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ABSTRACT
Passenger exchange coefficient is a significant factor 

which has great impact on the pricing model of urban 
rail transit. This paper introduces passenger exchange 
coefficient into a bi-level programming model with time 
differential pricing for urban rail transit by analysing 
variation regularity of passenger flow characteristics. 
Meanwhile, exchange cost coefficient is also considered 
as a restrictive factor in the pricing model. The improved 
particle swarm optimisation algorithm (IPSO) was ap-
plied to solve the model, and simulation results show that 
the proposed improved pricing model can effectively re-
alise stratification of fares for different time periods with 
different routes. Taking Line 2 and Line 8 of the Beijing 
rail transit network as an example, the simulation result 
shows that passenger flows of Line 2 and Line 8 in peak 
hours decreased by 9.94% and 19.48% and therefore 
increased by 32.23% and 44.96% in off-peak hours, re-
spectively. The case study reveals that dispersing pas-
senger flows by means of fare adjustment can effectively 
drop peak load and increase off-peak load. The time dif-
ferential pricing model of urban rail transit proposed in 
this paper has great influences on dispersing passenger 
flow and ensures safety operation of urban rail transit. It 
is also a valuable reference for other metropolitan rail 
transit operating companies.

KEYWORDS
urban rail transit; time differential pricing; bi-level 
programming model; passenger exchange coefficient.

1.  INTRODUCTION
In recent years, the rate of using public trans-

port has become higher and higher. Under the cir-
cumstances, optimisation of game between urban 
rail transit and conventional bus which account for 
over 80% transport volume together is regarded as 
a key to distribute passenger flows and make effec-
tive use of public transport. Additionally, balancing 
passenger demands and profits of public transport 
operating companies remains a hot research topic. 
This paper establishes a new time differential pric-
ing model for urban rail transit from the perspective 
of regulatory role of economic leverage and urban 
rail transit operational efficiency. The purpose is to 
guide passengers to arrange their travels rationally.

The fare optimisation issue of public transport 
has been extensively studied by many scholars. 
Currie [1] studied Melbourne's 'early bird' fare sys-
tem (free train travel before 7 a.m.) and found that, 
while reducing fare revenue to some extent, it sig-
nificantly reduced the level of full trains in the first 
peak hour (7 a.m. to 8 a.m.). Following the intro-
duction of the five-zone fare system with no transfer 
fees in Haifa, Israel, Sharaby [2] found an 18.6% in-
crease in the number of passengers switching from 
the private car system to the public transport system, 
demonstrating that fare optimisation provides better 
route choices for passengers. Kamel [3] proposed 
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different lines represent a dynamic change. Unfor-
tunately, the current pricing model is not flexible 
enough to cope with this problem.

From the viewpoint of algorithmic solution, 
Cheraghalipour [8] utilises and compares two 
kinds of traditional heuristic algorithms–genetic 
algorithm (GA) and particle swarm optimisation 
algorithm (PSO), as well as two hybrid algorithms 
(PSO-GA and GA-PSO) and a modified algorithm 
(GPA) to solve bi-level programming model, re-
spectively. Results showed that the GPA has a good 
performance among them. Mostafa [9] proposes a 
fast heuristic algorithm and two hybrid meta-heu-
ristic algorithms. Although the former converges 
faster, the optimal solution performance of the latter 
is significantly higher in a comprehensive compar-
ison. Liu [10] established a bi-level programming 
model based on elastic demand by using a simu-
lated annealing algorithm for the upper level and 
the method of successive average (MSA) for lower 
level to solve them separately. The model solution 
achieved convergence in less than ten instances. 
Tafti [11] designed a bi-level congestion pricing 
problem and solved it using both the PSO and the 
GA. The final iterative results were the same, but 
the computation time of the PSO was 45% shorter 
than that of the GA, and the overall performance 
was better. Hao [12] applies a dynamic inertia factor 
to the particle swarm optimisation algorithm with 
a range of update rates. The merit is that it avoids 
slow iterations due to initial particles being too dis-
persed, and updates towards optimal solution and 
reaches convergence quickly to improve iteration 
efficiency. Generally, the particle swarm optimisa-
tion algorithm has a certain stability and accuracy 
to solve the bi-level programming model. PSO is 
applicable to a wide range of scenarios.

To our knowledge, there are as of yet no publi-
cations on time differential pricing models for ur-
ban rail transit based on passenger exchange coef-
ficients for different time periods and route. In this 
paper, we will consider the impact of the passenger 
exchange coefficient on fare pricing from the per-
spective of urban rail transit and construct a bi-lev-
el programming model for urban rail transit from 
peak and off-peak hours, respectively. The upper 
level model serves as profit maximisation of an ur-
ban rail transit operating company, while the lower 
level model aims at generalised cost minimisation 
of passengers. Both passenger exchange coefficient 

a time-based system fare strategy based on factors 
such as passenger travel choice patterns and depar-
ture times, and tested in Toronto, Canada. Results 
showed that time-based fare strategy spreads traffic 
demand to the shoulder of peak period and alleviates 
congestion during peak period. Yook [4] developed 
a distance-based bi-level programming fare mod-
el and used the Utah transit system as an example 
for experiments, proving that the model can effec-
tively increase the demand for public transport and 
make the travel structure more rational. Borndörfer 
[5] argued that fares for public transport should not 
be based solely on the welfare maximisation per-
spective, developed a cost-constrained cooperative 
game model and applied it to the Dutch transport 
network. The reliability of the model is demonstrat-
ed. Zhang [6] compared and analysed a generalised 
cost minimum model and a bi-level programming 
model based on a generalised cost function in terms 
of multiple generalised utility values, and the study 
results showed the latter was superior in terms of 
both iterative results and efficiency. Liu [7] con-
structed a bi-level programming model based on the 
minimum travel time of an urban passenger trans-
port system and confirmed that a reduction in urban 
rail transit fares would result in a reduction in the 
total generalised travel cost for passengers. 

From the above references, it can be seen that all 
the public transport systems in different countries 
have the same characteristics, are time-varying and 
restricted by multiple factors. Neither maximisa-
tion of passenger welfare nor minimisation of travel 
distance alone can reasonably alleviate congestion 
during peak periods. Therefore, pricing strategies 
and models need to be systematically optimised. 
By combining time differential pricing strategies 
and models, a bi-level programming model can be 
built to better achieve multi-objective optimal de-
cision making. The upper level model carries out 
profit maximisation of an operating company as the 
main objective, whereas the lower level model does 
minimisation of generalised cost of passenger travel 
as the main objective. The optimal value of fare can 
be solved by iteratively solving fare through mutual 
constraints relationship between the upper level and 
low level models. It is worth noting that for urban 
rail transport, the same line would present different 
passenger utilisation rates as city function changes 
over time. Generally, passenger utilisation rates of 
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gers at a station and bi is the number of alighting 
passengers at the same station. Change the form of 
Equation 1 into Equation 2
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where k indicates the station where the numbers of 
boarding and alighting passengers become equal 
(assuming more there are more boarding than 
alighting passengers at each station before the point 
k and more alighting than boarding passengers at 
each station after the point k), Qmax denotes the 
maximum cross-sectional passenger flow. For solv-
ing parameter of the passenger exchange coefficient 
ηx, we need three variables, namely, flow imbalance 
coefficient ηf, average distance La [14] and pas-
senger turnover volume Q, which are expressed as 
Equation 3–5, respectively.
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In Equation 3, Qa denotes the average cross-sec-
tional passenger flow. In Equation 4 and 5, li indicates 
the distance of the ith station interval in a line and qi 
is the cross-sectional passenger flow of the ith sta-
tion interval in a line. By substituting Equation 3–5 
into Equation 2, the relationship among ηx, ηf and La 
can be described as Equation 6

L
L

x
f a$

h h=  (6)

where L indicates the total length of a route. Passen-
ger exchange coefficient is an indicator to evaluate 
frequency utilised by passengers in a line at a certain 
period. The generalised cost function of the passen-
ger travel characteristics (e.g. comfort, economy, 
safety and etc.) is commonly used in the lower lev-
el model for those current time differential pricing 
model studies. In this paper, we integrate passenger 
exchange coefficient ηx to the lower level model for 
increasing sensitivity of fare model to different lines 
in terms of passenger flow. To do this, the model has 
the ability to generate different fares accordingly by 

and fare adjustment coefficient are fed to models for 
governing fares. The outline of the model is shown 
in Figure 1.

2. METHODOLOGY

2.1 Generalised cost model with passenger 
exchange coefficient

In an urban rail transit network, key stations 
with larger passenger exchange volume, relative 
long-stay of train, high passenger loads and varia-
tion costs, which have great impact on the depar-
ture interval, train punctuality and operation, make 
constraints on the whole line. Passenger exchange 
volume is commonly measured by a passenger ex-
change coefficient which indicates the degree of 
passenger utilisation of trains within a certain trans-
port interval [13]. It is assumed that the passenger 
exchange volume is characterised by the passenger 
exchange coefficient, which can be expressed as 
Equation 1

,Q min a b
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where Qt denotes total number of boarding passen-
gers along the line, min(ai,bi) indicates the smaller 
value between the numbers of boarding passengers 
and alighting passengers at station ith of the n sta-
tions, where ai is the number of boarding passen-

Profit of urban rail transit operating companies

Generalised cost of passengers

Economy - Quickness - Comfort - Punctuality

Passenger exchange
coefficient

Operating
costs

Government
macro-control

Minimise
generalized

cost

Maximise
companies

profit

Passenger
flow

Passenger exchange
coefficient

Fare adjustment
coefficientFares

Figure 1 – Outline of the bi-level programming model 
considering passenger exchange coefficient
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In the constraints, δ is the fare adjustment coef-
ficient. The increase of δ during peak hours should 
not be higher than the limit δmax set by the govern-
ment. The exchange cost coefficient εm is integrated 
during peak hours only for lines with the passenger 
exchange coefficient higher than the average. The 
parameters Pr

i, Cr
i and Qr

i indicate fare, operating 
cost per capita and passenger flow of urban rail tran-
sit in the ith time period, respectively. Other parame-
ters are explained in the previous sections.

2.3 Time differential pricing model 
for off-peak hours

During off-peak hours, passenger volume keeps 
a low status and the full load rate is also not high. 
The main goal of the urban rail transit operator is 
to attract passenger flow and improve income. We 
build the upper level model for maximising com-
pany benefits and the lower level model for mini-
mising passengers' generalised costs to establish a 
bi-level programming model. They are described as 
follows:
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Parameters in the model are defined as men-
tioned above and downward adjustment of δ during 
the off-peak hours should not be lower than the low-
er limit δmin set by the government. The exchange 
cost coefficient εm is added during off-peak hours 
only for lines with the passenger exchange coeffi-
cient lower than the average.

recognising the differences in passenger exchange. 
The lower level model proposed in this paper is ex-
pressed as follows:
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where the generalised cost function takes the form 
of a power function f(Qk

i)=a(Qk
i)b-Vk

i. The parame-
ter Vk

i denotes generalised utility of the kth mode of 
transportation at time period i, and which includes 
Pk

i (economy, simplified for fares), Sk
i (quickness), 

Mk
i (comfort), Tk

i (punctuality). The parameter εm 
describes the exchange cost coefficient which indi-
cates the ratio of the passenger exchange coefficient 
ηx

i of a line to the average value of the passenger ex-
change coefficient x

ih  in a time period i. Parameter 
εm is used to evaluate the relationship between the 
degree of passenger exchange of a line and the av-
erage level of the same time period. The exchange 
cost coefficient is set to 1 for all transportation 
modes except urban rail transit.

2.2 Time differential pricing model 
for peak hours

The main objectives are to control passenger in-
teraction behaviour at stations and reduce the over-
load rate during peak hours when passenger flow 
is high. The upper level model in the bi-level pro-
gramming model aims at maximising the interests 
of urban rail transit operator while taking into ac-
count certain social welfare. From the perspective 
of the publicity of urban rail transit, fares are limited 
under the guidance of the government. The lower 
level model serves as a generalised cost minimis-
ation model which integrates passenger exchange 
coefficients. The time differential pricing model for 
peak hours is expressed as Equation 9–11.
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Step 3: Obtaining fitness function value and updat-
ing it. The parameters Xi

t, Yi
t are fed to the upper lev-

el model to calculate the fitness function value and 
compare it with the previous fitness function value, 
update particle optimal position pbest and population 
optimal position gbest, and update inertia factor ω. The 
update rule for ω is: ωt=(ωmax-ωmin)(T-t)/T+ωmin. ω

t 

 is the inertia factor of the tth iteration, T is the max-
imum number of iterations and t is the current num-
ber of iterations.
Step 4: Determining whether the convergence con-
ditions are met. If requirements are met, then move 
to Step 5; if not, then move to Step 2.
Step 5: Optimal solution interference. The interfer-
ence is calculated for the population optimal posi-
tion gbest and it is judged whether the correspond-
ing fitness function value needs to be updated. If 
it needs to be updated, go to Step 3. If it does not 
require to be updated, go to Step 6.
Step 6: Output the optimal solution and the corre-
sponding objective function value to end the algo-
rithm. 

2.4 Algorithm design
In this paper, we take the particle swarm opti-

misation (PSO) algorithm based on dynamic inertia 
factor ω to solve our pricing model for urban rail 
transit. The flowchart of the PSO algorithm is de-
scribed in Figure 2. The description of the algorithm 
is as follows: 
Step 1: Initialisation. Initialising each parameter in 
the PSO algorithm, setting population size, generat-
ing particle population with fare adjustment coeffi-
cient δ as the upper level model variable (initialise 
the position Xi

t and velocity Vi
t of each particle with-

in the constraints), recording the current position of 
the particle, the optimal position of population gbest 
and corresponding fitness function value of each 
particle.
Step 2: Calculating the lower level model. Particle 
position Xi

t is brought to the lower level for comput-
ing, and passenger flow Yi

t of different traffic modes 
at different periods is obtained as the optimal solu-
tion of the lower level model.

PSO initialisation
Initialise each parameter, set the

population size, record the particle
position and the optimal position

of the population

Solve lower level model
Bring the upper population location

into the lower level and optimise to get
the passenger flow

Calculate and update
Calculate the upper level fitness

function value, update the particle
position and population optimal

position, inertia factor ω

Determine whether
the convergence conditions are

satisfied

Optimal solution
interference and determining

whether to update

End the algorithm
Output optimal solution and objective

function value

Yes

Yes

No

No

Figure 2 – Flowchart of improved particle swarm optimisation algorithm
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The survey utility value indicators, referring to 
the methodology of the literature [16], are calculat-
ed in conjunction with the current state of the mar-
ket and summarised in Table 1.

The lower limit of the discount rate and the up-
per limit of the price increasing rate for urban rail 
transit are set to 0.5 and 1.5, respectively. For de-
termination of parameters of the generalised cost 
function, a and b equal 1 and 0.25, respectively, in 
combination with the fitting results of previous data. 
The weight coefficients of utility values are deter-
mined by using the hierarchical analysis method 
AHP as shown in Table 2. The research individuals 
of the model are single lines in different time peri-
ods. Line 2 and Line 8 are selected as the objects of 
analysis in this case study and their initial values are 
shown in Table 3. After calculation, the average value 
of passenger flow exchange coefficient x

ih  of Line 
2 and Line 8 equals 2.18. Assuming that the pas-
senger flow exchange coefficient of the same line 
is equal to peak hours during off-peak hours. Com-
bined with the Annual Statistics and Analysis Re-
port of Urban Rail Transit 2019 [17], the discounted 
operation cost per capita is nearly $1.

3. ANALYSIS
The data used in the case study include data bor-

rowed from the Beijing Transportation Develop-
ment Annual Report 2020 [15] and data collected 
from our social survey and investigation means.

3.1 Case design
In 2019, passengers from both urban rail transit 

and conventional bus exceed 6 million in the met-
ropolitan public transport. The rate is roughly 1:1. 
Here we just consider two public transports – ur-
ban rail transit and conventional bus. As shown in 
Figure 3, it is assumed that the peak hours are 7:00–
9:00 a.m. and 5:00–7:00 p.m., and the rest of the 
hours are assumed as off-peak hours. The peak traf-
fic volume of urban rail transit (including morning 
peak and evening peak) accounts for about 78.6% 
of the whole day traffic volume. Therefore, conven-
tional bus accounts for 62.8%. The total number of 
passenger trips during peak hours is about 862,000, 
and the total number of passenger trips during off-
peak hours is about 359,000 (all data are calculated 
on weekdays).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

30

25

20

15

10

5

0

(%
)

Rail transit Conventional bus Minibus Bicycle WalkTaxi Shuttle bus

Figure 3 – The proportion of peak hours of each travel mode in the whole day in the central urban area

Table 1 – Index of generalized utility value

Transportation mode Time period Average fares ($)
P i

k

Quickness
S i

k 

Comfort
M i

k

Punctuality
T i

k

Rail transit
Peak hours 0.75 24.64 11.53 0.77

Off-peak hours 0.75 15.36 8.05 0

Conventional bus
Peak hours 0.28 15.71 10.43 1.99

Off-peak hours 0.28 9.60 6.06 0.68
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Figures 4 and 5 illustrate iterations of peak hours 
and off-peak hours, respectively. As seen in Figures 
4 and 5, business profits reach peak value and keep 
stability at the duration of 20 and 30 iterations. From 
Table 4, it can be seen that the passenger flow of Line 
2 and Line 8 during peak hours decreases by 9.94% 
and 19.48%, respectively, conventional bus increases 
by 10.56%. During off-peak hours, passenger flow of 
Line 2 and Line 8 increased by 32.23% and 44.96%, 
conventional bus decreased by 9.19%. Table 5 shows 
fare of Line 2 and Line 8 increase by $0.32 and $0.09 
during peak hours and decrease by $0.11 and $0.16 
during off-peak hours. The results show that time 
differential pricing model integrated with passenger 
exchange coefficients can effectively differentiate 
Line 2 and Line 8, allowing them to take different 
fares depending on the different level of passenger 
exchange volume during peak hours and off-peak 
hours. Time differential pricing strategy guides pas-
sengers to arrange their travel mode and travel time 
rationally. This effectively diverts passenger flow to 
reduce traffic load in peak hours and increase traffic 
volume in off-peak hours.

3.2 Result
The two models are programmed separately using 

the MATLAB software. The initial parameters of the 
particle swarm algorithm are set (e.g. population size 
is 20, iterations are 50, c1=2, c2=2, r1=0.6, r2=0.3, 
ωmax=0.9, ωmin=0.3). After iterative calculations by 
the improved particle swarm optimisation algorithm, 
the change in passenger flow for urban rail transit 
and conventional bus after the implementation of 
time differential pricing can be obtained, as shown 
in Table 4.

The fare adjustment coefficients δ and fare varia-
tion for urban rail transit are calculated as shown in 
Table 5.

Table 2 – Weight coefficients of each utility value index

Service 
indicators Fares Quickness Comfort Punctuality

Peak hours -21.09% -8.13% -13.29% -57.50%

Off-peak 
hours -28.65% -8.96% -22.08% -40.31%

Table 3 – Initial operation data of Line 2 and Line 8 of Beijing rail transit network

Line
Average daily 
passenger flow 

(10,000 passengers)

Peak hours’ passenger 
flow (10,000 passengers)

Daily average 
distance [km]

Operating 
distance [km]

Peak hours’ passenger 
flow exchange  
coefficient  ηx

i

Line 2 98.6 77.5 5.07 23 2.78

Line 8 44.42 34.9 9.30 31 2.00

Table 4 – Public transport passenger flow after the implementation of time differential pricing

Transportation mode Time period Passenger flow 
(10,000 passengers)

Passenger  
flow change rate (%)

Line 2
Peak hours 69.8 -9.94

Off-peak hours 27.9 +32.23

Line 8
Peak hours 28.1 -19.48

Off-peak hours 13.8 +44.96

Conventional bus
Peak hours 95.3 +10.56

Off-peak hours 32.6 -9.19

Table 5 – Adjustment coefficient δ of urban rail transit ticket price in each time period

Time period Fare adjustment coefficient δ Fare changes on Line 2 ($) Fare changes on Line 8 ($)

Peak hours 1.12 +0.32 +0.09

Off-peak hours 0.86 -0.11 -0.16
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per, the ratio (slope of the straight line in Figure 6) of 
passenger flow between peak and off-peak hours of 
urban rail transit has decreased a lot. In the case of 
this paper, the ratio changes from 3.67 to 2.35, a de-
crease of 1.32, while in the case of literature [16], the 
ratio changes from 2.37 to 1.55, a decrease of 0.82. It 
can be seen that the model proposed in this paper is 
more effective in solving the overcrowded problem 
during the peak hours, resulting in a more rational 
passenger travel structure. Meanwhile, with the addi-
tion of the passenger exchange coefficient, which is 
the biggest innovation of this paper, the model can set 
different fares according to the difference in passen-
ger flow of the rail lines, so that time differential pric-
ing can be achieved specifically for each rail line. The 
advantage of this is that both lines in core areas and 
lines in remote areas can generate more appropriate 
fares according to their characteristics. It achieves a 
balanced transportation system by shifting passenger 
flow to reduce full capacity during peak hours and at-
tracting passenger flow to improve utilisation during 
off-peak hours. The limitation of the model is that the 
competition with other transportation modes in the 
region is not considered. Sensitivity analysis should 
be added to the values of some parameters in the next 
research to further verify the rationality.

Compared with the literature [16], the model 
proposed in this paper focuses more on the com-
parison between urban rail transit lines and divides 
the fare based on the passenger flow level of lines 
themselves, which improves the sensitivity of the 
model while forming a self-restraint. We know that 
passengers can be divided into elastic travellers and 
inelastic travellers based on their travel character-
istics. Elastic travellers are those who can flexibly 
adjust their travel plans, such as tourists. The major-
ity of inelastic travellers are workers and students. 

3.3 Analysis
Here we compare our findings with the existing 

literature [16]. Based on the passenger flow char-
acteristics of peak hours and off-peak hours, two 
bi-level programming models that aim at time dif-
ferential pricing have been developed in literature 
[16]. In the lower level model, the generalised cost 
function is also used in literature [16] considering 
different service indicators. Due to the differences 
between these two cases, it is not possible to direct-
ly compare the results of our paper with [16]. How-
ever, we can compare the results by introducing a 
method to represent the ability between models in-
directly.

We know that the larger the ratio of the passenger 
flow of peak hours and off-peak hours is, the more 
irrational the structure of passenger travel becomes. 
Figure 6 clearly shows that after the calculation of the 
time differential pricing model proposed in this pa-
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考虑乘客交换系数的城市轨道交通分时定价模型

摘要：

乘客交换系数是一个重要因素，对城市轨道交通
的定价模型有很大影响。本文通过分析客流特征的
变化规律，将乘客交换系数引入到城市轨道交通分
时定价的双层规划模型中。同时，交换代价系数也
是定价模型中的一个限制性因素。应用改进的粒子
群优化算法（IPSO）对模型进行求解，仿真结果表
明，所提出的改进的定价模型能够有效地实现对不
同时间段、不同线路的票价分层。以北京轨道交通
2号线和8号线为例，仿真结果显示，2号线和8号线
高峰时段的客流分别减少了9.94%和19.48%，在非
高峰时段分别增加了32.23%和44.96%。该案例研究
显示，通过票价调整疏导客流可以有效地实现削峰
填谷。本文提出的城市轨道交通分时定价模型对于
疏导客流，保证城市轨道交通的安全运营有很大作
用，同时对其他城市的轨道交通运营公司也有参考

价值。

关键字：城市轨道交通；分时定价；双层规划模型； 

乘客交换系数
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