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Abstract The paper aims to provide an overview of the

key factors to consider when performing reliable modelling

of rail services. Given our underlying belief that to build a

robust simulation environment a rail service cannot be

considered an isolated system, also the connected systems,

which influence and, in turn, are influenced by such ser-

vices, must be properly modelled. For this purpose, an

extensive overview of the rail simulation and optimisation

models proposed in the literature is first provided. Rail

simulation models are classified according to the level of

detail implemented (microscopic, mesoscopic and macro-

scopic), the variables involved (deterministic and stochas-

tic) and the processing techniques adopted (synchronous

and asynchronous). By contrast, within rail optimisation

models, both planning (timetabling) and management

(rescheduling) phases are discussed. The main issues con-

cerning the interaction of rail services with travel demand

flows and the energy domain are also described. Finally, in

an attempt to provide a comprehensive framework an

overview of the main metaheuristic resolution techniques

used in the planning and management phases is shown.

Keywords Rail systems � Simulation � Optimisation �
Travel demand � Energy saving � Metaheuristic techniques

1 Introduction

Rail transport benefits from several specific features which

make it a key element in public transport management,

above all in high-density contexts. Indeed, rail transport is

environmentally friendly (low pollutant emissions), high-

performing (high travel speeds and low headways) and

competitive (low unit costs per seat-km or passenger-km),

while presenting a high degree of adaptability to inter-

modality. However, it is highly vulnerable in the event of

breakdowns: a faulty convoy cannot be easily overtaken

and sometimes cannot be easily removed from the line,

especially in the case of isolated systems (i.e. systems

which are not integrated into an effective network) or when

a breakdown occurs on open tracks. Thus, re-establishing

ordinary operational conditions may require excessive

amounts of time and, as a consequence, an inevitable in-

crease in discomfort (user generalised cost) for passengers,

who might decide to abandon the system or, if already on

board, exclude the railway system from their future choice

set. Hence developing appropriate techniques and decision

support tools for optimising rail system management, both

under ordinary and under disrupted conditions, would

clearly affect the modal split in favour of public transport

and therefore bring about a considerable reduction in the

externalities caused by the use of private transport, such as

air and noise pollution, traffic congestion and accidents,

conferring clear quality-of-life benefits for both transport

users and non-users (i.e. individuals who are not system

users).

However, a rail service is generally considered as a

stand-alone system, and other systems, which are strictly

connected with it by means of reciprocal interactions, are

regarded just as constant input variables or, at worst, totally

neglected. Therefore, after an overview of the main rail
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simulation and optimisation models proposed in the liter-

ature, the paper focuses on the main issue concerning

interactions of rail service with travel demand flows and

the energy domain.

First, as rail transport, just like any other transport sys-

tem, has the task of moving people or goods around, a

realistic and accurate cost–benefit analysis cannot ignore

the flow features involved. In particular, considering travel

demand within the analytical framework presents a two-

sided effect. First and foremost, it leads to introducing

elements such as convoy capacity constraints and the

assessment of dwell times as flow-dependent factors which

make the simulation as close as possible to reality.

Specifically, the former takes account of the possibility that

not all passengers can board the first arriving train, but only

part of them, due to overcrowding, with a consequent

increase in waiting times. Due consideration of this factor

is fundamental because, if it were to be repeated, it would

make a further contribution to passenger discontent. By

contrast, estimation of dwell times on the basis of flows

becomes fundamental in the planning phase. Indeed, esti-

mating dwell times as fixed values, ideally the same for all

runs and all stations, can result in deviations between

actual and planned operations, with a subsequent deterio-

ration in system performance. Thus, neglecting the above

aspects, above all in crowded contexts, would render the

simulation distorted, in terms of both costs and benefits.

The second aspect, on the other hand, concerns correct

assessment of effects of the strategies put in place, both in

planning phases (strategic decisions such as the building of

a new infrastructure, improvement in the current signalling

system or the purchase of new rolling stock) and in oper-

ational phases (operational decisions such as the definition

of intervention strategies for addressing disruption condi-

tions). Indeed, nowadays in the management of failures,

there are operational procedures which are based on

hypothetical times for re-establishing ordinary conditions,

estimated by the train driver or by the staff at the operation

centre who generally tend to minimise the impact exclu-

sively from the company’s point of view (minimisation of

operational costs), rather than from the standpoint of pas-

sengers. Additionally, in defining intervention strategies,

passenger flow and its variation in time (different time

intervals) and space (different points in the railway net-

work) are rarely considered. Relying on suitable estimation

and forecasting techniques for travel demand, which have

to allow for the peculiarities of the railway system as well

as be able to properly model the behaviour of passengers in

the various phases of the trip (turnstile access, transfer from

the turnstiles to the platform, waiting on the platform,

boarding and alighting process, etc.) would thus appear

clearly important.

As regards the energy domain, the paper focuses on the

analysis of energy-saving policies which are put in place

for reducing energy consumption in railway systems. It is

worth noting that this is closely linked to what has so far

been described. Indeed, in order to implement proper

energy-saving strategies, it is, above all, necessary to

obtain a reliable estimate of the operational times involved

(e.g. recovery times, inversion times, buffer times).

Moreover, as the adoption of eco-driving strategies gen-

erates an increase in train running times and hence in

passenger travel times, it is important to investigate the

trade-off between energy efficiency and increases in user

generalised costs.

Managing to model such a complex framework (Fig. 1),

in which three different systems reciprocally influence each

other, requires making use of suitable simulation and

optimisation techniques. These enable both knowledge to

be acquired on the effects of any intervention, prior to

being carried out, and the best resolution strategy to be

identified according to the target pursued.

The remainder of this paper is organised as follows:

Sect. 2 provides a description of rail simulation models

proposed in the literature; Sect. 3 deals with an extensive

overview of rail optimisation models, both for planning and

for management phases; Sect. 4 addresses estimation and

forecasting techniques for travel demand and the related

peculiarities in the case of rail systems; Sect. 5 illustrates

contributions to the implementation of energy-saving

strategies; Sect. 6 presents an overview of the most widely

used metaheuristic algorithms for solving dispatching and

rescheduling problems; this is followed by some conclud-

ing remarks in Sect. 7.

2 Rail Simulation Models

As shown by [1], in the both design and management

phases, it is necessary to rely on suitable simulation tech-

niques, which allow the effects of any intervention to be

identified, before being put into practice, so as to give

adequate support to the decision-making process. The

railway simulation models proposed in the literature can be

classified according to different criteria. A first criterion

concerns the level of detail adopted for the representation

of the network and enables the distinction among macro-

scopic, microscopic and mesoscopic models.

Macroscopic rail models describe the network by means

of a graph whose nodes indicate the various stations and

whose links usually define the frequency and travel times

of the various trains. The main advantages of macro-ap-

proaches lie in the fact that they require a limited set of

input data and a low computational effort. As this makes

them able to deal with large-size networks in a reasonable
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computation time, they are usually implemented in plan-

ning phases to carry out strategic evaluations related to

different infrastructure scenarios or solve routing problems

which consist in defining train paths without time restric-

tions. However, the low degree of detail adopted in the

network representation affects the accuracy of results: they

usually contain far fewer nodes and links compared to the

microscopic model and consider infrastructure in a more

abstract manner. This means that such models are unable to

reproduce some aspects such as signalling equipment

installed and layout of station tracks and thus are unable to

detect train conflicts or provide a reliable estimation of

running times.

Microscopic rail models, by contrast, portray the net-

works in great detail. They take into account information

concerning tracks (e.g. the number, length and alignment of

the block sections, speed, gradient), features of the sig-

nalling system (e.g. signal position, release points, per-

missive occupancy), layout of stations (e.g. number of

tracks, length of platforms, shunting yards, points, vehicle

depots), characteristics of the rolling stock (e.g. accelera-

tion/deceleration features, tractive/effort diagram, total and

adherence load), operational information (e.g. departure/

arrival times, routes, alternative platforms, timing points,

dwell times, connections between runs) as well as safety

conditions. The variation of each attribute leads to the

creation of a new node and hence necessarily of a new link.

Such modelling of the infrastructure can be used for

operational needs such as calculating travel times, drawing

up timetables, detecting probable train conflicts, addressing

disruption conditions and testing rescheduling strategies.

Hence, they provide very accurate results, albeit requiring

the collection of a large amount of data and considerable

computational effort.

Mesoscopic rail models represent an intermediate

approach between macroscopic and microscopic models.

They simulate the performance of the network at an

aggregate level, by using aggregate variables such as

capacity, flow and density. Traffic, therefore, is represented

by convoy packets with identical characteristics (destina-

tion, routing behaviour, etc.) which propagate on the net-

work. The main advantage of such models concerns the

minimisation of the effort required to represent complex

problems. Indeed, they allow only the effectively relevant

elements to be analysed and neglect factors which, on the

contrary, are not pertinent to the true aim of the study. This

permits a simplified simulation of articulated contexts in

order to respond to both strategic and tactical needs.

Hereafter, different software packages and tools imple-

menting the above-mentioned kinds of models are descri-

bed. A first example of macro-simulation model is

NEMO—Network Evaluation MOdel (Fig. 2), which was

developed by [2] for supporting the planning phase. Indeed,

it can compute costs and earnings for different scenarios,

thus allowing a comparison among them on the basis of an

economic evaluation. Another macro-simulation model is

SIMONE—SImulation of MOdel NEtwork (Fig. 3), devel-

oped by [3], whose possible applications regard strategic

planning decisions (e.g. the possibility to build a new

railway infrastructure or the allocation of network capacity

to train operating companies) and the assessment of the

stability and robustness of timetables. Among macro-sim-

ulation software packages, it is worth also citing TransCAD

which is a commercial GIS (geographic information sys-

tem) software specifically developed for transportation

analysis. In particular, railway lines are treated by the

software as transit lines and their representation is carried

out by means of the Route System Toolbox (Fig. 4). It is

Fig. 1 Rail operation and

related interactions with travel

demand and the energy domain

Fig. 2 NEMO model [2]
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thereby possible to model the line with its route and stops,

as well as its relevant features (such as headway and

capacity) which are stored in the associated database.

Network representation can then be completed with addi-

tional links (e.g. pedestrian links, connectors) or nodes (e.g.

centroids), characterising them with the related attributes

which are saved in the associated dataview. After the

implementation of the transit network, a matrix of pas-

senger flows between origin and destination locations can

be uploaded and transit assignment can be performed. The

output is a specific database (i.e. transit flows) which

provides link levels and aggregates ridership statistics at

every stop along each route such as, boarding and alighting

counts, stop-to-stop flows and route-to-route transfers. An

example of a transit network representation by means of

TransCAD is shown in Fig. 5.

On the other hand, among the micro-simulation models,

it is worth mentioning the software RailySis, developed by

[5]. It is essentially aimed at simulating different opera-

tional scenarios and comparing them in terms of

timetable performance. For this purpose, very detailed

modelling of delays is performed by appropriately taking

into account their stochastic nature. The architecture of the

model is shown in Fig. 6.

The structures of two other micro-simulation software

packages, namely OpenTrack [6, 7] and EGTRAIN—En-

vironment for the design and simulaTion of RAIlway Net-

works [8, 9], are depicted, respectively, in Figs. 7 and 8. As

can be seen, they are built on a very similar architecture

which is based on: different modules providing input data,

a simulation core and several possible outputs. The input

modules provide data concerning infrastructure, signalling

systems, stations, rolling stock and planned timeta-

bles which are modelled with a high degree of detail.

In order to represent the motion of rail convoys in the

most realistic way, OpenTrack adopts the so-called column

graph or double-vertex graph. In such a graph, each node

can be crossed if and only if both vertexes of the node are

crossed and this allows a valid representation of the net-

work to be obtained, especially in the case of points.

Moreover, OpenTrack follows a hierarchical structure

which requires that specific elements be carried out in a

given order, that is block sections, routes connecting,

contaguous sections, itineraries connecting contiguous

routes, runs combining an itinerary with a specific kind of

train and a specific departure/arrival time and, finally, the

planned timetable made up of all runs on duty. Regarding

the simulation core, this software performs a mixed dis-

crete/continuous simulation process which calculates both

the continuous numerical solution of the differential

motion equations for the trains, by means of Euler’s

method [10], and the discrete processes of signal box states

and delay distributions. Furthermore, it presents a very

user-friendly GUI (graphical user interface) which displays

the infrastructure as a double-vertex graph, together with

the animation of trains along their route, and offers the

possibility of visualising interactive messages and mea-

surement tools during the simulation. EGTRAIN, by con-

trast, does not provide any GUI (the interface with the user

consists of a simple Win-32 Console window) and per-

forms a time-discrete simulation (i.e. the clock goes ahead

with discrete time where each time instant t is obtained as

the sum of the previous time instant t - 1 and the defined

time step Dt: t = t - 1? Dt).
Finally, both simulation tools provide similar outputs:

train motion diagrams (speed–distance, speed–time, dis-

tance–time trajectories); occupation times of rail sections

(in both numerical and graphical format); track conflicts;

statistics, such as the percentage of delayed trains at a

certain station and overall train punctuality (fixing a certain

delay threshold); energy consumption diagrams (electrical

or mechanical power–time diagrams, electrical or

mechanical energy–space diagrams). However, these soft-

ware packages are aimed only at simulating train services,

without considering its interactions with travel demand,

Fig. 3 SIMONE framework [3]

Fig. 4 Toolbox for transit networks
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whose influence has an impact on estimating dwell times to

be implemented in the simulated timetable. Moreover, it is

worth noting that, while OpenTrack is a commercial soft-

ware whose code is clearly unknown, since it works as a

black box, EGTRAIN is software developed for research

purposes in C?? language, hence offering the possibility

of developing new functions and performing interactions

with other models in a very simple way.

Finally, for the sake of completeness, it is worth men-

tioning two other micro-simulation engines, namely Arena

[11] and AnyLogic [12], which, although not specifically

developed for transportation applications, but more gen-

erally for decision-making tasks, are widely used for

modelling railway systems. They are especially widely

adopted for simulating the interaction between rail systems

Fig. 5 Transit network

representation in TransCAD [4]

Fig. 6 RailSys architecture [5]

Fig. 7 OpenTrack structure [7]
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and passenger flows (see, for instance, [13] and [14]).

However, such tools do not perform the integration of train

motion equations and therefore consider virtual (i.e. non-

real) train movement features. By way of illustration,

Figs. 9 and 10 show rail systems modelling, respectively,

in Arena and AnyLogic environments.

Moving onto the class of mesoscopic models, it is worth

citing the contribution of [16], concerning the development

of an event-driven multi-train simulation model which was

implemented by means of Stochastic Activity Networks

(SANs) formalism [17, 18]. Specifically, as shown by [19],

SANs can be considered a stochastic variant of Petri nets

developed for dealing with non-functional properties of a

system such as its performability. Indeed, this mesoscopic

model aims to perform a RAMS analysis [20], so as to

assess global effects of breakdowns on rail services and

simulate strategic operations for re-establishing ordinary

service conditions (e.g. moving a broken train to the depot

and substituting it with a spare). The computational effi-

ciency of this model is due to the fact that only main

events, such as modifications in signal aspects or train

arrivals/departures from sections, joints and stations, are

taken into account, while events relative to train accelera-

tion/deceleration phases are neglected.

Moreover, [21] developed a mesoscopic model for

simulating freight train operations in a rail network by

means of the event-based simulation computer package

Simul8 which adopts a decomposition approach. It consists

in separating the whole system into its components (i.e. rail

lines, rail yards, rail stations, rail terminals and junctions)

and capturing the interactions existing among them by

modelling the network as an interconnected queuing sys-

tem, so as to preserve the global perspective in operating

performance estimation.

Finally, [22] proposed a mesoscopic network model for

addressing the timetabling design problem. In particular,

this model is implemented in the tool TTPSW which is able

to iteratively generate different timetables, in a reasonable

time, so as to perform the cyclic optimisation procedure

depicted in Fig. 11.

Approaches aimed at transforming a micro-model into a

macro one and vice versa are possible. In particular, as

Fig. 8 EGTRAIN framework

[8]

Fig. 9 Example of train

simulation in Arena [15]
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shown by [23], the derivation of a macroscopic model from

a microscopic framework is known as a bottom-up

approach, while the top-down approach can be used for

generating artificial microscopic infrastructure whose level

of detail depends on the problem addressed and the per-

spective analysed.

Clearly, the bottom-up approach is the most widely

used, since it is straightforward to implement inasmuch as

the final model requires less information than the starting

one. In this context, [24] developed a particular interface

enabling data migration between Railsys and NEMO

models with the aim of supporting the generation of a

conflict-free timetable. Moreover, [25] derived a macro-

scopic framework starting from a microscopic model,

implemented in OpenTrack, for determining conflict-free

track allocations. In particular, the transformation occurs

by means of the aggregation of block sections and station

areas, together with the introduction of ‘pseudo-nodes’

which replicate the interactions among different convoys.

In addition, after deriving the macroscopic from the

microscopic model, the proposed procedure combines them

with each other in order to validate the solutions provided.

Indeed, several contributions in the literature arranged

frameworks based on the combination of two different

approaches, so as to be able to exploit the advantages of

both of them and overcome their drawbacks. Macro- and

micro-approaches are generally merged or combined in an

iterative manner. In this context, [26] developed a micro–

macro framework for timetabling design which consists in

performing an iterative adjustment of trains running and

minimum headway times, so as to determine a feasible

timetable and, in addition, analyse its stability and

robustness features. Moreover, [27] illustrated the tool

ROBERTO based on a microscopic representation of the

network, whose outputs (i.e. running and headway times)

are used as inputs for the macroscopic timetabling model

DONS [28].

In the meanwhile, a first attempt in combining meso-

scopic and microscopic models was made by [16] with the

aim of carrying out stochastic analysis in a rescheduling

framework. The idea consists in exploiting the major

computational efficiency of a mesoscopic model for per-

forming millions of ordinary service simulations and, only

when a failure occurs, bringing into play the microscopic

simulator (i.e. EGTRAIN) so as to derive a more accurate

and focused analysis.

Another classification criterion is dictated by the pro-

cessing technique implemented, according to which it is

possible to distinguish between synchronous and asyn-

chronous simulation models. Synchronous approaches

simulate events as they occur in reality. Therefore, a

chronological progression is followed, with no chance of

returning to previous states. Hence, this kind of simulation

follows an event-driven approach and is generally applied

to evaluate network performance, taking into account

interactions among trains. By contrast, in asynchronous

models, the convoys are simulated according to their class

Fig. 10 Example of passenger–

train interaction modelling in

AnyLogic [12]

Timetable planner

Timetable
planner TTPSW

Timetable 
requirements

Timetable 
generation

Timetable
assessment

Fig. 11 Timetable generation cycle [22]
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of priority, which means that the simulation is divided into

several steps on the basis of a particular principle which is

related to the category the trains belong to: the trains

belonging to the higher categories are first simulated and

are therefore unaffected by interactions with other convoys.

Progressively, trains belonging to other categories are then

processed until the service is completely simulated. A

typical application of such a hierarchical procedure is the

construction of a timetable in the planning phase. Exam-

ples of synchronous commercial simulation tools are:

VISION [29] developed in the UK, FALKO [30] dis-

tributed by Siemens and RAILSIM X [31] commercialised

by the Systra Group. On the other hand, examples of

asynchronous models are BABSI [32] and STRESI [33],

both developed at the RWTH Aachen University in

Germany.

Finally, according to the assumptions on the distribution

of the parameters involved, a distinction may be drawn

between deterministic and stochastic simulation models.

The deterministic case deals with parameters characterised

by a steady value equal to their average, which means that

factors such as departure/arrival times, dwell times and

travel times are processed as constant quantities. On the

other hand, in the case of stochastic simulations, parame-

ters involved are considered as random variables and are

therefore modelled by means of their probability density

function (pdf), as well as the mean and the standard devi-

ation of the pdf itself. Deterministic models are generally

implemented in design phases, while stochastic models are

more suitable for evaluating network performance (e.g.

robustness of timetables, stability against disturbance,

impacts of operational strategies), since they better reflect

the actual conditions. Many types of software, such as the

above-mentioned OpenTrack and EGTRAIN, can be used

to perform both deterministic and stochastic simulations.

Specifically, EGTRAIN allows stochastic delays and fail-

ures to be simulated, while OpenTrack is able to take into

account stochasticity of train performance, dwell time and

delays, performing a set of simulations by randomly

changing input parameters.

In Table 1, a comprehensive classification of the anal-

ysed simulation tools is provided. Clearly, given the rele-

vance of randomness disturbances for a realistic and

reliable evaluation of rail system performance, most of the

analysed software is able to perform both deterministic and

stochastic simulations. Moreover, in many cases, the pos-

sibility of performing asynchronous simulations coexists

with the option of adopting a synchronous approach.

3 Rail Optimisation Models

The issue of managing and optimising railway operations is

addressed in the literature as dispatching and rescheduling

problems, which consist in monitoring and controlling to

ensure smooth running of rail services, as well as re-

establishing ordinary conditions, in response to any kind of

system failure, by adjusting the planned service to the

actual situations.

In particular, there are two dimensions of interest: an

offline design phase and a real-time operational phase [34].

The first stage concerns the design of the railway

timetable and the analysis of its stability, while the second

stage is related to the management of the service in real

time so as to properly react to system failure and provide an

effective solution as rapidly as possible. Table 2 shows the

main differences between the two phases.

A further distinction, shown in Table 3, was proposed

by [35] according to which rescheduling tasks can be

performed statically or dynamically on the basis of the

input information used, as opposed to the timetabling phase

which is intrinsically an offline and static process. In static

methods, input data are processed only once with a fixed

value, while in dynamic approaches the values of input

parameters change over time. Moreover, dynamic

rescheduling approaches can be distinguished into reactive,

if they neglect a view of the future, and proactive, if they

consider future conditions in a probabilistic and time-de-

pendent way.

The close relationship between the two above-men-

tioned management dimensions is evident: a well-designed

timetable, with a high degree of stability and robustness,

makes the rescheduling process easier and smoother.

3.1 The Timetabling Phase

The timetabling process for a railway line consists in

establishing the departure and arrival times of each convoy

at each station being served, respecting the limits imposed

by safety, law, the infrastructure, signalling system and the

need to guarantee a certain number of transfers. The pro-

cess is crucial for the entire railway operation as it influ-

ences, directly or indirectly, system performance, the

degree of use of the infrastructure capacity, service quality,

the management of rolling stock and crew scheduling.

This section is structured as follows. First, a literary

review focusing on the main issues related to the time-

tabling process is provided. Specifically, the adopted cri-

teria are: (1) features of cyclic timetable structures; (2)

timetable performance measures; (3) implemented

methodological approach; and (4) adopted objective func-

tion. Then, the interactions between the timetable and
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energy domain on the one hand, and the timetable and

passenger flows on the other, are briefly recalled in the

light of the treatment provided in Sects. 4 and 5.

Generally, timetables are characterised by the adoption

of cyclic structures, which can include particular proper-

ties, namely periodicity, synchronisation and symmetry.

Periodicity consists in setting regular intervals between

trains during the whole service; synchronisation regards the

coordination of departure and arrival times of the planned

runs in order to provide feasible transfers for passengers;

symmetry concerns the adoption of the same

timetable features in both directions and, as shown by [36],

it makes sense only if travel times and dwell times are the

same in both ways and travel demand is symmetrical as

well.

Periodic timetables are usually modelled by means of a

Periodic Event Scheduling Problem (PESP), introduced by

[37]. This approach is widely adopted [38–41]. Moreover,

Table 1 Classification of rail simulation software tools: an overview

Software tool Level of detail Simulation workflow Assumption on variables involved

Macro Meso Micro Synchronous Asynchronous Deterministic Stochastic

NEMO [2] 4 4 4

SIMONE [3] 4 4 4 4

TransCAD [4] 4 4 4 4

RailSys [5] 4 4 4 4

OpenTrack [6, 7] 4 4 4 4 4

EGTRAIN [8] 4 4 4 4

Arena [11] 4 4 4 4 4

AnyLogic [12] 4 4 4 4 4

Multi-train simulator [16] 4 4 4

Decomposition approach [21] 4 4 4

TTPSW [22] 4 4 4 4

VISION [29] 4 4 4 4

FALKO [30] 4 4 4

RAILSIM X [31] 4 4 4 4

BABSI [32] 4 4 4

STRESI [33] 4 4 4 4

Table 2 Differences between

offline timetabling and real-time

traffic management [34]

Factors of comparison Offline timetabling Real-time traffic management

Main objective Design optimal schedule Implement optimal control

Schedule validity Several years Up to few perturbed hours

Degree of flexibility Any change applicable Minor timetable modifications

Traffic conditions Usually ideal conditions Perturbations or disruptions

Time span of prediction Long-time horizon Up to several hours

Space span of prediction Large traffic network Rail junction or small network

Computation time Up to several months Up to a few minutes

Table 3 Online versus offline and static versus dynamic approaches [35]

Static Dynamic

Online Online static traffic rescheduling

Open Loop Control

Reactive dynamic

Closed Loop Control

Proactive dynamic Closed Loop Control

Offline Train timetabling –
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[42] described a stochastic variant of the PESP which takes

into account random disturbances to rail services; [43, 44]

proposed a synchronisation model which minimises wait-

ing times for passengers. Similarly, [45] developed a

timetable optimisation framework implementing particle

swarm optimisation and simulated annealing for enhancing

the performance of transfer synchronisation between dif-

ferent rail lines. Finally, an example of an optimisation

framework for symmetrical timetables can be found in

[46], whose approach duly takes account of modal split and

travel demand.

Timetable performance measures are reliability, punc-

tuality and robustness. Reliability is the ability of a system

or a component to perform its required functions under

stated conditions for a specified period of time [47];

punctuality is usually defined as the probability of a train

arriving less than x minutes late [48]; and robustness refers

to the capability of avoiding delay propagation as much as

possible [49]. A robust timetable is generally designed by

suitably introducing buffer times for absorbing potential

delays. However, it is necessary to strike the right balance

between the use of railway capacity and the robustness of

the timetable [50–53]: with an increase in buffer times, the

timetable presents greater flexibility and thus an increased

chance of absorbing delays, avoiding their spread. How-

ever, this could lead to an under-usage of system capacity.

In [54], we can find an interesting design methodology

for railway timetables, featured in Fig. 12, where two

feedback cycles are proposed: one on the stability of the

timetable (ex ante analysis) and the other on the punctu-

ality of the system (ex-post analysis). As regards stability

analysis, the contribution extends to the railway case of the

methodology proposed by [55, 56], based on max-plus

algebra, introducing constraints dictated by the infrastruc-

ture and the signalling system. With regard to ex-post

analysis, which requires the acquisition of measurements

relative to the service actually performed, the author pro-

posed a tool called TNV-Prepare.

Moreover, [57] provided a two-stage model for carrying

out robust timetables in which, after obtaining a

stable timetable structure (i.e. a structure which minimises

the trade-off between capacity utilisation and travel times),

the optimal allocation of time supplements and buffer times

is derived. In addition, a delay propagation model is

implemented for validating the obtained timetable. Simi-

larly, [58] developed a three-stage framework aimed at

identifying robust timetable structures by means of a

combination of linear programming with stochastic pro-

gramming and robust optimisation techniques. In particu-

lar, first the train timetabling problem (TTP) is modelled

neglecting robustness; in the second step, different training

methods, which essentially test the impact on the system of

the occurrence of delays, are implemented and, finally, a

validation phase is performed. Furthermore, [59] proposed

an optimisation methodology for maximising timetable ro-

bustness in which the variability of dwell and travel times,

as well as the possibility of overtaking, are considered. In

addition, [60] improved the approach developed by [61],

proposing a method for generating periodic timeta-

bles aimed at maximising timetable stability indirectly, i.e.

by optimising the cycle time. Indeed, as shown by [62], a

timetable can be stable only if the nominal timetable period

is higher than the minimum cycle time. Moreover, the

degree of stability grows with the increase in the gap

between these two quantities. Furthermore, [63] developed

a stochastic delay propagation model which evaluates

timetable robustness by means of individual and collective

measures, related, respectively, to primary and knock

delays, and tested it on a portion of the Indian railway

network. As to timetable performance addressed in the

literature, it is worth citing the following contributions:

[64] which proposed an integrated timetabling/delay

Fig. 12 Feedback cycles in the

railway timetabling process [54]
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management framework by introducing a new concept of

robustness, known as recoverable robustness, and [65]

which derived a method for comparing different

timetable structures in terms of attractiveness for passen-

gers, computing the so-called time displacement between

what travellers desire and the scheduled service, whose

formulation takes into account frequency and travellers’

time adaptability.

Simulation-based approaches for performing the time-

tabling phase can be found in [66, 67]. In particular, the

former proposed an integrated framework which combines

a micro- and a macro-network representation. The

timetable structure is carried out at the microscopic level,

thanks to a very precise adjustment of running times and

minimum headways, while, at the macroscopic level, the

trade-off between travel times and degree of robustness is

performed. By contrast, [67] proposed a design approach

aimed at generating a robust and energy-efficient

timetable by means of a three-stage process which com-

bines different levels of analysis: microscopic, macro-

scopic and a corridor fine-tuning level. The basic idea is to

optimise each performance indicator at an appropriate level

so as to obtain a more reliable evaluation.

Clearly, bearing in mind the importance of the above-

mentioned issues related to the stability and robustness of a

timetable, different objective functions can be considered,

according to the examined contexts: [68] proposed a

methodology to optimise the timetabling process so as to

find the right balance between the quality of service and

operational costs; [69] introduced an optimisation problem

in which the objective function to be maximised is the

degree of use of the railway infrastructure; [70–73] pro-

posed demand-oriented timetabling methodologies. More-

over, [74, 75] modelled the timetabling phase as a

constrained job-scheduling problem, in which the objective

function to be minimised is the total delay. In particular,

the introduced restrictions are relative to travel demand and

to the connections between runs, in order to guarantee a

minimum number of transfers. Furthermore, the optimisa-

tion of the timetabling phase in an energy-efficient per-

spective can be found in [76, 77]. The close relationship

between timetable, eco-driving profiles and energy-saving

strategies will be explored in Sect. 5.

Moreover, it is worth noting that a crucial factor of the

timetabling process is the estimation of dwell times, above

all in the case of congested lines, given their nature of flow-

dependent factors. Indeed, during the boarding/alighting

process rail operations are directly affected by passenger

flows and this implies a twofold impact. On the one hand,

there arises the need to perform a reliable estimation of the

flows involved (i.e. boarding, alighting and on-board

flows); on the other, the implementation of proper esti-

mation techniques for computing dwell times proves

imperative in order to ensure a high degree of

timetable robustness, thus making the service more reliable

and attractive. Specifically, estimation techniques of travel

demand flows are addressed in Sect. 4, while an extensive

overview of the dwell time estimation methods can be

found in [78].

3.2 The Rescheduling Problem

The rescheduling problem covers much of rail operations

research, since the advantages offered by rail transport, in

terms of high travel speed and low headway values (due to

exclusive lanes, constrained driving and signalling sys-

tems), are counterbalanced by intrinsic vulnerability to

failure. This means that, during the management of dis-

ruption conditions, dispatchers cannot be forced to count

only on their experience (e.g. by presuming the amount of

recovery times or the most successful intervention strat-

egy), but they must be able to rely on suitable decision

support systems which enable them to act suitably and

effectively.

Generally, recovery strategies are implemented accord-

ing to three consecutive phases: timetable rescheduling,

rolling stock rescheduling and crew rescheduling. How-

ever, what follows is essentially focused on

timetable rescheduling.

As shown by [23], the rescheduling process consists in

two successive steps. The initial phase concerns identifi-

cation of potential conflicts on the basis of the current state

of the infrastructure, the characteristics of operational

times, the availability of rolling stock and the position and

travel speed of each convoy. This is followed by a prob-

lem-solving phase which, according to the results of the

previous step and the delays actually occurring, identifies

the most appropriate strategies for re-establishing normal

operating conditions.

The rescheduling methodologies proposed in the litera-

ture, according to different factors, are classified below.

Specifically, the criteria considered are the following: (1)

methodological approach performed; (2) level of detail

adopted; (3) established workflow; (4) embedded level of

randomness; (5) implemented degree of interaction with

travel demand; (6) types of networks analysed; (7) severity

of failures modelled; and (8) perspective adopted.

Rescheduling problems are frequently addressed by

means of simulation-based methods and therefore railway

optimisation models, like their simulation counterparts, can

be classified into macroscopic and microscopic, according

to the degree of detail implemented. Moreover, two main

modelling approaches are generally adopted which are

based on the implementation, respectively, of the so-called

Alternative Graph (AG) and Mixed-Integer Linear Pro-

gramming (MILP) formulations.
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The Alternative Graph model was proposed by [79] as a

generalisation of the disjunctive graph formulation of [80].

Essentially, it allows railway operations to be simulated as

a job-shop scheduling problem, i.e. the problem of allo-

cating machines to competing jobs over time, subject to the

constraint that each machine can handle at most one job at

a time. Therefore, each operation denotes the traversal of a

resource (block/track section or station platform) by a job

(train route). In particular, [79] introduced additional con-

straints, known as blocking and no-wait constraints, mod-

elling, respectively, the absence of storage capacity among

machines and the condition in which two consecutive

operations in a job must be processed without any inter-

ruption. Several rescheduling methodologies based on the

implementation of the alternative graph, together with

blocking time theory [23], have been proposed in the lit-

erature for dealing with different dispatching problems.

One of the first disruption management methods based on

this approach can be found in [81] which developed a

decision support system for real-time traffic management,

called ROMA (Railway traffic Optimisation by Means of

Alternative graphs). The tool in question solves the real-

time train dispatching problem by subdividing it into four

sub-problems:

• data loading and exchange of information with the

field;

• assigning a passable route to each train in order to avoid

blocked tracks;

• defining optimal train routes, ordering and specifying

exact arrival and departure times at stations and at a set

of key points in the network;

• ensuring a minimum distance headway between trains

while maintaining acceptable speed profiles.

In [82], ROMA was integrated with the microscopic

traffic simulator EGTRAIN so as to incorporate the

dynamic evolution of traffic conditions into the dispatching

procedure.

Other rescheduling approaches based on the adoption of

the alternative graph concern: delay management problems

[83], re-routing recovery actions [84–86] and conflict res-

olution tasks [87]. Also, large network contexts and very

severe disruption conditions can be addressed by means of

such an approach [88]. Moreover, formulations of alter-

native graph targeting for dealing with disruption condi-

tions in rail lines with moving-block signalling systems

(i.e. headway is computed as a minimum time lag on each

section for two consecutive trains) were developed by

[89–91].

While rescheduling methods based on the alternative

graph generally adopt a microscopic approach, works

implementing mixed-integer linear programming (MILP)

formulations proposed in the literature deal with both

microscopic [92–94] and macroscopic [95–101]

frameworks.

Further, [102] proposed a real-time recovery manage-

ment model, for dealing with multiple disruptions, which

adopts heuristic dispatching rules and integrates different

intervention strategies such as reordering, retiming, speed

control and dwell time adjustment; [103] developed an

integer programming model with an innovative formula-

tion with network-based cumulative flow variables for

addressing a simultaneous train re-routing and rescheduling

problem; [104] formulated a mixed-integer programming

model, for handling a complete blockage disruption on

high-speed lines, whose aim is to minimise the total

weighted train delay and the number of cancelled trains, in

accordance with headway and station capacity constraints;

[105] addressed the timetable rescheduling problem by

developing a binary mixed-integer programming model

aimed at minimising the time difference between the

planned timetable and the rescheduling one which is

expressed in terms of train-order-entropy.

The main advantage offered by macro-approaches lies in

their lower computational effort which, for example,

allows the operator to deal with complex objective func-

tions, as in [106], where a macroscopic multi-objective

framework, taking into account passenger satisfaction,

operational costs and deviations from the undisrupted

timetable, is proposed. On the other hand, by using micro-

simulation approaches, as already pointed out, the inter-

actions among system components (i.e. infrastructure,

signalling system, rolling stock, timetable and travel

demand) can be explicitly modelled and the quantities

involved accurately computed (e.g. running times, dwell

times, headways). Therefore, in order to benefit from the

advantages of both approaches, also integrated frameworks

which combine these two modelling techniques have been

proposed in the literature. In this context, [107] proposed a

rescheduling method including both a macroscopic and

microscopic model of the network. In particular, the

macroscopic representation is implemented in an optimi-

sation framework, based on the model developed by [108],

whose aim is to derive timetables and rolling stock

schedules in the case of failure. On the other hand,

microscopic representation is used for the simulation

model, which is based on the proposal of [109], whose

structure includes the service simulation model (SSM) and

the on-platform model (OPM) for assigning travel demand

to the rail network. Moreover, [110] developed an iterative

optimisation framework in which a delay management

problem is solved macroscopically and then validated

microscopically by means of a train scheduling model

taking into account the limited capacity of stations.

Specifically, the original timetable and travel demand flows

are given as initial input data, together with a set of delays
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computed on arrival. With this information, the algorithm

solves the delay management problem by identifying the

connections to be maintained and carrying out an expected

macroscopic timetable. Thus, the output of the delay

management problem becomes the input of the train

scheduling problem, whose resolution consists in analysing

potential conflicts around stations and estimating delay

propagation. The fact that these delays are computed by

means of a microscopic approach ensures an accurate

degree of estimation. Hence, they are, in turn, implemented

in the delay management problem which is run again and,

at the end of the iterative process, a timetable minimising

passenger delays is designed. Finally, [111] proposed a

combined macro–micro approach for solving the delay

management problem from an energy-saving perspective.

The above-mentioned works adopt a synchronous

approach since the aim of the analysis is to address events

like deviations from the planned service, propagation of

delays and system failures. By contrast, the asynchronous

approach is generally implemented for solving conflicts

between trains belonging to different categories, by always

giving priority to trains in a higher category [112]. How-

ever, clearly, asynchronous solving conflict algorithms

cannot guarantee a global optimum as a solution.

Finally, although the literature contains some deter-

ministic rescheduling methodologies [100, 113, 114], given

the random nature of the factors involved the stochastic

approach is the most accurate. The importance of taking

into account the stochasticity of events lies in the fact that

the stability of rail services is very sensitive to the presence

of even small variations in the performance of convoys or

dwell times, above all due to the risk of a knock-on effect

of propagation of delays which would negatively affect the

entire system. In this context, [115] described the influence

on system performance of the stochasticity of design

variables within the railway timetable; [116] proposed a

probabilistic analytical model which makes a realistic

estimate of delay propagation and provides an assessment

of delay impact on the service punctuality; [117] developed

a stochastic simplified graphical modelling approach, for

identifying dependencies among delays, which is based on

the so-called tri-graph (proposed by [118, 119]), allowing a

compact representation of different kinds of delay: primary

delays, secondary delays (due to the propagation of pri-

mary delays) and delays due to the restricted capacity of

the railway infrastructure. The relevance of considering

delays as time-dependent random variables is stated also by

[120, 121] which modelled the uncertainty of train delays,

respectively, by means of a Markov stochastic process and

Bayesian networks. In addition to delays, also other ran-

domnesses have been modelled. Within this framework,

[122] introduced a stochastic disturbance on train perfor-

mance, while stochasticity of arrival and recovery times is

taken into account in the rescheduling models proposed by

[123, 124]. Furthermore, [125] analysed the impact of

considering uncertainty in the rescheduling framework by

comparing the results of different algorithms, both in

deterministic and in stochastic scenarios. In particular, train

delays are modelled by means of a statistical distribution,

while running and dwell times are perturbed with

stochastic variations. Similarly, stochasticity of train per-

formance and dwell times is modelled in [126]. In addition,

the uncertainty of disruption information is addressed by

[127] which developed a stochastic and dynamic

rescheduling model aimed at minimising total train delay in

the case of a single-track rail line. Further, the proposed

approach is implemented in a rolling horizon framework:

the robustness of rescheduling strategies is evaluated con-

sidering random segment running times and a segment

capacity breakdown with an uncertain duration. Finally,

[128] developed a metro rescheduling model which takes

into account the stochasticity of travel demand: the arriving

ratio of passengers at each station is modelled as a non-

homogeneous Poisson distribution in which the intensity

function is treated by means of time-varying origin–desti-

nation matrices.

In rescheduling problems, two fundamental, strictly

related issues have to be taken into account: on the one

hand, the interaction between rail operations and travel

demand and, on the other, capacity constraints of the rail

service. In particular, the interface between rail operation

and passenger flows is represented by the boarding and

alighting process which is obviously affected by the

available capacity. For the sake of clarity, it is worth noting

that taking into account the influence of travel demand on

the service is aimed at making the simulation as realistic as

possible, irrespective of the final purpose of the analysis

(i.e. whether or not the final aim is to satisfy passenger

needs). However, issues related to the impact of travel

demand on rail service and the minimisation of passenger

discomfort are generally addressed together due to their

strict relationship. Indeed, boarding, alighting and on-board

flows affect the performance of the rail service and,

therefore, its attractiveness which, in turn, affects passen-

ger satisfaction. Hence, realistic modelling of boarding and

alighting allows more accurate estimation of passenger

inconvenience, for example, in terms of waiting times for

users on the platform or in terms of total travel times for

on-board users. Rescheduling methodologies which fulfil

these requirements can be found in [129], which dealt with

post-disruption operations at the station platform level and

[130] which introduced capacity constraints for taking into

account the fact that, especially in crowded contexts, not

all passengers waiting on the platform are actually able to

board the first arriving train. Furthermore, [131] developed

a rescheduling framework for minimising the delay time of
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alighting passengers, as well as the penalty time of stran-

ded passengers, and [132] proposed a dynamic passenger

assignment model which implements an event-based sim-

ulation technique for modelling alighting and boarding. In

particular, in the latter, passengers’ en route travel deci-

sions are considered and all phases occurring during a

disruption event (i.e. the first transition phase from the

planned timetable to the disruption timetable, the second

phase where the disruption timetable is performed and the

third recovery phase from the disruption timetable to the

planned timetable) are modelled. This is a very important

point, since passengers who start their trip in different

phases are generally affected differently by disruption.

Moreover, time variability of travel demand, disruption-

induced service changes and capacity constraints of con-

voys are explicitly taken into account. In general, the

dynamic interaction between rail service and travel demand

is considered in the following contributions: [133] pro-

posed a disruption management approach, in the case of a

metro system, based on a skip-stop pattern, which involves

the analysis of time-dependent passenger flows under

conditions of limited train capacity; [134] developed a

model for analysing short-turning and deadheading

rescheduling solutions which takes into account the

dynamic behaviour of travel demand along the considered

planning horizon and aims to minimise passenger overload

and improve service quality; [135] proposed a macroscopic

rescheduling approach which combines rolling stock and

timetable recovery strategies by considering adjustments of

stopping patterns in a passenger-oriented perspective. In

particular, in the latter, the adopted resolution method is a

greedy technique based on the passenger flow simulation

algorithm proposed by [136].

Moreover, disruption management problems may con-

cern metro [137, 138], regional [139, 140] or high-speed

services [141, 142]. Furthermore, different degrees of

network complexity can be addressed. In particular, the

level of complexity increases from a single-track case

[127] to an N-track context [103] and from a single line

[143] to a large network [144–146]. Also, networks with

mixed traffic can be analysed, with a further increase in the

degree of complexity tackled. For example, [147] devel-

oped an online rescheduling model for dealing with dif-

ferent types of train categories (both for passengers and for

freight) and different priority rules.

Another classification criterion for rescheduling

approaches is the severity of the failure analysed. Indeed,

as shown by [148], it is possible to distinguish between

disturbance and disruption: disturbances are generally

considered as small perturbations influencing the system,

while disruptions indicate large external incidents which

can lead to the cancellation of runs within the timetable or

even to the interruption of the whole service. Clearly, the

greater the severity of the failure, the greater the impact of

the corrective measures to be adopted. For instance, [149]

dealt with the problem of connection and re-routing in the

case of a delay occurrence; similarly, [150] developed a

learning strategy for the online delay management prob-

lem. On the other hand, more severe perturbations are

addressed by [151, 152]. In particular, [151] analysed a

serious disruption where some block sections have a

reduced maximum speed, together with others which are

totally unavailable for traffic, by implementing the alter-

native graph, while [152] developed a macroscopic

rescheduling approach for handling cyclic timetables, in

the presence of large-scale disruptions, which is based on

an integer linear programming (ILP) formulation taking

into account infrastructure and rolling stock capacity con-

straints. Moreover, [153] presented a macroscopic

rescheduling model to compute the disruption timetable for

a complete blockage with a focus on short-turning trains.

Partial and complete blockages are also addressed in [97],

which developed integer programming formulations for

maximising service quality and tested them on case studies

from the Netherlands Railways.

Finally, different perspectives can be introduced in

rescheduling models. First, as stated above, several works

propose passenger-oriented methodologies. In addition to

the already cited contributions, other passenger-centric

approaches can be found in [154–160]. Typical measures

of service quality used for determining passenger satis-

faction resulting from rescheduling strategies are: cumu-

lative delays, waiting times, user generalised costs,

removed connections, a penalty time of stranded passen-

gers. Obviously, passengers are not the only players in the

rescheduling process. Indeed, the other parties involved are

infrastructure managers and train operating companies. On

the one hand, train operating companies are interested in

minimising both passenger discomfort and operational

costs associated with the rescheduling strategies imple-

mented. On the other hand, infrastructure managers aim to

reduce train delays, even if this means cancelling runs or

suppressing connection services. Works which, in addition

to passenger needs, considered the operational costs of

train companies are those proposed by [106, 161]. In this

context, it is also worth citing [162] which computed dif-

ferent measures of costs resulting from the disruption

management process, such as total operational cost for

passenger services, total operational cost for empty

movements and total number of schedule changes (i.e.

services, composition and inventory train changes), as

indicators of the effort made by rail companies to put

recovery strategies in place. The trade-off between the

targets pursued by the two above-mentioned stakeholders

(i.e. infrastructure managers and train operating compa-

nies) is addressed in [87, 163, 164]. In addition, since the
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reduction in energy consumption is one of the main goals

of railway companies, as already touched upon,

rescheduling methods which adopt an energy-saving per-

spective have also been proposed, confirming the close

relationship among the analysed domains. Energy con-

sumption and saving will be discussed in Sect. 5.

In the light of the above, it is understandable that

rescheduling problems are strongly NP-hard and, therefore,

for their resolution, it is necessary to rely on proper

heuristic and metaheuristic methods which are able to find

sub-optimal solutions within suitable computation times.

Such techniques are adopted for solving transport problems

of widely different kinds, as will be shown in Sect. 6.

4 Estimation Techniques for Travel Demand
Flows

In order to obtain accurate results by means of simulation

and optimisation frameworks, explicit modelling of travel

demand has a fundamental role. Indeed, reconstruction,

estimation and prediction of travel demand [166] represent

key aspects to be addressed in any kind of assessment

regarding transportation systems, so as to optimise both

planning and management phases. Strictly speaking, the

interaction between the rail service and passenger flows

occurs at the train–platform interface. Indeed, during the

boarding/alighting process, different kinds of passenger

flows (i.e. waiting flows, on-board flows, boarding flows

and alighting flows) interact with each other, influencing

the dwell time at the station and hence the timetable as a

whole. This happens from a strict operational point of

view, regardless of whether the adopted approach is

demand oriented. A further step in the decision-making

process is then related to the importance of generating

passenger-oriented dispatching strategies, such as demand-

oriented timetables; passenger-centric rescheduling solu-

tions; energy-saving scenarios which achieve a fair trade-

off between the reduction in energy consumption and the

increase in user travel time.

In the light of the above, what appears evident is the

importance of relying on suitable estimation and forecast-

ing techniques for travel demand, which have to correctly

take into account the peculiarities of the railway system as

well as be able to properly model the behaviour of pas-

sengers in the various phases of the trip (turnstile access,

transfer from the turnstiles to the platform, waiting on the

platform, boarding and alighting process, etc.). This is the

motivation for which travel demand estimation techniques

have been carefully investigated in the overview provided.

Three different methods can generally be adopted: direct

estimation [167–169], disaggregated estimation [170–174]

and aggregate estimation [175–178].

Direct estimation enables the reconstruction exclusively

of the present demand, without any capacity for future

prediction. Strictly speaking, the O–D matrix is not directly

observable in its entirety. Indeed, given the huge quantity

of data to be collected, carrying out a census would not be

economically doable even if, in certain instances, techni-

cally feasible. Thus, direct estimation actually consists in

making use of sampling techniques together with inferen-

tial statistics methods for extending the information content

of a sample to the whole analysed system. Different kinds

of surveys may be carried out such as on-board surveys

(also called cordon surveys if aimed at estimating the

crossing demand), household surveys, destination surveys

and (e)mail surveys. Additionally, in recent years, given the

exponential growth in the field of Information and Com-

munications Technology (ICT), further survey methods

have been developed, namely CAPI (computer-assisted

personal interviewing), CATI (computer-assisted telephone

interviewing) and CAWI (computer-assisted web inter-

viewing). However, whatever the approach adopted, as

shown by [179], a preparatory design phase of the survey is

required. Such a phase consists in first defining the sam-

pling unit and the sampling strategy, which could generally

be simple random sampling, stratified random sampling or

cluster sampling. Then, according to the sampling method

adopted, it is necessary to set up the sample size and the

estimator to be applied.

However, should a certain predictive capacity be

required, it is necessary to make use of a disaggregate

estimation of the O–D matrix which consists in specifying

(i.e. providing the functional form and related variables),

calibrating (i.e. determining numerical values of model

parameters) and validating (i.e. verifying the ability of the

model to reproduce original data), by means of proper

information, a model which manages to reproduce the

variations in travel demand as a result of modifications in

transport system performance or socio-economic condi-

tions. In this case, two different survey approaches can be

implemented: the revealed preference (RP) approach

[179], which is based on the use of data related to real

traveller behaviour, and the stated preference (SP)

approach [180, 181], based on the statements of travellers

related to their potential choices in the case of a hypo-

thetical scenario, which has to be appropriately described

and illustrated in order to make user declarations as reliable

as possible. With the use of the second approach, the

predictive capabilities of calibrated demand models can be

improved. Hence, once the functional formulation of the

model, together with the types of attributes to be consid-

ered, has been specified, it is necessary to carry out the

calibration phase by means of which a numerical value is

associated with each parameter involved. Generally, in
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order to calibrate a disaggregate demand model, the Max-

imum Likelihood (ML) method is performed [179].

Finally, the aggregate estimation of travel demand

indicates a correction procedure of the O–D matrix which

consists in updating a previously known matrix, through

aggregate type data, such as traffic counts, in order to

improve its reliability and guarantee accurate assessment of

the system status in the forecasting phase. In this context, it

is worth noting that, in contrast to the sample surveys

which are complex and expensive, counts incur lower costs

and can be obtained automatically.

This approach is expressed by [177] in terms of an

optimisation problem:

d� ¼ argmin
x� 0

z1 x; d̂
� �

þ z2 v xð Þ; f̂
� �h i

ð1Þ

where x is the unknown demand vector; d̂ is a prior esti-

mate demand vector which is considered the target demand

vector; m xð Þ is the vector of link flows obtained by

assigning the demand vector x to the network; f̂ is the

vector of detected link flows.

The aim is to obtain a matrix d̂ which is as close as

possible to the prior estimate, and which, once assigned to

the network, is able to reproduce link flows as close as

possible to those detected. Therefore, this procedure can be

considered as the inverse assignment problem (Fig. 13).

Indeed, in the assignment process, starting from the

knowledge of supply, demand and the model which regu-

lates path choice, link flows on the network are defined.

Conversely, in the estimation of the O–D matrix, starting

from the detected link flows, together with the knowledge

of supply and path choice models, the computation of

demand is performed. The importance of the presence of a

prior estimate demand vector d̂ lies in the fact that, since

the number of O–D pairs is generally much higher than that

of detected link flows, without such a vector the problem

would be intrinsically undetermined.

In the case of congested networks, the estimation

problem of the O–D matrix can be formulated as a fixed-

point problem [182, 183] or, alternatively, by means of a

bi-level optimisation framework. In the latter, the upper

level represents the estimation problem, while the lower

level addresses the network assignment problem. Contri-

butions related to the above approach are [184, 185], and,

more recently, [186, 187] addressing a deterministic user

equilibrium (DUE) assignment and [188–190] dealing with

a stochastic user equilibrium (SUE) approach.

At this point, it is worth addressing the definition of

functions z1 �ð Þ and z2 �ð Þ in Eq. (1), which represent the

goodness of fit measures and can be expressed by means of

different estimators. In particular, for the static approach,

we can have the maximum likelihood [177, 191, 192], the

generalised least squares [193] and/or the Bayesian [192].

A complete overview of the features and statistical prin-

ciples of such estimators can be found in [179].

Moving onto within-day dynamic contexts, where travel

demand varies within the time period analysed, the matrix

representation consists in a certain number of matrices:

they are as many as the temporal intervals into which the

reference period has been subdivided. The introduction of a

time dimension leads to two different estimation approa-

ches, namely sequential and simultaneous, as shown by

[194]. In order to describe such approaches, let the total

study period H be divided into nh intervals h (with

h ¼ 1 � � � nh) of equal length T , such that H ¼ nh � T .
In particular, the simultaneous estimation can be speci-

fied as follows:

d�
1 � � � d�

nh

� �
¼ argmin

x1���xnhð Þ� 0

z1 x1 � � � xnh ; d̂1 � � � d̂nh

� ��

þz2 v1 � � � vnh ; f̂1 � � � f̂nh

� �i ð2Þ

The aim is to identify matrices d�
1 � � � d�

nh
, for each

interval h into which the reference time period H is split,

which minimise the ‘distance’, on the one hand, between

the unknown demand vectors x1 � � � xnh and the previously

estimated demand vectors d̂1 � � � d̂nh
; and, on the other,

between the flow vectors v1 � � � vnh (obtained by assigning

demand vectors x1 � � � xnh to the network) and the traffic

count vectors f̂ 1 � � � f̂ nh .
By contrast, in the case of sequential estimation, the

following occurs:

Fig. 13 Relationship between

estimation of O–D flows with

traffic counts and traffic

assignment [179]
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d�
nh
¼ arg minxnh � 0 z1 xnh ; d̂nh

� �
þ z2 vnh xnh d�

1 � � � d�
nh�1

��
� �

; f̂ nh

� �h i

ð3Þ

In this context, one matrix at a time is identified, starting

from the first temporal interval and proceeding until the

last, maintaining the previously calculated matrices fixed

time after time.

Generally, conversely to a simultaneous approach which

is usually adopted for offline estimates, the sequential

approach can be used for online applications. Indeed, it

provides lower computational complexity, splitting the

problem in question into different sub-problems which are

easier to analyse. Thus, the matrix estimated for each time

slice can be used as estimation input for the following time

period. However, it presents the drawback of considering,

for each demand vector d�
h, limited information, i.e. traffic

counts f̂ h, associated exclusively with the time interval to

which demand vector refers. Therefore, in order to rectify

this aspect, different contributions based on the adoption of

Kalman filtering methodologies have been proposed

[195, 196].

However, with the adoption of an assignment matrix, as

shown by [197–199], the simultaneous approach assumes a

prohibitive computational complexity, even in the case of

medium-size networks. Therefore, in order to deal with

more feasible computational times and, at the same time,

adopt a simultaneous approach which is the most suit-

able from a conceptual point of view, several non-assign-

ment based methods for dynamic O–D matrix estimation

have been developed. Within this framework, after

pioneering works by [200–204], more recent contributions

proposed the adoption of evolutionary methods [205–210],

simulating annealing techniques [211], bee colony opti-

misation [212], probe vehicle data [213] and artificial

intelligence approaches [214–216]. Other major contribu-

tions are provided by [217, 218] which addressed the

simultaneous adjustment of a dynamic traffic demand

matrix by means of a gradient approximation approach

representing a variant of the simultaneous perturbation

stochastic approximation (SPSA) path search optimisation

method proposed by [219, 220]. Further variants of the

SPSA approach are W-SPSA proposed by [221, 222] and c-

SPSA presented by [223]. Similarly, [224] proposed a

method based on the use of linear approximations of the

assignment matrix in optimisation iterations and tested

several specific solution algorithms which differ in the

search direction.

On completion of the above-mentioned contributions,

regarding both static and dynamic frameworks, it is worth

citing the work by [225] proposing a GLS-based within-

day dynamic estimator which provides room for significant

improvements in the unknowns/equations ratio, thanks to a

quasi-dynamic approach based on the intuitive assumption

of considering distribution rates as constant within a wider

time interval compared to the within-day variation of the

generation rates.

Another point strictly related to the above-mentioned

aggregated estimation techniques is the Network Sensor

Location Problem (NSLP) which addresses the relationship

between survey costs and estimation accuracy [226–232].

Basically, it consists in identifying the optimal location

(i.e. the location which maximises the information content)

under a budget constraint (i.e. a given number of count

sections). With the advances in the field of ICT, in addition

to traffic counts, also other kinds of data sources have been

implemented to carry out reliable estimation of O–D

matrices, such as GPS data [233], video recordings [234],

mobile phone data [235], e-ticketing and automatic fare

collection systems [236–244].

5 Energy Issues Related to Rail Systems

In recent years, beyond improving the performance of rail

systems so as to drive the modal split towards such a

sustainable transport mode, thus reducing pollution and

congestion effects due to private vehicle use, considerable

attention has been focused on energy issues for reducing

the energy consumption of systems based on rail technol-

ogy. Therefore, dispatching and rescheduling decision

support systems, based on an energy-saving perspective,

are being increasingly used in rail transport research. On

the one hand, the energy domain is linked to operational

aspects of rail services (e.g. the need to synchronise train

movements and proper planning of extra time resources for

implementing eco-driving profiles), as will be extensively

illustrated below. On the other, the goal is to reduce energy

consumption without penalising passenger needs. In the

light of the above, the strict correlation among rail services,

travel demand and energy domain appears obvious. Hence,

to complete the picture, this section provides an overview

of the energy-saving approaches proposed in the literature.

The following strategies may be considered elements of

energy-saving approaches: adoption of eco-driving profiles,

regenerative braking, the introduction of timetable adjust-

ments, exploitation of on-board and wayside storage sys-

tems, and the use of reversible substations. Clearly, they

are strictly interrelated: the design of energy-efficient speed

profiles consists in identifying the pattern which minimises

tractive energy consumption, given a running time to be

respected [245, 246], while strategies based on exploiting

of regenerative braking aim to reuse the amount of kinetic

energy produced during the braking phase by converting it

back to electrical energy. In this case, the traction motor

also acts as a generator and the recovered energy can be
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used at the same time or stored for later use by means of

energy storage devices. For instance, an on-board storage

device allows temporary accumulation of the excess energy

regenerated and its release for the next acceleration phase

of the same train [247, 248], while the aim of a wayside

storage device is to release it when required for the

acceleration of other convoys [249, 250]. In this context,

timetable optimisation, aimed at synchronising acceleration

and deceleration phases of convoys operating in the net-

work, represents a key task for maximising the receptivity

of the line [251–254]. Additionally, the role of an energy-

efficient timetabling phase lies in the suitable design of all

operational times involved, such as running times, buffer

times, dwell times and reserve times [165, 255, 256].

Moreover, by means of reversible or active substations, the

energy regenerated can also be fed back into the medium

voltage distribution network [257–259]. An extensive

overview of regenerative braking issues and energy storage

systems, together with the above-mentioned related con-

cerns, can be found, respectively, in [260, 261]. This work,

instead, focuses on strategies involving the design of suit-

able speed profiles and optimisation of operational times

within timetables from an energy-saving perspective.

With regard to eco-driving profiles, first of all it is

necessary to introduce the reference scenario, indicated as

the Time Optimal (TO) scenario, which consists in con-

sidering the movement of the convoy in the event of

maximum performance. In the first phase, the train adopts

maximum acceleration in order to reach the maximum

speed (acceleration phase), in the second phase a constant

speed is maintained (cruising phase) and, finally, there is a

braking phase until the convoy draws to a halt (decelera-

tion phase). For the sake of simplicity, we refer to a motion

diagram of the trapezium type (jerk value equals ? ?),

represented in Fig. 14.

This condition of maximum performance corresponds to

the minimum travel time and the maximum energy con-

sumption. In this context, two different eco-driving

strategies can be adopted, which consist, respectively, in:

1. inserting, between the cruising and the braking phases,

a further stage, which is the so-called coasting phase,

during which the convoy moves by inertia (Fig. 15);

2. reducing the maximum speed (Fig. 16).

The first strategy requires transmitting to the train

information related to the switching points for the coasting

phase, while the second is more straightforward to imple-

ment since it requires simply communicating a different

speed limit. Therefore, the technological level of the rail

system may affect the choice between these two

approaches.

However, as shown by [255], the total travel time

between two successive stops, in both cases, increases.

Indeed, eco-driving policies are based on the adoption of

speed profiles which are far from those at maximum per-

formance and thus provide a longer travel time. This means

that they are feasible only if there is an extra time avail-

ability on a given line service. This time is generally

known as reserve time. In order to clarify this concept, it is

worth analysing the different time rates concerning the

timetable design phase. As stated above, this task involves

the computation of running times between two stops, dwell

times at stations for the boarding/alighting process, buffer

times and layover times. Buffer times are generally set up

during the design phase in order to address possible delays

or, simply, eventual fluctuations which can occur during

the service, given the stochasticity of the phenomenon

being examined. Suffice it to think, for instance, that

inevitably every train driver drives in his/her own way, but

even the same train driver might drive in two different

ways on two different days. Obviously, the lower the level

of automation, the higher the relevance of the stochastic

nature of the factors involved. The layover time is the time

spent by the convoy at the terminus. The minimum layover

time is represented by the inversion time and possibly by

the time required for possible shunting. Moreover, there

could be an additional time interval between when the

convoy is physically ready to undertake the run in the

tTO

Time

Speed

vmax

tacc tcru tdec

Fig. 14 Speed profile in the case of a Time Optimal (TO) strategy

Time

Speed

vmax

tES1

tacc tcru tdectcos

ΔtES1

Fig. 15 Speed profile in the case of energy-saving (ES) strategy 1

180 Urban Rail Transit (2018) 4(4):163–197

123



opposite direction and when it can actually depart

according to the timetable indications. However, in certain

cases, the term layover time indicates only this further time

rate, while the inversion time is computed in the cycle

time. For the sake of completeness, also synchronisation

times, for making transfer options available for passengers,

can be taken into account. Hence, the above-mentioned

extra time availability could involve running time reserve,

dwell time reserve, buffer time, and time exceeding the

layover time at the terminus, if any. These times are

properly scheduled during the timetable design phase by

increasing the minimum times required for the service. For

example, as for travel time, the International Union of

Railways (UIC) suggested increasing the minimum travel

time by 3–8%. Obviously, the possibility of exploiting

these extra times, for implementing such energy-saving

strategies, is subject to the preservation of timetable sta-

bility and service quality. Therefore, the identification of an

analytical framework for reliably quantifying the

timetable rates involved in implementing energy-saving

strategies, as well as defining optimisation models taking

into account the trade-off between eco-driving profiles and

passenger needs, proves fundamental [262]. Moreover, in a

rail context, ES strategies are commonly implemented

between two successive stops, while in a metro context the

most suitable approach consists in examining the whole

outward and return trip, given the fact that the service is

frequency based, which means that the parameter to be

respected is the headway between two successive convoys,

rather than a timetable, generally unknown to users.

Therefore, in the case of metro systems, the energy-saving

strategies are generally implemented by considering arrival

and departure times at the terminus, rather than at each

station [255].

However, according to the literature, the above-men-

tioned techniques can be applied separately by addressing

individually the design of energy-efficient driving profiles

[263, 264] and the optimisation of operational times within

the timetable [265, 266] or, more frequently, in an inte-

grated framework. In this context, [267] proposed a train

control approach, based on an optimisation model, which

combines energy-efficient timetables and speed profiles. In

particular, the procedure is characterised by a dynamic

layout, since it provides a dynamic adjustment of the cycle

time on the basis of travel demand changes, in order to

minimise energy consumption. Moreover, a linear

approximation method is implemented with the aim of

dealing with a convex optimisation problem, whose reso-

lution is performed by means of Kuhn–Tucker conditions.

Moreover, [268] developed a nested optimisation frame-

work in which, starting from the planned total running

time, energy-efficient speed profiles are derived: the opti-

mal cruising speed is defined by means of the outer loop of

the Fibonacci algorithm [269, 270], while, in the inner

loop, the bisection method computes, for the given cruising

speed, the optimal switching points of the coasting phase.

In addition, different distributions of running time sup-

plements are tested and compared in terms of service

punctuality and energy consumption. Furthermore, [271]

devised a simulation-based optimisation procedure in

which the simulation model provides the most energy-ef-

ficient driving profile, computing energy consumption

Pareto curves for each stretch, and the optimisation tool

allocates the total running reserve time available in the

most efficient way among the different stretches. The

proposed simulation technique deals with a manual driving

mode and specifically allows a large variety of manual

driving strategies to be performed by combining different

sections of holding speed with different coasting windows.

Finally, [272] enriched the common optimisation frame-

work, which combined energy control strategies with a

suitable design of operational times, by performing the

estimation of dwell times at stations as a function of the

number of passengers involved in the boarding/alighting

process. By considering dwell time as a flow-dependent

factor, rather than a fixed value, a more realistic compu-

tation of dwell time itself can clearly be carried out. Yet

most importantly, dwell time margin, which plays a key

role within the implementation of energy-saving strategies,

can be derived with a high degree of accuracy. It is worth

noting that both manual [273–275] and automatic

[276–278] driving systems have been investigated in the

literature.

As already touched upon, the most common method-

ologies for analysing such strategies are based on inte-

grated simulation–optimisation techniques. In this context,

[279] developed a multi-train simulator and incorporated it

into an optimisation framework aimed at minimising the

trade-off between energy consumption and the delay pen-

alty. Additionally, both exhaustive and metaheuristic

approaches are compared to optimise train operations such

Time

Speed

vmax

tES2

tacc tcru tdec

ΔtES2

vlim

Fig. 16 Speed profile in the case of energy-saving (ES) strategy 2
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as enhanced brute force, ant colony optimisation and

genetic algorithm. Moreover, [280] developed an offline

eco-driving design model based on simulation tasks, whose

aim is to define manual energy-efficient profiles, in terms

of easily interpretable and executable commands for the

driver, and implemented a genetic algorithm as an opti-

misation search technique. In particular, the proposed

approach takes into account also passenger satisfaction and

considers very detailed parameters such as the maximum

number of commands, the minimum separation between

commands and minimum speed of arrival at stations.

Finally, [281, 282] merged a speed profile optimisation

tool, based on a genetic algorithm as a subroutine, with a

micro-simulation model which reproduces the interactions

among infrastructure, signalling system, rolling stock and

timetable. Further, the proposed methodology can be

implemented for real-time rescheduling tasks by updating

the timetable database information time after time. Other

real-time approaches can be found in [283–288]. Never-

theless, also analytical approaches for modelling the

implementation of ES strategies have been proposed

[245, 289–291].

From the above-mentioned contributions, it appears that

the majority of approaches proposed in the literature

implement metaheuristic techniques, as will be shown

more extensively in the following section.

As already mentioned, several works incorporate the

energy-saving perspective in a multi-objective framework.

Indeed, eco-driving speed profiles generally imply an

increase in train running times and, therefore, in passenger

travel times. For this reason, several authors focused on the

trade-off between energy saving and passenger satisfaction

[292–298]. In general, [299–301] analysed the relation

between energy-efficient strategies and stability of the

planned timetable, while [302] analysed also the utilisation

rate of train capacity resulting from the implementation of

energy-saving strategies. Finally, [76] compared the mini-

mum-energy timetable with those obtained by taking into

account also rolling stock and other operational costs.

6 Metaheuristic Optimisation Algorithms

The simplest technique conceptually for identifying the

optimal solution in a combinatorial optimisation problem is

based on enumeration methods which evaluate all candi-

date solutions (exhaustive approach or brute force search),

or select a set of efficient solutions (implicit enumeration

approach), and choose the one which optimises specific

criteria expressed by an objective function, to be min-

imised or maximised according to the specific target pur-

sued. Their computational cost depends on the number of

candidate solutions, and they are therefore typically used in

small-size problems. On the other hand, in the case of real-

scale networks where, generally speaking, the number of

feasible solutions to be analysed is very high and the

objective functions are not convex, it is necessary to rely

on suitable metaheuristic techniques which afford the

possibility of finding near-to-optimal solutions within rea-

sonable computation times. What follows, far from any

claim to be exhaustive, provides some basic principles of

the most frequently used metaheuristic algorithms in the

field of rail transport, ranging from design problems to

those of scheduling and routing.

Let us begin with the analysis of a series of algorithms

belonging to the class of Local Search (LS) methods,

whose common framework consists in starting from an

initial feasible solution, trying iteratively to improve the

current solution by means of more or less complex modi-

fications (e.g. the exchange of elements belonging, or

otherwise, to the solution) and drawing to a close when no

further improvements can be made. Specifically, the fol-

lowing techniques will be described:

• Neighbourhood search

• Heuristic local search

• Tabu search

• Simulating annealing

The Neighbourhood Search Algorithm (NSA) is a

heuristic algorithm for solving discrete optimisation prob-

lems. Each vector y has an associated set of vectors

N yð Þ � Sy, called neighbourhood of y, where the generic

element y0 2 N yð Þ is obtained from solution y by an

operation consisting in modifying only one component of

vector y. This algorithm can be implemented according to

two different approaches: the Steepest Descent Method

(SDM), consisting in examining all elements of the

neighbourhood and identifying the best solution (i.e. the

solution with the best objective function value), and the

Random Descent Method (RDM) consisting in randomly

extracting a solution from the neighbourhood and com-

paring it with the current one. In particular, if the new

solution is better than the current one, it then becomes the

current solution; otherwise, another solution is randomly

extracted until the neighbourhood runs out, since all solu-

tions inside have been explored. This algorithm is rela-

tively simple, but its importance lies in the fact that, in

many cases, it is implemented as a subroutine in more

complex techniques, such as the Heuristic Local Search

(HLS) approach, set out below.

The HLS is made up of five phases which combine

unconstrained with constrained optimisation steps. As

shown by [303], it can be outlined in the following steps:

1. Unconstrained mono-dimensional optimisation

(UMDO);
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2. Unconstrained starting solution definition (USS);

3. Unconstrained neighbourhood search optimisation

(UNSO);

4. Constrained starting solution definition (CSS);

5. Constrained neighbourhood search optimisation

(CNSO).

In the first phase, each component of vector y is opti-

mised, assuming the values of other components as con-

stant. This phase may be addressed according to an

exhaustive or a mono-dimensional NSA approach which is

carried out by neglecting the constraints involved. The

second phase entails determining the first starting solution

by setting each component of vector y at the optimal value

obtained by the previous phase. In the third phase, the

constraints involved are neglected as well and an NSA

approach is performed. In this phase, it is possible to rely

on both SDM and RDM techniques. The fourth phase

analyses all the solutions generated in the previous phases,

selecting the one which optimises the objective function

and jointly satisfies constraints. Finally, the last phase

performs the NSA by considering the constraints involved.

In this case, the NSA technique is implemented by means of

an SDM approach.

Similarly to the NSA, this algorithm, in many cases, is

performed as a subroutine of more articulate metaheuristic

procedures, as we will shortly see. Within this framework,

[304, 305] developed metaheuristic procedures for solving

the network design problem, respectively, in urban and

regional contexts. Moreover, [306] proposed a multimodal

approach for bus frequency design and then improved in

the case of rail frequencies in [303]. In addition, [307]

proposed a Variable Neighbourhood Search (VNS) algo-

rithm for minimising the average passenger waiting time in

the case of a partial line blockage and [86] implemented

the same optimisation technique for addressing the prob-

lem of train scheduling and routing under disruption con-

ditions. Moreover, [308] developed an Adaptive Large

Neighbourhood Search (ALNS) algorithm as a resolution

method for a complex problem which involves both net-

work design and line planning issues. Finally, [309]

addressed a frequency optimisation problem, in a cost-

oriented perspective, by comparing a heuristic local search

algorithm with three different optimisation techniques: a

mixed-integer linear programming (MILP) model, a MIP-

based iterative algorithm and a shortest-path-based algo-

rithm. In particular, travel demand and competition among

modes are taken into account and numerical results, both

on test networks and over a real context, show that

heuristic local search provides the best compromise

between computational effort and solution quality.

Tabu Search (TS) algorithm is a deterministic method

proposed by [310] and formalised in [311, 312]. Basically,

it is a search approach whose peculiar feature, as the name

itself implies, consists in making prohibited, namely tabu,

the opposite of the ultimate move carried out in order to

avoid going back to previously visited solutions. In par-

ticular, this method is based on the use of a memory

structure, known as tabu list, which can adopt a short-,

intermediate- or long-term memory criterion. However, in

order to prevent the search getting trapped at a local

minimum, an aspiration criterion, generally based on the

objective function values, is set up. It states that the solu-

tion accessible by means of a forbidden move can be

accepted if no improving moves are available outside the

tabu list. Clearly, at each iteration, it is necessary to update

the tabu list, generally by means of a FIFO approach: the

entering move is the opposite of the last action carried out

and the exiting move is the one which has remained on the

list for longest. Obviously, there are many variations which

enrich this basic version, for instance, considering the

frequency with which certain types of solution have been

analysed or introducing random elements. In this context,

[114] addressed the problem of train conflict detection and

resolution in real time by performing a TS optimisation and

comparing its performance with those of other heuristic

methods with different neighbourhood definitions. Further,

[151] dealt with the same problem by implementing a TS

technique in the real-time traffic management system

ROMA which is based on the alternative graph model [79].

Moreover, in [151], similarly to the previously cited con-

tribution, different neighbourhood structures are assessed

and the results are compared with those obtained by

[81, 313] which implemented, respectively, a branch-and-

bound algorithm and a local search method. Additionally,

[314] proposed a methodology for solving a particular

vehicle routing problem which deals with vehicles with

multiple compartments. The suggested procedure can be

considered as an iterative local search method where the

implemented local search technique is a TS algorithm. The

starting point is a local minimum obtained by applying any

local search. Then, at each iteration, the current local

minimum is randomly perturbed and the TS is implemented

in order to move on to another local minimum. The stop-

ping criterion is based on the number of consecutive iter-

ations which provide an improvement on the incumbent

solution. Finally, [315] described an optimisation proce-

dure for increasing the robustness around large railway

stations, which may represent a bottleneck for the whole

system, based on investigation of the interaction between

the routing and scheduling of trains in the vicinity of the

area in question. Therefore, a route choice module and a

timetabling module are implemented and the timetabling

problem is addressed by means of a TS algorithm, whose

aim is to increase the smallest minimum time span between

two trains so as to improve the reliability of railway
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operations. Moreover, a simulation module is introduced to

evaluate the achieved performance in the examined region.

Conversely, Simulating Annealing (SA) is a stochastic

metaheuristic method proposed as an optimisation tech-

nique for the first time by [316]. It is inspired by the pro-

cess of annealing in metallurgy, i.e. a process by which a

solid is first brought to the fluid state by means of heating

to high temperatures and then brought back to a solid or

crystalline form by gradually reducing the temperature. At

a high temperature, as the atoms are in a highly disordered

state there is a high level of energy in the system. In order

to bring such atoms to a highly ordered (statistically)

crystalline state, the temperature must be lowered. How-

ever, a swift reduction can cause flaws in the crystalline

grid with consequent fissuring and fracturing of the grid

itself (thermal stress). Annealing proceeds to a gradual

cooling of the system, precisely in order to avoid such a

phenomenon. Although, in general, the solid is inclined to

turn into states with a lower level of energy, there is a slight

chance that it increases its energy. This probability depends

on the temperature and the variations of energy level

associated with the transformation between the two states.

In particular, it is regulated by the Metropolis criterion

[317] according to which the probability of transformation

increases with the increase in the temperature and the

decrease in the energy gap. It is this very criterion which

determines whether or not the solution being studied can

become the new current solution. To be more precise, the

analogy between the physical system and the optimisation

method is based on the following correspondences: the

states of the physical system correspond to the solutions of

the problem; the position of the particles corresponds to the

value of decisional variables; the energy level related to a

certain state corresponds to the value of the objective

function which is associated with a certain solution. While

the temperature has no direct analogy, it represents a

control parameter which implicitly defines the region of the

state space being explored by the algorithm in a particular

phase. At high temperatures, since bad solutions are easily

accepted, the SA algorithm can cross almost all the state

space. Following on, by lowering the value of the control

parameter, the algorithm is confined to increasingly

restricted regions of the state space. Therefore, it can be

stated that, at high temperatures, the algorithm behaves

more or less as a random search, while at low temperatures,

the SA is similar to the steepest descent methods. The

algorithm stops when the temperature needed to terminate

the annealing process is reached, and hence there are no

further possibilities for improvement in terms of objective

function. This method has been implemented for solving

many different transportation problems such as minimising

the timetable cycle time [318], finding the optimum stop-

skipping patterns in urban railway systems under

uncertainty [319], solving conflicts in railway traffic under

disruption conditions [101] and optimising energy con-

sumption in train operations [320]. Moreover, the method

was adopted in the case of a railcar fleet sizing problem

[321], railway crew scheduling problem [322], track allo-

cation problem at railway stations [323], train platform

problem [324], train transfer problem [325], transit network

optimisation problem [326] and location routing problem

with simultaneous pickup and delivery [327].

Regarding the evolutionary techniques, Scatter Search

(SS) methods [328–330] and the Genetic Algorithm (GA)

[331, 332] are addressed below. Unlike the case of local

search which is characterised by a neighbourhood-based

approach, evolutionary procedures are population-based

problem solvers and are inspired by principles of biological

evolution.

As shown by [333], the basic framework of the SS can

be described as the sum of the following five methods.

1. Diversification Generation Method aimed at generat-

ing a collection of diverse trial solutions starting off

from a seed solution. It is important that the generated

trial set has a great variety of different solutions so as

to cover different parts of the solution space.

2. An Improvement Method represented by an algorithmic

subroutine (e.g. NSA or HLSA) aimed at transforming a

trial solution into one or more enhanced trial solutions.

However, there is no guarantee of improvements.

Hence, if no enhancing is possible, the improved

solutions are considered to be the same which have

been generated in the previous phase.

3. A Reference Set Update Method aimed at carrying out

a reference set by selecting all the enhanced solutions

or only part of them, taking into account their quality,

according to objective function values (good solu-

tions), and their diversity in terms of distance from the

best solution (scattered solutions). By including scat-

tered solutions in the reference set, the algorithm is

empowered to explore regions which would otherwise

remain unexplored.

4. A Subset Generation Method aimed at manipulating

the reference set, in order to produce a subset of its

solutions as a basis for creating combined solutions.

5. A Solution Combination Method aimed at obtaining

one or more combined solution vectors from the subset

of solutions generated in the previous phase.

The output of the fifth phase is then improved, as

described in the second step, so as to create a new reference

set and so on. The procedure stops when the reference sets

in two successive iterations are equal or when a pre-fixed

number of iterations are reached.

Moving on to the GA, the evolutionary rationale is more

evident, starting from the terminology adopted: each
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solution is indicated as a chromosome and each solution

component as a gene. This method can be summarised in

the following phases: initialisation, selection, reproduction

and termination. The first phase is aimed at generating a set

of initial solutions which represents the initial population.

In the second phase, two fundamental tasks are carried out.

First of all, for each chromosome, the objective function

and the related fitness function are calculated and then, on

the basis of these values, the parent selection is performed.

It consists in extracting the best solutions from a population

so as to enable them to successfully pass on their genes to

the next generation. This step can make use of many dif-

ferent techniques such as roulette wheel selection, fitness

proportionate selection, rank selection, random selection,

tournament selection and stochastic universal sampling.

Therefore, once two elements have been selected as par-

ents, the reproduction phase is performed by means of two

processes: crossover and mutation. The former produces

offspring by combining two different solutions (i.e. par-

ents), and the latter by producing random variations to a

single parent. The best solution in the previous population

is then enriched by the generated offspring, and the pro-

cedure carries on from the selection phase, until the max-

imum number of iterations is achieved or the optimal

values of the objective function are the same in two suc-

cessive iterations.

Contributions related to the implementation of such

evolutionary techniques in transportation optimisation

problems concern several issues: network design, routing

and scheduling problems, timetabling and rescheduling

tasks and energy consumption optimisation, as set out

below. Specifically, [334] addressed different network

design problems, related to urban and extra-urban (i.e.

rural) contexts as well as road and transit transport modes,

by implementing SS and comparing the results with those

obtained by means of other metaheuristic techniques such

as GA and LS methods. Moreover, [335] proposed a mixed

network design problem with the aim of maximising the

reserve capacity of the whole system and solved it by

means of a hybrid SS method which incorporates the

golden section search, while [336] implemented both SS

and GA to tackle a stochastic travel time vehicle routing

problem with simultaneous pickups and deliveries. Simi-

larly, [337] proposed a genetic technique for solving a train

routing problem combined with train schedules, taking into

account average travel time, energy consumption and

passenger satisfaction. In addition, [338] proposed an

automated timetable design method, with a demand-ori-

ented perspective, in which optimal departure times are

computed by means of a GA. Likewise, [339] implemented

a GA, based on a binary coding approach, for solving a

timetable optimisation problem in an urban rail line, by

considering the time variability of travel demand and a

multiple origin-to-destination demand pattern. Further-

more, [96] addressed a train rescheduling problem by

implementing a GA for minimising delays in conflict res-

olutions, together with an artificial neural network

approach for simulating the decision-making process of

dispatchers during the failure management phase. Finally,

the GA is extensively used also for solving problems from

an energy-saving perspective [340–342]. In this context,

evolutionary techniques have also been combined with

fuzzy logic [343, 344] as well as with artificial neural

network approaches [263, 273].

Lastly, it is worth mentioning the Ant Colony Optimi-

sation (ACO) method, belonging to the family of swarm

intelligence methodologies, based on modelling the col-

lective behaviours of social insects, such as colonies of ants

and termites or flocks of birds, which adopt decentralized

control and self-organisation. The ACO was introduced by

[345–347] and its basic principles are described below. The

idea was inspired by the exploitation of food resources by

ants. These insects, albeit within the limits of cognitive

capacities of the single ant, are able to collectively find the

shortest path between a source of food and their nest. This

is because they leave a trail of pheromones which attracts

other ants. Specifically, when an ant is exploring an area in

search of food, it leaves a trace. If it finds food, it returns

and thus reinforces the trace. Hence, since pheromones are

subject to evaporation, the shortest path will continuously

be reinforced and will become the most attractive, while

the longest path will end up by disappearing. As a result, all

the ants will end up taking the shortest path (Fig. 17).

Fig. 17 Ant behaviour
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The mathematical formulation adopted by the algorithm

to model this phenomenon is set out below. The probability

Pk
i;j tð Þ with which the kth ant, at instant t, moves from state

i to state j belonging to set Nk
i is expressed as follows:

Pk
i;j tð Þ ¼

si;j tð Þ
� �a� gi;j tð Þ

� �b

P
j2Nk

i
si;j tð Þ
� �a� gi;j tð Þ

� �b ð4Þ

with

gi;j ¼
1

di;j
if i 6¼ j

0 otherwise

8
<

: ð5Þ

where si,j is the trail level of pheromone on link (i, j), i.e. a

posteriori desirability of the move; gi,j is the attractiveness

of the move, i.e. a priori desirability of the move; a is the

control parameter for the trail level (a � 0); b is the

control parameter for the attractiveness (b � 1); and di,j is

the distance between nodes i and j.

The trail level of pheromone on the link (i, j) is updated

as follows:

si;j tð Þ ¼ q � si;j t � 1ð Þ þ
Xn

k¼1

Dk
i;j tð Þ ð6Þ

with

Dk
i;j tð Þ ¼

Q

Lk tð Þ if link ði; jÞ is chosen by the kth ant

0 otherwise

8
<

:

ð7Þ

where q is the pheromone evaporation coefficient

(0\ q\ 1), n is the number of ants, Lk tð Þ is the cost,

generally in terms of path length, of kth ant at instant t; and

Q is a constant.

Many different variants of the above method are pre-

sented in the literature: ant system, elitist ant system, rank-

based ant system, MAX–MIN ant system and ant colony

system. An extended overview of ant-based algorithms can

be found in [348]. Several transportation issues are

addressed by means of ACO techniques such as assignment

problems, optimal control theory and energy-saving tasks,

vehicle routing problems and rescheduling approaches. In

detail, [349] integrated ACO into an MSA framework in

order to solve a stochastic user equilibrium assignment and

demonstrated the convergence of the proposed approach

from a theoretical point of view by means of Blum’s the-

orem [350]; [351, 352] applied the so-called MAX–MIN ant

system (MMAS) in order to optimise speed profiles of

convoys between two stations, thus providing a support

tool for implementing strategies aimed at reducing energy

consumption; [353] formulated a distance-based train tra-

jectory searching model for optimising train speed trajec-

tory and found that the ACO algorithm was the best

resolution method. Moreover, thanks to its efficiency in

terms of calculation time, the ACO is often implemented

for real-time management approaches. In this context,

[354] proposed an ACO technique for implementing real-

time energy-saving policies in the case of high-speed

trains. In particular, the heuristic information parameter is

designed according to the system status, in terms of delays,

in order to adjust the trajectory planning procedure and

allow the convoy to reduce its energy consumption by

exploiting trip time redundancy. Likewise, [355] imple-

mented ACO in order to deal with the real-time problem of

routing trains in a railway, which consists in re-optimising

the routing of convoys under disruption conditions by

identifying the potential best routing alternatives for each

train and deciding which to implement with the purpose of

re-establishing ordinary conditions as soon as possible. In

addition, [356] implemented ACO for the same problem

(i.e. train routing selection problem) by comparing its

application, and the relative issues, in the case of two

different dimensions, namely the tactical level and the

operational stage. Furthermore, ACO techniques were

implemented to address a railway junction rescheduling

problem when a delay occurs, both in dynamic and in static

environments, respectively, by [357, 358]. The latter also

provides an interesting comparison between ACO and other

seven optimisation approaches, including GA, TS and SA.

Obviously, the above-mentioned contributions cannot in

any way be considered exhaustive with regard to the

copious number of applications of these techniques in the

field of rail service management. However, they may make

the reader aware of the extensive potential of such meta-

heuristic approaches in the field of rail transport.

7 Discussion

The presented discussion is intended to give a compre-

hensive picture of the key factors involved in reliable

modelling of rail services and related issues. The under-

lying idea is that, ideally, a fully demand-oriented transport

system, optimised for a full match between demand and

vehicle capacity, can provide the best service with the

minimum energy expenditure [359]. For this reason, dis-

patching tasks were reviewed together with travel demand

estimation and energy issues. Great attention was paid to

rail simulation and optimisation models. Moreover, the

importance of interactions between rail services and pas-

senger flows was pointed out and the estimation and

forecasting techniques for travel demand, proposed in the
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literature, were described. In particular, some crucial issues

about the customisation of such techniques to the railway

case were addressed. Furthermore, the environmental

issues relative to rail systems and their impact on user

satisfaction were discussed, with particular attention to

energy-saving strategies involving the design of eco-driv-

ing profiles and the adjustment of operational times within

the planned timetable. Finally, the most commonly used

metaheuristic algorithms for solving dispatching and

rescheduling problems were illustrated. Clearly, given the

variety of the addressed topics, the overview provided is far

from exhaustive for each specific matter investigated.

Instead, it is aimed at providing a basic reference frame-

work for allowing a well-rounded approach concerning

such systems which are environmentally friendly, smart,

safe and represent a key factor for a sustainable develop-

ment of urban and metropolitan areas. Therefore, by

properly combining the above-mentioned approaches,

according to the specific context addressed and the target

pursued, it is possible to obtain a robust modelling

framework which is able to take into account constraints of

real-world applications. However, many challenges still

remain open. In the following, a discussion about such

issues still under debate is provided, so as to give the reader

an interpretation in a critical prospective of the resulting

picture.

First, in the case of both simulation and optimisation

approaches, multi-level methods for handling the different

granularity of factors involved (such as speed control and

the timetabling process) need to be further validated.

Moreover, data-driven procedures for estimating passenger

flows are increasingly taking hold, for instance, by means

of e-ticketing and automatic collection fares. However, in

the case of rail systems, it is fundamental to take into

account some specific issues due to the intrinsic features of

the context addressed. First of all, the flows of concern are

related to the number of passengers, rather than the number

of vehicles. This gives rise to the first issue to be faced,

concerning the kind of passenger flows to be considered,

such as flows at turnstiles, boarding or alighting flows,

waiting flows and on-board flows. This results in a spatial

problem related to ‘where’ to detect passengers. Should

counting at turnstiles be selected, the measurement would

be affected by an uncertainty concerning trip direction.

Alternatively, data could be acquired from a single gate,

but, in such circumstances, it might not be possible to know

how many passengers are unable to board the train due to

overcrowding. Conversely, such information could be

obtained by carrying out counts on platforms. In addition to

this, a temporal problem should be taken into account

which lies in the difficulty of identifying a proper reference

time interval, given the fact that rail services are scheduled

services. It is this very discontinuity which makes counting

at the turnstiles susceptible to a certain degree of uncer-

tainty due to the gap between the time of registering the

users’ passage and the moment they reach the platform.

Therefore, it appears clear that it is necessary to design the

data acquisition phase appropriately according to the tar-

get. As already stated, unlike the sample surveys which are

complex and expensive, counts are cheaper to carry out and

can be obtained automatically. The use of automatic

devices makes the detection task easier and more efficient;

however, it is not immune to incidents. First of all, it might

happen that, because of a device failure, there could be

effects on the entire measurement. A typical situation in

which this could happen is if the target is to reconstruct the

distribution of the passengers on the platform by carrying

out counts at each gate. Indeed, in this case, if a detector at

a single gate was damaged, this would also make the

counts at the other gates useless, invalidating the mea-

surement for the whole platform. Other issues to be taken

into account are the presence of exchange points between

two lines and, in some contexts, also the possibility of fare

evasion. However, to the best of our knowledge, in the

literature, there are no contributions which fully meet such

requirements.

In addition, both infotainment tasks and calibration

procedures for train motion models in an online framework

represent an important challenge. This is related to the

dynamic nature of the process involved. Indeed, when users

receive some information, they may then change their

behaviour, thus altering current conditions. This means that

the utility and reliability of the same information change

for the rest of passengers. Therefore, online passenger flow

estimation methods need to be improved. As stated above,

one of the main goals related to the inclusion of demand

analysis in dispatching evaluations concerns demand-ori-

ented optimisation of rail services. This may include an

optimisation of fleet management which leads to changes

in loads and train configurations which, in turn, entail

different resistance values to be addressed and therefore a

different calibration speed profile process. An accurate

estimation of energy consumption for different trains in

different conditions may also lead to an important turning

point in regulating train path allocation on the part of

infrastructure managers. Indeed, currently, the only factor

considered concerns the degree of track utilisation. How-

ever, in the future, also a consumption criterion could be

introduced.

Finally, the most challenging issues still concern the

need to bridge the gap between theory and practice. In view

of this, dispatching and rescheduling decision support

systems should be able to automatically generate inter-

vention plans by taking account of all relevant factors

involved. Currently, we are still far from this. However,

some noteworthy initiatives within this framework are
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listed below. Among others, there are some enterprises

(e.g. Transport for London) which release their data in an

open-source mode, so as to encourage practitioners to

develop suitable techniques, and others (e.g. Swiss Federal

Railways and NS Railway Operator in the Netherlands)

which make their own-built APIs available. Another rele-

vant initiative is the RAS problem solving competition

established by the Netherlands Railways and ProRail so as

to develop advanced techniques for obtaining accurate

forecasts of train performance and delays [360]. Finally, it

is worth mentioning two promising programmes. The first,

namely ONTIME [361], is a European project established

to provide a step change in railway capacity by reducing

delays and improving traffic fluidity. Moreover, a joint

initiative has been set by the Alstom Ferroviaria SpA

company and Roma Tre University, with the aim of inte-

grating the railway traffic controller ICONIS RM6 (Inte-

grated CONtrol and Information System) with the

optimisation system AGLIBRARY (Alternative Graph

LIBRARY) [362]. However, a transition from test bed

activities to pilot site stages is strongly desired.
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150. Bauer R, Schöbel A (2014) Rules of thumb: practical online-

strategies for delay management. Public Transp 6(1):85–105

151. Corman F, D’Ariano A, Pacciarelli D, Pranzo M (2010) A tabu

search algorithm for rerouting trains during rail operations.

Transp Res Part B 44(1):175–192

152. Veelenturf LP, Kidd MP, Cacchiani V, Kroon LG, Toth P

(2016) A railway timetable rescheduling approach for handling

large scale disruptions. Transp Sci 50(3):841–862

153. Ghaemi N, Goverde RMP, Cats O (2016) Railway disruption

timetable: Short-turnings in case of complete blockage. In:

Proceedings of IEEE international conference on intelligent rail

transportation—IEEE ICIRT 2016, Birmingham, Aug 2016

154. Binder S, Maknoon Y, Bierlaire M (2015) Passenger-oriented

railway disposition timetables in case of severe disruptions. In:

Proceedings of the 15th Swiss transport research conference—

STRC 2015, Ascona, Apr 2015

155. Kanai S, Shiina K, Harada S, Tomii N (2011) An optimal delay

management algorithm from passengers’ viewpoints considering

the whole railway network. J Rail Transp Plan Manag 1:25–37

156. Kumazawa K, Hara K, Koseki T (2010) A novel train

rescheduling algorithm for correcting disrupted train operations

in a dense urban environment. WIT Trans Built Environ

103:565–574

157. Placido A, De Martinis V, Montella B, Gallo M, D’Acierno L

(2014) Effects of travel demand levels on optimal strategies for

metro system management in failure contexts. Proc Soc Behav

Sci 111:819–828

158. Sato K, Tamura K, Tomii N (2013) A MIP–based

timetable rescheduling formulation and algorithm minimizing

further inconvenience to passengers. J Rail Transp Plan Manag

3:38–53

159. Tanaka S, Kumazawa K, Koseki T (2009) Passenger flow

analysis for train rescheduling and its evaluation. In: Proceed-

ings of international symposium on speed–up, safety and service

technology for railway and maglev systems 2009—STECH’09,

Niigata, June 2009

160. Toletti A, Weidman U (2016) Modelling customer inconve-

nience in train rescheduling. In: Proceedings of the 16th Swiss

transport research conference—STRC 2016, Ascona, May 2016

161. D’Acierno L, Placido A, Botte M, Montella B (2016) A

methodological approach for managing rail disruptions with

different perspectives. Math Models Methods Appl Sci

10:80–86
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scopic delay management: minimizing train delays and

passenger travel times during real-time railway traffic control.

In: Proceedings of the 5th IEEE international conference on

models and technologies for intelligent transportation systems—

IEEE MT-ITS 2017, Naples, June 2017

165. Canca D, Zarzo A (2017) Design of energy-efficient timeta-

bles in two-way railway rapid transit lines. Transp Res Part B

102:142–161

166. Hazelton ML (2001) Inference for origin–destination matrices:

estimation, prediction and reconstruction. Transp Res Part B

35:667–676

167. Brog W, Ampt E (1982) State of the art in the collection of

travel behaviour data. Travel behaviour for the 1980’s. Special

report 201, National Research Council, Washington

168. Ortuzar JdD, Willumsen LG (2011) Modelling transport, 4th

edn. Wiley, Chichester

169. Smith MJ (1979) The existence, uniqueness and stability of

traffic equilibria. Transp Res Part B 13(4):295–304

170. Ben-Akiva M, Lerman SR (1985) Discrete choice analysis:

theory and application to travel demand. The MIT Press,

Cambridge

171. Domencich TA, McFadden D (1975) Urban travel demand: a

behavioural analysis. American Elsevier, New York

172. Horowitz JL (1981) Identification and diagnosis of specification

errors in the multinomial logit model. Transp Res Part B

15(5):345–360

173. Manski CF, McFadden D (1981) Structural analysis of discrete

data with econometric applications. The MIT Press, Cambridge
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