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Abstract

Modeling and Dynamic Stability of Distributed Generations

by

Zhixin Miao

Doctor of Philosophy in Electrical Engineering

West Virginia University

Professor Muhammad A. Choudhry, Ph.D., Co-Chair

Professor Ronald L. Klein, Ph.D., Chair

The objective of this dissertation is to develop dynamic models for distributed generations (DG),
to investigate their impacts on dynamic stability of power distribution systems, and to design
controllers for DGs to improve the dynamic stability of the integrated power distribution system.

A two-year distributed generation (DG) project at West Virginia University (WVU) eval-
uated the impact of various DG sources on actual distribution systems by performing computer
simulations. The data is supplied by two regional electric utilities of two actual distribution systems
each. In this project several important issues were investigated, including the availability of simu-
lation tools and impacts of DGs connected to a distribution line under a variety of line operating
conditions. Based on this preliminary research the further most interesting topics for continued
research were raised.

The continued research has focused on deeper investigation, such as, modeling DG sources,
evaluating their interaction and impacts, and improving the dynamic stability of the integrated
power distribution system. Four specific DGs are studied in this dissertation: fuel cell power plant,
wind turbine induction generator, gas turbine synchronous generator and diesel engine synchronous
generator.

A full-order synchronous generator model represents the generator models of gas turbine
generator and diesel engine generator. A simplified gas turbine model has been chosen to be
implemented. A practical diesel engine for emergency use is modeled. The generator model of wind
turbine induction generator is represented by a full-order induction generator. The rated power
operating regime is considered for impacts evaluations and controller design. Two types of fuel
cell models are developed. The first one is a model of already operational phosphoric acid fuel
cell (PAFC) obtained through data fitting and the second one is dynamic model of solid oxide fuel
cell (SOFC). Since fuel cells are connected to the electric power network via inverters, an inverter
model has been developed.

Multi-DG controls are investigated in this dissertation. One DG control is fuel cell control,
the other one is wind-turbine control. The control of fuel cell (SOFC) plant is through the inverter
to adjust active power injection to the network during the transient time. The control of wind



turbine generator is through the parallel connected SVC by adjusting reactive power injection to
the system. Both control schemes are centralized.

Linear analysis methodologies are utilized in designing the controller. In the fuel cell con-
trol design, two pairs of critical modes are screened out using eigenvalue analysis. The participation
factors of DGs with respect to the modes are calculated. Two specific lead-lag compensation units
are designed to damp each mode separately. The gains of the two compensation units were then
obtained via optimal control methodology. In wind turbine DG control design procedure, three
rotor speed deviations are used as input signals while the controller outputs are the firing angle for
the SVC and the pitch angle for the wind-turbine DG. An output feedback controller is designed.
The dynamic load characteristic is also considered by modeling it as a structured uncertainty. µ-
analysis is used to evaluate the robust stability of the controllers with respect to the uncertain
parameters in the dynamic loads. The IEEE-13 node radial feeder with existing gas turbine and
diesel engine DGs is used as a test system to evaluate the multi-DG control. The simulation results
demonstrate the effectiveness of the control strategies.

Coordinated operation of all the DGs is investigated. Simulation results show that good
configurations within DGs along the system can improve the system stability. Furthermore, the fast
acting SVC is very effective in improving damping. Among the DGs investigated in this research,
the fuel cell plant control is the best choice for the coordinated operation.

Finally, the approach to model a complete three-phase power distribution system is im-
plemented. The impact of the developed DGs models is evaluated on a three-phase unbalanced
distribution system. The three-phase 13-node IEEE system with gas turbine and diesel engine
DGs is simulated using MATLAB/Simulink’s Power System Blockset (PSB). In the simulation, a
three-phase thyristor controlled braking resistor (TCBR) is connected to absorb the surplus energy
when the system is subjected to a disturbance. The three-phase dynamic simulation demonstrates
the effectiveness of the proposed strategy.
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Chapter 1

Introduction

1.1 Problem Description

Distributed Generation (DG) has entered the vocabulary of global energy companies and has re-

cently become a mainstream topic in energy planning, policy and new business ventures. In a

restructured energy industry, DG technologies can help power providers capture new markets,

serve high value customers, reduce infrastructure investment, and optimize asset utilization. En-

ergy suppliers can gain and maintain competitive advantage with DG technologies, which include

gas turbines, diesel engines, fuel cells, and wind turbines. Emerging options are being field tested

and deployed by early adopters who view DG as a dynamic opportunity to strategically transform

the market and gain a competitive advantage with advanced technology. Penetrating the current

market will depend on successful DG applications and promoting the technology as one part of a

reliable, standardized and clear solution.

Traditionally, power systems have been operated in a vertically structure. Almost all of

the power has been generated at large power plants and the power is transmitted to consumers via

long distance transmission system. Currently, substations are the only electric power source for

loads in the distribution systems. With the advent of DGs, the newly power sources come out.

Each of the DGs has its own advantages and disadvantages. While DGs are connected to

the distribution system and to supply power, their connections will have a great impact on the real

time system operation and many characteristics of their integration into existing systems are still

uncertain, for example, the disturbance arising from fault or load fluctuation could cause the DGs

to fall out of step.

The power distribution system has several specific features when compared to the power
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transmission system: 1) Distribution systems are normally three-phase unbalanced due to the var-

ious customer loads; 2) Distribution systems are directly connected to the relatively large capacity

transmission systems; 3) The lower voltage level results in higher resistor/reactance ratios (R/X)

of the distribution lines. This R/X ratio will decrease when transformer and voltage regulators are

considered. In this dissertation, dynamic stability controls are designed to improve the oscillation

damping of the distribution system with DGs.

To investigate the impacts of DGs on the dynamic stability of the distribution system, the

four types of DGs: gas turbine synchronous generator, diesel engine synchronous generator, fuel cell

power plant and wind turbine induction generator are studied. The dynamic models are expressed

in state space and simulated using Matlab/Simulink. Dynamic stability controls of the distribution

system with DGs are designed to improve the oscillation damping. The Flexible AC Transmission

Systems (FACTS) devices such as: static var compensator (SVC), voltage source inverter (VSI),

and thyristor controlled braking resistor (TCBR) are also studied. The coordinated control of DG

and FACTS devices to improve the dynamic stability is an important topic in this research and has

been addressed in this work.

1.2 Outline

The outline of this dissertation is summarized in the following.

A literature survey is presented in Chapter 2 and gives an overview of state-of-the-art and

world-wide DGs research. Various DGs are introduced and compared for their modeling develop-

ment in the following chapters. Since dynamic stability control of power distribution system with

DGs is a new emerging topic, papers on control theories and control application in power trans-

mission system are surveyed. The literatures will provide ideas and justification to select control

schemes and device parameters for DGs’ dynamic stability control.

The preliminary DG research on four specific power distribution systems is presented in

Chapter 3. The power system toolbox (PST) is used to evaluate the impacts of DGs on four

systems. The synchronous generator and induction machine models in PST are used to represent

the DGs. This preliminary research provides the fundamental to deepen the DG modeling and

dynamic stability research.

In Chapter 4, the gas turbine and diesel engine DG models are presented. To simulate

the full order synchronous generator, the matrix concept is used to simplify the model building

process. A substation model for dynamic study is also presented.
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Chapters 5-7 focus on fuel cells and their dynamic controls. Two types of fuel cells are

studied: phosphoric acid fuel cell (PAFC) and solid oxide fuel cell (SOFC). In Chapter 5, a PAFC

model is obtained through the data fitting method. Chapters 6 & 7 focus on the dynamic model

and control of a SOFC power plant. An average power conditioning unit (PCU) is developed to

connect the SOFC to the system. To design damping controller for SOFC power plants, the lead-lag

units are used to compensate the dominant eigenvalues and an optimal control algorithm is applied

to select the gains of the compensation units simultaneously.

The wind turbine DG modeling and control are studied in Chapters 8 & 9. A multi-

variable controller is designed to control the wind turbine generator and SVC. The robustness of

the controller is verified over the parameter uncertainty of the dynamic loads. The IEEE-13 node

system with the gas turbine and diesel engine DGs is the test system to study the fuel cell and the

wind turbine DGs. The linearized model and eigenvalue based method are studied to design the

dynamic stability controller.

A coordinated operation of the multi-DG system is evaluated in Chapter 10. The inter-

actions between the DGs are studied. The controller is designed for a coordinated operation. The

robustness of the controller is investigated at different real power penetration level.

In Chapter 11, the three-phase approach is presented to evaluate the DG models on

unbalanced distribution systems. A three-phase TCBR is connected to absorb the surplus energy

when the system is subjected to a disturbance.

The conclusions and suggestions for future work are presented in Chapter 12.
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Chapter 2

Literature Survey

2.1 Introduction

The objective of this dissertation is to develop dynamic models of four types of DGs, to evaluate

their impacts on the dynamic stability of distribution systems and to design controllers to improve

the dynamic performance of system. Therefore, the three-category of literatures are surveyed: dis-

tributed generation (DG) models, power electronics application and power system control schemes.

2.2 Models of Distributed Generations

DG technologies offer many advantages including high efficiency, short construction lead time,

modular installation, and low capital expense. In the near future, small scale power generation

technologies, such as gas turbine, diesel engine, wind turbine, photovoltaics and fuel cell will likely

replace some conventional power generation [59]. Simulation of various types of DGs in a suitable

software environment is the first step in analyzing the dynamic characteristics of DGs and designing

the control strategies.

Gas turbine, diesel engine, fuel cell and wind turbine DGs are four of the several types of

new DG sources that have experienced considerable development progress in recent years. However,

even simplified models covering dynamic characteristics of these types of DGs (and other newer

DG sources such as photovoltaic and microturbines, etc.) are not openly available. Hence, the first

task necessary to study these dynamic effects of the four types of DGs on the distribution lines is

to develop models based on the literature and any available operational data on DGs and secondly

to utilize that data and the references to develop dynamic models.
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2.2.1 Gas Turbine

As gas turbines have fast run-up capacities characteristics, it is suitable to be connected to weakly

supply systems or even used in an isolated operation system. Several types of gas turbine models

are presented [44][50][107].

A detailed gas turbine generator model has been presented by Hung [50]. Based on the

hypothesis that transient thermodynamic and flow processes are considered as quasi-static, the

dynamic response of gas turbine is described as a series of linearized equations. The fundamental

equations are:

∆QF = QF −QF0 (2.1)

∆NG = µNG
1

(1 + sTG)(1 + sTC)
∆QF (2.2)

∆X = µX
(1 + saxTG)

(1 + sTG)(1 + sTC)
∆QF (2.3)

NG = NG0 +∆NG (2.4)

X = X0 +∆X (2.5)

where X is a gas turbine variable vector, which includes the compressor discharge pressure, the

exhaust gas pressure, the exhaust gas temperature and exhaust gas power. NG is the engine speed.

µNG and µX are the sensitivity of X an NG to QF . ax is the lead-lag ratio of X. TG and TC are

the equivalent engine and the combustion chamber time constants.

The model is developed to investigate and improve the dynamic control of the gas turbine

following a disturbance. A least square cubic spline curve fitting technique is used to fit curves to

get the parameters: time constants, lead-lag ratios and so on. Unfortunately, operation curves are

not shown in the paper.

In [44] a twin shaft gas turbine model is presented. In the model, the generator is located

in the center with a twin-shaft combustion turbine on each side. The model includes free turbine,

engine speed control, and exhaust gas temperature control. The turbine dynamics are represented

by a set of functions which can be determined by steady state measurements. The dynamic char-

acteristics of the gas turbine consist of: turbine power Pm in the low pressure turbine, torque

THP developed by the high pressure turbine, the turbine exhaust temperature Tex and the load

torque on the compressor Tload. This model is suitable for studying the dynamic performance of the

twin-shaft gas turbine. However, the type of gas turbine model cannot be used in this dissertation

research due to the limitation of the measured data.
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Figure 2.1: General structure of a diesel-engine DG.

In our research, the simplified gas turbine model represented in mathematical equations

[107] is selected as reference model and is simulated. It is suitable to study the dynamic stabil-

ity of gas turbine in power system. Another important reason to select this model is that this

model is tested in Trinidad and Tobago system [114]. The validation of this model is tested. The

mathematical model, simulation and control schemes are developed in the later Chapters.

2.2.2 Diesel Engine

Diesel engine powered synchronous generator is another type of important DG. The diesel engine

DG model consists of combustion, drive train, and synchronous generator. Besides the function to

supply the continuous power to the important customers, it is also used for back up, emergency

and stand by. Sometimes, the diesel engine DG is working together with the solar electric or wind

power system or for a standby alone DG. In [133], the diesel engine generator is to supply the

emergency power in a nuclear power plant. The papers [11][18][62] [124] presented the combined

multiple renewable energy source systems of the integration of diesel engine with other types of

DGs.

The general structure of a diesel engine DG is illustrated in Figure 2.1 [18]:

In Figure 2.1, Td is the average shaft torque, p0 is the zero torque pressure, qd is the input

fuel flow rates, Ts is the air gap torque of the synchronous generator, Ps is the real power to grid.

A detailed diesel engine generator including drive train is presented in [18]. A diesel engine
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is presented by the state equations:

q̇eff =
1

τ c
(−qeff + qd(t− τd)) (2.6)

pe = εKcqeff (2.7)

Tda = Kv(pe − p0) (2.8)

where pe is the average engine chamber pressure, qeff is the effective fuel flow rates, ε is the fuel

efficiency, Kc is constant relating pressure and fuel consumption, Kv is the stroke volume of the

engine, τ c is the time constant of the actuator and combustion process, and τd is time delay of

combustion. The drive-train model can be expressed as:

θ̇cl = ωd − ωs (2.9)

ω̇d =
1

Jd
(εKcKvqeff − Cclθcl − (Dd +Dcl)ωd −Kvp0) (2.10)

ω̇s =
1

Js
(Cclθcl +Dclωcl − (Ds +Dcl)ωs − Ts) (2.11)

where θcl is the torsion angle of the engine-generator shift, ωd is the rotational speed of the diesel

engine, ωs is the rotational speed of the electrical generator, Dd and Jd are the damping and inertia

of the diesel engine, Ds and Js are the damping and inertia. The diesel engine DG is connected

with a wind turbine directly to provide reliable power and save fuel. The adaptive fuzzy logic

control scheme is implemented to cope with the unpredictable fluctuation of the wind resources.

The impact of the diesel engine and wind turbine DG system on a weak system has been studied.

The impacts of a diesel-wind-photovoltaic generation system is presented in [11]. The

ACSL language based software package has been developed to evaluate the integrated DG system.

Modular subroutines in FORTRAN 77 are called during simulation. The interaction of multi-type

DGs is evaluated under different operating conditions. The software provides a good tool to analyze

the dynamic performance and design controllers. The DGs and load are considered to be located

very close to each other.

The diesel-wind turbine system of [62] supplies power to isolated loads. The interac-

tions between two types of DGs are assessed. However, The distribution system network and the

iterations with the substation are not considered.

In [133], the model of the diesel engine generator is used to assess the power supplying

to the dynamic loads during various transient procedure. This model includes the two parts of

the general structure: diesel engine and synchronous generator. The governor and the AVR units
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are also considered. The transient process of the drive train is ignored. The results of the field

measurement verify the model. Also, this model is implemented in Power System Blockset (PSB)

[54] as a demo case.

Due to the verification of the field measurement, and application in PSB, the model in

[133] is considered to be adopted in our DG research.

2.2.3 Fuel Cell

Fuel cells will be important components of distribution system due to their high efficiency and low

environmental pollution. For example, the net fuel-to-electricity of the direct carbonate fuel cell

(DCFC) power plant is about 55-60%. Carbon dioxide emissions of DCFC are much less compared

to conventional power generators with a similar power size [77]. Due to an electric-chemical process

of power generation, there is no noise develop usually in mechanical members of conventional

generator. The modular design satisfies the versatile demands of customers. All of these features

will without any doubt lead to their wide application in the power industry in the near future.

Several types of fuel cells have been reported in the literatures: phosphor acid fuel cell

(PAFC) [106][135], solid oxide fuel cell (SOFC) [42][92], molten carbonate fuel cell (MCFC)[46][77][76][116]

and proton exchange membrane fuel cell (PEMFC) [70].

The PAFC has been commercially used in hospitals, nursing homes, utility power plants,

etc. The electric efficiency is more than 40%. MCFC uses a liquid solution as an electrolyte.

Normally, the generation electric efficiency is about 60%, and the operating temperature is 1200◦F .

The operating temperature of PEMFC is about 175◦F . However, the PEMFC is very sensitive to

fuel impurities. The SOFC uses a hard ceramic material of solid zirconium oxide as the electrolyte

and operating temperatures can reach 1800◦F , with an improved efficiency of about 60%. The

SOFC can be used in large-power applications such as central electricity generation station. Since

PAFC has been commercially used, and SOFC has the highest potential in large power application,

these two types of fuel cells will be studied.

Fuel cells must be connected to the distribution system via DC/AC inverters. Therefore,

low cost and high efficiency inverters are required together with acting controllers for fast tracking

of real and reactive power demands.

Electrochemical and thermal simulations of a SOFC was reported in [9] to identify the key

parameters of fuel cell systems from a single cell to an m×n cell stack bundle. A transient dynamic
model of SOFC was proposed in [42]. The cell’s terminal voltage during a load change is discussed.
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Reference [92] proposed a dynamic model for a SOFC stack and gave the general structure of a fuel

cell power plant (see Figure 2.2). The fuel cell control is achieved by adjusting the input volume

of gas and air and controlling real power output.

Balance of
Plant

Fuel Cell
Stack

Power
conditioning

unit

Power
Grid

Plant Controller
Network
Interface
Controller

AC Power

Network

Parameters

P and Q

Commands

Fuel Cell Plant

Figure 2.2: Structure of a fuel cell power plant.

The inverter serves as the interface between the fuel cell and the power distribution system.

It is controlled in order to provide real and reactive power set point tracking and to adjust the power

factor.

2.2.4 Wind Turbine

Wind turbines are widely used as they are environmental friendly energy sources. Wind turbines

can either be connected to a synchronous generator [68][88] or an induction generator [1]. In

these papers, a controllable horizontal wind turbine model is adopted. This model is suitable for

analyzing dynamic characteristics of wind turbines and designing control. A simpler wind turbine

induction generator model is developed in [59] as it was specifically used for dynamic studies of

dispersed wind turbine applications. Another wind turbine model is presented in [62].

The wind turbine system of [88] can be summarized as shown in Figure 2.3. The model

includes the synchronous generator, torque computing unit, torsional system and the control loop

using output-feedback design.

In [1], a wind turbine is connected to an induction generator to implement the energy

conversion. A static var compensator (SVC) is used to regulate its voltage. The model is:

λ =
ΩR

Vω
(2.12)
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Wind and Blode
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system
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Generator
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Cont ro l
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Grid
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Tu=(s, Vfd)
T

Figure 2.3: A wind-synchronous generator with a control loop.

Cp = (0.44− 0.0167β) sin
·
π(λ− 3)
15− 0.3β

¸
− 0.00184(λ− 3)β (2.13)

Tm =
1
2ρARCpV

2
ω

λ
(2.14)

where: λ is the blade tip speed ratio, β is the blade tip pitch angle, R is the wind turbine rotor radius,

Ω is the mechanical angular velocity, Vω is the wind velocity, Cp is the coefficient of nondimentional

curves of the power, ρ is the air density, A is the set area by the blades, and Tm is output mechanical

torque of the wind turbine.

The simplified wind turbine induction generator model [59] is expressed as:

ω̇G =
−(DG −DT )

MG
ωG +

(DG −DT )
MG

ωT +
1

MG
TG − 1

MG
PG (2.15)

δ̇ = −ωG + ωT (2.16)

ω̇T =
DT
MT

ωG − K

MT
− DT
MT

ωT +
1

MT
Tω (2.17)

where: MG, MT , DG and DT are the generator and turbine inertias and damping coefficients. Tω

is the wind torque. K is the torsional spring constant.

To implement the multiple renewable energy source system, integration of multiple types

of DGs are discussed in [11], [18], [62] and [124]. In these papers, the coordination of the wind

turbine and the diesel engine is investigated.

A wind model is expressed by the instantaneous wind velocity [62]:

Uw = U + u(m/s) (2.18)

where U is the mean wind speed, u is the turbulent component of the wind. In [62], an algorithm

is given to provide the two wind speed components separately. In this research, the wind turbine

is considered to work at the rated power regime and the disturbance of the wind model is beyond

consideration.
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2.3 Control Strategies for DGs

To improve the dynamic stability of the distribution system with multiple types DGs, control

strategies for DGs are investigated. As a relatively new topic, most of the literatures found concen-

trates on the control theory application on the transmission level, for example, [5], [22], [26], [30],

[71], [126] and [131]. However, power distribution systems have their own unique features: large

capacity substation, relatively small coverage area and unbalanced loads. These concerns have to

be addressed. Both decentralized control and global control schemes are investigated.

Since the substations of distribution systems have a relatively large capacity, it is usually

considered as an infinite bus. The dynamic stability is the major stability problem rather than the

transient stability. At present, the residue and the damping torque analysis methods are mature

and have been applied to design dynamic stability controllers as PSS and FACTS devices.

The centralized control can effectively improve the dynamic stability of the whole system.

The signal communication between remote areas is a constraint on developing controllers. However

the power distribution system is located in a relatively small area, hence the signal communication

is practically feasible. The centralized control scheme will be considered as the major type of control

to improve oscillation damping of distribution systems with DGs.

2.3.1 Linear Analysis

The purpose of the DG controllers is to improve the dynamic stability of the system. The linear

analysis methodology has long been used to study the stability problem by eigenvalue calculation

and critical oscillation modes identification. The authors of [32] and [115] proposed indices to rank

eigenvalues. The eigenvalue with the largest index is the most critical one.

By using this approach, the most critical oscillation modes can be identified during control

design.

2.3.2 Model Reduction

Model reduction is considered as the first step in modeling large-scale systems and designing feed-

back controllers. Applications can be viewed in [32], [23] and [53].

Feliachi proposed an algorithm based on optimizing output performance index in [32].

The outputs of the system are the state variables. The method has been implemented in [53]. By

reducing the model to a simplified reduced order system model, eigenvalue assignment method is

applied to design a controller and promising results have been achieved.
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Another eigenvalue assignment based on a matrix reduction technique with application to

power systems was proposed by Choudhry [23].

The power distribution system has the distinct feature of strong connections between

components. Hence, a subgroup of eigenvalues that can represent the system performance with

little errors cannot be found since all components may have similar contribution to eigenvalues.

Based on these references, the author obtained a reduced system and designed a controller using

eigenvalue assignment method. This controller can move certain eigenvalues that have been included

in the reduced model perfectly to destined locations. However, when the controller is applied in the

original system model, some eigenvalues not included in the reduced model shifted to the right-half

plane which worsen the dynamic performance of the system. In addition, the distribution test

system is of order 50, a size that can be easily handled. Therefore the full system model is used to

design controllers.

2.3.3 Control Schemes

Residue based indices were proposed in papers of Martin [78] and Yang [131]. This method is

suitable for designing single input single output (SISO) controllers at a specific operating point.

The centralized control can effectively improve the dynamic stability of the whole sys-

tem. For a large-scale system, signal communication is the constraint to develop such controllers.

However, the power distribution system is relatively small and signal communication can be easily

achieved. The centralized control scheme will be considered as the major type of control to improve

oscillation damping of the distribution system with DGs.

Output feedback control is one kind of centralized control scheme using information from

different locations as input. This scheme will be adopted in this dissertation to design controller

for wind turbine controller.

Both decentralized and centralized controllers as mentioned above are designed for a spe-

cific operating condition and may not function well when the operating condition changes. In

reality, power transactions between areas and loads vary considerably and the operating condition

changes frequently. Therefore, uncertainty in operating conditions has to be addressed in the con-

trol design process. A structured singular value approach was presented in [26] to address this issue

by designing a robust controller which is able to accommodate the uncertainties.

In this dissertation, uncertainty will be modeled and the capability of the controller to

handle uncertainties will be discussed to study its robustness.
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2.3.4 Coordinated Control

The issues of coordinated control have been addressed in transmission systems [71][34] where PSS

and FACTS devices such as TCSC and SVC have been installed. The design of one controller to

improve the damping of a certain oscillation mode should not deteriorate the damping of other

modes. A widely used coordinated control strategy is the multivariable optimal control.

With different DGs in the system, different kinds of controllers will be installed. The

coordination among controllers is very important for the system to function properly and have a

good dynamic performance.

2.3.5 Robust Analysis of the Load Parameter Uncertainty

The robustness of designed controllers will be verified by testing loads with parameters uncertainties

and/or different operating conditions. The influence of the load parameters on the dynamic stability

of the system has been studied in [85]. An additional SVC stabilizer (ACS) has been tuned for

robust control. However, in [85], only voltage dependant static loads are involved.

The effect of load models on stability of a modulated AC/DC system is investigated in [29].

An eigenvalue sensitivity calculation method is developed to predict effects of load characteristics

on system stability. A method to design robust modulation controller over a wide range of load

characteristics for AC/DC system is proposed in [22].

In our research, the parameter uncertainties of dynamic loads are taken into consideration

during the controller design.

2.4 Power Electronics Application

Power electronics are commonly used in power transmission system as they are the main components

of Flexible AC Transmission Systems (FACTS). Power electronics are also applied in existing power

distribution systems to improve power quality by applying power conditioning units [48]. Unlike

the customer power, in our DG project, power electronics are applied as the important part of

the DGs as DC/AC the interface of the fuel cell, or as the var compensator for the wind turbine.

The rapid response feature of the power electronics enables them as the good real/reactive power

control devices.
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2.4.1 Static VAR Compensator (SVC)

As a mature technology, the SVC is widely used in power systems to supply reactive power. A

modular structure for SVCs for the dynamic study is proposed in [56]. Two basic modeling ap-

proaches with different methods to realize the slope function are recommended. In method one, the

voltage regulator is of the proportional type and the gain, KR, is the inverse of the slope - a gain

of 100 pu Bsvc/pu ∆V on the SVC base means a 1% slope. In method two, the voltage regulator

is of the integral, or proportional plus integral type and the slope, KSL, is realized through current

feedback. A practical model for advance power flow is presented in [93]. The controlled susceptance

vs. different firing angles is illustrated.

2.4.2 Current/Voltage Source Inverter (CSI/VSI)

The requirements of the interface between the fuel cell system and the power distribution sys-

tem include low cost, high reliability and efficiency, adjustable power factor and low line-current

distortion [89]. Different approachs/realization can be found in the literatures.

A vector space controlled inverter based on GTO switches fulfills the above requirements

[6][17]. The “inverter flux vectors” with additional reactance are used in [6] to control real and

reactive output power. A completely current regulated PWM_VSI (pulse width modulation voltage

source inverter) is described in [87]. It is simpler and easier to implement. This kind of inverter has

been used to connect photovoltaic arrays to the AC grid [6]. In [132], an average inverter model

is described to represent the static synchronous compensator (StatCom) which converts the DC

battery energy storage to the AC transmission system.

2.4.3 Thyristor Controlled Braking Resistor (TCBR)

A TCBR is a simple, highly reliable, low cost and very effective Flexible AC Transmission Systems

(FACTS) device. In [47], the functions of TCBR are summarized as: 1) Damp low frequency inter-

connection oscillation; 2) Prevent first cycle swing transient instability; 3) Damp subsynchronous

resonance (SSR); 4) Facilitate synchronizing a turbine-generator, etc.

Many control strategies have been proposed. A closed-loop quasi-optimal switching schema

was reported in [97]. In [97], a control cost index was used to optimize the control strategy. In

[128], a variable structure controller (VSC) was implemented to damp the interconnection oscilla-

tion in a multi-machine system. With the VSC controller, the inertia modes are damped effectively.
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This TCBR and VSC control strategy will be implemented during the three-phase system study to

improve oscillation damping of the whole system [81].
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Chapter 3

Preliminary Research of DGs

3.1 Introduction

In the distributed generations (DGs) research, two years have been invested in a DG project

evaluating various DG sources connected to computer simulation models of actual distribution

systems. As an example, the actual suburban system I (SI) is represented in this chapter to briefly

demonstrate the utilities related DGs research. Some of the results are illustrated in this chapter,

and others will be represented in the following chapters together with the continued research.

The simulations of the substation, lines, loads, and DGs of real system are discussed. The

DGs are modeled as synchronous generators with simplified turbine and excitation. The substation

is modeled as a combination of a synchronous generator and a transformer. A series of case studies

is conducted to evaluate the models. The impacts of DG on line voltage and system stability are

evaluated including the effects of several groups of factors. In this preliminary DG research, the

power system toolbox (PST) is utilized as the tool for study and analysis.

3.2 Models of An Actual Distribution System

3.2.1 Suburban System I (SI)

The one-line diagram for the SI distribution system is shown in Figure 3.1. The SI system is a

typical suburban system. The total load and voltage of this system are 20.5MVA and 23.0kV

respectively [65][66].
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Figure 3.1: One-line diagram of the SI distribution system with DGs.

3.2.2 Models

The SI distribution system is simulated in PST.

1) Substation

Traditionally, a model for a substation for use with a distribution system is a voltage source

in series with an impedance. To investigate dynamic characteristics of the distribution system with

DG, a new distribution substation model is developed [80] and the model will be described in detail

in Chapter 4. The form of the substation model used here consists of a synchronous generator and

a transformer. The synchronous generator is assumed to have a very large inertia and capacity.

2) Loads

The loads along the distribution lines were represented as static loads with a fixed power

factor of 0.85 lagging. The distribution line is represented by the equivalent impedance which

reflect the active and reactive losses. The load of the single line equivalent system was based on

the sum of loads in the unreduced (e.g. three-phase) system (see Figure 3.2). Using Vbase = 23kV ,

Sbase = 20.5MVA as the system base, all the other lines and loads are represented in per unit on

this base. The bases were used to model all the remaining details of all the lines and transformers

in order to derive the new single line equivalent. Therefore, the single line equivalent represents all

the losses.

3) Distribution Line
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Figure 3.2: Diagram illustrating the procedure used to combine multiple lines and multiple loads
into an equivalent single line and single load equivalent circuit.

The distribution line considered is a three-phase balanced line and is modeled as a single-

phase line with static parameters. The original three-phase line was represented by the single-phase

line as shown in Figure 3.3.

4) Distributed Generation (DG)

Each DG is modeled as a synchronous generator with simplified turbine and excitation, and

a transformer. A transformer compatible to the DG capacity connects the DG to the distribution

line. The simplified turbine governor model and exciter model are used for the DGs [95].

3.3 Test Cases and Simulation Results

A set of test cases was designed to investigate the transient stability and dynamic performance of

the system based on different load characteristics. In Figure 3.1 two DGs (synchronous generators)

are located at buses 11 and 12. Fault locations for the different experiments are next to the DG,

such as at buses 11 and 12, and in the middle of the distribution feeder line, such as at buses 103

and 515. Referring to the protection manual [25], a fault clearing time of 0.084s, and a reclosing

time of 0.64s were chosen. Several simulations with other fault clearing and reclosing times are

done and all the results are also compared. The different impacts of the DG on the distribution

system are classified as:

· Different fault location;
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alent circuit.

· Different fault clearing time;

· Different reclosing time;

· Different power size of DGs;

· Different DG location.

In the following five subsections, the simulation results illustrate the impacts of the part

of factors. Plots of voltage profile, frequency responses, rotor angle, and real power are used to

illustrate the transient process.

3.3.1 Fault Location

Worst cases for different fault locations appear to be those in which the fault is near the DG source

as would be anticipated. Cases 9, 22 and 30 shown in Figure 3.4 and a series of other simulations

tabulated in Table 3.1 displayed this result.

3.3.2 Fault Clearing Time

Generally, it would be anticipated that shorter fault clearing times would contribute to reduced

power system disturbances. Figure 3.5 shows the voltage profile of the substation with different

fault clearing times. During the fault time, the voltage of the substation falls below 0.8pu. Such
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Table 3.1: The tests on the SI distribution system.

Case
G1, G2

PowerSize
(MW )

Fault
Location

Clear
T ime
(sec)

Reclose
time
(sec)

1 0.8, 0.8 11-427 0.084 0.64
2 1.6, 0.8 11-427 0.084 0.64
3 0.2, 0.2 11-427 0.084 0.64
4 0.1, 0.1 11-427 0.084 0.64
5 0.4, 0.4 11-427 0.084 0.64
6 0.4, 0.2 11-427 0.084 0.64
7 0.1, 0.1 11-427 0.084 0.64
8 1.6, 1.6 103-104 0.084 0.64
9 2.4, 2.4 103-104 0.084 0.64
10 2.4, 2.4 103-104 0.15 0.64
11 2.4, 2.4 103-104 0.30 0.64
14 1.6, 1.6 519-401 0.084 0.64
15 0.8, 0.8 12-430 0.084 0.64
16 0.4, 0.4 12-430 0.084 0.64
17 4.0, 4.0 103-104 0.084 0.64
18 6.0, 4.0 103-104 0.084 0.64
19 6.0, 6.0 103-104 0.084 0.64
20 2.4, 2.4 515-516 0.30 0.64
21 2.4, 2.4 515-516 0.15 0.64
22 2.4, 2.4 515-516 0.084 0.64
23 2.4, 2.4 515-516 0.084 1.28
24 2.4, 2.4 515-516 0.084 2.56
25* 2.4, 2.4 515-516 0.084 0.64
26* 2.4, 2.4 515-516 0.15 0.64
27* 2.4, 2.4 515-516 0.30 0.64
28* 2.4, 2.4 515-516 0.084 1.28
29* 2.4, 2.4 515-516 0.084 2.56
30 2.4, 2.4 11-427 0.084 0.64
31 2.4, 2.4 11-427 0.084 2.56
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Figure 3.4: Frequency of DG1 with different fault location (case 9, case 22, case 30).

a low voltage may have undesirable impacts on other loads connected to the substation (e.g. it

may cause them to be disconnected). The longer the fault lasts, the worse the voltage quality is.

Therefore, faster fault clearing times will improve the power quality.

3.3.3 Reclosing Time

The impact of the reclosing time is investigated in cases 30 and 31. Reclosing times for cases 30,

and 31 are 0.64s and 2.56s, respectively. All other simulation conditions are the same. Figure 3.6

shows that for larger reclosing times the amplitude of the resulting damped oscillation is larger and

may even result in divergence (see case 31).

3.4 Summary

Whether a distribution system remains stable or not when DG is added depends on contingencies

such as faults types, fault locations, DG power sizes, fault clearing times, reclosing times, and DG

locations, variations in all of which were evaluated via 31 different simulation cases (see Table 1).

Five selected groups of cases are presented here to illustrate the impacts of these factors. These

simulation results show:



CHAPTER 3. PRELIMINARY RESEARCH OF DGS 22

0 2 4 6 8 10 12
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

case 22 

case 20 
vo

lta
ge

 (
pu

)

time (s)

Figure 3.5: The voltage magnitude of the substation with different fault location (case 20, case 22).
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Figure 3.6: Frequency of DG1 with different DG1’s location (case 22, case 25).
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· Fault location is an important factor affecting the relative stability of the distribution

system. Worst case faults are those occurring near the DG sources;

· Fault clearing time impacts the most on voltage quality along the distribution system.

Shorter fault clearing times improve the voltage quality;

· Shorter reclosing times improve system stability;

· The DG location is an important factor in determining frequency deviation and the

frequency recovery time, thus the relative stability characteristics of the system.

The most important factors affecting the degree of system relative stability are the fault

location, reclosing time and the DG locations. The fault clearing time and the DG size also affect

the stability of the SI distribution system, but to lesser degree than the above three factors.
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Chapter 4

DGs Simulation and Linear Analysis

with Simulink

4.1 Introduction

In the preliminary research, the SI system and the distributed generations (DGs) are represented

in the power system toolbox (PST). As discussed before, the PST is difficult to insert some specific

electric components, such as gas turbine, voltage source inverter. In the following chapters, a

software package is developed in Matlab/Simulink step by step to study the distribution system

with DGs. The program structure of this simulation package is presented in Appendix C. At the

same time, Matlab/Simulink provides a tool to obtain the linearized model from the nonlinear

simulation models in Simulink.

In this chapter, two of the four types DGs model: gas turbine and diesel engine DGs

are developed. In the early power system studies, the synchronous generator was represented by

the simplified transient/subtransient model. In the DGs research, it has become apparent that

these simplified models are not adequate to describe the dynamic response of a complicated power

distribution system. The full-order synchronous model is chosen to be connected with gas turbine

and diesel engine. As a new solution, the synchronous machine model is simulated using the

matrix/vector concepts in Simulink. This matrix/vector based method can avoid the numerical

algebraic loop problems.

In this chapter, the following tasks have been done:

1. Develop the gas turbine model and diesel engine model, simulate these models in



CHAPTER 4. DGS SIMULATION AND LINEAR ANALYSIS WITH SIMULINK 25

Simulink;

2. Investigate and simulate the full-order synchronous generator in Simulink, then connect

them to the gas turbine, diesel engine and excitation system to represent the DGs. These two types

of DG are considered as the basic DGs and their models will be included in the test system;

3. Represent the substation by a simplified two-axis synchronous generator model;

4. Simplify the IEEE-13 node feeder, and simulate it in Simulink;

5. Analyze the eigenvalues of the distribution system with DGs and each of its components;

6. Form a way to compute the first-order eigenvalue sensitivity via Simulink.

4.2 System Models

To study the dynamic characteristics of the gas turbine and the diesel engine DGs, the full order

synchronous generator is developed in Simulink, while the substation is modeled as a simplified

two-axis synchronous generator.

4.2.1 Full-Order Synchronous Generator

The full-order synchronous generator model consists of 6th-order electrical equations and 2nd-order

mechanical equations. The 6th-order state equations of the electrical part can be expressed as:

vrqs = −rsirqs +
ωr
ωb

ψrds +
p

ωb
ψrqs (4.1)

vrds = −rsirds −
ωr
ωb

ψrqs +
p

ωb
ψrds (4.2)

v0rfd = r
0
fdi

0r
fd +

p

ωb
ψ0rfd (4.3)

v0rkd = r
0
kdi

0r
kd +

p

ωb
ψ0rkd (4.4)

v0rkq1 = r
0
kq1i

0r
kq1 +

p

ωb
ψ0rkq1 (4.5)

v0rkq2 = r
0
kq2i

0r
kq2 +

p

ωb
ψ0rkq2 (4.6)

where p = d
dt .

The 2nd-order state equations of the mechanical part are:

p

ωb
ωr = − 1

2H
(Te − Tm) (4.7)

pδr = ωr − 1 (4.8)
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Figure 4.1: Diagram of the substation model of the distribution system.

where ωb corresponds to rated or base frequency, and the torque in per unit is:

Te = ψrdsi
r
qs − ψrqsi

r
ds (4.9)

The detailed full-order synchronous generator model is described in Appendix A. The ωb

is used to calculate the inductive reactances.

4.2.2 Substation Model

To investigate dynamic characteristics of the distribution system with DG, a new distribution

substation model is proposed in [80]. The form of the substation model used here consists of a

synchronous generator and a transformer (see Figure 4.1). The synchronous generator is assumed

to have a very large inertia and capacity. There are three reasons for this assumption: first, since the

substation can provide adequate power for the distribution system, the capacity of the substation

can be so adjusted. Second, since the substation is connected with the grid, its frequency is assumed

to be constant requiring that the inertia of the synchronous generator must be sufficiently large.

Third, with small transient reactance and large capacity, the terminal voltage magnitude of the

synchronous generator is considered to be constant, similar to actual practice.

The state equations of the electrical part are:

pE0d =
1

t0q0
(−E0d + (xq − x0q)Iq (4.10)

pE0q =
1

t0d0
(−E0q +EFD + (xd − x0d)Id) (4.11)
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The electrical torque output is:

Te = E
0
dId +E

0
qIq − (L0q − L0d)IdIq (4.12)

The state equations of the mechanical part are:

pω =
1

tj
(Tm −Dω − Te) (4.13)

pδ = ω − 1 (4.14)

The transformer is modeled as a pure reactance with capacity equal to the capacity of the

substation.

The capacity of the synchronous generator is determined by thermal constraint of the

138kV grid connected to the SI distribution system. The power carried by the 138kV, called surge

impedance loading or natural load, is 43MW [63]. Then, the rating of the 138kV is three times the

surge impedance loading [31]:

MVA = 3 ∗ 43.0 = 129.0MVA (4.15)

4.2.3 Gas Turbine

A gas turbine driven synchronous generator is one of the important DGs studied. A simplified

dynamic single-shaft gas turbine model is shown in Figure 4.2 [114] [107]. This gas turbine model

is suitable to investigate the dynamic stability of gas turbine generator in power distribution system.

The gas turbine model consists of speed governor, limits, valve position, fuel pump, and

turbine. The input signal is synchronous generator speed N , and output is control signal Pmech to

a synchronous generator. The turbine output is:

Pmech = f(N,Wf ) (4.16)

= 1.3(Wf − 0.23) + 1−N
2

where

N : is the synchronous generator speed in per unit;

Wf : is the fuel flow;

IC1, IC2: are initial values of valve position and fuel pump.
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Figure 4.2: Diagram of a simplified gas turbine model.

4.2.4 Diesel Engine

A diesel engine driven synchronous generator is the second type of DG to be studied. The diesel

engine model is shown in Figure 4.3 [133].

-(1+T3s)
1+T1s+T2T1S

2

X

ω_ref

+
-

IC

ω

IntegratorActuatorControl System

Pmech

EngineLimits

K(1+T4s)
(1+T5s)(1+T6S)

1
s

e-sTD

Figure 4.3: Diagram of a diesel engine and a governor model.

The input signal is the synchronous generator speed ω in per unit, and the output is the

control signal Pmech to a synchronous generator. The IC is the initial value of the integrator.

4.2.5 Average Model of IEEE-13 Node Feeder

To simulate the IEEE-13 node feeder and use the linearization tool of Simulink, the following

assumptions are taken into consideration to transfer the three-phase unbalanced distribution system
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Figure 4.4: IEEE-13 node distribution system with a gas turbine DG and a diesel engine DG.

into a balanced single-phase system:

1. Three, two or single phase loads of each bus are represented as single load, the value is

the average over three. For instance, the load of bus 675 is 485+j190+68+j60+290+j2123 = 281 + j154;

2. The one-phase impedance of each feeder is used to represent the feeder;

3. Transformer and voltage regulator are represented single-phase reactance;

4. The substation and the DGs are represented in synchronous p-q reference frame.

4.3 Building Synchronous GeneratorModel usingMatrix Concept

in Simulink

Matrix and vector are basic concepts used in Matlab/Simulink. Vector computation is one of the

features of Matlab. Using matrix/vector concepts not only simplifies problems but also contributes

to time saving in debugging. This concept is to be used in simulation in full-order synchronous

machine.

Dynamic machinery models are usually expressed in a set of differential equations. When

building models in Matlab/Simulink, each differential equation can be represented by a transfer

function composed of an integral unit. With a set of differential equations, a set of integral units

will be used. While an input of one integral unit might be the function of the outputs of other
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integral units, the Simulink model can be very complex and unorganized with lines interweaving.

Using matrix concepts, a set of differential equations will be expressed as:

ẋ = Ax+Bu (4.17)

where x and u are vectors, A and B are matrices. Hence one integral unit is enough to express this

model.

The dynamic model of synchronous machine (see equation 4.1-4.6) can be equivalently

expressed as the current state variables equations[69]. The equations will be presented blow in

terms of equation (4.17). The Simulink expressions are also shown blow which will use voltages as

inputs and currents as the outputs of the model block.

The equations of a full-order synchronous machine model in the arbitrary reference frame

can be written in term of the currents as shown in equation (4.18).

vqs

vds

v0kq1
v0kq2
v0fd
v0kd


=M ·



iqs

ids

i0kq1
i0kq2
i0fd
i0kd


(4.18)

where:

M =



−rs− p
ω
b
Xq −ωr

ω
b
Xd

p
ω
b
Xmq

p
ω
b
Xmq

ωr
ω
b
Xmd

ωr
ω
b
Xmd

ωr
ω
b
Xq −rs− p

ω
b
Xd −ωr

ω
b
Xmq −ωr

ω
b
Xmq

p
ω
b
Xmd

p
ω
b
Xmd

− p
ω
b
Xmq 0 r0kq1+

p
ω
b
X 0
kq1

p
ω
b
Xmq 0 0

− p
ω
b
Xmq 0 p

ω
b
Xmq r0kq2+

p
ω
b
X 0
kq2 0 0

0 −Xmd
r0fd
( pω

b
Xmd) 0 0 Xmd

r0fd
(r0fd+

p
ω
b
X 0
fd)

Xmd
r0fd
( pω

b
Xmd)

0 − p
ω
b
Xmd 0 0 p

ω
b
Xmd r0kd+

p
ω
b
X 0
kd


Assume that the reference frame is a synchronous reference frame and that all quantities

are in per unit value. This equation can be further written into: ẋ = Ax + Bu, where x =

[iqs, ids, i
0
kq1, i

0
kq2, i

0
fd, i

0
kd]

T
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Figure 4.5: Using matrix/vector to represent the synchronous generator model in Simulink.

B =



− 1
ω
b
Xq 0 1

ω
b
Xmq

1
ω
b
Xmq 0 0

0 − 1
ω
b
Xd 0 0 1

ω
b
Xmd

1
ω
b
Xmd

− 1
ω
b
Xmq 0 1

ω
b
X 0
kq1

1
ω
b
Xmq 0 0

− 1
ω
b
Xmq 0 1

ω
b
Xmq

1
ω
b
X 0
kq2 0 0

0 −Xmd
r0fd
( 1ω

b
Xmd) 0 0 Xmd

r0fd
( 1ω

b
X 0
fd)

Xmd
r0fd
( 1ω

b
Xmd)

0 − 1
ω
b
Xmd 0 0 1

ω
b
Xmd

1
ω
b
X 0
kd



−1

A = −B ·



−rs −ωr
ω
b
Xd 0 0 ωr

ω
b
Xmd

ωr
ω
b
Xmd

ωr
ω
b
Xq −rs −ωr

ω
b
Xmq −ωr

ω
b
Xmq 0 0

0 0 r0kq1 0 0 0

0 0 0 r0kq2 0 0

0 0 0 0 Xmd 0

0 0 0 0 0 r0kd


The Simulink model for (4.18) is very simple shown in Figure 4.5.

In this model block, inputs are voltage and rotor speed, output is current vector. This

model is quite simple and easy to understand. It saves not only model building time but also debug

time. This model can avoid the numerical algebra loop.

The induction machine model simulated with the matrix/vector structure is presented in

Chapter 8.

4.4 Models Linearization

Under the operating point, the DGs can be treated as linear models for controller design to improve

the damping of the distribution system. To analyze the dynamic characteristics and design the
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Figure 4.6: Diagram of the linearized substation model of the distribution system.

dynamic controller of the distribution system with DGs, the linearized models of each components

are obtained via the Simulink.

In this chapter, the distribution system consists of the gas turbine synchronous generator

(DG1), diesel engine synchronous generator (DG2) and substation. The substation is considered

as a reference bus and the two DGs are considered as PV bus.

Sb = 4.0MVA, Vb = 4.16kV . PDG1 = 0.1578, VDG1 = 1.0, PDG2 = 0.0875, VDG2 = 1.0.

Synchronous generators: rs = 0.003, Xls = 0.19, Xq = 1.8, Xd = 1.8, r0kq1 = 0.00178,

X 0
lkq1 = 0.8125, r

0
fd = 0.000929, X

0
lfd = 0.1414, r

0
kd = 0.01334, X

0
lkd = 0.08125.

Substation: H = 2364, Td0 = 8.96, Tq0 = 0.1, r = 0, xd = 0.8958, xq = 0.8645, x0d = x
0
q =

0.1198, D = 0.1.

These parameters and the parameters of gas turbine and diesel engine are summarized in

the appendix. (see Table B.1).

4.4.1 Linearized Substation Model

The linearized substation model can be represented as the diagram in Figure 4.6.

The linearization model is obtained from nonlinear model in Simulink directly.

4.4.2 Linearized Gas Turbine Synchronous Generator

The linearized gas turbine powered synchronous generator model (DG1) is illustrated in Figure 4.7.

The three state variables of the gas turbine are: governor power (xgov), valve position (xval) and

fuel pump (xfp).

In the linearized model (4.19), the system plant (A) consists of: the synchronous generator

(A11), the gas turbine (A22) and the interactions between the gas turbine and the synchronous

generator (A12, A21). The reference of equation (4.19) is the rotor of the synchronous generator.
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Figure 4.7: Linearized gas-turbine powered synchronous generator.



∆ω̇

∆i̇rd

∆i̇rfd

∆i̇rkd

∆i̇rq

∆i̇rkq

∆δ̇

....

∆ẋgov

∆ẋval

∆ẋfp



=

 A11 A12

A21 A22

 ·



∆ω

∆ird

∆irfd

∆irkd

∆irq

∆irkq

∆δ

....

∆xgov

∆xval

∆xfp



+B ·


∆vrq

∆vrd

∆vrfd

 (4.19)

where the eigenvalues of the gas turbine synchronous generator under the specific operating point

is:

4.4.3 Linearized Diesel Engine Synchronous Generator

The linearized diesel engine powered synchronous generator model (DG2) is shown in Figure 4.8.

The diesel engine unit has four independent state variables: two controller states (xcon1, xcon2),

actuator state #1 (xTF1) and actuator state #2 (xTF2). Under specific operating point, the output

of the integrator (xint) depends on the four states.
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Table 4.1: Eigenvalues of the linearized synchronous generator with gas-turbine.

NO. Eigenvalues

λ1,2 -3.2937 ± 377.06i
λ3 -30.983
λ4,5 -20.028 ± 0.73761i
λ6,7 -0.69465 ± 2.6572i
λ8 -0.37188
λ9 -1.1222
λ10 -2.4543
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Figure 4.8: Linearized diesel engine powered synchronous generator.
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Table 4.2: Eigenvalues of the linearized synchronous generator connected to diesel engine.

NO. Eigenvalues

λ1,2 -3.2935 ± 377.06i
λ3 -30.983
λ4,5 -0.70467 ± 2.4787i
λ6 -0.4116
λ7 -1.065

Table 4.3: Eigenvalues of the linearized diesel engine DG.

NO. Eigenvalues

λ1 0
λ2 —26.042
λ3 -111.11
λ4,5 -25 ± 66.144i

The linearized synchronous generator model is different from the model of DG1 since they

have different operating points. The eigenvalues of the synchronous generator of DG2 are given in

Table 4.2.

The linearized model of the diesel engine is shown in equation (4.20).



∆ẋcon1

∆ẋcon2

∆ẋTF1

∆ẋTF2

∆ẋint


= Adies ·



∆xcon1

∆xcon2

∆xTF1

∆xTF2

∆xint


(4.20)

where the eigenvalues of the diesel engine are given in Table 4.3.

The zero eigenvalue is corresponding to the ∆xint. It means the integrator is only an

output of the isolated linearized diesel engine model.

4.5 Eigenvalue Analysis

4.5.1 Eigenvalue of the Distribution System with DGs

The eigenvalues of each components are discussed in above section. The results show the numbers

of each component as:
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4 states of substation:
h
∆ω ∆E0q ∆E0d ∆δ

iT
;

10 states of gas turbine synchronous generator + 1 state of excitation system:h
∆ω ∆λd ∆λfd ∆λkd ∆λq ∆λkq ∆δ : ∆xgov ∆xval ∆xfp

iT
+ [∆xex]

T

11 states of diesel engine synchronous generator + 1 integrator + 1 state of excitation

system: h
∆ω ∆λd ∆λfd ∆λkd ∆λq ∆λkq ∆δ : ∆xcon1 ∆xcon2 ∆xTF1 ∆xTF2 ∆xint

iT
+

[∆xex]
T

In the distribution system with substation and DGs, the angle δ of substation is considered

as a reference, so the system contains (4+11+13-1=27) states:h
∆ω ∆E0q ∆E0d

iT
+
h
∆ω ∆λd ∆λfd ∆λkd ∆λq ∆λkq ∆δ21 : ∆xgov ∆xval ∆xfp

iT
+ [∆xex]

T

+
h
∆ω ∆λd ∆λfd ∆λkd ∆λq ∆λkq ∆δ31 : ∆xcon1 ∆xcon2 ∆xTF1 ∆xTF2 ∆xint

iT
+

[∆xex]
T

The eigenvalues of the distribution system under the specific operating point are given in

Table 4.4.

Table 4.4: Eigenvalues of the linearized distribution system with DGs.

NO. Eigenvalues

λ1,2 -140.66±928.54i
λ3,4 -30.606±440.48i
λ5 -108.59
λ6,7 -22.913 ± 64.387i
λ8 -31.956
λ9 -30.745
λ10 -31.343
λ11 -25.968
λ12,13 -20.024 ± 0.73748i
λ14,15 -6.2691 ± 10.487i
λ16 -11.803
λ17,18 -1.1171 ± 8.4846i
λ19,20 -0.8487 ± 3.8898i
λ21 -4.225
λ22 -2.4564
λ23,24 -0.0020607 ± 0.081228i
λ25 -0.41639
λ26 -0.48735
λ27 -0.46964
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4.5.2 Eigenvalue Sensitivity

In a linear system [A,B,C,D], assume the system plant A(n×n) is a function of a general system
parameter ak (k = 1, 2, ..., r). An important stability issue of the system is to determine the

eigenvalues deviation (∆Λ ) corresponding to the change of the parameters ak. A second order

Taylor-series expansion is given to estimate the ∆Λ over the parameter ak as:

∆Λ =
∂Λ

∂ak
(∆ak) +

1

2

∂2Λ

∂a2k
(∆ak)

2 (4.21)

where

∆Λ = diag[∆λ1,∆λ2, ...,∆λn]

∂Λ
∂ak

= diag[∂λ1∂ak
, ∂λ2∂ak

, ..., ∂λn∂ak
]

∂2Λ
∂a2k

= diag[
∂λ21
∂a2k
,
∂λ22
∂a2k
, ..., ∂λ

2
n

∂a2k
]

k = 1, 2, ..., r

The terms ∂Λ
∂ak

and ∂2Λ
∂a2k

in equation 4.21 are defined as the first-order and second-order

eigenvalue sensitivities with respect to the system parameter ak (k = 1, 2, ..., r).

The right (vi) and left (wTi ) eigenvectors of the system plant A (n× n) corresponding to
the eigenvalue λi (i = 1, 2, ..., n) are defined by:

Avi = viλi, vi 6= 0 (4.22)

wTi A = λiw
T
i , w

T
i 6= 0 (4.23)

where λi is the ith eigenvalue, and the product of left and right eigenvectors has the characteristic:

wTi vi = 1, if i = j, 0 otherwise (4.24)

So, if the system A has n different eigenvalues, the following relations exist:

Λ =WTAV (4.25)

I =WTV (4.26)

where

Λ: diag
h
λ1, ...., λn

i
WT : n× n matrix which has wTi as its ith row
V : n× n matrix which has vi as its ith column
I: n× n identity matrix
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Table 4.5: Eigenvalue sensitivity with respect to Xd.

NO. Eigenvalues sensitivity vs. Xd
λ1,2 -292.06∓921.28i
λ3,4 -4.7684∓101.44i
λ5 -0.0002
λ6,7 -0.00056 ± 0.00044i
λ8 5.2170
λ9 14.999
λ10 -0.6977
λ11 0.0065
λ12,13 -0.00015 ∓ 0.00026i
λ14,15 -1.1141 ∓ 8.1231i
λ16 -14.105
λ17,18 0.1963 ∓ 0.0904i
λ19,20 0.0458 ± 0.0125i
λ21 14.022
λ22 0.0064
λ23,24 (-0.458 ∓ 3.974i)×10−6
λ25 -0.00219
λ26 0.01005
λ27 -0.00171

T : denotes transposition

Taking derivatives of both sides of equation (4.25) with respect to a specific parameter αk

yields:

∂Λ

∂ak
=

∂WT

∂ak
AV + (WT )

∂A

∂ak
V + (WTA)

∂V

∂ak
(4.27)

=
∂WT

∂ak
(WT )−1Λ+ (WT )

∂A

∂ak
V + ΛV −1

∂V

∂ak
(4.28)

=
∂WT

∂ak
V Λ+ (WT )

∂A

∂ak
V + ΛWT ∂V

∂ak
(4.29)

The derivative of equation (4.26) is:

∂WT

∂ak
V +WT ∂V

∂ak
= 0 (4.30)

Using the relationship ∂WT

∂ak
V = 0 and WT ∂V

∂ak
= 0, the equation (4.29) can be written as:

∂Λ

∂ak
= (WT )

∂A

∂ak
V (4.31)
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In conventional solution, the ∂A
∂ak

is derived from the linearized equations [69][73]. With

the help of the Simulink toolbox, the ∂A
∂ak

can be calculated as:

∂A

∂ak
=
A∆ak −A
∆ak

(4.32)

where A∆ak is the system plant of the linearized system in Simulink with very small deviation of

parameter ak.

For example, the eigenvalue sensitivity with respect to the parameter Xd is listed in Table

4.5. While calculating the A∆ak , the parameter is changed from Xd 1.8 to 1.82 and ∆ak is 0.02.

4.6 Summary

The matrix/vector concept in Simulink is used to simulate the full-order synchronous generator.

This method can simplify the simulation and avoid the algebra loop. The substation model for

dynamic studies is developed. It consists of a large inertia synchronous generator and a transformer.



40

Chapter 5

A Phosphoric Acid Fuel Cell Model

from Data Fitting

5.1 Introduction

This chapter presents a fuel cell model obtained through data fitting method with the operating data

of a phosphoric acid fuel cell (PAFC). The impedance characteristics of the fuel cell are investigated.

Dynamic simulations in MATLAB/SIMULINK are then studied toward the integrated system of

the fuel cell for the IEEE 13-node power distribution system with existing gas turbine and diesel

engine distributed generations (DGs). The impacts of fuel cell on the system are investigated.

An efficient way to develop the complicated fuel cell model is presented in this chapter. The

nonlinear simulation illustrates that the model is helpful to investigate the dynamic stability of the

distribution system with a fuel cell power plant.

With the assistance of local electric utilities, operating data on a phosphoric acid fuel cell

system [66][83] was obtained. Actual data was recorded by a Digital Fault Recorder (DFR) system

monitoring the operation of the cell.

A phosphoric acid fuel cell contains the primary subsystems shown in Figure 5.1.

Dynamic behavior of components can be modeled using systems theory in several ways.

Here, the data on the fuel cell operation is retrieved and applied to obtain generic structures

describing the dynamics such as transfer functions and their time domain counterparts, differential

equations.

A large volume of data is available from recorded events on the subject fuel cell.
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Figure 5.1: Diagram of a PAFC’s generalized schematic.
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Figure 5.2: An equivalent circuit of the PAFC.

5.2 V-I Characteristics

A PAFC can be electrically modeled as shown in the equivalent circuit of Figure 5.2 [135]. The

structure is composed of an electrolyte and two electrodes. Re is the resistance of electrolyte in the

matrix of the PAFC. The capacitive component of the electrolyte is ignored since the electrolyte is

highly conductive. Rp,a represents the anodic polarization resistance, in parallel with the double-

layer capacitance of the interface between the electrolyte and the anode. Rp,c corresponds to

polarization resistance of the cathode. Cp,a and Cp,c represent the double-layer capacitances near

the anode and the cathode.

The current-voltage nonlinear characteristics of a single PAFC with a variation in the

amount of the dispersant can be obtained from the performance data. A certain voltage is found

as an open circuit voltage (OCV). The current increases with decreasing potential below the OCV.

Thus the fuel cell can be represented as a controllable current source controlled with variable
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Figure 5.3: I-V characteristics of the PAFC obtained from the recorded data. (X axis: current (A);
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Figure 5.4: A model of the PAFC’s DC part.

impedance. The RMS AC output voltage value is proportional to the DC output voltage value.

Figure 5.3 shows the I-V characteristic of the PAFC obtained from the recorded data

during a shut down cycle process. Overall, the voltage increases when the current decreases. The

impedance characteristic is similar to that in [135].

Therefore, if we can obtain the impedance characteristic of the fuel cell and the gas valve

turn off process, a detailed fuel cell model can be constructed. In the turning off process, the DC

current is used to represent the valve of the fuel cell. The controllable current source and the

output voltage can be obtained through data fitting. By dividing the voltage by the current the

impedance is obtained. Thus the whole fuel cell model is known. Figure 5.4 shows the DC part of

the PAFC model.
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Figure 5.5: Diagram of the sampled data of the DFR device.

5.3 Data Fitting

To obtain the transfer function H(s), for the fuel cell from the analysis of the real, raw data, there

are three steps[134]:

1. Identification of the candidate time domain function.

2. Estimation of the parameters in the time domain function.

3. Obtaining the transfer function from the actual time domain data.

Figure 5.5 shows the sampled data of the DFR device. Several such data samples were

used to obtain the models in this chapter.

5.3.1 Least Squares Optimization Algorithm

The estimation of the parameter of the time domain function is accomplished through data fitting.

Here the least square optimization method is used.

The objective function is expressed as the integral of the least square error:

min
x∈Rn

Z t1

t2

(y(x, t)− φ(t))2dt (5.1)
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where y(x, t) is the estimated output function with x and t as parameters and φ(t) is the real data.

y(x, t) is required to follow the trajectory of φ(t). Equation (5.1) is discretized and formulated as

a least squares problem:

min
x∈Rn

f(x) =
mX
i=1

(y(x, t)− φ(t))2 (5.2)

where y and φ include the weights of the quadrature scheme.

The MATLAB Optimization toolbox was applied to solve this problem and generate the

numerical optimal parameters.

5.3.2 Fuel Cell Transient Output Current Modeling

From the general form of the fuel cell’s DC current, it can be seen that it has the general form of

analytical response:

I(t) = ke−α(t−t0) cos(ω(t− t0)) + c (5.3)

where k, α, ω, t0 and c are the undetermined constants. They will be determined by fitting this

analytical expression to the current data record. The data records from the DFR can be used to

make the fit using MATLAB. Three different data records were fitted to this form.

Figure 5.6 shows the DC current response corresponding to a fuel cell shut down (Case

1). The identified values of the parameters in equation (5.3) are shown in Figure 5.6. The small

circles denote the fuel cell (DFR) sampled data and the continuous line is the equation (5.3) fitted

approximation of the actual data.

A second approximation example (Case 2) selected was the DC current response on a

different data set (e.g. independent data set). Figure 5.7 gives the measured data (circles), the

equation (5.3) approximation values (continuous line) and the equation (5.3) parameter values

which resulted from the best fit of equation (5.1) to the actual measured fuel cell data.

Finally, a third example fuel cell shut down data set (Case 3) is selected for approximation

of the DC current. Table 5.1 summarizes the best-fit parameters for all three of the above calculated

fuel cell shut down dynamics cases.

It can be seen that the parameter values given in Table 5.1 result in very good fits of

equation (5.3) to the actual fuel cell data.

From Table 5.1, the approximate ranges of equation (5.3) parameter values are as given in

Table 5.2. From these intervals of parameter values, one might select the typical set of parameter
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Figure 5.6: The recorded data and fitted curve of the PAFC’s DC current (Case 1).

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
-200

0

200

400

600

800

1000

1200

k  = 775.044
α = 9.467
t0=0.83272
ω =14.041
c=106.531

time(sec)

cu
rre

nt
 (A

)

Figure 5.7: The recorded data and fitted curve of the PAFC’s DC current (Case 2).
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Table 5.1: DC current parameters vs. record data.

NO. k α c ω t0

Case 1 819.6 9.370 116 14.09 0.508
Case 2 775.0 9.467 106.5 14.04 0.833
Case 3 766.9 9.045 111.4 13.87 0.533

Table 5.2: Range of parameters and representative parameter values.

NO. k α c ω

Range 750-819.6 9-9.5 110-120 13.15-14.15
Representative 785.0 9.25 115 14.0

values shown in Table 5.2 as representative values for a generic model of this class of PAFC fuel

cell shut down dynamics.

Considering the shut down to be a response to a unit step (or switched) input,

U(s) = −U0
s

(5.4)

where U0 is the amplitude of the down step, the output current response to this input shut down

is equation (5.3). Taking the Laplace transform of equation (5.3), the Laplace transform of the

output response I(s) is:

I(s) =
ks

(s+ α)2 + ω2
et0s +

c

s
(5.5)

Therefore the transfer function is:

H(s) =
I(s)

U(s)
= − ks

(s+ α)2 + ω2
et0s − c

s
(5.6)

where k = 785, c = 115, α = 9.25, ω = 14.0.

5.3.3 Fuel Cell Transient Output Voltage Modeling

Next the fuel cell DC output voltage response is modeled. In this case, the most appropriate

analytical function form is a polynomial. Again, MATLAB Optimization toolbox is used to fit an

approximation polynomial to actual fuel cell data provided. The MATLAB function POLYFIT is

used to match a polynomial in time to the fuel cell DC voltage data vs. time by minimizing the

mean squared error between the analytical polynomial and the voltage data. POLYFIT adjusts
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Table 5.3: Error vs. polynomial order.

N 4 5 6 7 8 9 10 11 12 13
Error 29.70 9.03 5.95 4.10 2.12 1.96 1.95 1.94 1.94 1.94

the polynomial coefficients to achieve the best fit. The equations are:

V (t) =
NX
n=0

an(t− t0)n (5.7)

The vector of coefficients is:

Coef = [aN , aN−1, aN−2, . . . , a1, a0] (5.8)

The root mean square error between any set of sample values of the fuel cell’s DC voltage

data and equation (5.7) values is:

Error =
qX

(Vsampling − Vestimate)2 (5.9)

As an example, for the Case 1 fuel cell data set, the value of the error versus the number

of terms in the polynomial for polynomials of order four through thirteen are shown in Table 5.3.

A graph of this relationship plotting error on the vertical axis versus number of polynomial terms

(the order of the polynomial) is shown in Figure 8.

From Table 5.3 and Figure 5.8, it is observable that the 8th order polynomial is almost

as good as any polynomial of higher order to approximate the DC voltage’s waveform. Therefore

only an eighth order polynomial is needed to represent this transient DC voltage.

The coefficients of the 8th order polynomial are:

Coef = 1.0e+ 006 ∗ [ −0.4206 1.1891 −1.3581 .7877 (5.10)

−0.2339 0.0285 0.0003 −0.0000 0.0002 ]

and the polynomial is:

V (t) =
8X
n=0

coef(n)(t− t0)n (5.11)

Figure 5.9 shows the recorded data and fitted curve of the output voltage.
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Figure 5.8: Diagram of the Error vs. polynomial order for the PAFC’s DC voltage.
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Figure 5.9: The recorded data and fitted curve of the PAFC’s DC voltage (case 1). (x axis: time
(s); y axis: voltage (v)).



CHAPTER 5. A PHOSPHORIC ACID FUEL CELL MODEL FROM DATA FITTING 49

H(s)

DC/AC
V

out

Fuel Cell

Z(t)I(t)

Figure 5.10: Diagram of the proposed PAFC’s dynamic model.

5.3.4 Fuel Cell Modeling

Figure 5.10 shows the proposed fuel cell model. The model represents the turn down process of the

fuel cell.

In Figure 5.10, the I(t) is determined by the H(s) in equation (5.6), and the open circuit

impedance is expressed as:

Z(t) =
V (t)

I(t)
(5.12)

Since the DC voltage (V), and DC current (A) outputs from the fuel cell model are

available in Matlab, Z(t) in equation (5.12) can be calculated. Figure 5.11 gives the resulting V-I

curve.

The impedance curve of the fuel cell model is shown in Figure 5.12.

5.4 Configuration of Test System with DGs

Figure 5.13 shows test system to evaluate the impacts of the PAFC on the power distribution

system. The test system is the IEEE 13-node system with a gas turbine synchronous generator

and a diesel engine synchronous generator. The PAFC model is connected to the gas turbine DG

directly.

The IEEE-13 node power distribution system with multiple types of DGs is represented

in Matlab/Simulink by an average model.

In Figure 5.13, the synchronous generator connected with the gas turbine and the diesel

engine is represented by a full-order model. The gas turbine model consists of speed governor, valve

position, fuel pump, and turbine. The diesel engine model consists of the control system, actuator,

integrator and the engine itself. The models of the gas turbine synchronous generator and diesel
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Figure 5.11: The V-I curve of the obtained PAFC’s model. (X: current (A); Y: voltage (V)).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-200

0

200

400

600

800

1000

1200

1400

Figure 5.12: The impedance of the obtained PAFC’s model vs. time. (X axis: time (s); Y axis:
impedance (Ω)).
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Figure 5.13: IEEE-13 node power distribution system with mult-types of DGs.

engine synchronous generator have been described in detail in Chapter 4 [81]. In this chapter, the

full-order synchronous generator is simulated by Simulink, not with the Power system Blockset. A

simplified excitation system is used.

5.5 Simulation Study

In section 5.3, the voltage curves, current curves, and the impedance characteristic curves are

studied respectively. During the turn off procedure, the current input from the PAFC affects the

dynamic stability of the distribution system directly. The effects of voltage are relatively indirectly.

The approximately monotonic change of the V-I curve in Figure 5.11 means the impedance of the

PAFC can be maintained relatively constant within the operating range. This is a very important

characteristic of the fuel cell power plant to implement the real/reactive power control via the

DC/AC inverter.

Here, the current model of the PAFC is used to investigate the impacts of the PAFC on

the dynamic stability of the power distribution system during PAFC turn off.

The base of the distribution system: Sbase = 4.0MVA, Vbase = 4.16kV . These base values

are used in Chapters 5-10.

The initial power penetration of gas turbine is Sgas = 0.2625 + j0.1166 (pu); the initial
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Figure 5.14: Real power penetration from the PAFC power plant to IEEE-13 node power distrib-
ution system (dotted line: Case I, solid line: Case II).

power penetration of diesel engine is Sdiesel = 0.1375 + j0.1026.

Two cases are conducted with different initial real power penetrations from the fuel cell

power plant:

Case I: Pfuelcell = 0.0825;

Case II: Pfuelcell = 0.02475.

Figures 5.14-5.17 show the simulation results to investigate the impacts of the fuel cell

model on the distribution system. In the figures, dotted lines represent the Case I and solid lines

represent the Case II.

Figure 5.14 shows the dynamic procedure of the real power penetration from the fuel cell

power plant to power distribution system. Figure 5.15 is the bus voltage magnitude. Figures 5.16-

5.17 show the dynamic response of the gas turbine and diesel engine DGs. The simulation results

show that the larger penetration of fuel cell will produce great impact on the system during the

turn-off procedure.

5.6 Summary

This chapter presents a practical method to develop the complicated fuel cell model via the data

fitting. The model is useful to evaluate the dynamic impact of the PAFC power plant on the
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Figure 5.15: Voltage magnitude of bus 671 during the PAFC’s turn-off procedure (dotted line: Case
I, solid line: Case II).

Figure 5.16: Rotor speed response of the gas-turbine synchronous generator during the PAFC’s
turn-off procedure (dotted line: Case I, solid line: Case II).
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Figure 5.17: Rotor speed response of the diesel-engine synchronous generator during the PAFC’s
turn-off procedure (dotted line: Case I, solid line: Case II).

power distribution system. The obtained impedance characteristic of the fuel cell model is the pre-

condition to develop the inverter-based controllable fuel cell model. The nonlinear simulation in

Matlab/Simulink was done to investigate the impacts of the PAFC model on the power distribution

system with different power penetration. The results show that the larger penetration of fuel cell

will produce greater impact on the system during the turn-off procedure.
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Chapter 6

Dynamic Modeling of A Solid Oxide

Fuel Cell Power Plant

6.1 Introduction

In Chapter 5, a methodology is presented to obtain a phosphoric acid fuel cell (PAFC) model at

certain operating condition. In this chapter and Chapter 7, the dynamic model and stability control

of solid oxide fuel cell (SOFC) power plant are investigated.

A fuel cell power plant is a type of DG to convert chemical energy into electricity via

the electrochemical procedure directly. However, the conventional electric generation, such as

gas turbine and diesel engine DGs convert the energy via the rotating generator. Normally, the

electrochemical process of fuel cell is lower temperature, less noise and lower emissions. These

characteristics of fuel cell are attracting increasing power provider’s interest.

To study the impact of the fuel cell power plant on the power distribution, a controllable

dynamic model of a SOFC power plant is developed in this chapter. Base on the model in [92] (see

Figure 2.2), the model is simplified and developed to be suitable for simulation in Simulink. In the

developed model (see Figure.6.1), the connection between the SOFC and the power conditioning

unit (PCU) is equivalently represented as the voltage (vfc) instead of the real power. Besides the

control of the fuel supply, the adjustment of real power transmission between the SOFC and PCU

will be implemented by the voltage.

The objectives of this chapter are to:

1. analyze each component of a SOFC power plant system, determine the system structure
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Figure 6.1: Diagram of the general structure of a SOFC power plant.

of a typical fuel cell power plant;

2. develop the dynamic model of the SOFC power plant and represent it as ordinary

differential equations;

3. simulate the SOFC power plant in Simulink, and test the dynamic response of the

model.

6.2 Structure of A SOFC Power Plant

Basically, fuel cells are devices that transform chemical energy into electrical energy. The output

of a fuel cell is DC current which will be transformed to AC currents through dc/ac inverter to

be connected with ac network. A plant structure of a SOFC based DG is presented in [92], in

which the plant is grouped into five parts: fuel cell stack, power conditioning unit, balance of plant,

network interface controller and plant controller (see Figure 2.2).

The structure of a controllable dynamic SOFC power plant is developed (see Figure 6.1)

from [92]. In the Figure 6.1, the real and reactive power set point (P ∗, Q∗), measured voltage (vd,

vq) and current (id, iq), are used to obtain voltage (Vfc) as the output of the SOFC.
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6.3 Dynamic Model of Solid Oxide Fuel Cell (SOFC)

A fuel cell consists of an anode, a cathode, and an electrolyte (see Figure 6.2). The amount of the

fuel and air is set by the set real power (P ∗). The output of the cell is the direct current voltage

(Vfc). From the Nernst’s law, the voltage of a fuel cell is determined by the three state variables:

partial pressure of hydrogen, partial pressure of oxygen and partial pressure of steam. Also, the

size of the load affects the terminal voltage of the cell.

A practical fuel cell power plant consists of one or more fuel cell stacks. Each fuel cell

stack has many seriesly connected cells. The terminal voltage of the fuel cell plant depends on the

number of in series connected cells and the capacity is determined by the total number of the cells.

Here, one fuel cell stack is simulated and studied.

In this chapter, the dynamic model of SOFC [92] is presented. The partial pressure of the

three type of substances in a cell can be expressed as:

pPH2 = −
1

tH2
(PH2 +

1

KH2
(qinH2 − 2KrIfc)) (6.1)

pPH2O = −
1

tH2O
(PH2O +

2KrIfc
KH2O

) (6.2)

pPO2 = −
1

tO2
(PO2 +

1

KO2
(qinO2 −KrIfc)) (6.3)

where qinH2and q
in
O2
are the molar flows of hydrogen and oxygen, Kr = N0

2F , N0 is the number of cells

of one stack, F is the Faraday’s constant. The time constant tH2, tH2O, tO2 are determined by the

volume of the anode, the universal gas constant, the absolute temperature, and so on.
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Figure 6.3: Three-phase CSI-based PCU.

The voltage of the fuel cell stack can be determined by the Nernst’s equation and Ohm’s

law. The following equations show the voltage of the fuel cell stack:

Vfc = N0(E0 +
RT

2F
(ln(

PH2P
0.5
O2

PH2O
))− rIfc (6.4)

= VNernst − rIfc (6.5)

where Ifc is the current of the fuel cell stack.

6.4 Power Conditioning Unit (PCU)

A PCU is an interface to connect the fuel cell with the utility grid. The basic functions can be

summarize as: DC/AC transformation, output voltage/current modulation.

To study the dynamic characteristic of PCU, a dynamic model of PCU for fuel cell is

developed. Three-phase equivalent circuit of PCU is shown in Figure 6.3. In Figure 6.3, Rs

represents the sum of the losses of a Y/∆ transformer resistance and the inverter conduction, Ls

represents the leakage inductance of the transformer, ea, eb, ec are the three-phase AC voltage

output of inverter, and ia, ib, ic are the three-phase AC current output of inverter. The input of

inverter are the pulse width modulation (PWM) gain k and angle α. The DC voltage Vfc is the

output of a SOFC.

The state equations of the three-phase current source inverter (CSI) based PCU are the

differential equations of voltage and current [101][132].
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pip = −Rs
Ls
ip +

1

Ls
(ep − vsp) (6.6)

where p = {a, b, c}.
The phase a grid voltage at the interconnecting point PCU is given by:

vsa =
√
2Vs cos(ωst+ θs) (6.7)

where Vs∠θs is voltage phasor of connecting bus, and ωs is the system frequency.

The ac side phase a voltage of inverter is:

ea = kVfc cos(ωst+ α) (6.8)

where k and α are the PWM modulation gain and angle.

For the sake of stability analysis and controller design, the state equation (6.6) is trans-

formed to the system synchronous reference frame as: piq

pid

 = AI
 iq

id

+BI1Vfc +BI2Vs (6.9)

where

AI =

 −R0sωsL0s
−ωs

ωs −R0sωsL0s

;
BI1 =

 ωs
L0s
k sin(α+ θs)

ωs
L0s
k cos(α+ θs)

, which represents the interaction between inverter and fuel
cell;

BI2 =

 −ωs
L0s
sin θs

−ωs
L0s
cos θs

, which represents the interaction between inverter and grid.
In the DC circuit, the relationship between voltage and current may be expressed as:

Ifc =
1

R0dc
Vfc + idk cos(α+ θs) + iqk sin(α+ θs) (6.10)

where R0dc represents the switching losses.

6.5 Inverter Control Unit

Besides the fuel cell (SOFC) and inverter, the control unit is another important component in the

fuel cell power plant (see Figure 6.1). The current tracking inverter control strategy can be used
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Figure 6.4: Diagram of the current control scheme for the CSI-based PCU.

to track the real power (P ∗) and reactive power (Q∗) requirement, or to track the real power (P ∗)

and voltage (V ∗) requirement. Thus the fuel cell power plant can be considered as a PQ bus or a

PV bus depending on the different control strategies. Here, the current tracking PQ type control

strategy is presented.

The basic idea of current tracking inverter control is illustrated in Figure 6.4. The input

values are errors between measured id, iq and reference i∗d, i
∗
q . They are passed through to the PI

controller and comparator, which has output k, α. The output of the switch-mode inverter is the

AC voltage v cosα (kVfccos(ωst+ α)).

The relationship between the inverter controller parameters and the current has been

expressed in (6.9). To develop the dynamic model of PCU, the equation (6.9) is linearized under

the specific operating point as [82]:

 p∆iq

p∆id

 = A∆

 ∆iq
∆id

+B∆1

 ∆vq
∆vd

+B∆2


∆α

∆k

∆Vfc

∆θ

 (6.11)

Considering that the DC voltage deviation of the SOFC is very small ∆Vfc = 0; the

voltage deviation of the grid is very small ∆θ = 0, the linearized model can be simplified as: p∆iq

p∆id

 = A∆

 ∆iq
∆id

+B∆1

 ∆vq
∆vd

+B∆2

 ∆k
∆α

 (6.12)

where

A∆ =

 −R0sω0L0s
−ω0

ω0 −R0sω0L0s

 ;
B∆1 =

 −ω0
L0s
−ω0
L0s





CH APTER 6 . DYNA MI C MODELI NG OF A SOLID OXI DE FUEL CELL POWER P LAN T   61

to inverter
calculate

unitp*

q*

vd

vq
from measuring

set point

-

Σ

Σ PI

PI

PI

PI

Σ

Σ

∆k

∆α

+

+

-

-

id

iq

i*d

i*q

+

+

+

+

from measuring

from measuring

Figure 6.5: Diagram of an average model of a CSI-based PCU.

B∆2 =

 ω0Vfc
L0s

sin(α0 + θs)
ω0Vfc
L0s

k0 cos(α0 + θs)
ω0Vfc
L0s

cos(α0 + θs) −ω0Vfc
L0s

k0 sin(α0 + θs)

 ∆
=

 k11 k12

k21 k22


According to the linearized equation (6.12), the current id and iq can be controlled by the

adjustment of the gain k and/or firing angle α. Then the control unit of CSI is demonstrated in

Figure 6.5.

In Figure 6.5, the calculate unit represents the following equations. i∗q
i∗d

 = 1

v2q + v
2
d

 vq vd

−vd vq

 P ∗
Q∗

 (6.13)

6.6 Model Simulation and Test

To test the mathematical model presented in previous sections, the fuel cell power plant is simulated

in Simulink. The single fuel cell power plant and infinite bus system (see Figure 6.6) are used to

test the effectiveness of the developed model. One case study is conducted to test dynamic response

as the real power set point is changed.

The parameters of fuel cell [92] are: N0 = 384, KH2 = 8.43e−4, KH2O = 2.81e−4, KO2 =

2.52e−3, tH2 = 26.1, tH2O = 78.3, tO2 = 2.91, r = 0.126, Rs = 0.9, Ls = 0.01.

The real power set point P* makes a step change from 0.875 to 0.7 at t=5.0s and the reac-

tive power set point Q* remains constant. Figure (6.7-6.8) show the measured P and Q responses

and Figure 6.9 shows the terminal voltage response of SOFC. The simulation results illustrate the

capacity to track the real power set point. The delay time of the inverter is 0.1s. Figure 6.7 illus-
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Figure 6.6: Diagram of single fuel cell power plant and infinite bus.

trate the real power changes from 0.875 to 0.75 in 0.1s. The response speed slows down due to the

change of the SOFC terminal voltage.

Figure 6.10 shows the SOFC internal Nernst’s voltage response of the step change in real

power set point. The SOFC internal Nernst’s voltage is determined by the three state variables

inside the SOFC. The voltage speed is very slow due to the large time constants of the pressures.

6.7 Summary

In this chapter, a dynamic SOFC power plant model is developed. As a contribution of this DG

research, an average PCU model is proposed with four PI controllers to connect the SOFC into the

distribution system. The nonlinear simulation results illustrate that the SOFC power plant can

track the real/reactive power set points rapidly.
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Figure 6.7: Real power response of the step change in real power set point.

Figure 6.8: Reactive power response of the step change in real power set point.



CH APTER 6 . DYNA MI C MODELI NG OF A SOLID OXI DE FUEL CELL POWER P LAN T   64

Figure 6.9: SOFC terminal voltage response of the step change in the real power set point.

Figure 6.10: SOFC internal Nernst’s voltage response of the step change in real power set point.
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Chapter 7

Dynamic Stability Control for A

SOFC Power Plant

7.1 Introduction

The fuel cell power plant is gradually used as a new type of distributed generation (DG). The

dynamic model of a SOFC power plant studied in Chapter 6 illustrates that the fuel cell power

plant can track the real and reactive power instantaneously. The response time of the inverter is

0.1s. These rapid real/reactive power track characteristics provide the potential of a fuel cell power

plant to improve oscillation damping in the power distribution system.

In this chapter, the integration of a SOFC power plant dynamic model to the power

distribution system is investigated and the impact of the fuel cell on the system is studied; the

linearized model of the system with a fuel cell power plant, a gas turbine DG and a diesel engine

DG is developed. Based on the linearized model, the optimal control is designed and the controller

is tested under different fault locations.

7.2 System Configuration

To study the impact of the fuel cell on the power distribution system with multiple types of DGs,

the fuel cell power plant is connected to the IEEE-13 node distribution system with a gas turbine

synchronous generator and a diesel engine synchronous generator (see Figure 7.1).

The average model of the IEEE-13 system with a gas turbine DG and a diesel engine DG

has been presented in Chapter 4 [81]. The fuel cell power plant and the gas turbine DG are connected
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Figure 7.1: IEEE-13 node power distribution system with multi-types of DGs to evaluate the impact
of a SOFC power plant.

at the same bus. At the initial condition, the fuel cell supplies the power s = 0.2625 + j0.05.

To evaluate the impact of the fuel cell power plant on the distribution system, a case study

is conducted that a ground fault occurs at bus 632 and this fault is cleared after 0.25s. Figures

(7.2-7.4) show the simulation results. Figure 7.2 shows the ground fault disturbance results in the

rotor speed deviation of DG1 and DG2. In the following sections, the controller is designed to

improve the oscillation damping.

7.3 System Linearization

As discussed in Chapter 4, the linearized model plays a very important role to analyze the nonlinear

system. The Matlab/Simulink provides a powerful tool to linearize the nonlinear system in Simulink

under a specific operating condition.

The operating condition of the power distribution system with DGs is listed as: Pgas =

0.1578, Vgas = 1.0, Pdiesel = 0.0875, Vdiesel = 1.0, and Psofc = 0.0875. The parameters of the

substation, the gas turbine DG and the diesel engine DG are listed in Appedix B (Table B.1).

Around that operating point, the integrated system can be represented by linear models,

based on which controllers are designed to improve the oscillation damping of the distribution
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Figure 7.2: Rotor speeds of DGs 1&2 as a fault occures at bus 632 without controller.

Figure 7.3: Real and reactive power of the SOFC power plant as a fault occures at bus 632 without
controller.
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Figure 7.4: Terminal and internal Nernst voltage of SOFC as a fault occures at bus 632 without
controller.

system. To analyze the dynamic characteristics and design the dynamic controller of the distribution

system with DGs, the linearized models of the distribution system with multiple types of DGs are

obtained by the Simulink.

The linearized models of a gas turbine DG, a diesel engine DG and the substation have

been presented in Chapter 4.

Gas turbine DG consists of the 7th order synchronous generator, the 3rd order gas turbine

and the 1st order excitation system:
h
ω ird irfd irkd irq irkq δ : xgov xval xfp : xext

iT
Diesel engine DG consists of the 7th order synchronous generator, the 5th order diesel

engine and the 1st order excitation system.h
ω ird irfd irkd irq irkq δ : xcon1 xcon2 xTF1 xTF2 xint : xext

iT
Substation is represented as the transient synchronous generator model.

h
ω E0q E0d δ

iT
The fuel cell consists of 3rd order SOFC model, 2nd order dynamic PCU model and four

PI controllers:

The state variables x =
h
PH2 PH2O PO2 : iq id : xPI1 xPI2 xPI3 xPI4

iT
The four integral states of the PI controller are weakly connected to the oscillation modes

of linearized system.
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Figure 7.5: Structure of the linearized output feedback control.

Table 7.1: Dominant eigenvalues of the linearized distribution system with 3 DGs.

NO. Open Loop Eigenvalues

λ21,22 -0.9580 ± 4.6650i
λ25,26 -1.1168 ±9.0009i

Once the three synchronous generators (2 DGs + Substation) are connected in the dis-

tribution system, only two rotor angles are independent. So, in the linearized distribution system,

there are in total 36 state variables. The linearization results in Simulink verify above analysis.

Based on the linearized model (A, B, C, D), the controller is designed via eigenvalue

analysis. The controller design is studied in the following section.

7.4 Controller Design to Assign Eigenvalues

Consider the above linearized power distribution system with multiple types of DGs represented in

the form:

ẋ = Ax+Bu (7.1)

y = Cx (7.2)

where x are the linearized state variables vector and u is the input of fuel cell.

The structure of the linearized output feedback controller is shown in Figure 7.5.

From the analysis in section 7.3, the linearized power distribution system has 36 total

state variables. The dominant eigenvalues are listed in Table 7.1.

The controller objective is to improve the oscillation damping of the system, especially

modes (λ21,22, λ25,26). To select the control signal, the participation factor is used to select the
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Table 7.2: Participation factors of eigenvalues λ21,22, λ25,26.

State Variables PF of λ21,22 PF of λ25,26
∆ωgas 0.2420 0.2273

∆δgas_substation 0.2267 0.2363
∆ωdiesel 0.2483 0.2684

∆δdiesel_substation 0.2398 0.2668

most relative state variables to the critical modes. The participation factor,PFki, of system (A, B,

C, D) is defined as:

PFki = VikWki (7.3)

where V and W are the right and left eigenvectors of the system (A, B, C, D). The participation

factor PFki reflects the participation of the kth eigenvalue in the zero input response of the ith state

variable. To associate a state variable with an eigenvalue, the participation matrix, PM, is defined.

The dimension of PM is same as system matrix A, and the element PM(k, i) of PM is |PFki|. A
large factor |PFki| in PM means the eigenvalue λk is mostly associated with xi.

In the linearized distribution system, each of the 36 states has a factor related to the modes

(λ21,22, λ25,26). The participation factors demonstrate that the most relative state variables are:

rotor speed of the gas turbine DG, rotor speed of the diesel engine DG, the rotor angle difference

between the gas turbine DG, and the rotor angle difference between the diesel engine and the

substation. In the controller design, the four outputs of the system may be considered as the input

of the controller. The four most related states are listed in Table 7.2.

The four participation factors of each oscillation modes are very close. For the sake of

the convenient measuring and signal communicating, the rotor speed of gas turbine DG and diesel

engine DG are selected as the control signal.

To improve the oscillation damping of the dominant modes, the linearized output feed-

back control is designed. The centralized control scheme is proposed in Figure 7.6. The phase

compensate unit is the lead-lag compensation network. The lead-lag network is designed based on

the residue of each input control signal respectively. The output optimal feedback control algorithm

is implemented to select the centralized gains (k1, k2) including the phase compensation unit.
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Figure 7.6: Coordinated control scheme of the SOFC power plant.

7.4.1 Phase Angle Compensation

In Figure 7.6, the coordinated control scheme has two inputs and one output. The control inputs

(∆ωgas, ∆ωdiesel) are considered to compensate the two pairs of the critical modes (λ21,22, λ25,26)

respectively. Thus, two single input single output (SISO) systems are considered. If the linearized

system has n distinct eigenvalues, each of the SISO system can be described as is:

Gl(s) =
Rl,1
s− λ1

+
Rl,2
s− λ2

+ ...+
Rl,n
s− λn

(7.4)

where l = 1, 2 for each input, and Rl,i is the residue of the eigenvalue λi.

The lead-lag network is used to compensate the critical modes, thus to improve the os-

cillation damping of the power distribution system. The least damped critical modes should be

considered first. The lead-lag network shifts the phase of input signal from the plant G(s)[117].

K(s) = (
1 + αjτ js

1 + τ js
)m (7.5)

which consists of m phase lead-lag stages.

In each phase lead-lag stage, αj is determined by the maximal compensation angle of this

stage at frequency ωj :

φj(ωj) = sin
−1(

αj − 1
αj − 1) (7.6)

where ωj can be the imaginary part of a critical mode or a frequency where phase margin is needed.

Time constant tj is evaluated from:

τ j =
1

ωj
√
αj

(7.7)

At this time constant, the maximum phase lead-lag occurs at frequency ωj .
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1) Compensate λ21,22 with ∆ωgas

To compensate the phase angle of∆ωgas, this signal is considered to improve the oscillation

damping of the modes λ21,22.

The corresponding residues are:

R1,(21,22) = 0.0118± 0.00119i (7.8)

= 0.0118∠± 5.74◦ (7.9)

The residues show that there is no need to compensate the modes(λ21,22).

2) Compensate λ25,26 with ∆ωdiesel

The signal ∆ωdiesel is considered to improve the oscillation damping of the modes λ25,26.

The corresponding residues are:

R2,(25,26) = 0.0006483± 0.001877i (7.10)

= 0.01986∠± 70.95◦ (7.11)

The residues show the phase angle can be compensated up to 70.95◦. To compensate the

70.95◦ total phase angle, two stages of lead-lag networks are designed, each stage contributing 35.0◦.

From the equations (7.6-7.7), the parameters of one compensation unit are: α = 3.69, τ = 0.05784.

7.4.2 Optimal Control Algorithm to Select Gains

The optimal control algorithm is used to determine the gain (k1, k2) of the feedback controller.

Consider the linear system represented by equations (7.1-7.2). The output feedback controller is:

u = −Ky (7.12)

Define the performance index:

J =

Z ∞

0
(xTQx+ uTRu)dt (7.13)

with Q = QT > 0 and R = RT > 0. The optimal gain design equations:

0 = ATcM +MAc + C
TKTRKC +Q (7.14)

0 = SATC +ACS +X (7.15)

K = RTBTMSCT (CSCT )−1 (7.16)
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Table 7.3: Feedback gains through the optimal control algorithm.

With phase Compensation Without phase compensation

k1 -53.22 -37.56
k2 -57.35 -76.46

Iterations 523 498

Table 7.4: Dominant eigenvalues of the open/closed loop system.

NO. open loop eigenvalues
Closed loop Eigenvalues
with compensator

Closed loop Eigenvalues
without compensator

λ21,22 -0.9580 ± 4.6650i -1.699 ± 3.868i -2.328 ± 4.562i
λ25,26 -1.1168 ±9.0009i -1.298 ±8.869i -1.159 ±9.075i

where Ac = A−BKC, and X = E
©
x(0)xT (0)

ª
. The performance index is:

J = 0.5Trace(Mu) (7.17)

In the linearized distribution system (A, B, C, D), the dimension of A is 38 × 38, the
dimension of B is 38 × 1, the dimension of C is 2 × 38, and the dimension of D is 2 × 1. In the
performance index, the Q is 38 × 38 identity matrix and R = 10. To compute the optimal gain

(k1, k2), the deviation of rotor speed (∆ωgas, ∆ωdiesel) of gas turbine DG and diesel engine DG

are considered for the initial condition, and initial condition of other linearized state variables are

set as zeros. Table 7.3 illustrates the gains with/without phase angle compensation through the

optimal feedback control algorithm.

The closed-loop system dominant eigenvalues are listed in Table 7.4. The nonlinear sim-

ulation results with/without controllers are shown in the following section.

7.5 Simulation Results

In this section the dynamic simulation results are presented with/without controller. The cases

were done under the condition that a ground fault occurs. The operating condition was described

in the previous section. Simulation results show that the control via the fuel cell can effectively

improve the oscillation damping of the two synchronous generator DGs. Two types of controller are

tested: controller #1 is output feedback controller without phase angle compensation, controller

#2 is output feedback controller with compensation unit. Figures 7.7-7.15 show the simulation

results. In the figures, the dashed lines represent the dynamic response without controller, the
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Figure 7.7: Rotor speed of the gas turbine DG when a fault occurs at bus 634 (Case 1).

dotted lines represent dynamic response with controller #1, and the solid lines represent dynamic

response with controller #2. Three cases with different fault locations are simulated to test the

robustness of the optimal output feedback controller. The simulation results verify that the optimal

controller can effectively improve oscillation damping of the power distribution system with DGs.

Case 1: Fault occurs at bus 634. The fault occurs closer to the diesel engine DG. Figures

7.7-7.9 show the simulation results.

Case 2: Fault occurs at bus 684. The fault occurs closer to the gas turbine DG. Figures

7.10-7.12 show the simulation results.

Case 3: Fault occurs at bus 632. The fault occurs between the diesel engine DG and the

gas turbine DG. Figures 7.13-7.15 show the simulation results.

7.6 Summary

In this chapter, the impacts of the dynamic SOFC power plant on a distribution system with mul-

tiple DGs are investigated. Multi-variable output feedback optimal controller based on a linearized

model is designed using lead-lag compensator and optimal control algorithm. The simulation results

show that the fuel cell with appropriate controllers can effectively improve the oscillation damping

of the whole system.
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Figure 7.8: Rotor speed of the diesel engine DG when a fault occurs at bus 634 (Case 1).

Figure 7.9: Terminal voltage of the SOFC when a fault occurs at bus 634 (Case 1).
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Figure 7.10: Rotor speed of the gas turbine DG when a fault occurs at bus 684 (Case 2).

Figure 7.11: Rotor speed of the diesel engine DG when a fault occurs at bus 684 (Case 2).
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Figure 7.12: Terminal voltage of the SOFC when a fault occurs at bus 684 (Case 2).

Figure 7.13: Rotor speed of the gas turbine DG when a fault occurs at bus 632 (Case 2).
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Figure 7.14: Rotor speed of the diesel engine DG when a fault occurs at bus 632 (Case 3).

Figure 7.15: Terminal voltage of the SOFC when a fault occurs at bus 632 (Case 3).
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Chapter 8

Model of the Wind Turbine DG

8.1 Introduction

This chapter and Chapter 9 focus on the model and dynamic stability control of the wind turbine

DG.

The wind turbine induction generator is an attractive distributed generation (DG) in a

deregulated electric energy environment since wind energy is a non-polluting source. However, wind

energy also has some limiting characteristics such as: unschedulable, uncontrollable, etc. To obtain

relatively constant power, variable blade pitch angle control are installed[1][68][88].

In [88], the operating condition of the wind turbine is classified into several regimes: start-

up regime, sub-rated power regime and rated power regime. In rated power regime, a wind speed of

29MPH is needed for the power output to be rated. Dynamic simulation and the controller design

are investigated in this regime.

A wind turbine synchronous generator unit model is given in [68][88]. A detailed dynamic

turbine model was presented in [88]. The blade pitch control is used to achieve synchronous rotor

speed[88]. Currently, the induction generator is attracting interest because of its lower cost, higher

reliability and simpler control system. In [79], a dynamic induction generator model with control

requirement is studied and the possibility of contributing negative and evaluation of its effectiveness

in application in a power system is described.

A wind turbine induction generator unit model was developed in [1]. In [1], the voltage

of isolated unit is regulated by the SVC and oscillation damping is improved in two ways: through

multi-state feedback and through multi-output feedback.

In this chapter, a wind turbine powered induction generator is simulated. The ma-
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Figure 8.1: Diagram of a wind turbine DG consisting of a wind turbine, an induction generator
and a SVC.

trix/vector concept based induction machine model is developed and simulated with Simulink.

The fixed capacitor and thyristor controlled reactance (FC-TCR), a type of static var compensator

(SVC), is used to compensate the var of the induction generator. A real power and reactive power

tracking control scheme is presented.

The wind turbine induction generator with SVC (called wind turbine DG system) is

illustrated in Figure 8.1.

8.2 System Models

The wind turbine induction generator, SVC and general load models are described in the following

subsections.

8.2.1 Wind Turbine Model

Based on the speed of the wind, the wind turbine operating condition can be categorized into three

regimes: start-up regime, sub-rated power regime and rated power regime [88]. When the speed

of the wind is greater than 6.2m/s, the start up procedure occurs. Once the speed of the wind

reaches 12.8m/s, the wind turbine works in the rated power regime. The region between start-up

and rated power regime is called the sub-rated power regime. Our research focuses on the dynamic

performance of the wind turbine in the rated power regime.

The dynamic output mechanical torque of the wind turbine is expressed [1][88]as:

Tm =
1

2
ρARCpV

2
ω /λ (8.1)
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where, ρ is the air density, A is the blades’ swept area, R is the wind turbine rotor radius, Vω is

wind speed, Cp is a power coefficient of the blade which is a function of the blade pitch angle β,

and the tip speed ratio is:

Cp = (0.44− 0.0167β) sin
µ
π(λ− 3)
15− 0.3β

¶
− 0.00184(λ− 3)β (8.2)

and tip speed ratio λ is:

λ =
ΩR

Vω
(8.3)

where Ω is the mechanical angular velocity.

8.2.2 Induction Generator

The electrical equations of induction generator model in the arbitrary reference frame can be

expressed as:

vqs = rsiqs +
ω

ωb
ψds +

p

ωb
ψqs (8.4)

vds = rsids − ω

ωb
ψqs +

p

ωb
ψds (8.5)

v0qr = r
0
ri
0
qr + (

ω − ωr
ωb

)ψ0dr +
p

ωb
ψ0qr (8.6)

v0dr = r
0
ri
0
dr − (

ω − ωr
ωb

)ψ0qr +
p

ωb
ψ0dr (8.7)

The ωb is the base electrical angular velocity used to calculate the inductive reactances.

The mechanical part is expressed in per unit as:

p

ωb
ωr =

1

2H
(Te − Tm) (8.8)

and the torque equation is expressed as:

Te = ψ0qri
0
dr − ψ0dri

0
qr (8.9)

The detailed induction machine model is given in Appendix A.

8.2.3 Static VAR Compensator (SVC)

SVC (see Figure 8.2) is used to compensate the reactive power of the induction generator. SVC

consists of a fixed capacitor and a thyristor controlled reactance (FC-TCR).

The reactance of the TCR is a function of the firing angle α[1].
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Figure 8.2: Diagram of the SVC (FC-TCR) structure.

1

x
Leq

=
2(π − α) + sin(2α)

π
· 1
x
L

(8.10)

=
σ − sinσ

π
· 1
x
L

= Beq
1

x
L

where, xL is reactance, σ = 2(π − α), and Beq is the coefficient of the TCR reactance. The

adjustable coefficient of the reactance is:

0 < Beq < 1 (8.11)

The SVC equivalent reactance (xeq )is determined by the combination of FC and TCR in

parallel, and it can be expressed as:

xeq =
xCxL

xC
π (σ − sinσ)− xL

(8.12)

8.2.4 Static and Dynamic Load Models

The static load can be represented as a nonlinear function of load bus voltage Vbus. The load active

power PL and reactive power QL can be expressed as:

PL = C1(Vbus)
np (8.13)

QL = C2(Vbus)
nq (8.14)
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Figure 8.3: General structure of a wind turbine DG and its control unit.

where C1 and C2 are constant. The characteristics of different loads are given by the exponents

np and nq. In this dissertation, the exponent values np = nq = 2, means that the static loads are

constant impedances.

The induction motor is used to represent the dynamic load. The 5th order state equations

and the torque equation are the same as the induction generator. As a dynamic load, the rotor

voltage is set to zero, Vqr = Vdr = 0.

8.3 Control Unit Model

The general structure of a wind turbine induction generator with SVC and the control unit is shown

in Figure 8.3 [84]. The control unit consists of the blade pitch angle control (see Figure 8.5) and

the voltage regulator loop (see Figure 8.4) respectively. The wind speed is assumed to be in the

rated power regime.

The voltage regulator control loop is implemented by SVC. The SVC is used to compensate

the reactive power, thus stabilizing the commutating bus voltage. The ancillary signal is also

considered as an input to the SVC to improve oscillation damping of the system. The frequency

deviation is added as an input to the SVC to improve damping of the system [5]. The control loop

of the SVC is shown in Figure 8.4. The constraints of the output XLeq are adjusted for different

operating conditions.
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Figure 8.5: Diagram of the blade pitch angle controller of the wind turbine.

A PI controller is considered to keep the mechanical torque of the wind turbine to be

constant (see Figure 8.5). A rate limit of ±10 degree/sec is set to limit the pitch angle actuator.
The ancillary signal can be a control signal of the rotor speed deviation of the generators to improve

the dynamic stability of the system.

The control for the wind turbine DG will be designed in Chapter 9.

8.4 Induction Machine Simulation

In this research, the nonlinear induction machine model is used to represent the generator and the

dynamic load. The nonlinear model is simulated in Simulink. The eigenvalues of the linearized

induction machine are obtained at a certain operating point.
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The matrix concepts in Matlab are used to simulate the induction machine. The dynamic

models of induction machine is presented below in terms of (8.15). The Simulink expressions are

also shown below which will use voltages as inputs and currents as the outputs of the model block.

ẋ = Ax+Bu (8.15)

8.4.1 Matrix Concepts Based Induction Machine Model

The voltage equations of an induction machine model in the arbitrary reference frame can be written

in term of the currents [69]. Assume that the reference frame is arbitrary reference frame and that

all quantities are in per unit value. This equation can be further written into the equation (8.15).

Where: x = [iqs, ids, i0s, i
0
qr, i

0
dr, i

0
0r]
T

B =



1
ω
b
Xss 0 0 1

ω
b
X

M
0 0

0 1
ω
b
Xss 0 0 1

ω
b
Xss 0

0 0 1
ω
b
Xls 0 0 0

1
ω
b
Xss 0 0 1

ω
b
X 0
rr 0 0

0 1
ω
b
Xss 0 0 1

ω
b
X 0
rr 0

0 0 0 0 0 1
ω
b
X 0
lr



−1

A = −B ·



−rs ω
ω
b
Xss 0 0 ω

ω
b
XM 0

− ω
ω
b
Xss rs 0 − ω

ω
b
XM 0 0

0 0 rs 0 0 0

0 ω−ωr
ω
b
XM 0 r0r

ω−ωr
ω
b
XM 0

−ω−ωr
ω
b
XM 0 0 −ω−ωr

ω
b
X 0
rr r0r 0

0 0 0 0 0 r0r


The swing equation is:

Te = 2
H

ωb
ω̇r + TL (8.16)

The torque equation is:

Te = XM(iqsi
0
dr − idsi0qr) (8.17)

8.4.2 Induction Machine Simulink Model

The Simulink model for equation (8.15) is simply expressed as in Figure 8.6.
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Figure 8.6: State equations of an induction machine represented in Simulink.

Figure 8.7: Swing equation of an induction machine represented in Simulink.

In this model block, inputs are voltage and rotor speed, output is a current vector. This

model is quite simple and easy to understand. It saves not only model building time but also

debugging time. The rotor speed is calculated through equation (8.16) which is modeled as in

Figure 8.7.

The rotor speed will be fed back to the input of the block in Figure 8.6. The induction

machine serves as a current source to the network. And the output from the network is the voltage

vector. Thus, the induction machine and the power system network are interconnected and as long

as the initial condition is set, dynamic simulation can be performed.

8.4.3 Initialization of the Induction Machine

The procedure to set the initial condition of induction machine:

Given P0, V as, use Newton-Raphsom method to calculate the rotor speed ωr, then set the

steady state variables vector (I). The induction machine can be represented as in Figure 8.8.
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Figure 8.8: Equivalent circuit of an induction machine.

Usually, V 0ar = 0 . Therefore,

I 0ar = −
j ωeωbXM

r0r
s + j

ωe
ωb
X 0
rr

Ias (8.18)

Vas = (rs + j
ωe
ωb
Xls)Ias + j

ωe
ωb
XM(Ias + I 0ar) (8.19)

Substitute equation (8.18) into (8.19):

Ias =
Vas

(rs + j
ωe
ωb
Xls) + j

ωe
ωb
XM(1−

j ωe
ωb
XM

r0r
s
+j ωe

ωb
X0
lr+j

ωe
ωb
XM
)

(8.20)

=
Vas

rs − X2
M

r0r
s
+jX0

lr

+ jXss
=

Vas

rs − X2
M (

r0r
s
−jX0

lr)

(
r0r
s
)2+(X0

lr)
2
+ jXss

(8.21)

=
Vas

rs − X2
M

r0r
s

(
r0r
s
)2+(X0

lr)
2
+ j(Xss +

X0
lr

(
r0r
s
)2+(X0

lr)
2
)

=
Vas

R+ jX
(8.22)

where R = rs − X2
M

r0r
s

(
r0r
s
)2+(X0

lr)
2
, X = Xss +

X0
lr

(
r0r
s
)2+(X0

lr)
2
.

So, Vas
Ias

= R+ jX and I∗as =
V ∗as
R−jX .

P = real(V asI
∗
as) = real(V as

V ∗as
R− jX ) = real(

V 2as
R− jX ) (8.23)

=
V 2as

R2 +X2
R = f(slip) (8.24)

Using Newton-Raphson method, given P0, V as, only slip is unknown and

slip_new = slip_old− P0 − f(slip_old)
f 0(slip_old)

(8.25)
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Figure 8.9: Diagram of a one-machine infinite bus system to test the induction generator.
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Figure 8.10: Rotor speed of an induction machine during the start-up and step response procedure.

8.4.4 Start-up Procedure and Step Response of Induction Machine

To test the induction machine model in Simulink, the induction generator connected to the infinite

bus is simulated (see Figure 8.9). The parameters of the induction machine: Xls = 0.135, X́ lr =

0.075, XM = 4.161, rs = 0.0059, ŕr = 0.0339, H = 0.5.

The start-up procedure and step responses of induction machine are shown in Figures

8.10-8.12. The initial Tm set point is Tm = 0.1, the motor start at 0s and the Tm is switched from

0.1 to -0.1 at 2.0s.

8.4.5 Linearized Induction Machine

In this section, the linearized induction machine model is obtained via the Simulink toolbox. The

induction machine operates as a generator and the operating point is: Pind = 0.1053(pu), Vind =
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Figure 8.11: Electrical torque response of an induction machine during the start-up and step
response procedure.
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Figure 8.12: State variables of induction machine during the start-up and step response procedure.
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Table 8.1: Eigenvalues of the linearized induction machine.

NO. Eigenvalues

λ1,2 -10.548 ± 375.36i
λ3,4 -32.606 ± 44.938i
λ5 -59.234
λ6 -16.476
λ7 -170.40

1.0. The eigenvalues are shown in Table 8.1. The two complex conjugate pairs are the “stator”

eigenvalues and the “rotor” eigenvalues. For different operation condition, the frequency of “stator”

pairs can remain around ωb, and “rotor” pairs change much[69]. This characteristic can help to

identify the eigenvalues.

8.5 Integration of Wind Turbine DG

The wind turbine DG consists of wind turbine, induction generator and SVC (see Figure 8.1). The

wind turbine transfers the wind energy to the electric power through the mechanical torque. As a

characteristic of the induction machine, the induction generator can only generate the real power,

meanwhile, it absorbs the reactive power from the system. The SVC is a very important part of the

wind turbine DG. It supplies the controllable reactive power, part of it to the induction generator,

thus balance the terminal voltage of the induction generator. The real power is tracked by the PI

controller, however the first order feedback controller is used to track the voltage through the SVC.

The integration of wind turbine DG is studied in this section. A wind turbine DG

and infinite bus system is simulated to test the real power (P*) and reactive power (Q*) track

performance. The test system is shown in Figure 8.3. The parameters of wind turbine are:

R=69.96m, Vrated=9.3m/s, ρair=1.225, Ki=6.2, Kp=6.2 and the parameters of the SVC are:

XC=0.5, XL=0.476, Tb=0.00417, Td=0.0014, KR=33.3, TR=0.1.

The initial operating condition: Sbase = 4.0MVA, Vbase = 4.16kV , P ∗wind = 0.1053,

Q∗wind = 0.0852. Then initial condition for induction generator and SVC each: Pind = Pwind,

Qind = −0.0516, Sslip = −0.02638 and QSV C = 0.137.
Case I: t=0.5s, P ∗wind increases from 0.1053 to 0.1370 and Q

∗
wind remains constant. Figures

(8.13-8.14) show the dynamic responses of the wind turbine DG. The simulation results show the

reactive power output decreased since the voltage drop along the distribution line increased.
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Figure 8.13: Real and reactive power responses of the wind turbine DG to track P ∗wind (Case I).

Figure 8.14: Terminal voltage response of the wind turbine DG to track P ∗wind (Case I).
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Figure 8.15: Real/reactive power responses of the wind turbine DG to track the Q∗wind (Case II).

Case II: t=0.5s, P ∗wind remains constant and Q
∗
wind increases from 0.0852 to 0.117. Figures

(8.15-8.17) show the dynamic responses of the wind turbine DG. The reactive power response shows

the output Q can track the set point, but cannot reach the actually changed values. The responses

of the real power and the rotor speed of the induction generator illustrate the interaction between

the real power and reactive power tracking procedures.

In the Chapter 9, the wind turbine DG model will be connected to the IEEE-13 system

with existing DGs. The good real/reactive power tracking performance of wind turbine DG will be

used to improve the dynamic stability of the system. During the controller design, an additional

control signals will be input to the control units.

8.6 Summary

A wind turbine DG model is presented in this chapter. The model consists of an induction machine,

a wind turbine and a SVC. A matrix/vector concept based simulation of the induction machine is

described in detail. A practical Newton-Raphson method is used to determine the initial condition

of the induction machine. The SVC is used to compensate the reactive power of the wind turbine

DG, thus control the DG’s terminal voltage.
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Figure 8.16: Terminal voltage of the wind turbine DG to track the Q∗wind (Case II).

Figure 8.17: Rotor speed of the wind turbine DG to track the Q∗wind (Case II).
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Chapter 9

Robust Control of Wind Turbine DG

9.1 Introduction

In this chapter, the controllers of a wind turbine distributed generation (DG) are designed to im-

prove the dynamic stability of the system. A wind turbine DG is connected to a power distribution

system which has other DGs connected as well. The existing DGs are gas turbine and diesel en-

gine DGs. The linearized model of the entire system at a certain operating condition is obtained.

Dominant eigenvalues are identified using optimal ranking indices. Output feedback coordinated

controllers are designed through SVC, wind turbine pitch control and the combination of the two.

The dynamic loads are brought into consideration by modeling the load uncertainty as structured

uncertainty. µ analysis is used to find the margin value of the load parameter. The robust stability

of the controllers is evaluated.

9.2 System Configuration

The system studied, in Figure 9.1, consists of IEEE-13 node system to which a gas turbine synchro-

nous generator, a diesel engine synchronous generator, a wind turbine induction generator, and a

SVC are connected. A dynamic load represented by induction motor is connected at bus 634. The

distribution system model, gas turbine model and diesel engine model have been discussed in the

previous chapters.
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Figure 9.1: Diagram of IEEE-13 node distribution system with multi-DGs to evaluate the wind
turbine DG.

9.3 Critical Eigenvalues Identification

The system includes 46 differential equations. In the linearized model, once the three synchronous

generators (2 DGs + Substation) are connected in the distribution system, only two rotors angles

are independent. Hence, in the linearized distribution system, there are a total of 45 state variables.

The linearization tools in Simulink are used to get linear model (A, B, C, D) directly.

Based on the linearized model (A, B, C, D), the controller is then designed via eigenvalue

analysis. The controller design process is covered in the following sections. The eigenvalues of the

linearized open loop system are listed in Table 9.1.

9.3.1 Ranking Indices of the Eigenvalues

Consider a linear system (A, B, C) expressed as:

ẋ = Ax+Bu (9.1)

y = Cx (9.2)

where x is the n × 1 linearized state variable vector, u is the r × 1 control input, A(n × n) is the
system plant matrix, B(n×r) is the control matrix and C(m×n) is the output matrix. The output
performance index can be described as:
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Table 9.1: Eigenvalues of the open-loop linearized system.

NO. Eigenvalues NO. Eigenvalues

λ1,2 -1181.08 ± 3428.07i λ3,4 -169.370 ± 730.473i
λ5,6 -142.016 ± 372.950i λ7,8 -32.0687 ± 407.515i
λ9 -108.595 λ10,11 -33.0238 ± 69.1077i

λ12,13 -22.9048 ± 64.3909i λ14,15 -27.6496 ± 48.8694i
λ16 -59.7052 λ17 -52.3933
λ18 -32.3338 λ19 -31.7551
λ20 -30.6798 λ21 -25.1660
λ22,23 -20.0614 ± 1.09989i λ24,25 -5.19824 ± 13.8666i
λ26,27 -3.22992 ± 7.22492i λ28,29 -1.124190 ± 5.65105i
λ30 -5.5730 λ31,32 -0.139074 ± 3.03003i
λ33 -2.29866 λ34 -0.661145
λ35 -0.455469 λ36 -0.286084
λ37,38 -0.005198 ± 0.08311i λ39 -0.193158
λ40 -16.4759 λ41 -170.340
λ42 -220.357 λ43 -259.913
λ44 -20.000 λ45 -239.808

J =
rX
i=1

Z ∞

t=0
yi(t)

TQyi(t)dt (9.3)

where yi(t) is the output of the system and Q is the weight matrix of the performance index.

A way to rank the eigenvalues of the linearized system was proposed in [32][115]. The

ranking indices are used to evaluate the contribution of the eigenvalues to the performance index.

Referring to [32][115], the critical modes are the eigenvalues with the largest ranking indices. To

calculate the ranking indices, assuming the system (A, B, C) has n distinct eigenvalues. The right

and left eigenvector matrices are V and W . The diagonal matrix of the eigenvalues is Λ = WAV ,

control matrix is Γi =WBi. Then the performance index can be expressed as:

J =
nX
i=1

nX
k=1

TikΘik (9.4)

where Tik = − Rik
λ∗i+λk

is the explicit solution of : ΛHT + TΛ = −R, R = V HCTQCV and Θ =Pr
i=1 ΓiΓ

H
i .

For the sake of the convenience, define ηik = TikΘik + TkiΘki. The contribution of each
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Table 9.2: Critical eigenvalues of the open linearized system.

NO. Eigenvalues Ranking Indices(×10−3)
λ7,8 -32.0687 ± 407.515i 0.1028
λ14,15 -27.6496 ± 48.8694i 0.2258
λ26,27 -3.22992 ± 7.22492i 0.05226
λ28,29 -1.124190 ± 5.65105i 0.02227
λ31,32 -0.139074 ± 3.03003i 0.1252

eigenvalue to the performance index can be summarized as:

τ(λi) =
1

2
ηii +

nX
k=1,k 6=i

ηik (9.5)

The absolute value ρi = |τ(λi)| is defined as the ranking index of λi to the performance index.

9.3.2 Dominant Eigenvalues Identification

The rank indices are used to identify the critical eigenvalues of the system. The objective of the

dynamic stability control is to improve the oscillation damping when the system is subjected to

a ground fault disturbance. The performance index is composed of the speed deviations of the

DGs. A large inertia synchronous generator represents the distribution substation, connecting the

distribution line to the transmission system. Its speed deviation is very small and is ignored in the

performance index.

The performance index is expressed as:

J =

Z ∞

0
(10ωgas(t)

2 + 10ωdiesel(t)
2 + ωwind(t)

2)dt (9.6)

The output weight matrix is Q = diag[10, 10, 1]. The weights between the weights is to balance the

inertia and size between the DGs. In the linearized system of the distribution system with DGs, A

is 45×45, B is 45×2, and C is 3×45. The two inputs are control signals of wind turbine and SVC
(see Figures 8.4 & 8.5) u = (uwid, usvc), and three outputs are selected to calculate the ranking

indices y = (ωgas(t),ωdiesel(t),ωwind(t)).

The dominant eigenvalues related to the oscillation can be selected out:

λ26,27 =-3.22992 ± 7.22492i; λ28,29 =-1.124190 ± 5.65105i; and λ31,32 =-0.139074 ±
3.03003i.
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9.4 Controller Design

9.4.1 Multivariable Coordinated Controller

A multi/single-input multi-output coordinated controller is to be designed using multiple inputs.

The objectives of the controller are to adjust the reactive power output of the SVC, see Figure 9.1,

and to adjust the real power of the wind turbine. In this case, the three outputs are the rotor speed

deviations of the gas turbine DG, the diesel engine DG and the wind turbine DG.

Consider the linear system represented by equations (9.1-9.2). The output feedback which

will be used to design a controller has the following form:

u = −Ky (9.7)

where three types of controllers are designed as:

1) three outputs and only SVC input (SIMO): Ksvc =
h
k1 k2 k3

i
;

2) three outputs and only wind turbine blade pitch input (SIMO):Kwind =
h
k1 k2 k3

i
;

3) three outputs and both SVC and wind turbine blade pitch input (MIMO):

K =

 k11 k12 k13

k21 k22 k23

.
The same output feedback optimal control algorithm as in Chapter 7 is implemented to

compute the gain K. Define the performance index [30][72]:

J =

Z ∞

0
(xTQx+ uTRu)dt (9.8)

with Q = QT ≥ 0 and R = RT ≥ 0. The optimal gain design equations are: 0 = ATcM +MAc +

CTKTRKC +Q, 0 = SATc +AcS +X, K = RTBTMSCT (CSCT )−1, where Ac = A−BKC, and
X = E

©
x(0)xT (0)

ª
. The above equations are solved iteratively to obtain the gain matrix.

9.4.2 Design Results

The optimal gains are obtained through the optimal feedback control algorithm.

For the SVC only input:

K =
h
−125.821 −27.7039 −13.5123

i
and the closed-loop dominant eigenvalues are:

λ26,27 =-3.78856 ± 8.08721i; λ28,29 = -0.83015 ± 5.65765i; λ31,32 =-1.1423 ± 2.8423i.
For the wind turbine pitch controller only input:
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K =
h
−125.485 −30.881 −40.603

i
and the closed-loop dominant eigenvalues are:

λ26,27 = -3.2303 ± 7.2248i; λ28,29 = -1.1242 ± 5.6510i; λ31,32 =-0.1396 ± 3.0302i.
For both SVC and wind turbine blade pitch input (MIMO):

K =

 −392.058 −53.824 66.084

−50.170 −6.413 2.758


The closed loop dominant eigenvalues are:

λ26,27 = -5.4015 ± 8.2532i; λ28,29 = -0.8428 ± 5.8237i; λ31,32 = -1.1476 ± 2.7962i
Comparing the three types of controllers and their closed-loop dominant eigenvalues, the

controller with the single SVC is much more effective than the controller with the single wind turbine

control in moving the dominant eigenvalues. Also, the closed-loop eigenvalues with two control

inputs has the similar effects on λ28,29,λ31,32 as with the single SVC. For the sake of simpleness

and effectiveness, the feedback controller Ksvc is the best choice to improve the dynamic stability

of the system.

9.5 Nonlinear Simulation to Test Controller

Nonlinear simulations are conducted to verify the controller Ksvc. The wind turbine induction

generator is connected to the IEEE 13-node distribution system with existing DGs: the gas turbine

synchronous generator and the diesel engine synchronous generator (see Figure 9.1). The induction

motor is connected at bus 634 to represent the dynamic load. Two cases are simulated: one is with

controller, the other is without controller. The following figures show the simulation results. The

solid lines represent the simulation results with the controller and the dotted lines represent the

case without controller.

T= 2.0s, a ground fault occurs at bus 632 and is cleared after 0.25s.

Figure 9.2 shows the rotor speed of the gas turbine DG.

Figure 9.3 shows the rotor speed of the diesel engine DG.

Figure 9.4 shows the rotor speed of the wind turbine DG.

Figure 9.5 shows controlled susceptance of the SVC.

The nonlinear simulation illustrates that the controller through SVC can effectively im-

prove the dynamic stability of the whole system.
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Figure 9.2: Rotor speed of the gas turbine DG with/without a controller of the SVC.

Figure 9.3: Rotor speed of the diesel engine DG with/without a controller of the SVC.
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Figure 9.4: Rotor speed of the wind turbine DG with/without a controller of the SVC.

Figure 9.5: Diagram of the susceptance of SVC with controller.
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Figure 9.6: Diagram of the interconnected system.

9.6 Controller Robustness Analysis

The parameters, such as rotor resistance (rr), stator resistance (rs) and mutual reactance (XM),

of a dynamic load vary when operating conditions change. To accommodate the variation of the

parameters, the robustness of the controller is evaluated versus parameter uncertainty. This un-

certainty is a structural uncertainty and can be represented by the linear fractional transformation

(LFT).

9.6.1 Representing Uncertainty

Linear Fractional Transformations (LFTs) are used as a tool to represent uncertainty in matrices

and systems.

An interconnected system is shown in Figure 9.6. The linear system plant M can be

fractionalized into M11, M12, M21, and M22. Suppose:

v1 =M11r1 +M12r2 (9.9)

v2 =M21r1 +M22r2 (9.10)

and a matrix ∆ relates v2 to r2, as r2 = ∆v2.

The relationship between r1 and v1 is:

v1 = (M11 +M12∆(I −M22∆)
−1M21)r1 (9.11)

= FL(M,∆)r1

The notation FL indicates that the lower loop of M is closed with ∆.
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Figure 9.7: Diagram of the linear fraction transformation.

9.6.2 Parametric Uncertainty

For a linear system:

ẋ = Ax+Bu (9.12)

y = Cx (9.13)

A is the coefficient matrix. Suppose there is an uncertainty of A matrix and it can be written as:

A = A0 +A0δ

where δ varies within a range. A0 is a coefficient matrix.

Let A0 be factored as A0 = EF , where E ∈ Rn×r, F ∈ Rr×n
This is a linear fractional transformation (see Figure 9.7).

A = FL(G, δ)

where G =


A B E

C D 0

F 0 0


The system of Figure 9.7 can be recast into a feedback loop system as Figure 9.8, where

M is a known linear system and δ is a structured perturbation.

The structure singular value µ of linear system M with respect to the uncertainty set δ

is used to analyze robust stability of the closed-loop system. At each frequency, the µ of M(jω) is

calculated with respect to the uncertainty set δ.

The state space model of the interconnected system is
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M

∆

Figure 9.8: Digram of the feedback loop.


ẋ

y

z

 = G

x

u

w


9.6.3 Analyzing Robust Stability

The structured singular value µ ofM with respect to the uncertainty set δ is used to analyze robust

stability of the closed-loop system. At each frequency, µ of the matrix M(jω) is calculated and the

bounds for µ(M(jω)) are computed, giving upper and lower bound functions of frequency. The

bounds for µ∆(M(jω)) can be computed by MATLAB µ toolbox. If the peak of µ∆(M(jω)) is

β, this means that for all perturbation matrices δ with the appropriate structure and satisfying

max(σ(δ(jω)) < 1
β , then the perturbed system is stable where σ is the upper bound of δ(jω). If

the varying region of δ is within 1, then the system is robust stable when µ < 1. [137].

µ analysis has the following steps:

1. Cast the problem into the feedback loop diagram.

Let rs_mot has a 0.005 change, A has a change of

A−A0 =


026×26 026×6 026×13
06×26 A1 06×13
013×26 013×6 013×13



A1 =



0 40.142 0 16.994 40.775 0

−40.142 0 0 −40.775 16.994 0

0 0 0 0 0 0

0 −41.666 0 −17.638 −42.323 0

41.666 0 0 42.323 −17.638 0

0 0 0 0 0 −58.539


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Figure 9.9: Frequency response of M11.

A1 can be factorized as A1 = E1 × F1, where

E1 =



1 0 0

0 1 0

0 0 0

−1.0378 0 0

0 −1.0378 0

0 0 1


; F1 =


0 40.142 0 16.994 40.775 0

−40.142 0 0 −40.775 16.994 0

0 0 0 0 0 −58.539



Then A = A0 +EδF,where

E = [zeros(26, 3); E1; zeros(13, 3)];

F = [zeros(3, 26); F1; zeros(3, 13)];

That means rs_mot’s uncertainty δ can be represented as:


δ1 0 0

0 δ2 0

0 0 δ3


2. Calculate a frequency response of M11.

3. Describe the structure of the perturbation of δ

4. Run the Matlab command mu on frequency response to obtain the upper and lower

bound of µ.

The Matlab commands are shown in Appendix D.
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Figure 9.10: Diagram of Mu (µ) as rs_mot has a 0.005 increase.

The frequency response of M11 is shown as in Figure 9.9. Figure 9.10 shows the plot of

the upper bound of singular value µ. The upper bound never exceeds 1 which means when the

rs_mot has a 0.005 increase, the system is still stable.

With the value of rs_mot having a 0.02 increase, the system is still stable since the upper

bound of singular value µ doesn’t exceed 1, as shown in Figure 9.11.

The third case is that the three parameters (rs, rr, XM) of the dynamic loads all increase

0.02pu without feedback controller Ksvc. Figure 9.12 shows the µ upper bound has exceeded the

1.0. So the system is unstable.

9.7 Simulation Results of Robustness Analysis

To verify the analysis results of the controller (Ksvc) robustness, the nonlinear simulation is con-

ducted with the changed parameters of the dynamic loads. T= 2.0s, a ground fault occurs at

bus 632 and is cleared after 0.25s. When the parameters (rs, rr, XM) of dynamic loads increase

0.02(pu), Figures 9.13-9.16 illustrate the simulation results with/without controller. In Figures

9.13-9.16, the solid lines represent the simulation results with the controller and the dotted lines

represent the results without controller. Figure 9.16 shows the susceptance of the SVC with the

controller.
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Figure 9.11: Diagram of Mu (µ) as rs_mot has a 0.02 increase.
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Figure 9.13: Rotor speed of the wind turbine DG with modified parameters of dynamic loads when
a fault occurs at bus 632 (dotted line: without controller, solid line: with controller).

In Figure 9.13, the rotor speed of the wind turbine DG shows that the system loses

the stability without the controller when the dynamic loads’ parameters are changed. When the

controller is added to the system, the system remains stable.

In Figures. 9.14 and 9.15, the rotor speeds of the gas turbine and diesel engine DGs show

that the controller can improve the oscillation damping of the entire system as well.

The µ analysis and the nonlinear simulations show that the coordinated controller is

robust in improving the dynamic stability of the system over a relatively large parameter range in

the dynamic loads.

9.8 Summary

A robust controller is designed for the wind turbine DG to improve the oscillation damping of the

system. The SVC and the blade pitch are considered as the control inputs. The wind turbine DG

model is connected to the IEEE-13 node distribution system together with existing gas turbine and

diesel engine DGs. A linearized model is obtained for the specific operation condition. The critical

eigenvalues are identified via the ranking indices technique. Output feedback optimal control is

implemented to assign the critical eigenvalues. The design results show that the SVC controller is

better than the blade pitch due to SVC’s rapid response characteristic. The resulting controller’s
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Figure 9.14: Rotor speed of the gas turbine DG with modified parameters of dynamic loads when
a fault occurs at bus 632 (dotted line: without controller, solid line: with controller).
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Figure 9.15: Rotor speed of the diesel engine DG with modified parameters of dynamic loads when
a fault occurs at bus 632 (dotted line: without controller, solid line: with controller).
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Figure 9.16: Susceptance of SVC with a controller when a fault occurs at bus 632.

robustness is evaluated over a relatively large range of parameter uncertainty in the dynamic loads.

The nonlinear simulation results illustrate the controller via the SVC can improve the dynamic

stability of the system.
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Chapter 10

Coordinated Operation of Multiple

Types of DGs

10.1 Introduction

In the future, more and more small distributed power generation units will be connected to the

grid. Figure 10.1 shows a power distribution system with multiple types of distributed generations

(DGs): gas turbine, diesel engine, wind turbine and fuel cell DGs.

In this system, all the four DG models which were developed in the previous chapters are

connected to the system together. The interaction between DGs and the impacts of DGs on the

dynamic stability of the grid will be evaluated.

Usually, in power distribution systems the distances between the ends of feeders and the

substation is relatively short and it is practical to implement a centralized control for the entire

system. A centralized dynamic stability controller will be used to improve the dynamic stability

The coordinated control through the rapid fuel cell inverter and the SVC of wind turbine

DG are studied. The controller uses the multi-variable input to assign the eigenvalues.

The dynamic responses of the distribution system with different real power penetration

of DGs are investigated to evaluate the coordinated controller.

10.2 Interaction of DGs

A distribution system with multi-type DGs is shown in Figure 10.1. Compared to the studied

system in Chapter 9, a new DG, fuel cell power plant, is added to the system. As an example to
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Figure 10.1: Diagram of IEEE-13 node power distribution system with multi-type of DGs to inves-
tigate the coordinated operation.

evaluate the interaction between DGs, the impact of the solid oxide fuel cell (SOFC) power plant

on the linearized model and nonlinear dynamics is investigated in this section.

To evaluate the interaction of the DGs, the initial conditions and the parameters of the

gas turbine, diesel engine and wind turbine DGs remain same as before (see Figure 9.1). The

initial conditions are: Sbase = 4.0MVA, Vbase = 4.16kV ; Sgas = 0.1969 + j0.0098; Sdiesel =

0.1031 + j0.0666; Swind = 0.1054 + j0.0852; Ssofc = 0.0656 + j0.0125.

The eigenvalues of the linearized model are listed in Table 10.1. This linearized system is

an open-loop system.

Comparing the eigenvalues in the Tables 9.1 and 10.1, the fuel cell can improve the damp-

ing of the critical eigenvalues: λ26,27, λ28,29, λ31,32.

Dynamic simulation is also done to evaluate the interaction between DGs. The cases were

done under the condition that a three-phase ground fault occurs at bus 675 and is cleared after

0.3 second. Figures 10.2-10.4 demonstrate the impact of the newly connected SOFC power plant

on the dynamic stability of the system with existing DGs. In Figures 10.2-10.4, the dotted lines

represent the case without SOFC and the solid lines represent the case with SOFC.

The interaction between the SOFC power plant and other DGs illustrate the newly con-

nected DGs, such as fuel cell, with appropriate location can effectively improve the dynamic stability
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Table 10.1: Eigenvalues of the linearized coordinated system.

NO. Eigenvalues NO. Eigenvalues

λ1,2 -1183.28 ± 3428.95i λ3,4 -173.90 ± 726.476i
λ5,6 -141.752 ± 373.315i λ7,8 -32.2028 ± 407.022i
λ9 -108.595 λ10,11 -32.9941 ± 69.2469i

λ12,13 -22.9056 ± 64.3907i λ14,15 -27.8289 ± 49.5015i
λ16 -59.6960 λ17 -52.5702
λ18 -32.3336 λ19 -31.79003
λ20 -30.6929 λ21 -25.4924
λ22,23 -20.0614 ± 1.0993i λ24,25 -5.2006 ± 13.8649i
λ26,27 -3.3811 ± 6.9442i λ28,29 -1.2872 ± 5.8021i
λ30 -5.2437 λ31,32 -0.1741 ± 3.1382i
λ33 -2.3094 λ34 -1.1225
λ35 -0.64663 λ36 -0.3014
λ37,38 -0.004056 ± 0.08155i λ39 -0.19316
λ40 -16.4759 λ41 -170.340
λ42 -220.357 λ43 -259.913
λ44 -20.000 λ45 -249.506
λ46 -292.339 λ47 -0.3436
λ48 -0.03831 λ49 -0.01277
λ50 -0.4958 λ51 -0.4546
λ52 -4061.736

Figure 10.2: Rotor speed of the gas turbine DG with/without SOFC connected.
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Figure 10.3: Rotor speed of the diesel engine DG with/without SOFC connected.

Figure 10.4: Rotor speed of the wind turbine DG with/without SOFC connected.
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Table 10.2: Critical Eigenvalues of the open linearized system with multi-DGs.

NO. Eigenvalues Ranking Indices(×10−3)
λ7,8 -32.2028 ± 407.022i 0.02165
λ10,11 -32.9941 ± 69.2469i 0.02022
λ14,15 -27.8289 ± 49.5015i 0.16772
λ26,27 -3.3811 ± 6.9442i 0.03633
λ31,32 -0.1741 ± 3.1382i 0.07266

of the whole system.

10.3 Critical Eigenvalues and Controller Design

The critical eigenvalues are identified with the optimal algorithm. The definition and optimal

algorithm of critical eigenvalues has been presented in the previous chapter. The performance

index of the critical eigenvalues is expressed as:

J =

Z ∞

0
(10ωgas(t)

2 + 10ωdiesel(t)
2 + ωwind(t)

2)dt (10.1)

The critical eigenvalues and their ranking indices are listed in Table 10.2.

A coordinated control is then designed with the output feedback optimal algorithm. Here,

the outputs are the rotor speed deviations of the gas turbine, diesel engine and wind turbine DGs:

y = [∆ωgas,∆ωdiesel,∆ωwind]. The control inputs are reactive power set point of wind turbine

(SVC), and the real power set point of the fuel cell. Then the gain matrix is: usvc
ufc

 = −Kcoor × y
Kcoor =

 k11 k12 k13

k21 k22 k23

.
Before designing the optimal gainKcoor, the optimal gains for the SVC and fuel cell are de-

signed separately. Then the controller with only SVC is: usvc = −Ksvc×y, Ksvc =
h
k1 k2 k3

i
;

and the controller with only fuel cell is: ufc = −Kfc × y, Kfc =
h
k1 k2 k3

i
.

The the gains are calculated by the optimal algorithm:

Ksvc =
h
−212.702 −30.844 −31.4423

i
;

Kfc =
h
−302.584 −89.061 34.324

i
;
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Table 10.3: Critical Eigenvalues of the multi-DGs system with different controllers.

NO. Open loop with Kcoor with Ksvc with Kfc
λ7,8 -32.203 ± 407.022i -54.056 ± 417.315i -37.332 ± 398.893i -36.820 ± 409.775i
λ10,11 -32.994 ± 69.247i -33.538 ± 71.210i -30.942 ± 68.420i -33.874 ± 70.286i
λ14,15 -27.829 ± 49.502i -22.943 ± 64.371i -22.903 ± 64.390i -4.634 ± 52.893i
λ26,27 -3.381 ± 6.944i -4.887 ± 7.940i -4.588 ± 7.927i -3.973 ± 7.096i
λ31,32 -0.174 ± 3.138i -3.175 ± 1.973i -1.209 ± 3.092i -1.630 ± 3.062i

Figure 10.5: Rotor speeds of the gas turbine DG with different controllers.

Kcoor =

 −49.810 4.496 −31.307
−98.915 −41.147 28.461

.
The critical eigenvalues with three types of controllers are listed in Table 10.3.

The dynamic simulation results with/without coordinated controller are shown in Figures

(10.5-10.7). The rotor speeds of gas turbine with only SVC or fuel cell are compared in Figure 10.5.

The results show that the coordinated controller is more effective to improve the dynamic stability

of the system with multi-DGs.
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Figure 10.6: Rotor speed of diesel engine DG with/without coordinated controller.

Figure 10.7: Rotor speed of the wind turbine DG with/without coordinated controller.
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Table 10.4: Different real power penetration of the multi-DGs.

NO. case 1 case 2 case 3

Ssub 0.4388 + 0.3365i 0.0467 + 0.2912i 0.4865 + 0.3061i
Sgas 0.1969 + 0.0098i 0.3937 + 0.2844i 0.1000 - 0.0304i
Sdiesel 0.1031.+ 0.0666i 0.2063 + 0.1152i 0.1000 + 0.0265i
Swind 0.1054 + 0.0852i 0.1054 + 0.0852i 0.1054 + 0.0852i
Sfc 0.0656 + 0.0125i 0.2625 + 0.05i 0.1000 + 0.0750i

Table 10.5: Critical eigenvalues of the open linearized systems with different real power penetration.

NO. case 1 case 2 case 3

λ7,8 -32.2028 ± 407.022i -32.1309 ± 406.909i -32.206 ± 407.062i
λ10,11 -32.9941 ± 69.2469i -33.1477 ± 69.074i -32.948 ± 69.3406i
λ14,15 -27.8289 ± 49.5015i -27.974 ± 48.079i -27.745 ± 50.130i
λ26,27 -3.3811 ± 6.9442i -3.322 ± 6.486i -3.289 ± 7.002i
λ31,32 -0.1741 ± 3.1382i -0.118 ± 2.749i -0.1603 ± 3.032i

10.4 Impacts of Different Real Power Penetrations

To deepen the investigation of the coordinated operation of the multi-DGs, the impacts of the

different real power penetrations of each DG on the dynamic stability are studied in this section.

Three cases are evaluated (see Table 10.4). Case 1 has the normal real power penetration

and the controller Ksvc is designed under this condition. In Case 2, the real power penetration

of each DG is heavy and almost all the loads are supplied by the four DGs. The DGs’ real power

penetrations of Case 3 is near Case 1.

The open-loop system eigenvalues of the three cases are listed in Table 10.5.

To investigate the robustness of the feedback controller, the closed-loop system eigenvalues

of different real-power penetration are calculated (see Table 10.6). In case 2, the The closed loop

eigenvalues show that the designed controller is suitable for the lighter real power penetration of

DGs. But the controller is not suitable for the heavier penetrations.

The feedback controller of the case 2 with heavy real power penetration is redesigned.

The gain of the case 2 is: Kfc_case2 =
h
−92.264 −24.030 10.013

i
. The new critical closed-

loop system eigenvalues of the case 2 are:

λ7,8 =-37.214 ± 410.224i; λ10,11 =-3.400 ± 70.102i;
λ14,15 =-4.914 ± 50.987i; λ26,27 = -3.756 ± 6.260i;
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Table 10.6: Critical Eigenvalues of the multi-DGs system with different controllers.

NO. Open loop case 1 case 2 case 3

λ7,8 -32.203 ± 407.022i -36.820 ± 409.775i -37.639 ± 410.538i -36.426 ± 409.558i
λ10,11 -32.994 ± 69.247i -33.874 ± 70.286i -33.992 ± 70.166i -33.818 ± 70.361i
λ14,15 -27.829 ± 49.502i -4.634 ± 52.893i -3.116 ± 51.115i -5.249 ± 53.314i
λ26,27 -3.381 ± 6.944i -3.973 ± 7.096i -3.799 ± 6.146i -3.859 ± 7.183i
λ31,32 -0.174 ± 3.138i -1.630 ± 3.062i -0.663 ± 2.896i -1.421 ± 3.060i

λ31,32 =-0.658 ± 2.892i
The closed-loop eigenvalues of the redesigned controller are close to eigenvalues of cases in

Table 10.6. The controller design procedure illustrates that the optimal feedback control is robust

with respect to different real power penetration of the DGs. The closed-loop eigenvalues show

controller Ksvc can improve the dynamic stability for the operating point with heavy real power

penetration of DGs.

10.5 Summary

The coordinated operation of the distribution system with multi-DGs is studied in this chapter.

The study shows that the appropriate new DG location can improve the dynamic stability of the

whole system. The coordinated controller is designed with the optimal output feedback algorithm.

The output feedback controller is robust with respect to the different real power penetration of

each DG.
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Chapter 11

Three-Phase Distribution System

Study

11.1 Introduction

One challenge of the distributed generations (DGs) research is the three-phase unbalanced char-

acteristics. In this chapter, the three-phase distribution system with DGs was studied using the

Power System Blockset (PSB). In power distribution system, dynamic stability control is raised as

a new topic while the DGs are widely used. Thyristor controlled braking resistor (TCBR) is used

to improve the damping of the distribution system with DGS.

In this chapter, the gas turbine, diesel engine and excitation system are connected to the

full-order synchronous generator in PSB. The IEEE-13 node system is simulated in detail. The

three-phase load flows with/without DGs are solved. The three-phase dynamic simulation in PSB

is done to obtain the results.

The objectives of this chapter are:

1. to simulate the three-phase TCBR and IEEE-13 node feeder in PSB;

2. to combine the models with the PSB’s synchronous generator;

3. to solve the three-phase power flow to set the initial condition of each electric compo-

nent;

4. to implement the variable structure control(VSC) to control the TCBR to improve the

dynamic stability.
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Figure 11.1: Diagram of the excitation system.

11.2 System Models

The excitation system of the gas turbine and diesel engine DGs is presented in this chapter. The

TCBR model and its impedance characteristics are also studied.

11.2.1 Excitation System Model

The same excitation system model is used for both the gas turbine DG and the diesel engine DG.

Figure 11.1 shows the excitation system model.

In Figure 11.1, the input signal is the terminal voltage of the synchronous generator and

the output is the exciter voltage Vf . In the system computation, the field voltage of the synchronous

machine is controlled by the exciter output “Vf”.

11.2.2 Thyristor Controlled Braking Resistor (TCBR)

TCBR is a shunt controllable resistor. The local control input signals are frequency deviation and

voltage.

The dynamic process during turning on the thyristor for each phase can be expressed as

in Figure 11.2. In Figure 11.2, equivalent voltage e keeps constant during each turn on process,

and ZΣ is the equivalent impedance of the distribution system.

During the logic turn on process, the voltage sag is very large without the reactance x0.



CHAPTER 11. THREE-PHASE DISTRIBUTION SYSTEM STUDY 122

α

α

r0

x0

Z∑=R∑+jX∑
e

V

i

Figure 11.2: Equivalent circuit of one phase TCBR.

The average impedance of each phase is [128]:

γ − sin γ =
πz0
z

(11.1)

=
π(r0 + jx0)

r + jx
(11.2)

where

γ = 2(π − α+ θ) is the conducting angle;

α is the firing angle;

θ is delay angle due to the reactance;

z0 = r0 + jx0 is the fixed impedance of the TCBR;

z = r + jx is the actual braking impedance, and is controlled by the firing angle α ;

To avoid switching failure of the thyristor, the constraint on the firing angle is:

0 < α < 150◦ (11.3)

Thus the actual braking impedance z of the TCBR is limited as:

z0 < z <∞ (11.4)
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11.3 Controller Design

A variable structure controller is designed based on the analysis of the distribution system with

multi-machine. In this multi-machine, the reference machine, substation, is very large.

11.3.1 Basic Concepts of Variable Structure Controller

In general, a nonlinear power system model can be expressed as[128]:

Ẋ = A(X) +B(X)U (11.5)

whereX=(X1,X2, ...,Xn−1,Xn)T is the the state variable vector. A(X) andB(X) are the nonlinear

vector function. To design a VSC based controller, the state space is divided into two parts by the

linear switching hyperplane. The hyperplane is defined as:

S = CTX = 0 (11.6)

where C is a constant vector. Then,

Ṡ = CT Ẋ (11.7)

= CTA(X) + CTB(X)U

The reaching model or reaching phase is that the state will move toward and reach the

sliding surface. To get asymptote system, a reaching condition [40] should be satisfied:

SṠ < 0 (11.8)

11.3.2 Dynamic Braking Control Strategy

In the multi-machine system, the swing equation can be expressed as:

Mip
2δi +Dipδi = Pmi − Pei(t)− Pbi(t) (11.9)

where Mi, Di, Pmi, Pei, Pbi, are the inertia and damping constants, input power, electrical output

power and the power absorbed by braking resistor. Neglect the damping term and select one

machine (substation) as the reference machine, the swing equation becomes:
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p2δir =
1

Mi
(Pmi − Pei(t))− 1

Mr
(Pmr − Per(t)) (11.10)

− 1

Mi
Pbi(t) +

1

Mr
Pbr(t)

where δir=δi − δr. Since the inertia of the substation is very big, 1
Mr

= 0, the reference terms in

11.10 can be neglected.

To improve the damping of the oscillation of the system, the performance index is chosen:

J = min(

Z tf

t0

dt) (11.11)

From the conclusion in [97] [98], the optimal control strategy of TCBR in multi-machine

system is expressed as:

u(t) =

 1(on) if Σb > 0

0(off) if Σb < 0
(11.12)

where Σb is the control area. Since the substation can be considered as an infinite bus, the frequency

deviation of substation can be ignored. The control can be simplified as:

u(t) =

 1(on) if ∆ωi > 0

0(off) if ∆ωi < 0
(11.13)

11.3.3 Three-Phase Control Strategy

The three-phase one-line diagram of TCBR and its control structure is shown in Figure 11.3 [81].

The wye-connected TCBR is controlled on or off by the control unit. The net available energy for

acceleration of the DG during a disturbance is absorbed by the TCBR.

In Figure 11.3, the “limits unit” sets the varying range of firing angle α to avoid switching

failure of the thyristor. The output of “block unit” will be “1”, either when ∆ω is negative or when

|∆ω| is very small.
A three-phase TCBR has different capacities to absorb the real power depending on the

firing angle of each thyristor. The series connected x0 is a small size reactance to prevent the large

current while the thyristor is turned on.
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Figure 11.3: Diagram of the three-phase TCBR and its control unit.

11.4 Test System of TCBR

The IEEE 13 node test feeder [24] is used as the test system to investigate the dynamic character-

istics of the distribution system with two DGs and the effectiveness of the TCBR on the stability

of distribution system. Figure 11.4 shows the test system with the two DGs. In the test, the

connected transmission system is simulated as 138kV system, thus the substation transformer is

138kv/4.16kv.

In Figure 11.4, the two DGs are shown connected to the distribution system. DG1 is a

gas turbine generator and connected at bus 671. DG2 is a diesel engine generator and connected to

bus 633. One TCBR is installed at the terminal of DG1. Three-phase power flow is studied first.

Three-phase power flow is computed before the dynamic simulation and the three-phase

voltages and currents of each line are shown in Table I, when no DGs are connected to the dis-

tribution system. Table II shows the three-phase voltages and currents of each line with the DGs

connected. In Table I and II, the voltage (V) and current (I) are measured at the second end of

each line. For example, the voltage and current of “Line 650-632” are measured at bus 632.
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Figure 11.4: Diagram of IEEE-13 node distribution system with multi-DG and TCBR.

Table 11.1: Three-phase current and voltage of distribution system with DG.

Line V-Phase A V-Phase B V-Phase C I-Phase A I-Phase B I-Phase C
650-632 2458∠0.65◦ 2515∠-118.21◦ 2405∠120.83◦ 403.2∠-49.54◦ 306.3 ∠-174.50◦ 444.6∠70.00◦
632-633 2445∠0.86◦ 2504∠-118.00◦ 2395∠121.14◦ 162.3∠-84.98◦ 154.6∠150.68◦ 154.6∠29.06◦
633-634 270.1∠0.98◦ 279.4∠-117.82◦ 267.1∠121.32◦ 682.8∠-33.52◦ 545.6∠-154.69◦ 521.8∠84.45◦
632-645 0 2512∠-118.52◦ 2407∠120.35◦ 0 149.4∠-139.68◦ 64.27∠61.33◦
645-646 0 2516∠-118.60◦ 2406∠120.24◦ 0 65.56∠-119.13◦ 65.16∠60.65◦
632-671 2409∠-1.20◦ 2547∠-117.77◦ 2327∠120.27◦ 0283∠-31.63◦ 36.19∠158.31◦ 233.7∠91.99◦
671-692 2409∠-1.20◦ 2547∠-117.77◦ 2327∠120.27◦ 224.7∠-13.22◦ 70.69∠-53.30◦ 170∠115.38◦
692-675 2400∠-1.67◦ 2558∠-117.79◦ 2316∠120.23◦ 201.5∠0.02◦ 70.69∠-53.30◦ 116.3∠118.59◦
671-684 2407∠-1.29◦ 0 2321∠120.16◦ 53.23∠-0.70◦ 0 68.76∠127.79◦
684-611 0 0 2316∠120.01◦ 0 0 68.8∠127.21◦
684-652 2393∠-1.31◦ 0 0 63.97∠-35.21◦ 0 0
DG1 2423∠-0.20◦ 2550∠-116.77◦ 2338∠121.44◦ 192.6∠7.87◦ 192.6∠-112.13◦ 192.6∠127.87◦
DG2 2425∠1.40◦ 2478∠-117.62◦ 2370∠121.70◦ 136.7∠68.15◦ 136.7∠-51.85◦ 136.7∠-171.85◦
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Figure 11.5: Terminal voltage of DG1 as a fault occurs at bus 684 with/without TCBR.

11.5 Dynamic Simulation Results

The two DGs are connected at buses 671 and 633, and the initial real power size of DG 1 is 0.671pu,

and initial real power size of DG2 is 0.3pu. At t =0.1s, the fault occurs at bus 684 and the fault is

cleared at t=0.5s.

Figures 11.5-11.6 show the dynamic simulation results of the terminal voltage and stator

speed deviation for DG 1 and Figures 11.7-11.8 show the similar results for DG2. Figures 11.5 and

11.7 show the voltage of DG1 and DG2. The magnitude of the voltage minimum for DG1 is lower

than for DG2. This is because the fault location is close to the DG1.

The simulation results show that one TCBR close DG1 can effectively damp the oscillation

of both DG1 and DG2, thus the TCBR can improve the dynamic characteristic of the whole

distribution system.

11.6 Summary

In this chapter, unbalanced three-phase dynamic simulation of a distribution system with two DGs

connected is performed using MATLAB/Simulink. Nonlinear models for gas turbine and diesel

engine driven synchronous generators are implemented to study the DGs’ impact on the power
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Figure 11.6: Rotor speed deviation of DG1 as a fault occurs at bus 684 with/without TCBR.
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Figure 11.7: Terminal voltage of DG2 as a fault occurs at bus 684 with/without TCBR.
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Figure 11.8: Stator speed deviation of DG2 as a fault occurs at bus 684 with/without TCBR.

distribution system. A low cost, three-phase controlled TCBR is proposed to prevent the transient

instability and damp the low frequency oscillations. The three-phase dynamic simulation results

show that the TCBR can effectively damp the oscillation of the whole distribution system subject

to a disturbance.



130

Chapter 12

Conclusion

The objective of this dissertation is to develop improved dynamic models for distributed generations

(DG), to investigate their impacts on dynamic stability of power distribution systems, and to design

controllers to improve the dynamic stability of the integrated power distribution system.

A two-year DG project at West Virginia University (WVU) evaluated the impacts of

various DG sources on the stability of actual distribution systems by computer simulation using

data supplied by two regional electric utilities. Several important issues have been including the

availability of simulation tools, selection of simulation tools, modeling of various DGs and impact

of DGs on the distribution system under a variety of operating conditions.

By focusing on these objectives the interaction among DGs has been evaluated and the

dynamic stability of the integrated power distribution system has been examined. Three sections

of the literature are surveyed: 1) mathematical models and practical parameters for gas turbine,

diesel engine, fuel cell and wind turbine DGs, 2) application of power electronics devices, such as

Static Var Compensation (SVC) and Thyristor Controlled Braking Resistor (TCBR) in stabilizing

power distribution systems, and 3) control strategies for DGs and using FACTS when DG’s are

connected to a distribution line to improve the dynamic stability.

Four types of specific DGs: fuel cell power plant, wind turbine induction generator, gas

turbine synchronous generator and diesel engine synchronous generator have been discussed and

implemented in this dissertation.

The generator model of gas turbine generator and diesel engine generator is represented

by a full order synchronous generator model. A simplified gas turbine model is chosen to be

implemented. A practical diesel engine for emergency use is modeled. The generator model of wind

turbine induction generator is represented by a full order induction generator. The rating power
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operating region is considered for impacts evaluations and controller design. Two types of fuel cell

models are developed. One is an actual fuel cell model of the phosphoric acid fuel cell (PAFC)

obtained through the data fitting, the other is a dynamic model of a solid oxide fuel cell (SOFC).

Since fuel cell plant is interfaced with the network via inverter, the inverter model is developed

together with the interface.

Multi-DG control is investigated in this dissertation. One DG control is fuel cell control,

the other is wind turbine control. Control of fuel cell (SOFC) plant is accomplished through

inverters by adjusting its active power injection into the network during the transient period using

fast acting voltage-source inverters. The control of wind turbine generator is accomplished through

a parallel connected SVC by adjusting the reactive power injection into the system. Both controls

are centralized schemes.

Linear analysis methodologies were utilized in designing controls. In fuel cell control de-

sign, two pairs of critical modes have been identified using eigenvalue analysis and the participation

factors. Two specific lead-lag compensation units were designed to damp each modes respectively.

The gains of the two compensation units were then obtained via optimal control methodology. In

wind turbine DG control design procedure, three rotor speed deviations are used as input signals

while the controller outputs are the firing angle for SVC and the pitch angle for the wind turbine

DG. An output feedback controller is designed. Dynamic load characteristic have been considered

by modeling them as structured uncertainty. µ-analysis is used to evaluate the robust stability of

the controllers with respect to parameter uncertainties. The IEEE-13 node radial feeder with an

existing gas turbine DG and an existing diesel engine DG is used as a system to test the multi-DG

control. The simulation results demonstrate the effectiveness of the control strategies.

Coordinated operation of all the DGs is investigated. Simulation results show that good

configurations of DGs within the system can improve system stability. Furthermore, the fast acting

SVC is very effective in improving system damping. Among the DGs investigated in this research,

the fuel cell plant control is the best choice for overall coordinated operation.

Finally, a full three-phase approach to model a power distribution system is investigated.

The impact of the DGs is evaluated on the three-phase unbalanced distribution system. The three-

phase 13-node system with gas turbine and diesel engine DGs are simulated in the Power System

Blockset (PSB). In the simulation, the three-phase thyristor controlled braking resistor (TCBR)

is connected to absorb surplus energy when the system is subjected to a disturbance. Simulation

results demonstrate the effectiveness of the proposed strategy.

This dissertation has not included other types of DG, such as solar power plants. Solar
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energy has been commercially used in the electric utility industry. Dynamic modeling of solar

could be considered in the further research. Impacts on the distribution system with existing DGs,

interactions with other types of DGs, and the dynamic control of solar DG could be investigated.

Also, the advanced three-phase representation of distribution systems needs further devel-

opment. In this dissertation, a three-phase representation is implemented in PSB. If the number of

state variables becomes very larger, the running speed will become very slow. At present, no tools

are available to linearize the nonlinear model in PSB, so this three-phase approach is not suitable

to design a controller system directly yet. In a more advanced approach, the gas turbine, the diesel

engine, the fuel cell and the wind turbine DGs models could be used with the zero-axis circuits

added. Then, with the transformation of dq0 to abc, these DGs models could be connected to the

three-phase network. The major problem is to solve the three-phase unbalanced power flow and

to set the initial condition of each state variable. The advantage of this methodology is that the

speed could be tremendously improved, so the approach can be used in large-scale systems.
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Appendix A

Configuration of Models

A.1 Full-Order Synchronous Generator Model

To investigate the dynamic stability characteristics of a synchronous generator, a full-order model

[69] is simulated. This model is used in the gas turbine DG and the diesel engine DG. The substation

is represented as a simplified synchronous generator and will be discussed in the following section.

The following equations are represented in the rotor reference frame. Figures A.1 - A.3 show the

equivalent circuits. The equations (A.1-A.7) represent the 7th order state space electrical part of

the synchronous generator. The mechanical system are illustrated as equations (A.9- A.10). In this

DG research, the full-order synchronous generator ingored the zero-axis part (A.7).

In the equations,

d, q: d and q axis quantity;

r, s: rotor and stator quantity;

l, m: leakage and magnetizing inductance;

f , k: field and damper winding quantity.

The voltage equations are:

vrqs = −rsirqs + ωrλ
r
ds + pλ

r
qs (A.1)

vrds = −rsirds − ωrλ
r
qs + pλ

r
ds (A.2)

v0rfd = r
0
fdi

0r
fd + pλ

0r
fd (A.3)

v0rkd = r
0
kdi

0r
kd + pλ

0r
kd (A.4)

v0rkq1 = r
0
kq1i

0r
kq1 + pλ

0r
kq1 (A.5)
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Figure A.1: Q-axis equivalent circuit of a synchronous generator.

v0rkq2 = r
0
kq2i

0r
kq2 + pλ

0r
kq2 (A.6)

v0s = −rsi0s + pλ0s (A.7)

where p = d
dt .

The flux linkage equations are illustrated as:

λrqs

λrds

λ0rfd
λ0rkd
λ0rkq1
λ0rkq2
λ0s


= L_syn ∗



irqs

irds

i0rfd
i0rkd
i0rkq1
i0rkq2
i0s


(A.8)

where
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Figure A.2: D-axis equivalent circuit of a synchronous generator.

+

-

v0s

rs

Lls
i0s

Figure A.3: Zero-axis equivalent circuit of a synchronous generator.

L_syn =



−Lls−Lmq 0 0 0 Lmq Lmq 0

0 −Lls−Lmd Lmd Lmd 0 0 0

−Lmd 0 L0lfd+Lmd Lmd 0 0 0

−Lmd 0 Lmd L0lkd+Lmd 0 0 0

0 −Lmq 0 0 L0lkq1+Lmq Lmq 0

0 −Lmq 0 0 Lmq L0kq2+Lmq 0

0 0 0 0 0 0 Lls


The mechanical system is:
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xq-x'q
1

1+sT'q0
Iq

E'd

xd-x'd
1

1+sT'd0
Id

E'q∑

EFD

+

+

Figure A.4: Diagram of a simplified synchronous generator model.

pωr = − 1

2H
(Te − Tm) (A.9)

pθr = ωr (A.10)

The torque in per unit is:

Te = (
3

2
)(
P

2
)(λrdsi

r
qs − λrqsi

r
ds)

A.2 Simplified Synchronous Generator Model

A simplified [2] synchronous generator model is considered to represent the substation of the dis-

tribution system. In this model, the synchronous machine has two stator circuits and two rotor

circuit. Figure A.4 shows the two-axis model.

The state equations of the electrical part are:

pE0d =
1

t0q0
(−E0d + (xq − x0q)Iq) (A.11)

pE0q =
1

t0d0
(−E0q +EFD + (xd − x0d)Id) (A.12)

The electrical torque output is:

Te = E
0
dId +E

0
qIq − (x0q − x0d)IdIq (A.13)

The state equations of the mechanical part are:
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pω =
1

tj
(Tm −Dω − Te) (A.14)

pδ = ω (A.15)

A.3 Induction Machine

A full-order induction machine includes the 4th order DQ-axis state equations (see Figure A.5-

A.6), 1st order electrical torque and 2nd order zero-axis state equations (see Figure A.7) [69]. In

this dissertation research, the induction machine is simulated as a 5th order model and the 2nd

order zero-axis equations are ignored. The electrical part is represented as 6th order state space

model (see equation A.16-A.21), and the mechanical part is a 1st order model. Also, this model is

used to represent the dynamic load model when the mechanical torque is positive.

+

-

vqs

rs Lls
λdsω

iqs
M

+ -

L'lr
λ'dr(ω-ωr)

- +

r'r

i'qr

+

-

v'qr

Figure A.5: Q-Axis equivalent circuit of an induction machine.

+

-

vds

rs Lls
λqsω

ids
M

- +

L'lr
λ'qr(ω-ωr)

+ -

r'r

i'dr

+

-

v'dr

Figure A.6: D-Axis equivalent circuit of an induction machine.

The electrical part equations of the induction machine are:

vqs = rsiqs + ωλds + pλqs (A.16)

vds = rsids − ωλqs + pλds (A.17)
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+

-

v0s

rs

Lls
i0s

+

-

v'0r

r'r

L'lr
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Figure A.7: Zero-axis equivalent circuit of an induction machine.

v0qr = r
0
ri
0
qr + (ω − ωr)λ

0
dr + pλ

0
qr (A.18)

v0dr = r
0
ri
0
dr − (ω − ωr)λ

0
qr + pλ

0
dr (A.19)

vos = rsi0s + pλ0s (A.20)

v0or = r
0
ri
0
0r + pλ

0
0r (A.21)

where p = d
dt , and the flux linkage is:

λqs

λds

λ0qr
λ0dr
λ0s

λ00r


= L_ind ∗



iqs

ids

i0qr
i0dr
i0s

i00r


(A.22)

and

L_ind =



Lls +M 0 M 0 0 0

0 Lls +M 0 M 0 0

M 0 L0lr +M 0 0 0

0 M 0 L0lr +M 0 0

0 0 0 0 Lls 0

0 0 0 0 0 L0lr


(A.23)

ωb is the base electrical angular velocity used to calculate the inductive reactances. The

mechanical part are represented in per unit as:

pωr =
ωb
2H

(Te − Tm) (A.24)
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and the torque equation is expressed as:

Te = λdsiqs − λqsids (A.25)

Since machine and power system parameters are nearly always given in ohms or percent

or per unit of a base impedance, it is convenient to express the voltage and flux linkage eqations in

terms of reactances.

A.4 Voltage Source Inverter

To connect the fuel cell to the distribution system, the DC/AC inverter is used. The inverter can

be a PWM voltage source inverter which uses the hysteretic current control. This controller can

regulate the active power and reactive power by tracking the currents at certain references. The

general control diagram [6] is shown is Figure A.8.

~ load

Hysteresis
current

controller

Vfc

Current
reference
calculation

Distribution system

pc

qc

Figure A.8: Diagram of a PWM current source inverter in a distribution system.

A.5 Test Systems

IEEE-13 node test feeder is used to study the models and controller of the DGs. This system is

simulated in Simulink, power system toolbox(PST) and power system blockset (PSB). The model

simulated is mainly used to investigate the dynamic characteristics of the DGs and design the

dynamic stability controller. The PST model is used to calculate the single phase power flow and
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Subst at ion

646 645 632 633 634

611 684

652

671

680

692 675

650

Figure A.9: One line diagram of IEEE-13 node radial feeder.

the values are used to initialize the state variables in Simulink model. The PSB model is used to

test three-phase unbalanced and verify the designed controller.

A.5.1 IEEE-13 Node Test Feeder

The IEEE-13 node test feeder [24] is used as the test system to investigate the dynamic

characteristics of the distribution system with DGs. Figure A.9 shows the test system with the

two DGs. In the test, the connected transmission system is simulated as 138kV system, thus the

substation transformer is 138kV/4.16kV.

A.5.2 Line Segment Data

Config. 601:

1. Z (R +jX) in ohms per mile

Z =


0.3465 + j1.0179 0.1560 + j0.5017 0.1580 + j0.4236

0.3375 + j1.0478 0.1535 + j0.3849

0.3414 + j1.0348


2. B in micro Siemens per mile
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Table A.1: Line segment data of IEEE 13 node test feeder.

Node A Node B Length(ft.) Config.
632 645 500 603
632 633 500 602
633 634 0 XFM-1
645 646 300 603
650 632 2000 601
684 652 800 607
632 671 2000 601
671 684 300 604
671 680 1000 601
671 692 0 Switch
684 611 300 605
692 675 500 606

B =


6.2998 −1.9958 −1.2595

5.9597 −0.7417
5.6386


Config. 602:

1. Z (R +jX) in ohms per mile

Z =


0.7526 + j1.1814 0.1580 + j0.4236 0.1560 + j0.5017

0.7475 + j1.1983 0.1535 + j0.3849

0.7436 + j1.2112


2. B in micro Siemens per mile

B =


5.6990 −1.0817 −1.6905

5.1795 −0.6588
5.4246


Config. 603:

1. Z (R +jX) in ohms per mile

Z =


0 0 0

1.3294 + j1.3471 0.2066 + j0.4591

1.3238 + j1.3569


2. B in micro Siemens per mile

B =


0 0 0

4.7097 −0.8999
4.6658


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Config. 604:

1. Z (R +jX) in ohms per mile

Z =


1.3238 + j1.3569 0 0.2066 + j0.4591

0 0

1.3294 + j1.3471


2. B in micro Siemens per mile

B =


4.6658 0 −0.8999

0 0

4.7097


Config. 605:

1. Z (R +jX) in ohms per mile

Z =


0 0 0

0 0

1.3292 + j1.3475


2. B in micro Siemens per mile

B =


0 0 0

0 0

4.5193


Config. 606:

1. Z (R +jX) in ohms per mile

Z =


0.7982 + j0.4463 0.3192 + j0.0328 0.2849− j0.0143

0.7891 + j0.4041 0.3192 + j0.0328

0.7982 + j0.4463


2. B in micro Siemens per mile

B =


96.8897 0 0

96.8897 0

96.8897


Config. 607:

1. Z (R +jX) in ohms per mile

Z =


1.4925 + j0.6231 0 0

0 0

0


2. B in micro Siemens per mile
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B =


97.7806 0 0

0 0

0


The system has unbalanced spot and distributed loads. The three-phase power flow is

shown in Table A.2.

Table A.2: Three-phase current and voltage of distribution system without DG.

Line V-Phase A V-Phase B V-Phase C I-Phase A I-Phase B I-Phase C
650-632 2478∠-2.30◦ 2555∠-121.19◦ 2433∠117.73◦ 533.4∠-22.23◦ 438.7∠-138.21◦ 569.8∠95.32◦
632-633 2470∠-2.36◦ 2550∠-121.23◦ 2426∠117.74◦ 78.92∠-35.73◦ 63.5∠-156.84◦ 60.11∠82.07◦
633-634 272.8∠-2.23◦ 284.4∠-121.06◦ 270.6∠117.92◦ 689.6∠-36.74◦ 555.4∠-157.93◦ 528.6∠81.05◦
632-645 0 2552∠-121.50◦ 2434∠117.25◦ 0 151.8∠-142.72◦ 65.19∠58.23◦
645-646 0 2555∠-121.58◦ 2433∠117.14◦ 0 66.49∠-122.24◦ 66.08∠57.54◦
632-671 2411∠-5.13◦ 2580∠-121.77◦ 2340∠116.05◦ 451.8∠-20.56◦ 198.3∠-128.71◦ 409.4∠103.07◦
671-692 2411∠-5.13◦ 2580∠-121.77◦ 2340∠116.05◦ 224.7∠-17.18◦ 71.63∠-57.29◦ 170.7∠111.18◦
692-675 2402∠-5.59◦ 2592∠-121.79◦ 2328∠116.00◦ 201.9∠-4.41◦ 69.94∠-57.71◦ 117.1∠113.63◦
671-684 2409∠-5.21◦ 0 2334∠115.93◦ 53.27∠-4.62◦ 0 69.14∠123.56◦
684-611 0 0 2329∠115.78◦ 0 0 69.18∠122.99◦
684-652 2395∠-5.23◦ 0 0 64.02∠-39.13◦ 0 0
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Appendix B

Parameters for Simulation

B.1 Parameters for SI system in Chapter 3

1) Per unit system

Vbase = 23kV, Sbase = 20.5MVA, Zbase = 25.8049 W

2) Substation

Generator: Sb=129MVA, H = 600s, x0d = 0.1, xd=xq= x
0
q = T

0
d0=T

0
q0=0.

Transformer: Sb=42.0MVA, Zt = 0.1 (self base)

3) The distribution line

R+jX = 0.149+j0.4283 ohm/mile. (Aluminum conductor, hard-drawn, 61% conductivity)

4) Distributed Generation

Generator: Sb=4.0MVA, H = 9.0 s, xd=2.0, x0d = 0.263, xq=1.6, x
0
q = 0.3, T

0
d0=1.105,

T0q0=0.01.

Exciter: KA=38.0, TA=0.1, VRmax=1.05, VRmin=-1.05, TB=TC=0.

Turbine: 1/R=24.5, Tmax=1.0, Ts=0.1, TG=0.5, T3=0.

DG transformer: Sb=4.0MVA, Rt+jXt = 0.05 + j0.05 (self base)

B.2 Parameters for the Test System in Chapter 4

Table B.1 shows the parameters for the test system simulation in Chapter 4. This test system is

also used in Chapters 5-10.
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Table B.1: Parameters for the test system simulation.

Base values
Sbase = 4.0MVA Vbase = 4.16kV

Substation
xd = 0.8958 xq = 0.8645 x0d = 0.1198 x0q = 0.1198
r = 0 Td0 = 8.96 Tq0 = 0.1 H = 2364

D = 0.1

Synchronous generator
rs = 0.003 Xls = 0.19 Xq = 1.8 Xd = 1.8

r0kq1 = 0.00178 X 0
lkq1 = 0.8125 r0fd = 0.000929 r0kd = 0.01334

X 0
lkd = 0.08125 H = 5.6

Gas Turbine
Kd = 25 Tg = 0.05 Pmax = 1.2 Pmin = −0.1
Tv = 0.05 Tf1 = 0.4

Diesel Engine
K = 4.0 T1 = 0.01 T2 = 0.02 T3 = 0.2

T4 = 0.25 T5 = 0.009 T6 = 0.0384 Tmin = 0

B.3 Parameters for the SOFC Simulation

Table B.2 shows the parameters for the SOFC simulation in Chapters 6 & 7.

Table B.2: Parameters for the SOFC simulation.

SOFC
N0 = 384 KH2 = 8.43e

−4 KH2O = 2.81e
−4 KO2 = 2.52e

−3

tH2 = 26.1 tH2O = 78.3 tO2 = 2.91 r = 0.126

Rs = 0.9 Ls = 0.01

B.4 Parameters for the Wind Turbine DG

Table B.3 shows the parameters for the wind turbine DG simulation in Chapters 8 & 9.

B.5 Parameters for TCBR Simulation in Chapter 11

Since the TCBR simulated in power system blockset (PSB), the paramters of a gas turbine

DG and a diesel engine DG are based on the Pb1 and Pb2 respectively.
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Table B.3: Parameters of the wind-turbine DG.

Induction machine
Xls=0.135 X´lr=0.075 XM=4.161 rs=0.0059
r´r=0.0339 H=0.5
Wind-turbine
R=69.96m Vrated=9.3m/s ρair=1.225
Ki=6.2 Kp=6.2
SVC
XC=0.5 XL=0.476 Tb=0.00417 Td=0.0014
KR=33.3 TR=0.1

Table B.4: Parameters for the TCBR simulation.

Synchronous Generator
Pb1=2.1MW Pb2=1.1MW Vb=4160V
Xd=2.03 X´d=0.26 X´´d=0.173 Xq=1.6
X´´q=0.2 Xl=0.18 T´d=1.105 T´´d=0.035
X´´q0=0.035 R=2.85e-3 H=2.6
Gas Turbine
Kd=25 Tg=0.05 Pmax=1.2 Pmin=-0.1
Tv=0.05 Tf1=0.4
Diesel Engine
K=4.0 T1=0.01 T2=0.02 T3=0.2
T4=0.25 T5=0.009 T6=0.0384 Tmin=0
Excitation System
Tr=20e-3 Ka0=200 Ta=0.002 Ke0=1.0
Te=0 Tb=0 Tc=0 Kf0=0.001
Tf=0.1 Efmax=6.0 Efmin=0 Kp=0
TCBR
R0=12Ω X0=1.1Ω
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Appendix C

Program Structure of Simulation

In this dissertation research, a software package is developed in Matlab/Simulink. This package

includes: DG models, power distribution network models, measurement units and analysis tools.

Figure C.1 shows the general structure of the simulation system. In Figure C.1, the DGi

is the distributed generation, PEj is the power electronics device, and the network includes the

distribution lines, transformers and static loads. The dynamic loads are represented as induction

motors, so they can be considered as the DGs absorting the real power.

The Simulink workspace is used as running environment. Each of the models are connected

in Simulink. The numerical calculation methodologies are also provides by Simulink. During the

dynamic simulation procedure, the Matlab functions are called. These functions are written in *.m

files.

An example of the general simulation structure in Simulink is shown in Figure C.2. This

system is used to study the wind turbine DG in Chapters 8 & 9.

The three-phase approach is implemented in power system blockset (PSB). It has a dif-

ferent program structure.

C.1 Models

The models in this software package include: transient synchronous generator model, full-order

synchronous generator model, induction machince model, gas-turbine, diesel engine, wind turbine,

solid oxide fuel cell (SOFC) model, phosphoric acid fuel cell (PAFC) model, current source inverter

(CSI) model, and static var compensator (SVC) model, etc. As an example, the SOFC model is

illustrated in Figure C.3.
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Figure C.1: General structure of the simulation system.
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Figure C.2: General structure of the simulation program in Simulink.
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Figure C.3: Simulation of a SOFC in Simulink.

The transient synchronous generator is to represent the substation; the full-order syn-

chonous generator model is connected to gas turbine, diesel engine to represent the gas-turbine,

diesel engine DGs; 5th induction machine model is connected to the wind turbine to represent wind

turbine DG, it is also used to represent the dynamic load.

All the models are simulated in rotor reference frame (d, q). Output of each model are

the voltage and input is the current.

C.2 Network

The network is represented by algebraic equation.

I = Y V (C.1)

where I is the input current of each node, V is the voltage of each node. Y is the network matrix.

I and V are complex quantities, in order to make the computation of all real quantities,

I and V are seperated as real and image quantities.
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

Ix1

Iy1

...

Ixi

Iyi

...

Ixn

Iyn


=



G11 B11 G1i B1i G1n B1n

B11 −G11 B1i −G1i B1n −G1n
...

Gi1 Bi1 ... Gii Bii ... Gin Bin

Bi1 −Gi1 Bii −Gii Bin −Gin
...

Gn1 Bn1 Gni Bni Gnn Bnn

Bn1 −Gn1 Bni −Gni Bnn −Gnn





Vx1

Vy1

...

Vxi

Vyi

...

Vxn

Vyn


(C.2)

A simple example is used in as the network function in Matlab is shown as below:

function outout= fun_test(u ,n_v, Y ,Y_ fault,T_sw , xd1)

% Network Interface

% Substation, gas-turbine DG , diese l-engine DG

% Zhixin M iao

% Aug. 14, 2001

jay=sqrt(-1);

n = length(Y);

Iu = zeros(n ,1);

t = u(n_v*3+1);

i=1;

Eq1(i)=u((i-1)*3+1);

Ed1(i)=u((i-1)*3+2);

delta(i)=u((i-1)*3+3);

Iu(i)= (Eq1(i)+ jay*Ed1(i))*exp(jay*delta(i))/(jay*xd1(i));

for i=2:n_v

Iq(i)=u((i-1)*3+2)/sqrt(3);

Id(i)=u((i-1)*3+3)/sqrt(3);

delta(i)=u((i-1)*3+1);

Iu(i)= (Iq(i)+ jay*Id(i))*exp(jay*delta(i));

end

if (t<=T_sw(1) |t>=T_sw(2))

Y1=Y+diag([1 ./(jay*xd1) ;0 ;0 ;0 ;0 ]);% 1/(j*xd1)
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V=inv(Y1)*Iu ;

I=Y*V;

else

Y1=Y_fault+diag([1 ./(jay*xd1);0;0;0 ;0 ]);

V= inv(Y1)*Iu ;

I=Y_fault*V ;

end

for i=1:n_v

Im (i)= I(i)*exp(-jay*delta(i));

Vm(i)=V(i)*exp(-jay*delta(i));

Iq(i)= real(Im (i));

Id(i)= imag(Im (i));

Vq(i)= real(Vm (i));

Vd(i)= imag(Vm(i));

out(i,:)= [Vq(i),Vd(i)];

end

outout= reshape(out.’,2*n_v,1);

C.3 Analysis Tools

The analysis tools are developed to evaluate the linearized system model and to design the dynamic

stability controller to improve the oscillation damping of the system.

The analysis tools consist of: nonlinear models’ linearization in Simulink, eigenvalues and

eigensensitivity calculation, participation matrix, residue calculation, critical eigenvalues identifi-

cation, output feedback optimal control design.

Also, most of the linear system toolbox in MATLAB can be used by the linearized model.

C.4 Features

This software package setup a platform to study the DG models, the impacts of the DGs on the

power distribution system, and to design the controller improve the dynamic stability of the system.

The features of the software package can be summarized:



APPENDIX C. PROGRAM STRUCTURE OF SIMULATION 162

1) Each DG model is developed independently, so it can be used to investigate the char-

acteristics of each specific DG;

2) The inputs and outputs of each DG model are unified as current (I) and voltage (V)

respectively. This unified structure makes it easier to connect multi-DGs to the power distribution

system;

3) The Simulink allows all the basic functions of the Simulink such as the numerical

calculation methodology, the measurement units;

4) Modular design allows the software is very convenient to be expanded, to include the

newly emerged DGs.
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Appendix D

Robust Analysis Program

Given linear system (A0, B0, C0), and the parameter uncertainty ∆A = A1 − A0, where A1 is the
system coefficient matrix when the dynamic load has an increase. (A0, B0, C0) is obtained from

the nonlinear model in Matlab/Simulink.

The robust analysis program is as the following:

%% lineariz the nonlinear model: ’m ain_sys_w ind_svc_A16_ linear’;

[A2,B2,C2,D2]= linmod(’m ain_sys_w ind_svc_A16_ linear’);

[m ,n ]= size(A2);

A2_z1=A2;

A2_z1(4,:)=A2_z1(4,:)-A2_z1(3,:);

A2_z1(10,:)=A2_z1(10,:)-A2_z1(3,:);

A2r0= [A2_z1(1:2 ,:); A2_z1(4:m ,:)];

A0= [A2r0(:,1:2),A2r0(:,4 :m )];

[m ,n ]= size(A2);

B2r0=B2;

B2r0(4,:)=B2r0(4,:)-B2r0(3,:);

B2r0(10,:)=B2r0(10,:)-B2r0(3,:);

B0= [B2r0(1:2 ,:);B2r0(4:m ,:)];

[n1,m1]= size(C2);

C2r0= [C2(:,1 :2),C2(:,4 :m1)];

C2r0= [C2r0(1:2 ,:); C2r0(4:n1,:)];

C0= [C2r0((n1-3):(n1-1),:)];

%% step2: calcu late frequency resp onse of M 11
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G = pck(A0, [B0 E], [C0(1,:);F ]);

M = starp(G ,kk0,1 ,1);

om = logspace(-2 ,2 ,80);

M 1g = frsp(M , om );

M 11_g=sel(M1g,1 :3 ,1 :3);

%% step3: describ e the structure of the p erturbations

uncb lk = [-1 ,0 ;-1 ,0 ;-1 ,0];

%% step4: function mu to obtain the upper and lower b ound of mu

bnds1 = mu(M11_g,uncblk);
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