1,770 research outputs found

    Dispatching and Rescheduling Tasks and Their Interactions with Travel Demand and the Energy Domain: Models and Algorithms

    Get PDF
    Abstract The paper aims to provide an overview of the key factors to consider when performing reliable modelling of rail services. Given our underlying belief that to build a robust simulation environment a rail service cannot be considered an isolated system, also the connected systems, which influence and, in turn, are influenced by such services, must be properly modelled. For this purpose, an extensive overview of the rail simulation and optimisation models proposed in the literature is first provided. Rail simulation models are classified according to the level of detail implemented (microscopic, mesoscopic and macroscopic), the variables involved (deterministic and stochastic) and the processing techniques adopted (synchronous and asynchronous). By contrast, within rail optimisation models, both planning (timetabling) and management (rescheduling) phases are discussed. The main issues concerning the interaction of rail services with travel demand flows and the energy domain are also described. Finally, in an attempt to provide a comprehensive framework an overview of the main metaheuristic resolution techniques used in the planning and management phases is shown

    Assessing the dynamic vulnerability of an urban rail transit system and a case study of Beijing, China

    Full text link
    Urban rail transit is the backbone of urban transportation, and thus it is significant to understand its vulnerability, i.e., whether the system can still maintain normal operations when facing operational disturbances with different magnitudes. To this end, this paper proposes a network vulnerability assessment method with the joint consideration of static network topology and dynamic travel demand. The method includes an accessibility-based identification of station importance with time-varying passenger demand and a new dynamic vulnerability evaluation index. An empirical analysis is carried out by taking the rail transit system of Beijing, China as an example. Results show that the distribution of high-importance stations varies with the time of day, affected by both static topology and hourly-changing passenger flow. Under the disturbance of operation delay, the impact of high-importance stations on the network vulnerability changes with the increase of delayed travel demand. It is also found that some stations that serve as bridges (i.e., reasonable paths link the origin station and destination) and are visited by large passenger flow have the greatest impact on network vulnerability. Network performance degradation is obviously segmented and stratified in the case of interval continuous failure. The disruption between different lines is the main reason for system performance degradation, and some important stations within the line will act as catalysts to accelerate the performance degradation. This method provides a reference for measuring dynamic passenger flow-related network vulnerability and supplies the field with a new vulnerability evaluation index.Comment: 29 pages, 12 figure

    Time Differential Pricing Model of Urban Rail Transit Considering Passenger Exchange Coefficient

    Get PDF
    Passenger exchange coefficient is a significant factor which has great impact on the pricing model of urban rail transit. This paper introduces passenger exchange coefficient into a bi-level programming model with time differential pricing for urban rail transit by analysing variation regularity of passenger flow characteristics. Meanwhile, exchange cost coefficient is also considered as a restrictive factor in the pricing model. The improved particle swarm optimisation algorithm (IPSO) was applied to solve the model, and simulation results show that the proposed improved pricing model can effectively realise stratification of fares for different time periods with different routes. Taking Line 2 and Line 8 of the Beijing rail transit network as an example, the simulation result shows that passenger flows of Line 2 and Line 8 in peak hours decreased by 9.94% and 19.48% and therefore increased by 32.23% and 44.96% in off-peak hours, respectively. The case study reveals that dispersing passenger flows by means of fare adjustment can effectively drop peak load and increase off-peak load. The time differential pricing model of urban rail transit proposed in this paper has great influences on dispersing passenger flow and ensures safety operation of urban rail transit. It is also a valuable reference for other metropolitan rail transit operating companies

    Metro or Light Rail: Belgrade Transport Proposals

    Get PDF
    An architectural discourse on urban railroad transport systems in European context is presented in this paper. Metro and light rail systems are briefly compared and international practice discussed. As a case study, the proposals of metro and light rail transport in Belgrade are concisely reviewed and the budget crucial role is recognized. Five attached figures are specially completed for this paper

    A social vulnerability-based genetic algorithm to locate-allocate transit bus stops for disaster evacuation in New Orleans, Louisiana

    Get PDF
    In the face of severe disasters, some or all of the endangered residents must be evacuated to a safe place. A portion of people, due to various reasons (e.g., no available vehicle, too old to drive), will need to take public transit buses to be evacuated. However, to optimize the operation efficiency, the location of these transit pick-up stops and the allocation of the available buses to these stops should be considered seriously by the decision-makers. In the case of a large number of alternative bus stops, it is sometimes impractical to use the exhaustive (brute-force) search to solve this kind of optimization problem because the enumeration and comparison of the effectiveness of a huge number of alternative combinations would take too much model running time. A genetic algorithm (GA) is an efficient and robust method to solve the location/allocation problem. This thesis utilizes GA to discover accurately and efficiently the optimal combination of locations of the transit bus stop for a regional evacuation of the New Orleans metropolitan area, Louisiana. When considering people’s demand for transit buses in the face of disaster evacuation, this research assumes that residents of high social vulnerability should be evacuated with high priority and those with low social vulnerability can be put into low priority. Factor analysis, specifically principal components analysis, was used to identify the social vulnerability from multiple variables input over the study area. The social vulnerability was at the census block group level and the overall social vulnerability index was used to weight the travel time between the centroid of each census block to the nearest transit pick-up location. The simulation results revealed that the pick-up locations obtained from this study can greatly improve the efficiency over the ones currently used by the New Orleans government. The new solution led to a 26,397.6 (total weighted travel time for the entire system measured in hours) fitness value, which is much better than the fitness value 62,736.3 rendered from the currently used evacuation solution

    A Positive Theory of Network Connectivity

    Get PDF
    This paper develops a positive theory of network connectivity, seeking to explain the micro-foundations of alternative network topologies as the result of self-interested actors. By building roads, landowners hope to increase their parcelsÕ accessibility and economic value. A simulation model is performed on a grid-like land use layer with a downtown in the center, whose structure resembles the early form of many Midwest- ern and Western (US) cities. The topological attributes for the networks are evaluated. This research posits that road networks experience an evolutionary process where a tree-like structure first emerges around the centered parcel before the network pushes outward to the periphery. In addition, road network topology undergoes clear phase changes as the economic values of parcels vary. The results demonstrate that even without a centralized authority, road networks have the property of self-organization and evolution, and, that in the absence of intervention, the tree-like or web-like nature of networks is a result of the underlying economics.road network, land parcel, network evolution, network growth, phase change, centrality measures, degree centrality, closeness centrality, betweenness centrality, network structure, treeness, circuitness, topology

    System importance measures: A new approach to resilient systems-of-systems

    Get PDF
    Resilience is the ability to withstand and recover rapidly from disruptions. While this attribute has been the focus of research in several fields, in the case of system-of-systems (SoSs), addressing resilience is particularly interesting and challenging. As infrastructure SoSs, such as power, transportation, and communication networks, grow in complexity and interconnectivity, measuring and improving the resilience of these SoSs is vital in terms of safety and providing uninterrupted services. ^ The characteristics of systems-of-systems make analysis and design of resilience challenging. However, these features also offer opportunities to make SoSs resilient using unconventional methods. In this research, we present a new approach to the process of resilience design. The core idea behind the proposed design process is a set of system importance measures (SIMs) that identify systems crucial to overall resilience. Using the results from the SIMs, we determine appropriate strategies from a list of design principles to improve SoS resilience. The main contribution of this research is the development of an aid to design that provides specific guidance on where and how resources need to be targeted. Based on the needs of an SoS, decision-makers can iterate through the design process to identify a set of practical and effective design improvements. ^ We use two case studies to demonstrate how the SIM-based design process can inform decision-making in the context of SoS resilience. The first case study focuses on a naval warfare SoS and describes how the resilience framework can leverage existing simulation models to support end-to-end design. We proceed through stages of the design approach using an agent-based model (ABM) that enables us to demonstrate how simulation tools and analytical models help determine the necessary inputs for the design process and, subsequently, inform decision-making regarding SoS resilience. ^ The second case study considers the urban transportation network in Boston. This case study focuses on interpreting the results of the resilience framework and on describing how they can be used to guide design choices in large infrastructure networks. We use different resilience maps to highlight the range of design-related information that can be obtained from the framework. ^ Specific advantages of the SIM-based resilience design include: (1) incorporates SoS- specific features within existing risk-based design processes - the SIMs determine the relative importance of different systems based on their impacts on SoS-level performance, and suggestions for resilience improvement draw from design options that leverage SoS- specific characteristics, such as the ability to adapt quickly (such as add new systems or re-task existing ones) and to provide partial recovery of performance in the aftermath of a disruption; (2) allows rapid understanding of different areas of concern within the SoS - the visual nature of the resilience map (a key outcome of the SIM analysis) provides a useful way to summarize the current resilience of the SoS as well as point to key systems of concern; and (3) provides a platform for multiple analysts and decision- makers to study, modify, discuss and documentoptions for SoS

    Infrastructure Design, Signalling and Security in Railway

    Get PDF
    Railway transportation has become one of the main technological advances of our society. Since the first railway used to carry coal from a mine in Shropshire (England, 1600), a lot of efforts have been made to improve this transportation concept. One of its milestones was the invention and development of the steam locomotive, but commercial rail travels became practical two hundred years later. From these first attempts, railway infrastructures, signalling and security have evolved and become more complex than those performed in its earlier stages. This book will provide readers a comprehensive technical guide, covering these topics and presenting a brief overview of selected railway systems in the world. The objective of the book is to serve as a valuable reference for students, educators, scientists, faculty members, researchers, and engineers
    • 

    corecore