-path control of a diesel engine

    Get PDF
    The work reported in this thesis explores innovative control structures and controller design for a heavy duty Caterpillar C6.6 diesel engine. The aim of the work is not only to demonstrate the optimisation of engine performance in terms of fuel consumption, NOx and soot emissions, but also to explore ways to reduce lengthy calibration time and its associated high costs. The test engine is equipped with high pressure exhaust gas recirculation (EGR) and a variable geometry turbocharger (VGT). Consequently, there are two principal inputs in the air-path: EGR valve position and VGT vane position. The fuel injection system is common rail, with injectors electrically actuated and includes a multi-pulse injection mode. With two-pulse injection mode, there are as many as five control variables in the fuel-path needing to be adjusted for different engine operating conditions. [Continues.

    Supervisory Control Implementation on Diesel-Driven Generator Sets

    Get PDF

    Integration of a mean-torque diesel engine model into a hardware-in-the-loop shipboard network simulation using lambda tuning

    Get PDF
    This study describes the creation of a hardware-in-the-loop (HIL) environment for use in evaluating network architecture, control concepts and equipment for use within marine electrical systems. The environment allows a scaled hardware network to be connected to a simulation of a multi-megawatt marine diesel prime mover, coupled via a synchronous generator. This allows All-Electric marine scenarios to be investigated without large-scale hardware trials. The method of closing the loop between simulation and hardware is described, with particular reference to the control of the laboratory synchronous machine, which represents the simulated generator(s). The fidelity of the HIL simulation is progressively improved in this study. First, a faster and more powerful field drive is implemented to improve voltage tracking. Second, the phase tracking is improved by using two nested proportional–integral–derivative–acceleration controllers for torque control, tuned using lambda tuning. The HIL environment is tested using a scenario involving a large constant-power load step. This provides a very severe test of the HIL environment, and also reveals the potentially adverse effects of constant-power loads within marine power systems

    Modeling and dynamic stability of distributed generations

    Get PDF
    The objective of this dissertation is to develop dynamic models for distributed generations (DG), to investigate their impacts on dynamic stability of power distribution systems, and to design controllers for DGs to improve the dynamic stability of the integrated power distribution system.;A two-year distributed generation (DG) project at West Virginia University (WVU) evaluated the impact of various DG sources on actual distribution systems by performing computer simulations. The data is supplied by two regional electric utilities of two actual distribution systems each. In this project several important issues were investigated, including the availability of simulation tools and impacts of DGs connected to a distribution line under a variety of line operating conditions. Based on this preliminary research the further most interesting topics for continued research were raised.;The continued research has focused on deeper investigation, such as, modeling DG sources, evaluating their interaction and impacts, and improving the dynamic stability of the integrated power distribution system. Four specific DGs are studied in this dissertation: fuel cell power plant, wind turbine induction generator, gas turbine synchronous generator and diesel engine synchronous generator.;A full-order synchronous generator model represents the generator models of gas turbine generator and diesel engine generator. A simplified gas turbine model has been chosen to be implemented. A practical diesel engine for emergency use is modeled. The generator model of wind turbine induction generator is represented by a full-order induction generator. The rated power operating regime is considered for impacts evaluations and controller design. Two types of fuel cell models are developed. The first one is a model of already operational phosphoric acid fuel cell (PAFC) obtained through data fitting and the second one is dynamic model of solid oxide fuel cell (SOFC). Since fuel cells are connected to the electric power network via inverters, an inverter model has been developed.;Multi-DG controls are investigated in this dissertation. One DG control is fuel cell control, the other one is wind-turbine control. The control of fuel cell (SOFC) plant is through the inverter to adjust active power injection to the network during the transient time. The control of wind turbine generator is through the parallel connected SVC by adjusting reactive power injection to the system. Both control schemes are centralized.;Linear analysis methodologies are utilized in designing the controller. In the fuel cell control design, two pairs of critical modes are screened out using eigenvalue analysis. The participation factors of DGs with respect to the modes are calculated. Two specific lead-lag compensation units are designed to damp each mode separately. The gains of the two compensation units were then obtained via optimal control methodology. In wind turbine DG control design procedure, three rotor speed deviations are used as input signals while the controller outputs are the firing angle for the SVC and the pitch angle for the wind-turbine DG. An output feedback controller is designed. The dynamic load characteristic is also considered by modeling it as a structured uncertainty. mu-analysis is used to evaluate the robust stability of the controllers with respect to the uncertain parameters in the dynamic loads. The IEEE-13 node radial feeder with existing gas turbine and diesel engine DGs is used as a test system to evaluate the multi-DG control. The simulation results demonstrate the effectiveness of the control strategies.;Coordinated operation of all the DGs is investigated. Simulation results show that good configurations within DGs along the system can improve the system stability. Furthermore, the fast acting SVC is very effective in improving damping. Among the DGs investigated in this research, the fuel cell plant control is the best choice for the coordinated operation.;Finally, the approach to model a complete three-phase power distribution system is implemented. The impact of the developed DGs models is evaluated on a three-phase unbalanced distribution system. The three-phase 13-node IEEE system with gas turbine and diesel engine DGs is simulated using MATLAB/Simulink\u27s Power System Blockset (PSB). In the simulation, a three-phase thyristor controlled braking resistor (TCBR) is connected to absorb the surplus energy when the system is subjected to a disturbance. The three-phase dynamic simulation demonstrates the effectiveness of the proposed strategy

    Automotive Powertrain Control — A Survey

    Full text link
    This paper surveys recent and historical publications on automotive powertrain control. Control-oriented models of gasoline and diesel engines and their aftertreatment systems are reviewed, and challenging control problems for conventional engines, hybrid vehicles and fuel cell powertrains are discussed. Fundamentals are revisited and advancements are highlighted. A comprehensive list of references is provided.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72023/1/j.1934-6093.2006.tb00275.x.pd

    Model-based Fault-tolerant Control to Guarantee the Performance of a Hybrid Wind-Diesel Power System in a Microgrid Configuration

    Get PDF
    AbstractThis paper presents a comparison of two different adaptive control schemes for improving the performance of a hybrid wind-diesel power system in an islanded microgrid configuration against the baseline controller, IEEE type 1 automatic voltage regulator (AVR). The first scheme uses a model reference adaptive controller (MRAC) with a proportional-integral-derivative (PID) controller tuned by a genetic algorithm (GA) to control the speed of the diesel engine (DE) for regulating the frequency of the power system and uses a classical MRAC for controlling the voltage amplitude of the synchronous machine (SM). The second scheme uses a MRAC with a PID controller tuned by a GA to control the speed of the DE, and a MRAC with an artificial neural network (ANN) and a PID controller tuned by a GA for controlling the voltage amplitude of the SM. Different operating conditions of the microgrid and fault scenarios in the diesel engine generator (DEG) were tested: 1) decrease in the performance of the diesel engine actuator (40% and 80%), 2) sudden connection of 0.5 MW load, and 3) a 3-phase fault with duration of 0.5seconds. Dynamic models of the microgrid components are presented in detail and the proposed microgrid and its fault-tolerant control (FTC) are implemented and tested in the Simpower Systems of MATLAB/Simulink® simulation environment. The simulation results showed that the use of ANNs in combination with model-based adaptive controllers improves the FTC system performance in comparison with the baseline controller

    Modeling and Control of Diesel-Hydrokinetic Microgrids

    Get PDF
    A large number of decentralized communities in Canada and particularly in Québec rely on diesel power generation. The cost of electricity and environmental concerns suggest that hydrokinetic energy is a potential for power generation. Hydrokinetic energy conversion systems (HKECSs) are clean, reliable alternatives, and more beneficial than other renewable energy sources and conventional hydropower generation. However, due to the stochastic nature of river speed and variable load patterns of decentralized communities, the use of a hybrid diesel- hydrokinetic (D-HK) microgrid system has advantages. A large or medium penetration level has a negative effect on the short-term (transient) and long-term (steady-state) performance of such a hybrid system if the HKECS is controlled based on conventional control schemes. The conventional control scheme of the HKECS is the maximum power point tracking (MPPT). In the long-term conditions, the diesel generator set (genset) can operate at a reduced load where the role of the HKECS is to reduce the electrical load on the diesel genset (light loading). In the short-term, the frequency of the microgrid can vary due to the variable nature of water speed and load patterns. This can lead to power quality problems like a high rate of change of frequency or power, frequency fluctuations, etc. Moreover, these problems are magnified in storage-less DHK microgrids where a conventional energy storage system is not available to mitigate power as well as frequency deviations by controlling active power. Therefore, developing sophisticated control strategies for the HKECS to mitigate problems as mentioned above are necessary. Another challenging issue is a hardware-in-the-loop (HIL) platform for testing and developing a D-HK microgrid. A dispatchable power controller for a fixed-pitch cross-flow turbine-based HKECS operating in the low rotational speed (stall) region is presented in this thesis. It delivers a given power requested by an operator provided that the water speed is high enough. If not, it delivers as much as possible, operating with an MPPT algorithm while meeting the basic operating limits (i.e., generator voltage and rotor speed, rated power, and maximum water speed), shutting down automatically if necessary. A supervisory control scheme provides a smooth transition between modes of operation as the water speed and reference power from the operator vary. The performance of the proposed dispatchable power controller and supervisory control algorithm is verified experimentally with an electromechanical-based hydrokinetic turbine (HKT) emulator. The permanent magnet synchronous generator (PMSG) is preferred in small HKECSs. So, a converter-based PMSG emulator as a testbed for designing, analyzing, and testing of the generator’s power electronic interface and its control system is developed. A 6-switch voltage source converter (VSC) is used as a power amplifier to mimic the behaviour of the PMSG supplying linear and non-linear loads. Technical challenges of the PMSG emulator are considered, and proper solutions are suggested. Finally, an active power sharing control strategy for a storage-less D-HK microgrid with medium and high penetration of hydrokinetic power to mitigate: 1) the effect of the grid frequency fluctuation due to instantaneous variation in the water speed/load, and 2) light loading operation of the diesel engine is proposed. A supplementary control loop that includes virtual inertia and frequency droop control is added to the conventional control system of HKECS in order to provide load power sharing and frequency support control. The proposed strategy is experimentally verified with diesel engine and HKT emulators controlled via a dSPACE® rapid control prototyping system. The transient and steady-state performance of the system including grid frequency and power balancing control are presented
    • …
    corecore