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ABSTRACT 

Uday, Payuna, Ph.D., Purdue University, May 2015. System Importance Measures: A 
New Approach to Resilient Systems-of-Systems. Major Professor: Karen Marais. 
 
 
Resilience is the ability to withstand and recover rapidly from disruptions. While this 

attribute has been the focus of research in several fields, in the case of system-of-systems 

(SoSs), addressing resilience is particularly interesting and challenging. As infrastructure 

SoSs, such as power, transportation, and communication networks, grow in complexity 

and interconnectivity, measuring and improving the resilience of these SoSs is vital in 

terms of safety and providing uninterrupted services.  

 

The characteristics of systems-of-systems make analysis and design of resilience 

challenging. However, these features also offer opportunities to make SoSs resilient using 

unconventional methods. In this research, we present a new approach to the process of 

resilience design. The core idea behind the proposed design process is a set of system 

importance measures (SIMs) that identify systems crucial to overall resilience. Using the 

results from the SIMs, we determine appropriate strategies from a list of design principles 

to improve SoS resilience. The main contribution of this research is the development of 

an aid to design that provides specific guidance on where and how resources need to be 

targeted. Based on the needs of an SoS, decision-makers can iterate through the design 

process to identify a set of practical and effective design improvements.  

 

We use two case studies to demonstrate how the SIM-based design process can inform 

decision-making in the context of SoS resilience. The first case study focuses on a naval 
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warfare SoS and describes how the resilience framework can leverage existing simulation 

models to support end-to-end design. We proceed through stages of the design approach 

using an agent-based model (ABM) that enables us to demonstrate how simulation tools 

and analytical models help determine the necessary inputs for the design process and, 

subsequently, inform decision-making regarding SoS resilience. 

 

The second case study considers the urban transportation network in Boston. This case 

study focuses on interpreting the results of the resilience framework and on describing 

how they can be used to guide design choices in large infrastructure networks. We use 

different resilience maps to highlight the range of design-related information that can be 

obtained from the framework. 

 

Specific advantages of the SIM-based resilience design include: (1) incorporates SoS-

specific features within existing risk-based design processes - the SIMs determine the 

relative importance of different systems based on their impacts on SoS-level performance, 

and suggestions for resilience improvement draw from design options that leverage SoS-

specific characteristics, such as the ability to adapt quickly (such as add new systems or 

re-task existing ones) and to provide partial recovery of performance in the aftermath of a 

disruption; (2) allows rapid understanding of different areas of concern within the 

SoS - the visual nature of the resilience map (a key outcome of the SIM analysis) 

provides a useful way to summarize the current resilience of the SoS as well as point to 

key systems of concern; and (3) provides a platform for multiple analysts and decision-

makers to study, modify, discuss and document options for SoS. 
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CHAPTER 1. INTRODUCTION 

1.1 Background and Motivation 

All systems are subject to change during their operational lifetime. Resilience is the 

ability of a system, process or organization to react to, survive, and recover from adverse 

changes (disruptions). By virtue of its importance, this attribute drives important design 

and development decisions in systems engineering and management. The characteristics 

and features that make a system resilient can also significantly affect the cost and 

schedule of large development projects since resilience implementation consumes 

resources and may therefore require tradeoffs in system functionality. Thus, due to the 

often expensive nature of resilience, maintaining or improving performance is frequently 

given priority, resulting in systems that are (partly) resilient to only a small set of 

disruptions. Additionally, long-lasting systems, such as infrastructure networks (e.g., 

energy, transportation, communications), may be resilient to certain disruptions, but as 

time passes after the system is fielded, changes in the operating environment may make 

the networks less resilient to both old and new types of threats.  

 

Systems-of-systems (SoSs) is a term that has gained traction over the past several years to 

describe networks of independently operating heterogeneous systems that interact with 

one another to provide an overall capability, which cannot be achieved by the individual 

systems alone [White, 2006]. Examples of SoSs include the United States Air 

Transportation System (ATS) and tactical SoSs used by the military. Figure 1.1 illustrates 

a littoral combat SoS. The mission comprises aircraft carriers, littoral combat ships (LCS), 

unmanned surface vehicles (USV), unmanned aerial vehicles (UAV), and helicopters. 

These systems work together to detect and neutralize enemy agents, such as ships,  
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submarines, and mines. Each system performs one or more functions; collaborations 

between systems enable higher-level mission capabilities.  

 

 

Figure 1.1 Illustrative Littoral Combat SoS 
 

Given the importance of systems-of-systems, managing SoS resilience is vital to national 

security, global economies, and in many cases, public health and safety. There are many 

reasons why an SoS may not be resilient: design flaws, unanticipated disruptive events, 

emergent behavior of operational evolution (such as technological and software 

upgrades), poor contingency planning and execution, and limitations at the organizational 

level. Thus, while the resilience of SoSs depends in part on the reliability of their 

constituent systems, traditional reliability and risk approaches do not provide adequate 

guidance on how to achieve or manage resilience. Given the diversity and often wide 

geographic distribution of SoS constituent systems, inclusion of backup systems for a 

SoS is usually impractical and costly. Additionally, high levels of interdependency 

between the systems imply increased risks of failures cascading throughout the SoS. At 

the same time, the features (such as heterogeneity) giving rise to these hurdles also offer 
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the opportunity to improve the resilience of the overarching system through 

unconventional means.  

 

To illustrate the above observations, consider, for example, a critical infrastructure SoS, 

such as the national transportation network. At present, research, development, and 

operation for each sector of the United States National Transportation System (NTS) is 

generally conducted independently, with little consideration of multi-modal impacts, 

societal and cultural influences, and network interactions [DeLaurentis et al., 2007]. 

Typically, resilience is addressed at a modal level: the robustness of a particular 

transportation network is addressed independently of other modes of transportation. 

Designers assume that the remaining transportation network is available when one part of 

one mode fails. For example, when a subway line is suddenly unavailable due to some 

failure or threat, the unmet demand spills onto the road network (comprising buses and 

automobiles). Individual organizations that cover several modes, such as for example the 

Massachusetts Bay Transportation Authority (MBTA), do plan for such disruptions to 

some degree, but there is less coordination between organizations. Thus, for example if 

Logan Airport closes due to weather, AMTRAK rail service cannot meet all the spillover 

demand in a reasonable time. There may also be interdependencies between modes. For 

example, in the aftermath of Hurricane Sandy in 2012, while the airports in New York 

were able to resume operations relatively quickly, road and rail services took longer to 

provide adequate services. As a result, airline employees were unable to get to work at 

the airports and airlines had to fly in technology specialists and customer service agents 

from Atlanta to maintain their specific airport operations [Brown and Drew, 2012]. In 

contrast, in the weeks after an earthquake in southern California (1994), although Los 

Angeles road networks were critically impacted, rail services resumed relatively quickly. 

In particular, the existence of a separate freight rail system in the city allowed officials to 

augment the commuter rail services by using the cargo line during this period [Giuliano 

and Golob, 1998]. 
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As systems continue to grow in scale and complexity, several research efforts have 

focused on developing methods for engineering resilient systems. For example, 

Engineered Resilient Systems was identified as a strategic investment priority by the 

United States Department of Defense as part of its program objectives for 2013-2017 

[DoD, 2011]. Also, the International Council on Systems Engineering (INCOSE) has a 

dedicated working group for Resilient Systems that shapes research on the use of systems 

engineering practices to achieve resilience [INCOSE, 2000]. The Resilience Alliance 

[2001] is another research organization that facilitates research in the scientific 

community with the specific aim of improving resilience in socio-ecological systems. 

The interest in resilience has led to significant developments in studies and models, but 

our review of the literature reveals that the research on SoS resilience is still in its nascent 

stages in terms of defining, measuring, and identifying methodologies to achieve 

resilience. 

 

Resilience management is a process that allows decision-makers to systematically 

evaluate, improve, and maintain resilience. Contrary to risk management which asks 

“what could make the lights go out?” resilience management shifts focus to “it does not 

matter what makes the lights go out, how are we going to deal with it if they do?” 

[Dalziell and McManus, 2004]. Specific questions that need to be answered to manage 

resilience in SoSs can be grouped into three key focus areas (see Figure 1.2):  

1. What is resilience in the context of an SoS and when is it appropriate? 

• How can resilience be distinguished from other system-level attributes? 

2. How can resilience be designed?  

• What level of resilience is desirable and how resilient is the SoS currently?  

• What principles can be applied to achieve resilience in SoS design? 

3. How can resilience be maintained over the SoS lifetime? 

• When does resilience change? 

• How can adverse impacts of changing resilience be observed and mitigated? 
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The answers to these questions lie in a wide range of fields, reflecting the diverse and 

complex nature of SoSs. While a comprehensive treatment of the topic should address the 

three questions, it would be ambitious and impossible to address all three questions 

adequately in a single thesis. Instead, here, we focus on the first two questions and 

present a new approach to aid the design of resilient SoSs. We now provide a brief 

overview of systems-of-systems and conclude the chapter with specific contributions of 

this thesis.  

 

 

Figure 1.2 Key aspects of resilience management 

 

1.2 Systems-of-Systems: A Brief Overview 

In this section, we provide a brief overview of systems-of-systems (SoSs). The interested 

reader is referred to Crossley [2004], Abbot [2006], Dahmann and Baldwin [2008], DoD 

[2008], Jamshidi [2008], Gorod and Sauser [2008], Luzeaux [2011], Barot et al. [2013], 

and TTCP [2014] for a broader discussion of SoSs. 
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The emergence of complex systems over the past few decades has led to increased 

interest in exploring methods to incorporate inherent resilience within them. A complex 

system can be defined as “ an open system with continually cooperating and competing 

elements – a system that continually evolves and changes according to its own condition 

and external environment” (White, 2006). Examples of complex systems include 

satellites, aircraft, and submarines. These systems are expensive to design and build, they 

operate in harsh or remote environments, and any failure of these systems is typically a 

high publicity event. In some cases, such as satellites, maintenance and repair is difficult 

or impossible in physically inaccessible environments.  

 

In recent years, networks of complex systems, known as system-of-systems (SoS), have 

garnered increased attention [DeLaurentis et al, 2011; McCarter and White, 2007]. 

Formally, the term system-of-systems is used to denote networks that are formed from 

the integration of independently operating complex systems that interact with one another 

to provide an overall capability, which cannot be achieved by the individual systems 

alone [White, 2006]. Examples of SoSs include the national air space (NAS) and the 

United States military’s ballistic missile defense system. These meta-systems are 

characterized by the operational and managerial independence of the constituent systems, 

the evolutionary nature and emergent behavior of the larger SoS, and the geographic 

distribution of the sub-systems [Maier, 1998]. High levels of interdependency add to the 

overall complexity of the SoS.  

 

These large-scale meta-systems exist within a spectrum that contains ad-hoc, short-lived 

SoSs on one end, and long-lasting, continually evolving SoSs on the other end [Jamshidi, 

2008]. Two examples within the engineering domain further illustrate this idea. Military 

operations where combinations of various air, ground, and naval units collaborate to 

perform a particular mission fall into the former portion of this continuum. On the other 

hand, large-scale transportation networks, such as the NAS or even the national highway 

system (NHS), have been established to provide services for many decades, and are 

always in a state of continual improvement, and in several cases, deterioration.  
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The primary driver behind the SoS perspective was the need to obtain higher-level 

capabilities and performance than would be possible with a traditional systems view. The 

SoS outlook presents a high-level viewpoint and explains the interactions between each 

of the independent systems. Hence, while SoS engineering has its roots in the established 

systems engineering discipline, addressing the needs and design of SoSs goes beyond 

traditional systems engineering in a number of ways, as shown in Table 1.1. 

 

Table 1.1 Differences between traditional systems engineering (SE) and system-of-
systems engineering (SoSE) (Adapted from Duffy et al. [2008]) 

 SE perspective SoSE perspective 

Scope • Project/product 
• Autonomous/we-bounded 

• Enterprise/capability 
• Interdependent 

Objective • Enable fulfillment of requirements 
• Structured project process 

• Enable evolving capability 
• Guide integrated portfolio 

Time frame • System lifecycle 
• Discrete beginning and end 

• Multiple, interacting system 
lifecycles 

• Amorphous beginning 

Organization • Unified and authoritative • Collaborative network 

Development • Design follows requirements • Design is likely legacy-constrained 

Verification • System in network context 
• One time, final event 

• Ensemble as a whole 
• Continuous, iterative 

 

Interest in analyzing, designing, and improving attributes such as performance and 

robustness of SoS has spurred research in these characteristics. For example, SoS-related 

challenges are the focus of research in various domains such as manufacturing, aerospace, 

military, service industries, and environmental systems [Crossley 2004; Lopez 2006; 

Wojcik and Hoffman, 2006]. Some of these challenges include acquiring systems for the 

SoS, managing the interfaces between the heterogeneous systems, understanding adaptive 

and emergent behavior of the composite systems, accounting for a diversity in the 

management and stakeholders associated with different parts of the SoS, and considering 

the staggered inclusion and exclusion of systems in the overarching system over time. In 

this thesis we focus on the resilience of SoSs and present an approach to designing 
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resilient SoSs. Next, we highlight some of the challenges and opportunities for resilience 

design in SoSs. 

 

Typically, the systems in an SoS are individually acquired and integrated into the larger 

structure. Also, the design and development of these systems are generally independent 

of each other. For instance, although almost every military system is operated as part of a 

system-of-systems, most of these systems are optimized sequentially (i.e., the new system 

must fit well in the existing context) [Jamshidi, 2008], rather than holistically (i.e., how 

should new, existing, and possible future systems be combined to maximize desired SoS 

attributes (e.g., Mane et al. [2007]). In unfortunate cases, this insular systems 

development practice can lead to failures and undesired emergent behavior of the overall 

SoS, as shown in the earlier Hurricane Sandy example.  

 

Interfaces are critical areas of concern for SoS development. Apart from impacting the 

seamless integration of different systems, a direct consequence of interfaces is the 

creation of interdependencies between the constituent systems. Further, as SoSs 

themselves evolve into even more complex networks, the links between SoSs (e.g., 

between communications and energy networks) are gaining increased attention [Thissen 

and Herder, 2008; Zio and Ferrario, 2013].  

 

From an organizational standpoint, the wide range of owners, managers, and stakeholders 

of the systems constituting the SoS increases uncertainty and complexity. For example, 

the global air transportation system (ATS) architecture is driven by the goals of regional 

and global economies. It comprises multiple stakeholders such as regulatory authorities, 

aircraft manufacturers, air traffic control, airlines, airports, and the flying public. Each 

one is concerned with maximizing its own objectives. Air traffic control is concerned 

with flight safety and maximizing throughput, the airlines are concerned with maximizing 

profits, airports are concerned with conserving costs while providing acceptable service, 

and the passengers are interested in getting the best value (low fares, minimum delay, and 

good customer service) from the ATS.  
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Finally, SoSs are typically never fully formed or complete [Abbot, 2006]. Their 

development is evolutionary and adaptive as components, functions, and goals, are added, 

removed, and modified over time. For example, while NextGen aims at transforming 

(through upgrades and new technology) the United States airspace to achieve better 

operational and environmental efficiency, several critical legacy systems will still be part 

of the overall system. This implies that key SoS characteristics, such as performance and 

resilience, must be constantly reviewed as the systems and their operating environments 

change with time. 

 

Based on the type of central control and organizational hierarchy of the constituent 

systems, SoSs can be classified as directed, virtual, collaborative, or acknowledged 

[Maier, 1998; Dahmann and Baldwin, 2008; DeLaurentis et al, 2011]. Directed SoSs (e.g., 

Integrated Air Defense) are centrally managed to fulfill specific purposes. The 

component systems maintain an ability to operate independently, but their normal 

operational mode is subordinated to the central managed purpose. On the other hand, 

virtual SoSs (e.g., the World Wide Web) lack a central management authority and a 

centrally agreed-upon purpose for the system-of-systems. Large-scale behavior emerges, 

and may be desirable, but this type of SoS must rely on relatively invisible mechanisms 

to maintain it. In collaborative SoSs (e.g., the Internet), the component systems interact 

more or less voluntarily to fulfill agreed upon central purposes. Finally, acknowledged 

SoSs (e.g., Ballistic Missile Defense System) have recognized objectives, a designated 

manager, and resources. However, the constituent systems retain their independent 

ownership, objectives, funding, development, and sustainment approaches. This 

difference in central control architecture impacts the interfaces between the constituent 

systems as well as the interactions experienced at the system boundaries, resulting in 

implications for the design and optimization of key attributes such as resilience [Barot et 

al., 2013]. 
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1.3 Terminology 

This section defines various terms that will be referred to in this thesis. 

Resilience. The ability to prepare for and adapt to changing conditions and withstand and 

recover rapidly from disruptions [PPD, 2013].  

 

Resilience management. The process of evaluating, improving, and ultimately 

maintaining resilience at an acceptable level throughout the lifetime of an SoS. 

 

Disruption. An event that can interrupt some activity or process (of the SoS). 

 

Restoration. A strategy to return to nominal SoS performance level after a disruption 

(through the repair or replacement of the disrupted entities).  

 

Mitigation/Recovery. A strategy to reduce the impact of a disruption. 

 

1.4 Thesis Outline and Contributions 

In this thesis, we focus on the first two questions that drive resilience management (see 

Section 1.1) and present a new approach to guide the design of resilient SoSs: 

1. What is resilience in the context of an SoS and when is it appropriate? 

• How can resilience be distinguished from other system-level attributes? 

2. How can resilience be designed?  

• What level of resilience is desirable and how resilient is the SoS currently?  

• What principles can be applied to achieve resilience in SoS design? 

Chapter 1 has introduced the concept of resilience and its importance with respect to 

systems-of-systems.  

 

The purpose of Chapter 2 is to answer the first question: when is resilience appropriate 

(compared to other system attributes) in the context of SoSs? The research follows a 
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review of the concept of resilience as discussed in various fields of investigations, and a 

comparison with related engineering attributes such as reliability, robustness, and 

flexibility. It is seen that characterizing the purpose of the different attributes is useful in 

enriching SoS design in specific ways.  

 

Chapters 3 and 4 focus on the second question in resilience management: how can SoS 

resilience be designed? In Chapter 3 we review and integrate the progress on addressing 

this question. Methods, tools, and processes that can be applied to designing resilient 

SoSs are categorized and discussed. We observe that traditional risk and reliability tools 

have use in assessing resilience but that their application has limitations. Instead recent 

multi-disciplinary research that has made significant strides in modeling and evaluating 

SoSs can be leveraged more effectively to address this issue. Based on this review, we 

conclude that a key gap in addressing SoS resilience is in providing informative design 

guidance. Additionally, a major outcome of this chapter is the synthesis of a set of design 

principles that be applied to the design of resilient SoSs.  

 

Chapter 4 presents a new approach to resilience design. The core idea behind the 

proposed design process is a set of system importance measures (SIMs) that identify 

systems crucial to overall resilience. Using the results from the SIM analysis, we 

determine appropriate strategies from a list of design principles to improve SoS resilience. 

The main contribution of this research is the development of an aid to design that 

provides specific guidance on where and how resources need to be targeted. Based on the 

specific needs of an SoS, decision-makers can iterate through the design process to 

identify a set of practical and effective design improvements.  

 

Chapter 5 demonstrates the applicability of the SIM-aided design approach through two 

case studies: a naval warfare SoS and an urban transportation SoS. Each case study draws 

attention to different aspects of the resilience design. In the naval warfare case study, we 

illustrate how the design process can leverage existing simulation tools and analytical 

models to support end-to-end design. The urban transportation case study instead focuses 
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on interpreting the results of the design process and on describing how they can be used 

to guide design choices in large infrastructure networks.  

Chapter 6 summarizes the contributions of this research and provides suggestions for 

future work. This chapter also highlights key challenges in designing SoS resilience and 

presents a series of research needs that can provide direction to research endeavors in this 

field. 
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CHAPTER 2.  DEFINING RESILIENCE IN THE CONTEXT OF AN SoS 

The purpose of this chapter is to understand and clearly define resilience in the context of 

a system-of-systems. First, we review the concept of resilience as discussed in various 

fields. Next, we make the case of resilience in SoSs by contrasting it with related 

engineering attributes, such as robustness, survivability, reliability, flexibility, pliability, 

agility, and safety. 

2.1 A Multi-Disciplinary Review of Resilience 

There is a growing body of research on resilience in a diverse set of fields, such as 

ecology, economics, organizational science, and engineering. While the specific 

definition of resilience varies between domains, intrinsic to the notion of resilience is the 

ability to respond to and quickly recover from catastrophic events. This section briefly 

discusses how resilience is viewed in various fields. The interested reader is referred to 

Francis and Bekera [2014] for a comprehensive review of resilience definitions in 

different disciplines.  

 

While the concept of resilience has been applied in a variety of diverse domains, there is 

little consensus on the origins of the concept: some scholars claim that the construct of 

resilience began in physics [Van der Leeuw and Leygonie, 2000], others contend that its 

popularity stemmed from its discussion in child psychology [Kantur and Iseri-Say, 2012], 

and yet others claim that Holling’s [1973] seminal work in ecology led to the term 

gaining currency. In physics, resilience describes the physical property of a material that 

characterizes its resistance to shocks [Manyena, 2006]. Research in psychology and 

ecology adopted a similar interpretation of resilience; here, the term emphasizes the 

capacity to resist disruptions or to return to equilibrium after perturbations. For example,  
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in psychology, studies on the children of schizophrenic parents [Garmezy, 1970] and on 

children in the island of Kauai–Hawaii [Werner and Smith, 1977], suggest that resilience, 

as a personality trait, was the key contributing factor behind the survival of adversely 

affected children. These ideas were extended to the larger society in that individuals and 

families are said to “demonstrate resilience when they draw on inner strengths, skills, and 

supports to keep adversity from derailing their lives” [Johnson and Wiechelt, 2004]. In 

general, most researchers agree that psychological resilience refers to successful 

adaptation despite risk and adversity [Masten, 1994], or unexpected achievement in spite 

of stress [Bartelt, 1994].  

 

In the ecology literature, the term resilience has grown to describe two views [Holling, 

1996]. The first definition focuses on the ability of a system to maintain a fixed 

equilibrium point. Here, resistance to a disturbance and the rate of return to the 

equilibrium point are used to measure the resilience of the system. In contrast, the second 

definition moves away from this traditional homeostatic approach and concentrates on 

the ability of a system to move into a different equilibrium or stable state to maintain 

functionality in the face of a disruption [Holling, 1973]. While the first perspective has 

provided the foundations for the development of economic and engineering resilience, the 

second view is largely observed in the ecological sciences. We believe that this second 

definition of resilience will have greater implications in the engineering domain as 

systems grow in complexity and scale (this idea is discussed further in Section 6.2.2).  

 

The concept of resilience has also been widely discussed in the disaster management 

literature. Wildavsky [1991] defines resilience as “the capacity to cope with unanticipated 

dangers after they have become manifest”. This definition concentrates on those events 

that cannot be anticipated and on the post-event state, whereas resilience is also relevant 

when there is a certain level of anticipation and preparedness at the pre-event state. Thus, 

the term refers to the capacity to adjust to foreseen disruptions as well as to adapt to 

unpredictable, sudden, shocks [Tierney, 2003]. 
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In organizational studies, resilience has been defined as the ability of an organization to 

“keep, or recover quickly to, a stable state, allowing it to continue operations during and 

after a major mishap or in the presence of continuous significant stresses” [Wreathall, 

2006]. Hamel and Valikangas [2003] state that revolution, renewal and resilience are 

three important states of turbulent times and that resilience is related to the constant 

reconstruction of organizational values, processes and behavior. It is interesting to note 

that, in addition to disasters that are one-time disturbances with severe consequences, 

daily operations of rapidly changing business environments also require resilience for 

survival. Mallak [1998] states that resilience is not just required under sudden shocks 

such as natural disasters or terrorist attacks, but also relevant for employees faced with 

continuous transformation of business environments. Some scholars [Sheffi, 2007; Weick 

et al., 1999] also argue that resilient investments can be turned into competitive 

advantage. As Folke [2006] states, “disturbance has the potential to create opportunity for 

doing new things, for innovation, and for development”. In line with the same reasoning, 

Lengnick-Hall and Beck [2003] define resilience as more than bouncing back—it is also 

about turning challenges into opportunities and thereby creating superior performance 

than before. This proactive notion of resilience challenges the single-equilibrium 

orthodoxy and further highlights the potential of systems to transition to new, less 

vulnerable steady states.  

 

In the engineering domain, resilience is still a relatively new concept, and several 

definitions have been put forward to define this system characteristic. In Hollnagel et al. 

[2006], an early collection of work on resilience in the engineering domain, resilience is 

defined as the “ability of a system or organization to react to and recover from 

disturbances at an early stage with minimal effect on its dynamic stability”. Another 

closely related definition, given by INCOSE’s Resilient Systems Working Group, states 

that resilience is the “capability of a system with specific characteristics before, during 

and after a disruption to absorb the disruption, recover to an acceptable level of 

performance, and sustain that level for an acceptable period of time” [INCOSE, 2000]. 

Resilience engineering has its roots in the well-established fields of reliability and safety 
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management. The idea of a resilient system builds upon foundational concepts in both 

these fields and applies them to modern-day complex systems. Today, resilience has 

taken on a broader scope than previous definitions: in engineered systems it involves a 

wide range of potential threats and system responses, both preemptive and post event 

[Jackson and Ferris, 2013].  

 

In recent years, resilience in the cyber domain has received growing attention. As stated 

by Goodyear et al. [2010], “threats to cyberspace pose one of the most serious economic 

and national security challenges of the 21st century for the United States and our allies”. 

Large-scale socio-technical systems, such as electrical grids and even manufacturing 

supply chains, are increasingly supported by complex software. While this reliance on 

cyber infrastructure reflects the need to improve efficiencies and lower costs, risks from 

cyber intrusions and targeted cyber attacks have important implications for critical 

civilian and military infrastructures [Chittister and Haimes, 2011]. These concerns have 

prompted research efforts on resilience in several fields, such as, smart-grid operations 

[Pearson, 2011], wireless data networks [Yue, 2003], and military operations [Goldman 

et al., 2011]. 

 

In summary, if resilience is to inform design and policy decisions, there is a need to 

address fundamental questions that continue to blur the concept. Specifically, to enhance 

resilience in any field it is necessary to have a good understanding of what resilience is, 

what its determinants are [Klein et al., 1998], and how it can be measured, maintained 

and improved [Klein et al., 2003].  

2.2 Resilience and Related System-Level Attributes 

Resilience is one member of an expanding family of system-level attributes. This section 

reviews the attributes that are closely related to resilience such as survivability, reliability, 

robustness, and safety. We present the fundamental idea behind each system attribute and 

compare it with resilience. We also provide illustrative examples to show that making 
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these distinctions has value in that it adds to the richness of overall SoS design and 

development.  

 

There are many different ways to distinguish between these system-level attributes, or 

“ilities”. For example, Chalupnik et al. [2013] define these attributes based on the design 

changes required (or not) for a product or process to respond to off-nominal conditions. 

Here, we take a system requirements perspective and apply it to different levels in the 

SoS. This approach allows us to focus on the implications of each attribute for 

engineering decision-making. All the characteristics discussed here deal with the idea of 

a system having to cope with or adjust to some kind of change, after it has been fielded. 

This change can be either: external, for instance, disruptions due to operating 

environment threats, changing policies, and global economics, or internal, for instance, 

component and link failures. In some cases, the differences between the definitions are 

explicit, while in others the differences are subtler. We classify the attributes on the basis 

of the impact the change has on the system requirements, as shown in Figure 2.1. In some 

situations, systems are expected to meet their original requirements in the face of a 

disruption. Qualities that attempt to satisfy these constant system requirements during the 

disturbance include resilience, robustness, reliability, and survivability. In other cases, the 

system goals and requirements themselves vary in order to maintain functionality during 

and after perturbations. Attributes that allow a system to satisfy new or variable 

requirements include flexibility, agility, and pliability. We do not consider these 

attributes further here, the interested reader is referred to Saleh et al. [2009] and Ryan et 

al. [2013] for reviews of flexibility; Mekdeci et al. [2012] discuss pliability; and Dove 

[2001] and Albert and Hayes [2003] discuss agility. 
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Figure 2.1 Classification of attributes based on system requirements 

 

2.2.1 Defining Resilience 

In the engineering domain, several definitions have been put forward to describe 

resilience. For instance, in Hollnagel et al. [2006], an early collection of work on 

resilience, resilience is defined as the “ability of a system or organization to react to and 

recover from disturbances at an early stage with minimal effect on its dynamic stability”. 

More recently, the Presidential Policy Directive (PPD-21) on Critical Infrastructure 

Security and Resilience states “resilience means the ability to prepare for and adapt to 

changing conditions and withstand and recover rapidly from disruptions” [PPD, 2013]. 

See also [INCOSE, 2000], Laprie [2008], Jackson [2010], and Ruault et al. [2012] for 

similar definitions. 

 

Resilience is usually represented as a combination of survivability and recoverability, as 

shown in Figure 2.21. This notional representation is widely used in the literature to 

                                                
11 Several definitions for resilience have been proposed in the literature. Some authors view resilience as a superset of two 

attributes: surviving the disruption and then recovering from it. Others consider survivability to be the overarching attribute. For 

example, according to Richards et al. [2009], survivability (a property that has emerged from the development of military systems and 

describes the ability of systems to minimize the impact of finite-duration disturbances on value delivery) consists of three aspects: 

Type I survivability deals with reducing the likelihood or magnitude of a disturbance; Type II minimizes performance (value) loss in 

the immediate aftermath of a disturbance; and finally Type III survivability enables the recovery of value delivery in a defined period 

of time.  
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depict the fundamental ideas behind resilience (e.g., Tierney and Bruneau [2007], Castet 

and Saleh [2012], and Ayyub [2014]). Resilience, in other words, is not only concerned 

with reducing the likelihood of failure. It also stresses the need to recover from 

unexpected disturbances in the operating environment. Essentially, resilience implies the 

ability of a system to “bounce back” [Madni and Jackson, 2009] and hence, is a function 

of several system properties, including component reliability, re-configurability of the 

architecture, and diversity of sub-systems and components. Resilience can be divided into 

two categories [Rose, 2007; Whitson and Ramirez-Marquez, 2009]: (1) “static resilience” 

is related to the “ability of an entity or a system to maintain function”, or to survive, 

when disrupted; while (2) “dynamic resilience” deals with recovery of the system after a 

shock. We agree with this perspective wherein resilience is characterized as a 

combination of survivability and recoverability, with an emphasis on the ability of 

systems to rebound after a disruption.  

 

 

Figure 2.2 Notional depiction of resilience following a disruption (“resilience curve”) 
 

An important aspect of resilience definition and characterization is performance. For 

most SoSs, performance is a complex metric requiring consideration of multiple 

capabilities. For example, overall performance of the air transportation SoS is some 

function of, among others, flight schedules, delays, fares, and customer service. This is 
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primarily due to the diversity in stakeholders and the objectives that are important to 

them. The objectives for each stakeholder within the air transportation system, and 

therefore the performance metrics applicable to each, can vary widely: air traffic control 

is concerned with flight safety and maximizing throughput; the airlines are concerned 

with maximizing profits; airports are concerned with conserving costs; while providing 

acceptable service, and the passengers are interested in getting the best value (low fares, 

minimum delay, and good customer service) from the ATS. Specifically, in any resilience 

analysis, the choice of the performance metric needs to be documented well so that it is 

clear to the decision-makers what SoS objectives are being considered (or not considered) 

for resilience-related decisions. Table 2.1 lists some example SoS performance metrics 

for various systems-of-systems. 

 

Table 2.1 Example SoS performance metrics 

System-of-Systems Performance metrics 

National Air Space Average delay, throughput, passenger capacity 

Space SoS Carrier/Noise Ratio 

Urban Transportation Average delay, throughput, passenger capacity 

Urban water supply Water production capacity, water available for consumption 

Military Reconnaissance Mission Area imaged, number of targets identified 

Military Combat Mission Mission success 

 

Resilience is highly context dependent – it depends on the structure (architecture) of the 

system (which could be an SoS, an organization, a network, etc.), its operational 

environment, and the disruptive event. For example: 

• Different systems are resilient to different disruptions. For instance, Chicago 

O’Hare International Airport (ORD) is reasonably well equipped to handle 

snowstorms, but 3 inches of snow in southern US caused Atlanta Hartsfield-

Jackson International Airport (ATL) to shut down in early 2014 [CBS, 2014]. 
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• A system could be resilient to one type of disruption but not to another type. For 

example, an airport can be resilient to thunderstorms but may be vulnerable to 

cyber-attacks on its security systems. 

Figure 2.3 and Figure 2.4 highlight a couple of extreme cases of variation in the 

resilience curve. Sometimes, in the aftermath of a disruption, the performance drop does 

not necessarily happen steeply and suddenly. During the time between a disruptive event 

and the full impact, performance usually starts to deteriorate and a more gradual decline 

may be observed [Sheffi and Rice, 2005]. For example, when access to critical 

automotive components was blocked during the 2002 West Coast port lockout, instead of 

halting production immediately, logistical constraints meant that it took New United 

Motor Manufacturing Inc. (NUMMI) four days to stop all assembly activities [Sheffi and 

Rice, 2005]. Similarly, there are several different ways an SoS can recover from 

disruptions. Recovery measures can include an increase in performance for some time 

after a recovery to make up for lost capability (see Figure 2.3). For instance, NUMMI 

used airfreight to get parts to the plants during the port lockout and then made up for 

closures by running at higher-than-normal utilization to make up for lost production. 

Conversely, in other cases, despite adequate recovery, disruptions can have long-term 

impacts on SoSs (see Figure 2.4). For example, the network of small-scale shoe factories 

in Kobe, Japan, lost 90% of its business in the wake of the 1995 earthquake as buyers 

shifted to other Asian factories, and most buyers never came back [Sheffi and Rice, 2005]. 

Another example of long-term impact is the increased costs of computer hard drives 

through 2013, after the 2011 floods in Thailand (second largest computer hard drive 

supplier in the world) [WEC, 2013]. 
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Figure 2.3 Recovery measures can result in a temporary increase in performance 
 

 

Figure 2.4 Disruptions can result in long-term impacts on performance 
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Returning to resilience characterization, one way to represent resilience qualitatively is 

shown in Figure 2.5. A highly resilient SoS is one that experiences a small drop in 

performance (high survivability) and recoups quickly (high recoverability) after a 

disruptive event, as shown in the top right hand corner. Conversely, an SoS with low 

resilience is one that incurs a large performance drop (low survivability) and takes a long 

time to recover (low recoverability), as indicated in the bottom left hand corner of the 

figure. For example, as mentioned previously, the National Airspace System is highly 

resilient to a moderate snowstorm in Chicago (the airports in the region are well-

equipped to maintain functionality as long as possible and to resume services quickly 

once the storm passes) but exhibits low resilience to an equally powerful snowstorm in 

Atlanta (currently airports in this region are less prepared to handle snowstorms with 

respect to having adequate runway clearing facilities and de-icing facilities). Finally, 

moderate resilience can be observed in two ways: high survivability-low recoverability or 

low-survivability-high recoverability (e.g.: New York city airports had to shut down 

during Hurricane Sandy but were able to recover relatively quickly compared to the road 

and rail services in the city). 

 

Next, we contrast the related system-level attributes with resilience, and discuss when 

each attribute is appropriate. 
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Figure 2.5. Levels of resilience 

 

2.2.2 Reliability 

Formally, reliability in the engineering domain is the ability of a system and its 

components to perform required functions under stated conditions for a specified period 

of time (e.g., Modarres et al. [1999], Rausand and Høyland [2004], and Madni and 

Jackson [2009]). Reliability is now a mature topic in the literature and a variety of 

methods exist that enable the design of reliable components and systems. However, as 

systems become more complex and interdependent, understanding reliability in the 

context of the resulting SoSs is not necessarily straightforward or trivial. To illustrate the 

nuances of reliability and resilience implications from an SoS perspective we compare 

these attributes at different levels of the air transportation system, as shown in Table 2.2. 

The SoS builds upwards from lower-level components (e.g., fuel selector valves on 

aircraft), to systems (e.g., aircraft), and finally to the highest-level SoS (the ATS). 
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Table 2.2 Reliability and resilience considerations at different levels of SoS hierarchy 

SoS element Example Comparison between reliability and resilience 
implications 

Component Fuel selector valve Reliability and resilience are functionally equivalent. 
Classic reliability techniques are applicable and useful. 

 System 
(simple) 

Fuel pump 

System 
(complex) 

Aircraft The distinction between reliability and resilience is one of 
degree. Designers must determine when reliability or 
resilience is more appropriate. Classic reliability 
techniques are applicable in specific cases of reliability 
management; such as the use of FMECA in developing 
suitable aircraft maintenance plans. 

SoS Air Transportation 
System or ATS 

Reliability and resilience are distinctly different. The 
definition of SoS reliability is highly context-dependent. 
Classic reliability techniques based on component 
reliability must be augmented by additional tools (e.g., 
robust scheduling of airlines) when managing reliability. 

 

At the component level, measures such as mean time to failure (MTTF, for non-

repairable components) and mean time between failure (MTBF, for repairable 

components), describe in part the reliability of elements. At this level, reliability is an 

important attribute that drives component design and selection. Components can be 

designed to minimize the likelihood of a failure, for example by selecting better quality 

parts, but once a failure occurs, by definition they do not have the inherent ability to 

survive and recover from the failure. A component can be reliable, but on its own, it 

cannot be resilient (since it cannot recover on its own), and no additional design guidance 

can be gained by considering resilience. 

 

The same interpretation can often be applied to simple systems. A fuel pump is reliable if 

it pumps fuel at the specified rate when required to, and, if it does not pump fuel when 

not required to. We can for example define a mean time between failures for the pump—

though this measure must be defined in the context of some set of possible failure levels 

(e.g., the pump only provides 95% of the required pressure, vs. the pump fails 

completely). The fuel pump’s reliability is a function of its components’ reliability, as 
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well as its overall design (e.g., use of redundancy). A fuel pump with backup components 

is designed to be reliable despite failures of its components. As with a component, 

considering resilience does not provide additional design guidance. 

 

As we consider more complex systems, the context aspect of reliability becomes more 

important, and the statistical measures become harder to define and interpret. For 

example, MTBF depends on what level of failure is deemed significant at the aircraft 

level. So, in the case of an aircraft, we might say the aircraft is 80% reliable, if it is able 

to conduct a successful flight 80% of the times it is called upon to do so, given nominal 

operating conditions. An aircraft that must frequently cut missions short or operate at a 

reduced level due to failures in nominal operating conditions is not reliable. Reliability 

engineering techniques can be used to identify the sources of this unreliability. 

 

While aircraft engines are designed to be highly reliable, aircraft are also designed to be 

resilient to an engine failure: when an engine fails, the remaining engine(s) compensate 

for the loss. The engine reliability springs from design, component selection, and a tightly 

controlled maintenance program that work together to minimize the likelihood of 

component failure. The aircraft’s resilience to engine failure springs from redundant 

design (the remaining engines provide sufficient thrust to compensate for the loss), 

protection (the engine cowling is designed to contain most failures, and the engine 

mountings are designed to fail and release the engine if it presents an unbalanced load), 

and training (the pilot is trained to shut down a malfunctioning engine and use the aircraft 

control surfaces to compensate for asymmetric thrust). 

 

Finally, at the SoS-level, reliability and resilience are distinct and highly context-

dependent. At this level, reliability is typically some function of the performance of the 

overall SoS. For instance, we would say that the air transportation network is reliable if 

some majority of flights arrive and depart as scheduled under some defined set of 

nominal weather conditions. This reliability is primarily driven by reliable systems 

(aircraft) and by robust scheduling. On the other hand, the system is resilient if it can 
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continue to deliver passengers to their destination despite rare or unexpected disruptions. 

The air transportation system is not highly resilient—a large blizzard in one region can 

disrupt flights around the country for several days. In contrast, some public transportation 

systems demonstrate higher resilience: when a subway line is unavailable, passengers are 

transported using buses 

2.2.3 Robustness 

The terms resilience and robustness are often used interchangeably; however, there is an 

important difference between these concepts. Robustness can be thought of as the 

property of a system that allows it to satisfy a fixed set of requirements, despite changes 

in the environment or within the system [Saleh et al., 2009]. While the definition of 

resilience involves a similar idea, the distinction between the two attributes is that while 

no performance loss is allowed in the case of robustness, a resilient system may permit a 

(sometimes temporary) performance loss in “bouncing back” from the adverse event 

[Haimes, 2009]. Robust systems are expected to satisfy the original performance 

requirements during a disruption, which may be difficult or costly. Therefore, robust 

responses are appropriate for a small range of disturbances—those that occur frequently 

or that can be handled robustly in a cost-efficient manner. Less frequent disturbances, or 

those that are expensive to respond to without a performance loss, are better responded to 

in a resilient manner. For example, passenger aircraft are expected to encounter rain and 

thunderstorms quite frequently. They are therefore designed to be robust to rain, and to 

fly with enough fuel to be routed around (un)expected thunderstorms encountered en 

route. In contrast, extreme crosswinds occur less often, and constructing and operating 

passenger aircraft capable of landing in severe crosswinds is costly. A resilient response 

is therefore more appropriate. When extreme crosswinds occur, aircraft are diverted to 

the nearest suitable airport for landing. The passengers and crew are safe, but not at their 

intended destination, thus in this case the response is resilient, not robust. 
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2.2.4 Safety 

The difference between resilience and safety is quite distinct. Safety refers to the 

objective of ensuring accident prevention through actions on multiple safety levers, such 

as technical, organizational, or regulatory [Leveson, 1995; Leveson, 2012; Saleh et al., 

2014]. This attribute values human life (or property loss) over other performance traits. 

Specifically, with respect to resilience, safety can be thought of as the aspect of 

survivability that is related to minimizing loss of life (or property). In some cases, both 

these attributes go hand-in-hand. For instance, in the event of a disruption to a 

transportation system (e.g., a hostile attack on an airport) designers need to plan for both 

safe (ensuring safety of travelers and employees) and resilient (reduce subsequent delays 

that occur due to airport closure and redirection of flights to other airports) operations of 

the SoS. In other cases, such as financial markets and global economies, the emphasis is 

on performance recovery (e.g.: minimizing fall in stock prices due to shocks to the 

system). In this case loss of human life (safety) is not a major concern. The above 

transportation example highlights the role of safety when the system needs to satisfy the 

same requirements it was designed for (provide transportation services with minimum 

delay). Safety must also be maintained when other requirements change (though the level 

of acceptable safety may change). For example, if an aircraft is retrofitted for use as a 

crop duster, the design must ensure that the pilot is not exposed to the crop dusting 

chemicals. Thus the retrofitted aircraft must maintain the safe air environment for the 

pilot. 

 

Safety-critical systems are systems whose “failure might endanger human life, lead to 

substantial economic loss, or cause extensive environmental damage” [Knight, 2002]. For 

instance, the flight management system (FMS) on aircraft is a safety-critical system as 

collects and consolidates important information with respect to radio navigation, 

geographical positioning, flight planning and the aircraft’s health status. Many SoSs 

include safety-critical systems at various levels. For example, in addition to the FMS on 

board an aircraft, the air traffic control system is another safety critical system. Because 

these systems’ failure can have such negative impacts, there is an entire field of research 
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and practice devoted to ensuring their safety (see, for example, Bowen and Stavridou 

[1993] and Storey [1996]). 

 

To summarize, reliability is appropriate when high frequency-low impact disruptions 

(e.g., rain showers) occur and the SoS (e.g., air transportation system) is expected to 

maintain functionality without any loss in performance. Robustness is suitable when high 

(or medium) frequency-moderate impact events (e.g., thunderstorms) occur and the SoS 

is expected to maintain functionality without any loss in performance (e.g. route aircraft 

around the thunderstorm). Finally, resilience is appropriate when low frequency-high 

impact disruptions (e.g., blizzards) occur and the SoS is expected to survive and recover 

from the adverse event (e.g., divert aircraft to other airports). 

2.3 Summary and Conclusions 

As discussed earlier, an adequate treatment of SoS resilience should address the 

following questions:  

1. What is resilience in the context of an SoS and when is it appropriate? 

• How can resilience be distinguished from other system-level attributes? 

2. How can resilience be designed?  

• What level of resilience is desirable and how resilient is the SoS currently?  

• What principles can be applied to achieve resilience in SoS design? 

3. How can resilience be maintained over the SoS lifetime? 

• When does resilience change? 

• How can adverse impacts of changing resilience be observed and mitigated? 

This chapter focused on the first question by (1) reviewing how resilience is viewed by 

different disciplines, and (2) in the case of SoSs, in particular, identifying and 

characterizing the situations in which resilience is needed. We observe that the essence of 

this attribute remains constant across the different domains, but the specifics of designing 

and operating resilient systems varies widely. Focusing on SoSs, we conclude that 
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considering a spectrum of system-level attributes is useful to enrich overall design and 

each one adds value in specific ways.  

 

In the next chapter, we take a deeper look designing SoS resilience (the second question). 

We present an overview of traditional system-level risk and reliability techniques as well 

as more recent multi-disciplinary approaches that can be applied to SoS resilience. 
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CHAPTER 3. DESIGNING RESILIENT SoSs: A REVIEW OF METHODS, METRICS, 
AND CHALLENGES 

The focus of this thesis is on supporting the design of resilient SoSs, a vital part of overall 

resilience management (see ). Designing resilience in SoSs consists, on the one hand, of 

evaluating resilience (measure, either quantitatively or qualitatively, the resilience of a 

particular SoS), and, on the other hand, of creating resilience (determine strategies and 

features, both technical and non-technical, that can be employed to improve SoS 

resilience). Since resilience cannot be improved effectively without first measuring it, 

both these phases are important to overall design and often times need to be analyzed 

iteratively. In this chapter, we review existing approaches in the literature that can help 

design resilience. First, we discuss whether and how existing reliability and risk 

assessment techniques can be leveraged to address SoS resilience.  Next, we consider 

“newer”, more multi-disciplinary approaches that have application in the same topic.  

3.1 Reliability Engineering and Risk Assessment 

Reliability engineering and risk assessment both ask versions of the following four 

questions [cf., Kaplan and Garrick, 1981]: (1) what can go wrong? (2) how likely is it? (3) 

what are the consequences? and (4) what can be done about it? Reliability engineering 

typically focuses on the ability to continue providing some pre-defined functionality 

despite performance failures, and on quantifying reliability at various levels in the system. 

Risk assessment considers a slightly different problem, that of operating without causing 

loss of life or property. Thus in risk assessment the analysis typically begins by 

attempting to identify all the ways that the system could fail. For example, in air 

transportation, risks include mid-air collision, or engine failure. Once these risks have 
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been identified, various approaches can be used to characterize the risks. Here we briefly 

review some of the techniques used in reliability engineering and risk assessment, and 

then focus on their application to designing SoS resilience. For more depth on the 

techniques, the reader is referred to the many excellent texts on reliability engineering 

and risk assessment (e.g., Rausand and Høyland [2004]). 

 

Hazard identification is one of the hardest parts of risk analysis, because it is not a purely 

analytical process. Instead it requires a combination of imagination and technical skill. 

Many approaches to hazard identification have been proposed; most are essentially 

versions of checklists, which provide the analyst with ideas on what might go wrong 

[Vaidhyanathan and Venkatasubramianian, 1995; Dunjo et al., 2010]. Hazard 

identification is difficult in complex systems because the hazards may be largely 

unknown. There have been attempts to expand the range of hazards to include unknowns 

(e.g., Paltrinieri et al. [2011]) and several tools have been developed for robust risk 

analysis to deal with uncertainties (e.g., Ben-Haim [2012] and Cox [2012]). While SoS 

specific hazard analysis tools have not been developed to date, current techniques can be 

applied. For example, Robinson [1995] provides an overview of applying HAZOP 

analysis to electrical power grids and transport systems; Mahnken [2001] describes the 

use of case studies to identify latent design deficiencies – for instance, best practices from 

the hazard identification process in the chemical industry can be used to discover flaws in 

electrical power grids.  

 

Failure modes, effects, (and criticality) analysis (FMEA/FMECA) traditionally considers 

the impact of component failures on system-level risk. An FMECA analysis begins by 

identifying the various failure modes of a component (e.g., valve fails open, valve fails 

shut), and then determines its effects (e.g., coolant not provided), and how critical the 

failure is to the system (e.g., runaway reaction). FMECAs can be similarly used to 

identify potential failure modes and to investigate their impact on the overall SoS 

functionality. Here, each failure is considered individually and independently from other 

failures, and hence, these techniques will be most helpful for isolated failures in an SoS. 
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For instance, in the air transportation network, FMECA can be used to assess the impact 

of individual airport failure modes (e.g., airport closed due to terror alert, or airport 

closed due to weather) on the overall SoS’s capabilities, which in turn could be used to 

investigate and institute better equipment and procedures at critical airports. 

 

A fault tree is a logic diagram that indicates how a system-level failure can be generated 

by component failures. This analysis begins with an undesirable end state (failure) and 

then works backwards (deductively) to find which combinations of component failures 

can result in the end state. An event tree, on the other hand, is a logic diagram that allows 

designers to systematically study the propagation of a basic initiating event to its 

potential consequences. Event trees are almost the reverse of fault trees in that they work 

forward (inductively) from an initiating event and develop a time-sequence of events to 

determine which, if any, undesirable end states can be reached from the initiating event 

[Rasmussen, 1975]. Although their application to (and, in particular, quantification) 

complex systems is challenging (see Siu, 1994), fault and event trees can be used in SoS 

resilience analysis to document how system failures can combine to decrease SoS 

performance (e.g., Fleming et al. [2013]). 

 

Because SoSs are particularly susceptible to common cause failures and partial failures, 

we believe that fault and event trees do not serve well to assess probabilities of failures. 

Similarly, other tools for quantifying failure probabilities, such as Bayesian-based 

statistics [Clemen and Winkler, 1999], whether based on system or component level data, 

are also harder to apply to complex systems and SoS involving a combination of 

hardware, software, and people [Aven, 2013a]. Here, as in hazard identification, new or 

complex systems are especially challenging. For example, over its lifetime, assessments 

of Space Shuttle reliability ranged from 1 in 100 to 1 in 100,000 [Feynman, 1986]. When 

systems must operate in a wide range of, or poorly understood, environments, risk 

quantification becomes even more difficult. For example, because the risk of earthquakes 

in the US Northeast was underestimated in the 1970s, nuclear power plants in the region 

actually have the highest risk of seismic damage [Dedman, 2011]. 
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Recent research efforts have attempted to adapt some “traditional” reliability engineering 

methods, such as Bayesian belief networks (BBN) and component importance measures, 

to networks of complex systems. BBNs are directed acyclic graphs used to illustrate the 

relationships between system failures and their causes or contributing factors. BBNs are 

considered to perform better than fault trees at reliability analyses since they are not 

limited to binary events and can handle partial failures. For example, Weber and Jouffe 

[2006] formalize a method using Dynamic Bayesian Networks to model the reliability of 

manufacturing processes. Their focus on the flows between systems highlights key 

dependencies and common failure modes. This Bayesian approach can potentially be 

applied to the design of interdependencies in SoSs.  

 

Component-failure based reliability and risk techniques typically suggest using higher 

reliability components or redundancy to improve system-level reliability. While some 

SoS systems can be made more reliable (e.g., more reliable aircraft), the extent of 

possible improvement is often limited (e.g., we can provide snow-clearing at an airport, 

but during a blizzard the airport will have to shut down for safety reasons). Also, given 

the heterogeneity and, often wide geographic distribution, of the constituent systems, 

redundant systems in an SoS are impractical and costly. Using redundancy alone runs the 

risk of overlooking other, more optimal, resilience improvement measures. Section 3.2.1 

highlights some alternative techniques to creating resilience in SoSs. 

 

Some recent research has acknowledged the limitations of the direct application of 

existing reliability techniques and offered ways to expand these methods for the useful 

analysis of SoS resilience [Johansson et al., 2013; Zio and Ferrario, 2013]. For example, 

Zio and Ferrario [2013] apply an extension of existing reliability analysis using Monte-

Carlo simulations to assess the seismic risk for a nuclear power plant embedded in the 

power, water, and transportation networks that support its operation.  

In summary, reliability and risk-based approaches to resilience in SoS do have 

application, but their use can also lead to incorrect assessments of resilience (see Table 

3.1). Park et al. [2013] suggest that the lack of progress on resilience engineering in SoS 
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may be “partly because quantitative design approaches consistent with principles of 

resilience remain elusive, and partly because analytic approaches to resilience in 

engineering have become conflated with existing approaches to analysis of risk”.  

 

Table 3.1 SoS resilience design guidance provided by traditional reliability and risk 
assessment techniques 

Reliability and 
Risk 

Assessment 
Method 

Design questions addressed by 
method (wholly or partially) 

Limitations with respect to SoS 
design 

FMEA/FMECA • How can resilience be created? 
• When are specific resilience 

improvement strategies suitable? 

• Focus is on single component 
failures and hence cannot capture 
cascading failures due to 
interdependencies prevalent in 
SoSs 

• Typically deal with hardware 
component failures and cannot 
capture crucial software and 
organizational interdependencies 
inherent in SoSs 

Fault and event 
trees 

• How can resilience be created? 
• When are specific resilience 

improvement strategies suitable? 

• Deal with binary failures – cannot 
handle partial failures as are often 
times seen in SoSs 

• Can result in large and 
complicated documentation – 
making them less likely to be 
useful for design guidance 

• Does not provide specific insight 
on design improvement 

Bayesian belief 
networks 

• Where (in the SoS) should 
resilience improvement strategies 
be incorporated? 

• Depends on quality and extent of 
prior beliefs (excessive optimistic 
or pessimistic expectation can 
distort results) 

Component 
importance 
measures 

• Where (in the SoS) should 
resilience improvement strategies 
be incorporated? 

• Consider binary failures – cannot 
handle partial failures 

• Assume system architecture is 
fixed – not applicable in case of 
SoSs where network is constantly 
evolving 

Probabilistic 
risk assessment 

• How can resilience be measured?  • Requires near-complete 
identification of hazards 
(disruptions) 

• Does not provide specific insight 
on design improvement 
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3.2 SoS-focused Approaches 

Other than suggesting reduction of failure rates (e.g., through better components, or more 

frequent maintenance), reliability and risk analysis methods do not provide guidance on 

other types of mitigation strategies. As a result, in many cases, resilience is achieved 

through a trial-and-error process rather than through detailed SoS-level analysis. Such ad-

hoc approaches could result in achieving too much (unused) resilience in one part of the 

network, and too little resilience in another. Also, such approaches could make an SoS 

highly resilient to certain kinds of disruptions but less resilient to other threats. To design 

and test for resilience across a broad range of conditions requires understanding at a 

much finer-grained level how the systems will be used, the environments in which they 

will be used, and the threats they can expect to encounter [Neches and Madni, 2012]. 

This view echoes that of researchers who raise the need for a different perspective of 

resilience in the context of SoSs [Sheard and Mostahari, 2008; Madni and Jackson, 2009; 

Georger et al., 2014]. 

 

This section draws on a variety of “newer” research efforts to provide a sense of how SoS 

resilience can be evaluated and created. We broadly categorize these studies into a set of 

three design approaches: principles, tools and models, and metrics (see Table 3.2), and 

highlight how useful they are in providing specific design guidance.  

 

Table 3.2 Design guidance provided by SoS-focused design approaches 

Design Approaches Design questions addressed by method (wholly or partially) 

Design principles 
• How can resilience be created? 
• When are specific resilience improvement strategies suitable? 
• What are the tradeoffs associated with these strategies? 

Simulation tools and models 
• How can resilience be created? 
• When are specific resilience improvement strategies suitable? 
• Where (in the SoS) should these strategies be incorporated? 

Metrics and frameworks • How can resilience be measured?  
• When is the SoS resilient enough? 
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3.2.1 Design Principles 

A design principle, or heuristic, is an abstraction of experience that can be used to 

effectively guide engineering design [cf. Maier and Rechtin, 2000]. For example, in 

systems engineering, one design principle is to minimize coupling, which can, for 

example, be accomplished by increasing the modularity of the design. Ensuring stable, 

intermediate forms during SoS development and evolution is a principle applicable at the 

SoS level (see Maier and Rechtin [2000] for a list of heuristics pertinent to architecting 

SoS). Here, we present a set of ten principles to guide the design of SoS-level resilience. 

Although this list is not intended to be exhaustive, we believe many resilience 

improvement strategies derive from these principles. While several of the principles 

outlined below are rooted in systems engineering (see Jackson and Ferris [2013] for a 

recent compilation), the relevant principles have been adopted here for SoS design 

guidance2. The list is organized by theme as follows: the first four principles represent 

system-level design features; the next two represent network-level design features; the 

following three are based on human involvement (observation, decision-making, 

communication); and the last principle suggests a combination of the previous nine.  

1. Physical redundancy. Employ redundant hardware (backups) to provide functionality 

when primary systems in the SoS fail [Jackson and Ferris, 2013]. For example, in the 

case of a public transportation network, one way to create physical redundancy is by 

maintaining extra buses at city depots. In the event of a disruption (e.g., traffic jam or an 

accident) these spare buses could be used on the original routes in place of the failed 

primary buses, or depending on the situation, they could even be used to augment service 

by running different routes. 

 

2. Stand-in/Functional redundancy. Leverage heterogeneity in the SoS to provide 

redundancy without adding additional systems [Zhang and Lin, 2010; Jackson and Ferris, 

2013; Uday and Marais, 2013]. For example, loss of the LCS (see Figure 1.1) can be 

                                                
2 We do not explicitly consider cyber resilience here. Though cyber resilience is increasingly becoming an integral concern for 

these SoSs, principles that achieve this resilience require a different, more software-centric approach 
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compensated for by using better-equipped helicopters (carrying more weapons and larger 

fuel tanks) and improved unmanned surface vehicles (sophisticated surface imaging and 

radar capabilities). The enhanced features on the helicopters and surface vehicles allow 

these systems to be re-tasked to perform new functions in the event of an LCS 

incapacitation. 

 

3. System-level Properties. Improve system-level properties, such as flexibility, 

robustness, and adaptability, of the constituent systems to achieve SoS-level resilience. 

For example, flood protection (robust design) at entrances to subway stations in large 

cities can prevent flooding during extreme disruptions such as hurricanes, thereby 

preventing catastrophic repercussions to the rest of the transportation infrastructure 

[Higgins, 2012]. Another way to improve resilience at the regional transportation level is 

by enabling flexibility at the lowest service level (e.g., through the use of larger buses).  

 

4. Repairability. Decrease total time to recovery, that is, ensure availability of adequate 

resources and personnel to limit disruption impact on the primary failed system [Jackson 

and Ferris, 2013]. For example, if a blizzard occurs at an airport, while closure of the 

facility is inevitable, having appropriate snow removal equipment, trained personnel, and 

instrumentation capabilities, can provide expedited recovery as the storm’s impact 

weakens. The repairability principle can also be applied at the system level in order to 

have SoS level benefits. For instance, if the primary radar at an airport fails, timely repair 

of this system will ensure speedy return to full service of both terminal and en-route 

operations. 

 

5. Inter-node Interaction. Every node in the SoS should be capable of communicating, 

collaborating, and coordinating with every other node [Jackson and Ferris, 2013]. For 

example, in the event of a hostile attack that results in the loss of an LCS (see Figure 1.1), 

other systems in the SoS, especially those that draw from or provide information to the 

ship, must be immediately aware of its incapacitation. This can be achieved by improving 

the communication capabilities between the systems in the SoS. 
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6. Localized capacity. If a single node in the SoS is damaged or destroyed, the remaining 

nodes should continue to function [Jackson and Ferris, 2013], that is, cascading failures 

should be prevented or minimized. For example, if an airport closes, having alternative 

airports with adequate capacity nearby will allow flights to be diverted, while minimizing 

the domino effect through the rest of the airspace.  

 

7. Human-in-the-loop. Humans should be in the loop when there is a need for “rapid 

cognition” and creative option generation [Madni and Jackson, 2009]. For example, the 

blackout across the Northeast in 2003 happened in part due to cascading automatic 

failures: preset relays were programmed to protect individual equipment, and as each one 

acted, isolating a power line or a transformer, the cascading disturbance caused a massive 

blackout impacting hospitals, airports, and subways [Wald, 2013].  

 

8. Drift correction. Pre-emptively initiate resilience measures before the disruption so 

that mitigation steps may be initiated before the onset of the actual adverse event 

[Jackson and Ferris, 2013]. For instance, in the aftermath of the Icelandic volcano in 

2010 that had widespread impact on global aviation services, sensors are being developed 

to provide warning of volcanic ash and to provide pilots with real-time information to 

alter their flight paths [BBC, 2010]. 

 

9. Improved communication at organizational level. Facilitate real-time information 

sharing and command and control activities between stakeholders and operators [Chang 

et al., 2013]. Improved communication at the organizational level can minimize 

confusion and mismanagement in the aftermath of a disruption. For example, in the event 

of a terror attack at an airport, timely and effective sharing of information regarding 

recovery procedures between regulatory authorities, airports, and airlines, can help 

minimize performance impacts on the larger network: passengers can be evacuated safely 

and re-directed to other modes of transport efficiently.  
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10. Layered defence: Use a combination of the above design principles to balance 

protection (disruption prevention) and resilience (surviving and recovering from a 

disruption) in SoSs [Haimes et al., 2008].  

 

Table 3.3 highlights which region of the resilience curve (survivability and recoverability) 

each design principle addresses.  

 

Table 3.3 Resilience improvement implications of design principles 

Category Design 
Principles 

Resilience Improvement 

Improve 
survivability 

Improve 
mitigation 
capability 

Improve/ 
facilitate 

mitigation 
accessibility  

Reduce time 
taken to 
restore 

disrupted 
systems 

System-
level 

1. Physical 
redundancy  !    

2. Functional 
redundancy  !    

3. System-level 
properties !     

4. Repairability    !  

Network-
level 

5. Inter-node 
interaction   !   

6. Localized 
capacity !     

Human 
aspects 

7. Human-in-
the-loop !   !   

8. Drift 
correction !     

9. Improved 
communication !   !   

All levels 10. Layered 
defense !  !  !  !  
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3.2.2 Simulation Tools and Models 

Improved computational capabilities in recent decades have led to the development of 

high-fidelity simulations and models. These tools can aid the design process in several 

ways; for example, simulations can help study failure propagation, evaluate different 

recovery strategies, and identify critical nodes and links. While we can leverage existing 

network theory based models to analyze links and nodes in SoSs, many of these methods 

assume homogenous nodes, leading to difficulties in capturing key SoS characteristics 

such as diversity and interdependencies. Given the inherent complexity of SoSs, efforts 

are needed to build on these network-based models by harnessing multiple fields such as 

control theory, statistical analysis, and operations research. Researchers have in recent 

years begun to address these issues and here we review efforts on relevant and useful 

simulation tools.  

 

Failure Propagation. Understanding how disruptive impacts propagate is an important 

element of any resilience analysis, especially in the case of SoSs where the coupling 

between independent systems is not always evident. Failure propagation models are 

useful to identify critical links and to assess recovery options. Such models can be used, 

for example to the air transportation system to identify critical airports and to assess 

recovery options (road, rail, and air) if services at these airports fail. 

 

Most resilience-related research uses some aspect of network theory to study effects of 

disruptions [Crucitti et al., 2004; Ash and Newth, 2007; Kurant and Thiran, 2007; Ulieru, 

2007; Reed et al., 2009; Buldyrev et al., 2010; Sterbenz et al., 2011]. With many SoSs, 

the assumption of homogenous nodes is not justified as these networks typically consist 

of heterogeneous nodes (each performing different functions). A few studies have 

considered nodes with the same function but different capacities [Motter and Lai, 2002; 

Crucitti et al, 2004].  

 

Instead, multi-layer networks resilience is gaining increasing attention as a better way to 

represent heterogeneous networks [Castet and Saleh, 2013]. Networks can be modeled as 
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multi-layers in two different ways. First, the network may consist of different physical 

layers. For example, the transportation system can be modeled as a road layer, a rail layer, 

and so forth. Or a network may require support from different layers. For example, the 

rail network depends on the electricity network. Research in this field has led to the 

introduction of interdependent network analyses to characterize the properties of such 

networks [Rinaldi, 2004; Newman et al., 2005; Kurant and Thiran, 2007; Xu et al., 2011; 

Ouyang, 2012; Trucco et al., 2012; Filippini and Silva, 2013]. Applying these studies to 

SoSs, designers can study how a failure in one network can have repercussions in the 

other and how interdependent networks can fail catastrophically after the removal of a 

small fraction of nodes. These results in turn can guide resource allocation at critical 

nodes. For example, in a multi-modal transportation network, impacts of disruptive 

events can be avoided by co-locating certain subway and bus stations thereby providing 

redundancy for the two transportation modes. 

 

Apart from network theoretic approaches, recent research has attempted to leverage 

control theory to deal with resilience of interconnected and interdependent systems (e.g. 

Barabási and Albert [1999], Liu et al. [2011], and Alessandri and Filippini [2013]). For 

instance, with the ultimate goal of developing resilient controllers, Alessandri and 

Filippini [2013] present an initial framework that uses switching linear dynamics to cope 

with nominal and off-nominal (failure) behavior of interconnected systems.  

 

Recovery Strategies. Simulation tools can (1) allow designers to study a range of 

resilience improvement options, (2) facilitate in-depth studies by allowing a large number 

of parameters to be varied, and (3) usually provide some visual representation of design 

implications that is vital to stakeholder communication. Most of these tools have been 

developed for infrastructure networks, and can be applied to other SoSs relatively easily 

[Bruneau and Reinhorn, 2004; Shinozuka et al., 2004; Miles and Chang, 2006; Zobel, 

2011; Barker et al., 2013; Barker and Baroud, 2014]. For example, Shinozuka et al. [2004] 

developed several restoration curves to study the return of electric power and water 

supply to customers after major catastrophic events, such as earthquakes. Similarly, Miles 
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and Chang [2006] developed a simulation tool that generates recovery paths for 

communities in the aftermath of a disaster.  

 

Critical Nodes and Links. Mathematical models and simulations can help designers 

identify resilience-based regions of concern (critical nodes and links) within SoSs 

[Garvey and Pinto, 2009; Guarniello and DeLaurentis, 2013]. Guarniello and 

DeLaurentis [2013] use the Functional Dependency Network Analysis model (originally 

proposed by Garvey and Pinto, 2009) to identify critical systems in SoSs and critical 

dependencies between constituent systems. For instance, in the naval warfare SoS, 

disruption of the LCS could lead to incapacitation of the weapons-equipped helicopter 

since the LCS is now unable to transmit crucial target information to the airborne system. 

 

3.2.3 Metrics and Frameworks 

Measuring resilience is a key component of designing resilience (see Figure 1.2Error! 

Reference source not found.): quantitative assessment techniques are needed to evaluate 

the effectiveness of and to compare various resilience improvement designs. While 

metrics and frameworks add significant value to the SoS analyst’s toolkit, developing 

generalizable measurements that can be applied broadly across a wide range of different 

SoSs is challenging. Additionally, given the diversity of stakeholders associated with 

SoSs, difficulties arise with capturing all aspects of interest such as cost, performance, 

and safety, in a resilience metric. In this section, we review various metrics and 

frameworks. 

 

Metrics. Ayyub [2014] proposes a resilience metric that is a function of the failure 

profile, recovery profile, as well as the various times involved with resilience, such as 

time of disruption, time during of failure, and time duration of recovery. Henry and 

Ramirez-Marquez [2012] define resilience as a ratio of system recovery to the loss after a 

disruption, where recovery and loss are measured as changes with respect to SoS 

performance. Francis and Bekera [2014] develop a resilience factor that is a function of 
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speed of recovery and the various performance levels before and after the disruption and 

recovery actions. These metrics can be used to estimate the overall resilience of different 

SoS designs. For example, military operators can adopt these metrics to perform analyses 

of alternatives – should target identification for a mission be provided using satellites or 

UAVs? And, which SoS architecture would be most resilient to known and unknown 

threats? Richards [2009] presents an overall resilience metric that is a measure of the 

system utlility over the design life. While useful to make an overall comparison of 

different systems, such a measure provides little design guidance regarding resilience 

improvement. 

 

While there are “advantages to using a single calculated value to define resilience, it is 

also important to recognize the potential issues associated with doing so” [Zobel, 2011]. 

In particular, an overall metric provides little, if any, information regarding specific areas 

within the SoS that need attention. Also, in the context of SoSs, the uncertainties 

associated with network operations, evolution, and management are quite large and hence 

one metric may not be able to capture all the unknowns. To address these concerns, some 

studies focus on capturing or disentangling the various dimensions of resilience. For 

example, Barker et al. [2013] developed two resilience-based component importance 

measures for networks. Their study quantifies the impact of a link disruption on overall 

resilience, as well as the impact when a link cannot be disrupted. Han et al. [2012] 

propose a conditional resilience metric using Bayesian networks to measure each 

constituent system’s contribution, and subsequently to identify the most critical systems 

to the overall SoS resilience. Pant et al. [2013] use an extension of the economic input-

output model to investigate the resilience of interdependent infrastructures. They develop 

two metrics: static economic resilience, which focuses on the survivability aspect of the 

overall network, and dynamic economic resilience, which includes the recovery of the 

network after a disruption. There have been a few attempts to modify and/or expand 

existing component importance measures to analyze the resilience of networks. For 

example, a recent paper (Barker et al., 2013) develops two resilience-based CIMs for 

networks. Although this study does consider the resilience of the overall network, the 
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analysis and subsequent metrics are only applicable to networks with homogenous nodes. 

In addition, emphasis is placed on network flow (that is link resilience) rather than to 

nodes. While this approach may be beneficial in addressing network resilience, it appears 

to be useful only for networks where the flow between mostly similar nodes is of concern 

rather than the particular functions carried out at the nodes themselves. 

 

Frameworks. Frameworks have been the dominant trend in urban infrastructure 

resilience research. For example, the Multidisciplinary Center for Earthquake 

Engineering Research (MCEER) at the State University of New York views resilience as 

a combination of four ‘R’s: robustness, redundancy, resourcefulness, and rapidity, and 

proposes a framework to measure each ‘R’ [Bruneau et al., 2003; Shinozuka, 2004]. 

Other work that has emerged from MCEER suggests a resilience index between 0 and 1 

for each infrastructure network and then proposes a technique to aggregate all the indexes 

for an overall resilience measure [Renschler et al., 2010]. Similar efforts at Carnegie-

Mellon’s Software Engineering Institute have resulted in a Resiliency Engineering 

Framework (REF), which posits a vector of 21 capability areas that can be used to score 

the resilience of cyber services [SEI, 2009]. While most of these frameworks do consider, 

to a certain degree, the stochastic (uncertain) nature of inputs, the data needed for 

resilience studies are in most cases limited and incomplete. To handle these issues, Attoh-

Okine et al. (2009) present a method to construct resilience index for urban infrastructure 

using belief functions that are capable of handling imprecise and subjective information 

3.3 Summary and Conclusions 

Returning to the broader context of this research, the following are the main questions 

that need to be addressed by any comprehensive resilience management plan:  

1. What is resilience in the context of an SoS and when is it appropriate? 

• How can resilience be distinguished from other system-level attributes? 

2. How can resilience be designed?  

• What level of resilience is desirable and how resilient is the SoS currently?  

• What principles can be applied to achieve resilience in SoS design? 
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3. How can resilience be maintained over the SoS lifetime? 

• When does resilience change? 

• How can adverse impacts of changing resilience be observed and mitigated? 

In this chapter, we began to answer the second question and discussed methods in the 

literature that can be applied to addressing SoS resilience. Major limitations of the 

metrics and techniques in the context of SoSs include:  

• Binary characterizations of system states: Most analyses compute network 

wide impacts by assuming systems and links are either failed or operational.  

• Lack of focus on the recovery: Most studies focus on the impact of system and 

link failures on network level performance metrics with little consideration of 

active recovery strategies.  

• Lack of design guidance: Aggregated metrics at the network level provide little 

information on how SoS design can be improved in the context of resilience. 

An alternative approach to SoS resilience design that addresses these limitations is 

presented in the next chapter. 
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CHAPTER 4. A NEW APPROACH TO RESILIENCE DESIGN: SYSTEM 
IMPORTANCE MEASURES 

This chapter introduces a new approach to resilience design that is applicable to systems-

of-systems. The proposed approach provides specific SoS design guidance by identifying 

where in the SoS resources need to be targeted to improve the overall resilience and 

determining how the improvements can be realized.  

As mentioned in the previous chapter, employing a single metric to evaluate SoS 

resilience provides little direct design guidance. Such a metric provides little, if any, 

information regarding specific areas within the SoS that need attention or specific aspects 

of the SoS’s resilience that could be improved. Also, a single metric does not provide 

guidance on which SoS should be changed and how it should be changed. In this work, 

we present one approach that can enable more effective and informed decision-making in 

the context of SoS resilience improvement. 

4.1 Component Importance Measures: Motivating the SIM Approach  

At the system level, researchers have developed a set of metrics, collectively known as 

Component Importance Measures, to rank constituent components based on their impact 

on the system level risk and/or reliability. CIMs are well established within reliability 

engineering and risk assessment [Elsayed, 1996; Van der Borst and Schoonakker, 2001; 

Rausand and Høyland, 2004; Ramirez-Marquez and Coit, 2007]. Traditionally, 

component importance measures have been used to identify and evaluate the impact that 

disruptions at the component level have at the system level. In particular, CIMs allow 

practitioners to rank components based on the order in which they impact the system. 
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Typically, importance measures follow two steps: (1) quantify the effect of individual 

component reliabilities (or lack thereof) on the system, and, (2) rank the components in 

terms of their relative importance to system-level reliability. Table 4.1 summarizes some 

commonly used component importance measures. Note that component ranking may vary 

depending on the importance measure used.  

 

Table 4.1 Component Importance Measures (CIMs) 

CIM Question answered by CIM CIM Equation 

Birnbaum 
importance 

What is the reliability importance of 
component i? !!! = !! − !! ! = 0  

Improvement 
potential 

What is the improvement in system 
reliability when component i is replaced by 
perfect component? 

!!!" = !! ! = 1 − !! 

Risk Achievement 
Worth (RAW) 

What is the increase in risk/decrease in 
reliability if component i fails? !!!"# = 1 − !!(! = 0)

1 − !!
 

Risk Reduction 
Worth (RRW) 

What is the decrease in risk/increase in 
reliability if component i is replaced by 
perfect component? 

!!!!" = 1 − !!
1 − !!(! = 1) 

Fussell-Vesely  
What is the fractional contribution of 
component i to the risk/reliability? !!!" =

!! ! = 1 − !!
1 − !!

 

Criticality 
importance 

What is the probability component i has 
failed given system has failed, i.e., 
probability that component i has caused 
system failure? 

!!!" = !!! .
1 − !!
1 − !!

 

Note: SR = System reliability (baseline); SR(i=1) = System reliability when component i is replaced by perfectly 

reliable version of itself; SR(i=0) = System reliability when component i fails; pi = Reliability of component i 
 

Can component importance measures be employed as-is to study the importance of 

systems in SoSs? To answer this question, we consider a few underlying assumptions of 

these measures: (1) components are either failed or working, (2) the structure of the 

system is fixed and does not evolve with time, and, (3) components are independent. 

Reflecting on the earlier discussion on reliability and resilience, we conclude that these 

measures do not capture the survivability and recoverability aspects of continually 
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evolving SoSs. Additionally, component reliability can be estimated relatively easily, 

while SoS resilience is a more nuanced entity that in many cases is a non-linear function 

of, at the very least, two attributes: performance and time. 

 

Our research focuses on developing importance measures specifically for systems-of-

systems that are characterized by diversity in nodes and functions. Similar to the CIMs 

described above, system importance measures help identify and rank systems in an SoS 

that have the most impact on different aspects of the overall resilience.  

 

This work presents three System Importance Measures (SIMs) that rank or prioritize the 

constituent systems of an SoS based on their resilience significance. We say that a system 

is resilience significant if a disruption of the system contributes significantly to measures 

of SoS performance. As will be explained in this chapter, these measures are an aid to 

design in that they help determine “where” in the SoS resources need to be targeted so 

that they provide the most benefit in the event of disruptions. 

 

Figure 4.1 provides an overview of the SIM-based resilience design process. This 

approach uses an iterative process to determine promising design choices. First, baseline 

SoS resilience is evaluated using system importance measures (SIMs). The outcome of 

this stage is a resilience map that indicates the relative resilience significance of systems 

within the SoS. In the second stage, SoS resilience is improved using appropriate 

strategies from a list of design principles. Now, the new SoS designs can be re-evaluated 

using the SIMs to determine whether the chosen strategies have been effective in 

addressing the concerns (significant systems) identified in the first step. Based on the 

specific needs of an SoS, decision-makers can iterate between the two steps to find a set 

of practical and effective design improvements. 
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Figure 4.1 A New Approach to SoS Resilience Design 
 

Specifically, the resilience design process comprises four phases (see Table 4.2). The first 

three phases constitute the SIM analysis where current SoS resilience is evaluated: Phase 

1 – what can go wrong?; Phase 2 – what are the consequences?; and Phase 3 – what is the 

current resilience of the SoS? The outcome of third phase is a resilience map that 

summarizes how well or how badly the SoS currently handles disruptions. The last phase 

(Phase 4) is SoS design improvement and asks: What can be done to increase resilience 

of the overall SoS? The outcome of this phase is a set of design changes.  

 

Table 4.2 Four phases in SIM-based SoS Resilience Design  

Phase Task Stage 

1 Identify potential disruptions. What can go 
wrong? 

SIM Analysis 2 Determine impacts of disruptions. What are the 
consequences of unmitigated disruptions? 

3 
Determine current resilience of SoS. How well 
is the current SoS able to handle the disruptive 
impacts?  

4 
Determine design modifications to improve 
resilience. What can be done to improve SoS 
resilience? 

Application of Design 
Principles 

SoS resilience curves System 
Importance 

Measures (SIM) 
analysis 

Disruption impacts 

Mitigation strategies 

Design Principles 

Resilience Map 

Design 
changes 

1.  Physical redundancy 
2.  Functional redundancy 
3.  System-level properties 
4.  Repairability 
5.  Inter-node interaction 
6.  Localized capacity 
7.  Human-in-the-loop 
8.  Drift correction 
9.  Improved communication 
10. Layered defense 
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Classic risk-based design involves answering the following questions: What can go 

wrong?; What are the consequences; and, What can be done about it? While the SIM-

based resilience design process follows a similar course (see Figure 4.2), we incorporate 

features within the original design process that are specific to SoSs. For instance, we 

present (1) SIMs to evaluate the consequences of adverse impacts on the SoS and (2) 

design principles that leverage SoS characteristics to suggest suitable design 

improvements. The SIMs focus on understanding SoS-level impacts of disruptions and on 

pointing to potential design improvements, and hence can subsequently be used in cost-

benefit analyses to determine which improvements can be implemented. 

 

 

Figure 4.2 Distinguishing features of Resilience-based design within the context of Risk-
based design 

 

The purpose of the SIM-based resilience design method is to aid decision-making at the 

design stage and during operations. During design, the SIMs can be used to identify 

resilience gaps and possible solutions. During operations, the SIMs can be used to choose 

the most appropriate response to a disruption. For example, a resilience design might 

include adding both bigger buses and a backup bus. Then, during operations, the SIMs 

can be used to select the most appropriate response based on the particular disruption. 

 

Iden%fy(poten%al(disrup%ons(What(can(go(wrong?(

What(are(the(consequences?((
(and)((

How(are(they(addressed(at(present?(

What(can(be(done((i.e.,(what(
improvements(can(and(should(be(made)?(

Evaluate(current(SoS(resilience(
using(System(Importance(Measures(

Suggest(improvements(using(SoSD
focused(design(principles(

Overview'of'Risk-based'Design'
'

Specifics'of'Resilience-based'Design'
'
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We begin with the identification of potential disruptions, followed by an evaluation of 

how well the SoS currently handles these adverse impacts, and finally determine design 

changes that can improve resilience. So, while resilience is witnessed at the operational 

level (how does the SoS survive and recover from disruptive impacts?), the intent of the 

proposed approach is to facilitate design-related decisions, the results of which have 

implications for SoS operations.  

4.1.1 Simple illustrative SoS 

We use an illustrative example in this chapter to highlight key outcomes of each of the 

four phases (see Figure 4.3). This SoS is a much-simplified version of an urban 

transportation network and has been chosen for ease of explanation. The SoS, comprising 

three systems (a bus, a subway, and a ferry), enables transportation of passengers from A 

to B. Thus, the overall capability of this simple SoS is the movement of people from A to 

B.  

 

 

Figure 4.3 Illustrative example SoS 
 

There are many different ways to describe SoS performance. For instance, in urban 

transportation SoSs, measures of interest include average delay, frequency of service, 

demand, and vehicle throughput. Also, the various modes of transportation serve different 

types of passengers with different preferences. Thus, the utility of an SoS is driven by a 

range of performance measures and stakeholder preferences. In addition, as shown in 

Figure 4.2, it is also necessary to consider the cost of making improvements. Chapter 6 

discusses some potential ways of incorporating SIMs into cost-benefit analyses. 

A 

B 

Ferry 

Subway 

Bus 
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For ease of explanation of the resilience design process we define SoS performance of the 

illustrative example as the number of passengers (passenger ridership) transported 

between A and B, and we do not consider the cost of mitigations. 

4.2 Identify Potential Disruptions (Phase 1) 

A disruption is an event that can interrupt some activity or process. With respect to SoSs, 

we define disruptions as events that adversely impact the overall SoS performance. 

Instigating events cause disruptions. For example, in the case of a military operation, a 

disruption is the inability of the ship to fire its own weapons due to an attack by an enemy 

agent. Here, the attack on the ship is the instigating event. Another example of a 

disruption is the closure of an airport, such as O’Hare International (ORD), due to some 

adverse weather situation (e.g. snowstorm in Chicago). The instigating event here is the 

snowstorm.  

 

Typically a disruption definition consists of three parts (see Figure 4.4): impact of the 

disruption (at the SoS-level), likelihood of the disruption, and cause (instigating event) of 

the disruption. In the previous example, closure of the airport is the disruption, the storm 

is the instigating event, the frequency of such closures is the likelihood, and delays and 

flight cancellations are impacts.  

 

 

Figure 4.4 Defining a single-system disruption 

 

Cause&&
(ins*ga*ng&event)!

(e.g.,!snowstorm)!

Likelihood&
(e.g.,!likelihood!of!shutdown!

given!snowstorm)!

SoS6level&Impact&
(e.g.,!flight!delays!and!

cancella;ons)!

Disrup*on&
!(e.g.,!closure!of!ORD)!
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Instigating events can also cause multi-system disruptions. We term these events as 

common cause disruptions. For instance, a snowstorm (instigating event) in the New 

York region can cause the disruption of the three major airports in the area – John F. 

Kennedy International Airport (JFK), LaGuardia Airport (LGA), and Newark Liberty 

International Airport (EWR) (see Figure 4.5). The SoS-level impact is the total impact of 

the three airport closures. The overall likelihood of this multi-airport disruption is a 

function of the three individual likelihoods given a snowstorm.  

 

Multi-system disruptions can also occur when disruptive impacts propagate through the 

SoS with systems failing in sequence (see Rinaldi et al. [2001]). These events are called 

cascading disruptions. 

 

 

Figure 4.5 Defining multi-system disruptions 
 

In this research we are primarily concerned with the impact (described in Chapters 4 and 

5) and likelihood (discussed in Section 6.1.4) of disruptions. In many cases, such as 

adverse weather events, decision-makers have more control over the response of the SoS 

Disrup'on*
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to disruptions than over the instigating events (causes). As a result, focusing on the 

impacts and likelihood of the disruptions rather than the causes may often be more useful 

in terms of planning and resource allocation.  

 

Returning to the air transportation SoS, examples of disruptions include closure of ORD 

(due to a snowstorm), reduced capacity at JFK (due to unanticipated closure of a runway), 

and shutdown of ATL (due to a terrorist threat). Using suitable simulation tools and 

models, SoS-level impacts of these disruptions can be evaluated. Chapter 5 discusses 

some of these tools. 

 

Determining the likelihood of disruptions is relatively harder; such estimates need careful 

consideration of multiple factors such as frequency of disruptive events, forecasts of 

service demand, architecture of the SoS (e.g., interdependencies that can cause cascading 

failures), and SoS evolution. When the potential disruptions are known a priori (e.g., 

winter blizzards in the north east US typically occur every year), historical data can be 

leveraged to estimate disruption likelihoods. For example, Figure 4.6 was generated using 

historical data and points to the amount of snow that leads to school closings in different 

regions of the US [Barkhorn, 2014]. In the case of unanticipated disruptions, although the 

causes may be hard to predict, research has shown that their likelihoods can be estimated 

by leveraging subjective estimates by experts (see, for example, Okashah and Goldwater 

[1994]).  

 

In summary, while it is practically impossible to predict all adverse events or scenarios 

for any SoS, a thorough analysis of disruptive impacts and mitigations can be used to 

handle whole classes of potentially disruptive events.  
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Figure 4.6 Amount of snow needed to close schools in the US [Barkhorn, 2014] 

 

Vulnerability maps are useful tools to qualitatively represent the likelihood and impact of 

different disruptions for a particular SoS [Sheffi and Rice, 2005]. An example is shown in 

Figure 4.7. Analysts and decision-makers can place various threats in the appropriate 

quadrant of the vulnerability framework. However, it must be noted that these maps are 

not static – they must be continually monitored as, in time, new threats may emerge and 

the positions of existing disruptive events can change. For example, cyber-attacks on 

infrastructure SoSs used to be rare, but more recently the likelihood of these threats has 

increased.  
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Figure 4.7 Vulnerability map (showing selected disruptions) for air transportation 
network in North-East Corridor  

 

4.2.1 Outcome of Phase 1 

The outcome of Phase 1 is a set of potential disruptions of the SoS. The task of 

identifying potential disruptions can be carried out by a team of analysts using relevant 

methods such as brainstorming in a group setting and by leveraging historical data (e.g. 

age of vehicles, maintenance data, weather information, policy changes). This step is 

similar to the first phase of risk identification that is carried out in risk assessment (see 

Figure 4.2). 

 

Returning to the simple illustrative SoS introduced earlier (refer Figure 4.3), we consider 

three disruptions: (a) disruption of the bus, (b) disruption of the ferry, and (c) disruption 

of the subway train. This set is described by eq. (1).  

 

 !"#!!"!!"#$%#&'(!!"#$%&'"()# = { !"# , !"##$ , (!"#!"#)}! (1) 

 

DISRUPTION*IMPACT*

DISRUPTION**
LIKELIHOOD*

HIGH$

LOW$

HIGH$LOW$

Unscheduled$
runway$closure$at$

JFK$
Hurricane$
Sandy$

Moderate$
snowfall$in$
Boston$

CyberAaBack$on$FAA$
communicaFon$

faciliFes$

Terrorist$aBack$at$
airport$

Concession$
stand$workers$

strike$



58 
 

 

58 

Note that it is possible for multiple vehicles to be disrupted simultaneously. However, for 

the sake of simplicity and to highlight the results of each phase in the resilience design 

process we only consider single-system disruptions in this example.  

In the next phase, we determine how each of these disruptions impacts the SoS. 

4.3 Estimate Impacts of Disruptions (Phase 2) 

To develop the system importance measures we begin by considering the desired SoS 

performance, meaning, in the absence of any disruption, how should the SoS 

function/operate? Figure 4.8 shows the desired (nominal) curve. From a design 

perspective, this figure illustrates the desired performance level (!!"#$%&') that the SoS is 

designed to maintain while in operation. The performance level and operational 

timeframe are specific to each SoS. For example, returning to the illustrative urban 

transportation SoS, typical measures of performance include passenger ridership, 

frequency of service, and average delay across the network. The operational lifetime of 

transportation networks is usually on the order of decades.  

 

Figure 4.8 Example of a desired (nominal) curve 

In practice, !!"#$%&' in the desired curve may experience minor fluctuations as shown in 

Figure 4.9. For instance, airports regularly experience changes in traffic flow due to the 

prevailing winds. In such cases, we use the mean value across these fluctuations to 

determine a suitable !!"#$%&' level. 

Time 

SoS Performance 

PNominal 
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Figure 4.9 Illustration of variability in !!"#$%&' 
 
Next we investigate the impact of a particular disruption on the SoS. Figure 4.10 

represents the disruption curve. When some disruption occurs, one or more systems in 

the SoS are affected. In this figure we assume that a single system (System i) is disrupted 

at !!"!#!$%, leading to a subsequent drop in the SoS performance level from the desired 

value (!!"#$%&') to a lower value (!!"##). The value stays low till the disrupted system is 

repaired or replaced at !!"#$% when the SoS performance level is returned to !!"#$%&'. 
For example, in an urban transportation SoS, unscheduled subway line repairs can reduce 

throughput and cause delays on the rail mode, resulting in a reduction in the overall 

performance of the urban transportation network. However, some residual performance 

remains as existing road (buses and trams) and water (ferry) transportation modes 

continue to provide service to/and from neighboring cities. Note that at this stage of the 

resilience analysis, mitigation strategies, such as running extra subway trips or re-routing 

buses to compensate for the performance loss, are not considered. The original nominal 

performance level is restored when the repairs are complete and the subway system is 

completely operational again. While in Figure 4.10 only one system, System i, is 

disrupted, a similar curve can be used to depict the impact of a multi-system disruption.  

Time 

SoS Performance 

PNominal 
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Figure 4.10 Example of a disruption curve with System i disrupted and System i restored 
without mitigation actions 

 

Note that in the aftermath of a disruption, SoSs do not necessarily experience a sharp 

drop in performance or even a sharp increase in performance once the disrupted system 

has been restored as depicted in Figure 4.10. In many cases, gradual decreases and 

increases (see Figure 4.11) are observed. For example, consider the closure of an airport 

due to a snowstorm. As the storm abates, some runways are typically cleared sooner than 

others allowing partial performance increases as the entire airport is “restored” gradually. 

A similar curve can be used to represent multi-system disruptions where multiple systems 

are disrupted and restoration of all the disrupted system results in a return to !!"#$%&' 
(see Figure 4.12). 
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Figure 4.11 Disruption curve with gradual restoration of the disrupted system 

 

 

Figure 4.12 Example of a disruption curve for a multi-system disruption: System i 
disrupted followed by System j disrupted, and System i restored followed by System j 

restored 
 

Also, Figure 4.10 indicates that in the absence of any mitigation measures, SoS 

performance is restored to its nominal level when the original “disrupted” system is 

restored (for example, by repairing or replacing it). Note that this may not always be the 

case. In some instances, for example in time-constrained military missions, failed systems 

are not repaired or replaced within the mission’s time frame. Instead, the mission 
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continues with the available resources. In Chapter 5 we further discuss the application of 

the resilience design framework to such military missions through the use of a case study.  

 

Against this backdrop, we now present the first importance measure, System Disruption 

Importance. 

4.3.1 System Disruption Importance  

The System Disruption Importance captures the impact of unmitigated disruptions. To 

develop this measure, we follow two steps. First, we determine how much a disruption 

(from the set identified in Phase 1) affects the overall SoS, and second, we determine 

how important this effect is relative to other disruptions. Redrawing Figure 4.10, we 

observe that the hatched region in Figure 4.13 represents the impact of an unmitigated 

disruption on the overall SoS. This impact, termed !"#$%&!, can be calculated using: 

 

 !"#$%&! = ! ! − ℎ!(!)
!!"#$%

!!"!#!$%
! (2) 

 

Here the subscript D refers to a disruption from the set identified in Phase 1. 
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Figure 4.13 Disruption curve with !"#$%&! highlighted (hatched region) 

 

The System Disruption Importance (!"#!) determines the relative importance of an 

unmitigated disruption, and is calculated using eq. (3): 

 

 !"#! =
!"#$%&!

Worst!case%SoS%impact! (3) 

 

Again, here the subscript D refers a disruption from the set identified in Phase 1. 

 

The denominator in the above equation is a measure of the worst-case impact on the SoS. 

This value is domain and SoS specific and can be estimated using, among others, 

historical data (e.g.: when studying the National Airspace SoS, closure of the US airspace 

in the three days following the 9/11 attacks can be a measure of the worst-case disruption 

impact) or simulation tools (as will be demonstrated in Chapter 5). !"#! provides an 

indication of the relative importance of different unmitigated disruptions. For instance, 

those disruptions with large !"#! values, i.e., those with large hatched regions, have the 

greatest impact on the SoS when they occur (since no mitigation measures, other than 

restoring the affected systems are considered). Thus, based on the !"#! values, a ranking 

can be obtained of the relative importance of different disruptions. Note that the worst-
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case value (denominator in eq. (3)) can be changed or updated without affecting the 

importance of different disruptions since all !"#! are normalized using the same worst-

case value. 

 

Partial disruptions are also possible. For example, a landing gear malfunction may 

require an entire runway to be sprayed with foam for an emergency aircraft landing. 

Depending on the airport, such a situation can disrupt services on one runway for several 

hours while other runways are still in operation. Thus, the airport functions at a 

performance level between its nominal and full disruption (e.g. blizzard) values (see 

Figure 4.14). 

 

 

Figure 4.14 Notional example of full and partial disruptions: (a) impact of complete 
shutdown of ORD on National Air Space (NAS) and (b) impact of a runway closure at 

ORD on NAS 

 

4.3.2 Outcome of Phase 2 

The outcome of Phase 2 is a list (ranking) of the impacts of different unmitigated 

disruptions. We demonstrate the process of ranking the disruptions by returning to the 

simple illustrative SoS (refer to Figure 4.3). The disruption curves as well as !"#$%&! 

values for the disruptions identified in Phase 1 are shown in Figure 4.15.  
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Assuming a worst-case SoS impact of 110 units, we can compute !"#! for all three 

disruptions using eq. (3), as shown in Table 4.3. From these values, the relative 

importance of the different disruptions can be captured (third column of Table 4.3): a low 

ranking (e.g.: Ferry disruption) indicates a relatively low impact on SoS performance, 

while a high ranking (e.g. Subway disruption) indicates a disruption that has a large 

impact on the SoS.  

 

Figure 4.15 Disruption curves for illustrative SoS example (numbers in bold indicate 
!"#$%&! values) 

 

Table 4.3 !"#! and importance ranking for illustrative example 

Disruption (D) System Disruption Importance (!"#!) Importance ranking 

Bus !"#!"# = 0.27 2 

Ferry !"#!"##$ = 0.09 3 

Subway !"#!"#$%& = 0.45 1 

 

4.4 Determine Current SoS Resilience (Phase 3) 

In Phase 3, we consider mitigation measures. System-of-systems typically have some 

recovery strategies and contingency plans in place to handle disruptions. The resilience 

curve in Figure 4.16 provides an example of one mitigation measure: the ability of a 

system, here System j, to provide partial recovery when one or more systems in the SoS 

are disrupted. Given the availability of the mitigation measure that can be deployed at 

time !!"#"$%#"&', the SoS performance can be raised above !!"## to some intermediate 

level (!!"#"$%#&') till the original system(s) that provided the capability is (are) restored. 
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For example, consider an urban transportation SoS. Unscheduled line repairs on subway 

tracks can reduce throughput and cause delays, resulting in a reduction in the overall 

performance of the urban transportation network. However, additional bus service 

between stations on the affected rail line can compensate for some of this lost 

performance.  

 

 

Figure 4.16 Example of a resilience curve 
 

The mitigation path can take many different forms, depending on a variety of factors, 

including SoS topology and the specific system(s) used in the recovery. For example, the 

resilience curve may follow a linear path (as shown by the dashed line in Figure 4.17), a 

step path (dotted line), or perhaps even a recovery path that provides increased 

performance for a short duration before returning to the nominal SoS performance level 

(dashed-dotted line). 
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Figure 4.17 Notional resilience curves indicating different mitigation strategies 

 

In this phase of the design approach, we evaluate the current SoS resilience and highlight 

key areas where improvements are needed or where downgrades can be made. To achieve 

this goal, we present the next two importance measures, System Disruption Conditional 

Importance and System Disruption Mitigation Importance. 

 

4.4.1 System Disruption Conditional Importance 

Referring to the hatched area in Figure 4.18, the System Disruption Conditional 

Importance (!"#$!,!) is calculated using eq. (4) and answers the question: what is the 

relative importance of a mitigated disruption? 

 

 
!"#$!,! =

! ! − !!,!(!)!!"#$%
!!"#$%"!&
Worst!case%SoS%impact  

(4) 

 

Here, as before, the subscript D refers to a disruption from the set identified in Phase 1, 

and the subscript M refers to a mitigation measure that can provide partial recovery of 

SoS performance when D occurs. 
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There are several ways to mitigate disruptive impacts. For instance, in the aftermath of a 

disruption (e.g.: flooding of a subway tunnel), a single system (e.g., one bus) or multiple 

systems (e.g., multiple buses and/or increased car pooling) can be used to provide partial 

recovery till the subway is restored. When considering multi-system mitigations, given 

the domain-specific structure and behavior of SoSs, curves for combined recovery are not 

necessarily linear combinations of the individual system recoveries. Typically, SoS 

engineers would use suitable simulations and models to assess the mitigation 

effectiveness of multi-system recovery (further discussed in Chapter 5). 

 

Observe that since mitigations reduce the impact of disruptions, the hatched area in 

Figure 4.18 is smaller than in the previous case (Figure 4.13). Specifically, a low 

!"#$!,! shows that the impact of the disruption has been mitigated, and vice versa. Note 

that when mitigation is not provided or designed !"#$!,! is undefined. We discuss in 

Section 4.4.3 how the analyst can determine what value of !"#$!,!  constitutes an 

adequate mitigation. 

 

 

Figure 4.18 Resilience curve with !"#$!,! (hatched region) and !"#!!,! (solid grey 
region) highlighted 
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4.4.2 System Disruption Mitigation Importance  

The second importance measure, System Disruption Mitigation Importance (!"#$!,!), 

answers the question: what is the relative importance of the effectiveness of a mitigation 

measure in reducing the impact of a disruption? This measure is represented by the solid 

grey region in Figure 4.18 and is calculated using eq. (5): 

 

 
!"#$!,! =

!!,! ! − ℎ!(!)!!"#$%
!!"#$%"!&
Worst!case%SoS%impact  (5) 

 

Note that, similar to !"#! and !"#$!,!, !"#$!,!is also normalized by the earlier worst-

case value and is undefined when mitigation is not possible. The larger the value of 

!"#$!,!, the more important the mitigation measure is to reducing the impact of the 

corresponding disruption. Conversely, a low !"#$!,!  indicates that the mitigation 

measure does not significantly alleviate the disruption impact.  

 

In summary, !"#! provides an assessment of the impact of unmitigated disruptions on 

the SoS while !"#$!,! and !"#$!,! evaluate effectiveness of mitigation measures in 

reducing these disruptive impacts (see Table 4.4). 

 

Table 4.4 System Importance Measures 

SIM Question answered by 
SIM 

Meaning 

Low Value High Value 

System 
Disruption 
Importance 
(!"#!) 

What is the relative 
importance of an 
unmitigated disruption 

Disruption has low 
adverse impact on SoS 

Disruption has high 
adverse impact on 
SoS 

System 
Disruption 
Conditional 
Importance 
(!"#$!,!) 

What is the relative 
importance of a mitigated 
disruption 

Disruption, given its 
impact is mitigated, has 
low adverse effect on 
SoS 

Disruption, given its 
impact is mitigated, 
has high adverse 
effect on SoS 
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SIM Question answered by 
SIM 

Meaning 

Low Value High Value 

System 
Disruption 
Mitigation 
Importance 
(!"#$!,!) 

What is the relative 
importance of the 
effectiveness of a mitigation 
measure?  

Mitigation measure 
contributes little to SoS 
resilience 

Mitigation measure 
has high 
contribution to SoS 
resilience 

 

While overall mitigation effectiveness (as captured by !"#$!,!) is important, in some 

instances the “quickness of recovery” (time to start of mitigation after a disruption) and 

the “level of recovery” (amount of SoS performance recovered by the mitigation) can be 

valued differently. There may also be cases where time or performance is non-linear. For 

example, if providing even poor alternative transportation modes during rush hour may 

be better than waiting for better modes. Chapter 6 discusses potential ways to address it 

in future work. 

4.4.3 Outcome of Phase 3 

The outcome of Phase 3 is two-fold: (1) a ranking of the impacts of different disruptions 

given the availability of mitigation measures, and (2) a resilience map. To explain the 

two outcomes, we return to the simple illustrative example described earlier (see Figure 

4.3) . Let us now consider three mitigation strategies that the SoS, in its current 

configuration, employs (refer to Figure 4.19):  

1. When the Bus is disrupted, a backup Bus is deployed, till the original bus is 

restored (see Figure 4.19(a)).  

2. When the Ferry is disrupted, the Subway is able handle some of the spillover 

traffic as passengers can walk to the nearest subway station (see Figure 4.19(b)).  

3. When the Subway is disrupted, the Bus and the Ferry partially compensate for the 

lost performance (see Figure 4.19(c)). 
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Figure 4.19 Resilience curves for illustrative SoS example (numbers in bold indicate 
areas for !"#$!,! calculation) 

 

To build the resilience map we first consider the individual !"#$!,! values. The rows in 

Figure 4.20 indicate disruptions while the columns indicate mitigation measures. Where 

mitigation is possible, the corresponding cells are populated with !"#$!,!  values 

calculated using eq. (4). Recall that, where mitigation is not possible, the cells are 

undefined. Averaging all potential mitigation options across each row provides the mean 

!"!"!,!  for each disruption. This value is a measure of how well the mitigation 

measures have helped reduce disruptive impacts.  

 

The new relative importance of the different systems can now be determined (third 

column of Table 4.5). Observe that with the mitigation strategies available in the current 

SoS, the Bus has a lower ranking than the Ferry than in the case without mitigation 

measures (refer to Table 4.3). 

 

 

Figure 4.20 !"#$!,!for illustrative SoS example 
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Table 4.5 !"#$!,!and importance ranking for illustrative example 

Disruptio
n (D) System Disruption Conditional Importance (!"#$!,!) Importance ranking 

Bus !"#$!"#,!"#$%&!!"# = 0.02 3 

Ferry  !"#$!"##$,!"#$%& = 0.07 2 

Subway !"#$!"#$%&,!"#!!"##$ = 0.36 1 

 

While we know the overall importance of the different disruptions, we now need to 

determine how resilience to these disruptions can be improved.  

 

In reliability and risk analysis, practitioners frequently specify minimum acceptable 

performance levels to assess risk mitigation measures and safety training – if the 

performance of a system or subsystem falls below a pre-determined level, immediate 

steps must be taken to address this undesirable situation. These minimum acceptable 

levels depend on many factors such as regulatory standards, operator workload and 

training, system design, and public acceptance.  

 

In a similar vein, here we introduce a decision threshold (!) to assess the importance of 

the different systems. The decision threshold is the maximum acceptable !"#$!,! and is 

used to generate the resilience map (see Figure 4.21). We describe how this threshold can 

be set in Chapter 5. In this example, assuming ! = 0.1 and comparing each !"#$!,! to 

this value of ! each cell in the map is allocated a specific color as follows: red when 

!"#$!,! > ! and green when !"#$!,! < !. Darker shades of red indicate disruptions 

are highly unmitigated, while darker shades of green indicate disruptions that are 

currently handled well.  

 

The resilience map summarizes the relevant resilience information in two ways: (1) high 

level overview of which disruptions have been mitigated adequately and which ones have 
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not, and (2) detailed information about which disruption-mitigation combinations need 

attention. 

 

At the high-level, by comparing the first and last columns of the resilience map, we see 

which disruptions have been mitigated (when!!"#! value is red and the corresponding 

average !"#$!,! is green), and which ones have not (when !"#! and average !"#$!,! 

are both red). The extent to which the strategies mitigate the disruptive impacts is 

proportional to the difference between these two values in each row. For ease of 

explanation we do not include a discussion of average !"#$!,! here (design implications 

of these values will described in Chapter 5). 

 

Next, we study the resilience map in detail to determine potential design changes that can 

aid resilience improvement. Section 3.2.1 presented a set of ten design principles that can 

be used to drive changes in SoS architecture based on the particular needs of the 

particular SoS under study. As mentioned previously, the list is not exhaustive, and as 

researchers and practitioners determine new ways to improve SoS designs, this set can be 

modified and expanded. Focusing on specific disruption-mitigation pairs, the resilience 

map points to different types of improvement strategies. Here we highlight key 

suggestions for the illustrative example based on Figure 4.21 (Chapter 5 presents 

additional and more interesting design implications through case studies): 

 

1. Observation: The red cell in the last row indicates that disruption of the Subway 

has not been adequately mitigated.  

Specific problem (a): Both the Bus and the Ferry do not have adequate capacity 

to handle the spillover demand.  

Potential solution: Physical redundancy can improve the capacity of the 

mitigation measures. One way to realize physical redundancy is to maintain spare 

ferries and buses, which can be called in to service when there is a Subway 

disruption. 
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Specific problem (b): High impact (low survivability) of the Subway disruption.  

Potential solution: Drift correction can improve the survivability of the Subway. 

One way to realize drift correction is to maintain sensors in the subway tunnel to 

monitor water levels and thereby control water pumps automatically – this 

technique allows some subway lines to continue operating through minor floods. 

 

Note: In a more general sense, the use of different colors to highlight nuances 

within SoS resilience is useful because it allows decision-makers to not only 

consider the most important systems (obtained from the earlier ranking process) 

but also visualize, in an intuitive way, specific areas of inadequate resilience 

within the SoS. Thus, the map enables decision-makers to consider multiple 

opportunities to improve SoS resilience, such as, for example, the ability to make 

minor improvements to several moderately important systems rather than focus 

only on the most important one. 

 

2. Observation: While the backup Bus is clearly quite effective in mitigating the 

impact of a Bus disruption, it remains unused when the Subway is disrupted.  

Opportunity: We could potentially use the backup Bus more effectively by 

deploying it in the event of disruptions (e.g.: Subway disruptions) other than the 

one it is intended to address (e.g.: Bus disruption).  

 

Note: These types of observations from the resilience map help decision-makers 

move away from the stovepipe approach of considering each mode individually 

(e.g.: spare buses to be used when primary buses encounter mechanical failures) 

and instead identify resources that can be used across different modes. 

 

3. Observation: Cells shaded grey indicate those that mitigations that do not 

currently contribute to SoS resilience. For instance, when the Ferry is disrupted, 

the Bus does not provide mitigation.  
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Suggested improvement: The resilience map highlights the lack of mitigation for 

particular disruptions. If the !"#s corresponding to the grey cells are sufficiently 

low (first column of the map), the grey cells can be left as is (in other words, 

although the disruption is not mitigated, it is small and does not require 

mitigation). However, if the !"# and !"#$ is high, the !"# should be lowered by 

reducing the impact of the unmitigated disruption, or the !"#$ should be lowered 

by adding mitigations. Potential mitigations can be identified by considering the 

columns in the map. For instance, by providing shuttle service for passengers 

from the Ferry landing to the Bus depot, we can leverage the Bus to mitigate a 

Ferry disruption. 

 

Note: While this suggestion may seem obvious, the true value of this 

recommendation is realized when the resilience framework is used to study larger 

networks (as will be highlighted in Chapter 5). For these SoSs, the visual nature 

of the resilience map provides a useful way to summarize those disruptions that 

remain unmitigated and those mitigation strategies that do not contribute to 

resilience. 

 

 

Figure 4.21 Resilience Map for ! = 0.1 
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multiple factors such as the particular SoS under investigation, available resources, cost 

of the mitigation measures, and the decision-maker’s judgment. Additionally, in practice, 

due to the same factors, the value of ! may need to be varied during the decision-making 

process. Thus, here, we propose an iterative approach to determining an appropriate ! 

value (discussed further in Chapter 5 through the use of case studies). Potential ways to 

determine an initial value include considering the minimum acceptable performance level 

for an SoS (e.g.: average delay in a transportation network should not exceed 45 min), 

historical data (e.g.: delays experienced in the National Air Space during previous 

disruptions such as snowstorms and hurricanes), and expert opinion.  

 

Varying ! changes the resilience map. While the overall SIM values do not change, the 

color of each cell changes as ! varies. For instance, Figure 4.22 and Figure 4.23 show 

how the resilience map for the illustrative example changes for ! = 0.4 and ! = 0.05 

respectively. Observe that for the higher ! value (risk-taking analyst), all the cells are 

some shade of green, indicating that no “areas of concern” exist. In contrast, for the lower 

! value (risk averse analyst), some cells that were previously colored green have now 

turned red. So, in terms of practical usefulness, an analyst can study how colors on the 

resilience map change as the value of alpha “slides” between high and low values. By 

identifying the cells that remain red across a range of alpha values, the analyst can 

determine mitigation strategies that need to be improved (prioritize resource allocation) 

or studied in further detail (guidance for simulations and field tests). 
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Figure 4.22 Resilience Map for ! = 0.4 

 

 

Figure 4.23 Resilience Map for ! = 0.05 
 

4.5 Improve SoS Resilience (Phase 4) 

In Phase 4 of the resilience framework, the potential design improvements suggested in 

Phase 3 are implemented and the SIM analysis is conducted again. The updated resilience 

map indicates whether (or not) the design changes have yielded the desired results. The 

obvious next step in a design process is the evaluation of suitable design changes. While 

conducting a suitable analysis of alternatives is beyond the scope of this thesis, this step 

will be part of future work of this research. To conduct a comprehensive analysis of 

alternatives, several factors must be considered. For example, some questions that should 

be part of any qualitative or quantitative analysis include:  
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• How much does the design change cost? 

• How effective is the design change?  

• How easy is it to implement the change? 

• Does the change have unintended consequences? (e.g.: new common cause 

disruptions, new training/human factors issues) 

4.5.1 Outcome of Phase 4 

The outcomes of Phase 4 are similar to those of Phase 3, that is (1) a ranking of the 

impacts of different disruptions given the availability of mitigation measures, and (2) a 

resilience map. Once the design improvements are made and the SoS is re-analyzed, the 

system importance ranking and the resilience map are updated to reflect the changes. If 

the design modifications are inadequate or impractical (e.g. too expensive, hard to 

implement, organizational hurdles), new design principles can be considered and once 

again, the resilience map is updated.  

 

Returning to the simple SoS example, Figure 4.21 pointed to inadequate mitigation of the 

disruption of the Subway by the combined capabilities of the Bus and the Ferry, and 

suggested using the principle of drift correction to improve the design. The updated 

resilience map in Figure 4.24 reflects this design improvement (see green cell in the last 

row).  
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Figure 4.24 Updated Resilience Map (for ! = 0.1) 

4.6 Summary 

As described in Section 1.2, the characteristics of systems-of-systems make analysis and 

design of resilience challenging. However, these features also offer opportunities to make 

SoSs resilient using unconventional methods. In this chapter, we adapted the traditional 

risk-based design process to include two SoS-focused features. First, system importance 

measures (SIMs) determine the relative importance of different systems based on their 

impacts on SoS-level performance. Second, suggestions for resilience improvement draw 

from design options that leverage SoS-specific characteristics, such as the ability to adapt 

quickly (such as add new systems or re-task existing ones) and to provide partial recovery 

of performance in the aftermath of a disruption.  

 

The four phases of the design process can be used to study the resilience of both existing 

(fielded) SoSs and new (un-deployed) SoSs. In the case of the former, the resilience map 

highlights how well or how badly the current SoS structure can handle disruptions and 

points to inadequacies that need to be addressed. For the latter type of SoS, resilience 

map helps evaluate the resilience of potential SoS architectures. 

 

Specific advantages of the SIM-based resilience design include: 

• Allows rapid understanding of different areas of concern within the SoS. The 

visual nature of the resilience map (a key outcome of the SIM analysis) provides a 

Bad$Good$

<<α <α >α >>α

0.02$

0.07$

0.09$

Set$of$Mi.ga.ons$

Bus$ Backup$bus$Ferry$ Subway$

Bus$and$ferry$+$$
Dri8$correc9on$of$

Subway$

Bus$

Ferry$

Subway$Se
t$o

f$D
is
ru
p.

on
s$ 0.27$

0.09$

0.27$

SDID avg. SDCID,M

SDCID,M



80 
 

 

80 

useful way to summarize the current resilience of the SoS as well as point to key 

systems of concern.  

• Provides a structured approach to resilience management. Using the design 

framework, decision-makers are guided through the analysis of SoS resilience in a 

systematic way, starting from the identification of disruptions to iterating in a 

group setting to improve SoS resilience.  

• Provides a platform for multiple analysts and decision-makers to study, modify, 

discuss and document options for SoS.  

In the next chapter, we demonstrate the applicability of the resilience framework to real-

world SoSs through the use of two case studies. 
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CHAPTER 5. APPLICATION OF SIM-BASED RESILIENCE DESIGN: 
DEMONSTRATION STUDIES 

In this chapter, we use two case studies to demonstrate how the SIM-based design 

framework can be used to inform decision-making in the context of SoS resilience.  

The first case study is a naval warfare SoS and illustrates the application of SIMs to 

military missions, while the second case study focuses on an urban transportation SoS. 

The two SoSs have different objectives and different characteristics. These features 

enable us to show how the SIM-based approach is applicable to different types of SoSs 

and to highlight major aspects and results of the design process. For instance, while the 

primary focus of the urban transportation SoS is the efficient movement of people, the 

objectives of time-sensitive military missions can vary widely, such as search-and-rescue, 

surveillance, or target elimination. Also, transportation SoSs typically have longer 

operational lifetimes, with new systems being interfaced with legacy systems, than 

combat SoSs. Consequently, both SoSs face different types of disruptions. As will be 

discussed in this chapter, the abovementioned characteristics have implications for 

defining SoS performance and determining how the various design principles can be 

implemented to improve resilience. 

 

We use each case study to draw attention to different aspects of the resilience framework. 

In the naval warfare case study, we describe how the resilience framework can leverage 

existing simulation models to support end-to-end design. We proceed through the four 

phases of the approach using an agent-based model (ABM) that enables us to 

demonstrate how simulation tools and analytical models can be used to determine the 

necessary inputs for the framework and subsequently, to inform decision-making 

regarding SoS resilience 
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The urban transportation case study in contrast focuses on interpreting the results of the 

resilience framework and on describing how they can be used to guide design choices in 

large infrastructure networks. We use different resilience maps to highlight the range of 

design-related information that can be obtained from the framework 

5.1 Case Study 1: Naval Warfare SoS 

The mission of the naval warfare system-of-systems studied here is to conduct near-shore 

search-and-destroy operations, similar to those carried out by the Coast Guard and littoral 

combat units in the Navy. Figure 5.1 illustrates the area of interest and the systems in the 

SoS. The specific task of the SoS is to find and destroy the enemy boat within the 

planned mission time (PMT) of 4 hours. There are four systems in the SoS that 

collaborate to achieve the overall objective: a Ship, a Helicopter, an Unmanned Aerial 

Vehicle (UAV), and a Satellite. The capabilities of each system and the communication 

links between them are described in Table 5.1.  

 

 

Figure 5.1 Naval warfare SoS 
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Table 5.1 Systems in naval warfare SoS 

System Capabilities Communication links 

Ship 
Detect enemy (radar) 
Eliminate enemy (weapons) 

Send to and receive information from Helicopter 
and UAV 
Receive information from Satellite 

Helicopter 
Detect enemy (radar) 
Eliminate enemy (weapons) 

Send to and receive information from Ship 

UAV Detect enemy Send to and receive information from Ship 

Satellite Detect enemy Send information to Ship 

 

We use an agent-based model (ABM) (adapted from Mour et al. [2013]) to simulate and 

study the naval warfare SoS. Parameters such as weapons range, velocity, fuel tank 

capacities, and radar detection ranges for each agent can be varied to simulate different 

recovery options. In the following sections, we proceed through the four phases of the 

SIM-based approach and illustrate how the proposed framework facilitates decision-

making in the context of the naval warfare SoS. 

5.1.1 Phase 1: Identify Potential Disruptions 

Military missions can encounter many types of disruptions. For example, systems may be 

disrupted by enemy attacks, internal subsystem failures, or even adverse weather. Partial 

disruptions are also possible, such as, for instance, a disruption of intra-SoS 

communications due to electronic jamming.  

 

In this case study, we investigate three types of disruptions: single system disruptions 

(due to targeted enemy attacks or random failures), multi-system disruptions (due to 

common cause failures and/or cascading failures), and partial disruptions (see Figure 5.2). 

In total fourteen disruptions are studied (11 full disruptions and 3 partial disruptions).  

 

Since only the Ship and Helicopter carry weapons and given that mission success 

depends on the ability to eliminate the enemy boat, any disruption that has both these 

systems failing is not considered in this study. In these cases, we assume that the mission 
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is aborted. Additionally, we consider partial disruptions of the Ship and Helicopter. The 

Ship has two important functions in the mission: (1) collect, integrate, and distribute 

information to the other systems and (2) eliminate the enemy boat using weapons. Hence, 

we consider two partial disruptions of the Ship: (1) failure of the communications 

subsystem on the ship rendering it unable to co-ordinate with the other systems and, (2) 

inability of the Ship to launch its weapons. Similarly, partial disruption of the Helicopter 

is a weapons failure.  

 

Given these example disruptions, the agent-based model can demonstrate how well the 

SoS performs in the face of these disturbances (described in Phase 2). If however, the aim 

were to study the overall effect of a range of disruptions, then we would need to consider 

the probabilities that these disruptions occur. Chapter 6 discusses ways to incorporate 

uncertainties into the SIM analysis.  

 

 

Figure 5.2 Potential disruptions in naval warfare SoS 
 

5.1.2 Phase 2: Estimate Impacts of Disruptions 

When assessing the performance of military missions, primary parameters of interest are:  

Disrup'ons*

Single'system,disrup1ons, Mul1'system,disrup1ons, Par1al,disrup1ons,

•  Satellite,
•  UAV,
•  Ship,
•  Helicopter,

Two'system,disrup1ons:,
•  Satellite,and,UAV,
•  Satellite,and,Ship,
•  Satellite,and,Helicopter,
•  UAV,and,Ship,
•  UAV,and,Helicopter,
,
Three'system,disrup1ons:,
•  Satellite,,UAV,,and,Ship,
•  Satellite,,UAV,,and,Helicopter,

•  Communica1ons,failure,on,Ship,
•  Failure,of,propulsion,subsystem,

on,Ship,
•  Inability,to,launch,weapons,on,

Helicopter,
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1. Mission success: Will the mission be successful in carrying out its objectives 

within the planned mission time?  

2. Mission completion time: How soon can the mission be completed?  

In this study, to illustrate the application and outcomes of the design process, we focus on 

mission success (elimination of the enemy boat within the planned mission time) as a 

measure of the SoS performance.  

To account for uncertainty and randomness in agent behavior, a Monte Carlo analysis 

was conducted 1000 times for each SoS instance (e.g. SoS with no disruptions, SoS with 

disrupted UAV, SoS with disrupted UAV and Ship, etc.). Subsequently, the mission 

success was calculated as shown below:  

 

 !"##"$%!!"##$!! = !". !"!!"##$!!%"&!!"##"$%#
1000 ! (6) 

 

To establish nominal SoS performance, we ran the ABM without any disruptions and 

recorded the resulting mission success (94%).  

 

Next, we determined the impact of the various disruptions identified in Phase 1. For time 

critical missions, the time at which a disruption occurs can have a significant impact on 

the performance. For instance, a disruption to the satellite late in the mission would have 

limited impact if the satellite had already detected the enemy and relayed the relevant 

information to other systems before being disrupted. Here, we looked at the potential 

disruptions and evaluated their impacts when they happen relatively early in the mission 

(at 1 hour) or late in the mission (at 2.5 hours). Table 5.2 summarizes the results. On 

average, and as expected, when disruptions happen early, they have a greater impact on 

the SoS performance than when they occur late in the mission. Exceptions are when 

either the Helicopter or communications on board the Ship are disrupted at 2.5 hours. 

Hence, through the rest of this chapter, we consider only early disruptions. 
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In this phase of the analysis, we assume that, in the event of a disruption, the remaining 

systems continue with the mission and that the disrupted system(s) return to base, that is, 

failed systems cannot be repaired or restored within the planned mission time. 

Table 5.2 Impact of disruptions on mission success rates (naval warfare SoS)  

Type of 
disruptions 

Disruption (D) 
Mission Success Rate (%) 

Early disruption  
(at 1 hour) 

Late disruption  
(at 2.5 hours) 

Single 
system 
disruptions 

Satellite 27 94 

UAV 93 94 

Helicopter 3 2 

Ship 0 92 

Two-system 
disruptions 

Satellite and UAV 1 94 

Satellite and Helicopter 0 4 

Satellite and Ship 0 93 

UAV and Ship 0 94 

Helicopter and UAV 0 2 

Three- 
system 
disruptions 

Satellite, UAV, and Helicopter 0 1 

Satellite, UAV, and Ship 0 93 

Partial 
disruptions 

Communications subsystem on Ship 1 4 

Propulsion subsystem on Ship 92 90 

Failure to fire weapons on Helicopter 9 9 

 

From Table 5.2, it is clear that in the worst case, the mission success falls to zero. We 

now use this result to determine the worst-case SoS impact as follows: subtract the worst-

case mission success rate (0%) from the nominal SoS performance (94%), and then 

multiply the resulting number by the duration of the disruption (4 hours, since in the 

worst case the disruptions can occur at the start of the mission). The process is shown in 

eq. (7). 

 

 Worst!case%SoS%impact = 94− 0 ∙ 4 = 376!!"#$%! (7) 
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Next, the !"#$%&! and !"#! of each disruption are determined using eqs. (2) and (3). 

Table 5.3 presents the fourteen disruptions sorted in order from most to least important 

based on their !"#! values. Some interesting observations include: 

• Eleven unmitigated disruptions have fairly severe effects (!"#! > 0.6) on the 

mission when they occur. Most of these disruptions include either the Ship or the 

Helicopter (fairly obvious since these are the only two systems that can carry 

weapons. 

• The two types of partial disruptions of the ship have dramatically different 

impacts on the SoS. When the propulsion subsystem fails, rendering the ship 

immobile but still able to communicate with the other agents, the mission is not 

jeopardized (!"#! = 0.02). However, a communications failure (!"#! = 0.75) 
can stymie the mission even if the ship can proceed towards the enemy. This 

result is intuitive since the SoS configuration (see Table 5.1) shows that the ship 

is the central communications hub, and any failure of its communications 

capabilities implies that important tracking information does not get delivered to 

the other systems.  

• Disruption of the UAV alone has little impact on the SoS mission. However, 

when both the UAV and the Satellite are disrupted, the combined impact on the 

SoS is larger than their individual impacts. Clearly, while the UAV alone may be 

redundant in the un-disrupted SoS, it contributes to surveillance when the Satellite 

is disrupted.  

Table 5.3 SDI! for naval warfare SoS 

Disruption (D) !"#! Importance Ranking 

Ship 0.75 1 

Satellite and Ship 0.75 1 

UAV and Ship 0.75 1 

Satellite and Helicopter 0.75 1 

Helicopter and UAV 0.75 1 

Satellite, UAV, and Helicopter 0.75 1 
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Disruption (D) !"#! Importance Ranking 

Satellite, UAV, and Ship 0.75 1 

Communications subsystem on 
Ship 0.75 1 

Satellite and UAV 0.74 9 

Helicopter 0.71 10 

Failure to fire weapons on 
Helicopter 0.68 11 

Satellite 0.54 12 

Propulsion subsystem on Ship 0.02 13 

UAV 0.01 14 

 

5.1.3 Phase 3: Determine Current SoS Resilience 

While military personnel will have access to information regarding mitigation measures 

(recovery features, contingency plans, operating procedures) of military missions, we 

assume that the baseline SoS has three mitigations available to deal with disruptions:  

1. The Ship is armed with additional higher-range weapons to compensate for an 

Helicopter disruption. 

2. The UAV is equipped with a more powerful secondary radar (Mode 2 radar) to 

provide wide-area search capability when the Satellite is disrupted. This measure 

results in a heavier UAV that requires frequent returns to the Ship for refueling.  

3. If the UAV is disrupted, it can be repaired within a certain time frame, here 1.5 

hours after the disruption. The UAV would need to return to the Ship for 

inspection, repair, and re-deployment.  

Again, we used the agent-based model to implement the above mitigations and evaluate 

their effectiveness. Next, we recorded the new mission successes to determine !"!"!,! 

values using eq. (4) (see Figure 5.3) and !"#$!,! values using eq. (5) (see Figure 5.4). 

The rows in both figures indicate disruptions while the columns represent mitigation 

strategies. Where mitigation is possible, the corresponding cells are populated with the 

calculated !"#$!,! and !"#$!,! values.  
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Now, we define a decision threshold (!) and use these !"#$!,! and !"#$!,! results to 

build the resilience map. 

 

Figure 5.3 SDCI!,! (Phase 3) for naval warfare SoS  
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Figure 5.4 SDMI!,! (Phase 3) for naval warfare SoS 
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Next, we develop the resilience map for the naval warfare SoS (see Figure 5.5). As before, 

the first column in the map represents impact of unmitigated disruptions (!"#!), while 

the last column denotes the impacts of the same disruptions once they have been 

mitigated (average !"#$!,!). The color of each cell in the resilience map is determined 

by comparing its !"#$!,! value with !. At first glance, we note that in some cases the 

recovery strategies are adequate (green cells) while in most other cases the strategies are 

inadequate (red cells). Closer inspection yields the following observations:  

• Comparing the first and last columns of the map we notice that on disruption, 

Satellite, is adequately mitigated (average !"#$!,! < !).  

• Six disruptions have been inadequately managed (average !"#$!,! > !  and 

average !"#$!,! < !"#!) 

• The strategies have no effect on one disruption, disruption of Satellite, UAV, and 

Helicopter.  

• The strategies do not address six disruptions (rows with all grey cells). However, 

two of these disruptions (disruption of the UAV alone and of the Ship’s 

propulsion system) originally had very little impact on the SoS, as seen by their 

!"#! values, and hence need not be targeted for resilience improvement. 

• The last row in the resilience map provides a summary of the mitigation 

effectiveness of each strategy (average !"#$!,!). The higher this value, the 

greater the contribution of the mitigation to SoS resilience. Note that repairing the 

UAV and using better weapons on the Ship have relatively minor mitigation 

impacts. 

Now, how does the resilience map guide decision-making in the context of the naval 

warfare SoS? Before we answer this question, we first attempt to determine if changing 

the value of !  allows us to focus on a smaller set of red cells to make design 

improvements rather than considering all ten of them.  

 

Recall that each red cell in the map indicates inadequate resilience. Instead of 

immediately considering all ten red cells, we vary ! to determine how sensitive the colors 
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in the map are to the risk the decisions maker is willing to accept. This step allows us to 

prioritize resilience improvement strategies – cells that remain red across a range of ! 

must be addressed first. Returning to the definition of !, we now consider a lower 

minimum acceptable mission success rate, 50%. Correspondingly, ! = 0.35. Figure 5.6 

shows the resilience map for this new value of !. Unfortunately, varying the decision 

threshold has not aided the design process – while two cells have turned a lighter shade of 

red, many of the previously bright red cells remain unchanged.  

 

To guide decision-making we return to Figure 5.5 and list key observations, describe the 

problems or opportunities they indicate, and point to potential design principles (refer to 

Table 3.3) to address them.  

1. Observation: Red cells in column “Better weapons on Ship” indicate that the 

corresponding disruptions are not adequately mitigated.  

Specific problem: The mitigation measures (i.e., weapons on the Ship) have 

insufficient range to eliminate threats in the event of an Helicopter disruption.  

Potential solution: Physical redundancy can improve the capacity of the 

mitigation measures. One way to realize physical redundancy is to maintain a 

backup Helicopter on the periphery of the mission that can be deployed as 

necessary.  

2. Observation: The grey cells in average !"#$!,! column indicates that none of 

the mitigation measures address four disruptions all of which involve a disruption 

of the Ship’s communication system.  

Specific problem: The remaining systems are unable to communicate with each 

other, meaning any mitigation measures cannot be accessed due to lack of 

communication capabilities.  

Potential solutions: Inter-node interaction can increase communication links 

between systems. Some ways to realize this principle include:  

• Provide capability for Helicopter to receive information directly from the 

Satellite if the Ship is disrupted. Resources needed to implement this 
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recovery feature include increased bandwidth allocation and modifications 

to communication ports.  

• If the Ship is disrupted, provide capability for UAV to receive information 

directly from the Satellite and in turn for the Helicopter to communicate 

with the UAV. Resources needed to implement this recovery feature 

include increased bandwidth allocation and modifications to 

communication ports. 

 

 

Figure 5.5 Phase 3 Resilience Map for naval warfare SoS (! = 0.27) 
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Figure 5.6 Phase 3 Resilience Map for naval warfare SoS (! = 0.35) 
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Helicopter is no better at addressing the Helicopter disruption than incorporating 

advanced (better) weapons on the Ship.  

 

From this new map, we conclude that the most pressing disruptive impact that needs to be 

addressed is the disruption of the Helicopter. Potential suggestions include:  

• Improve weapons on Ship: increase the range and/or accuracy of the weapons. 

• Improve back-up Helicopter: use a faster helicopter or perhaps even a different 

one. 

Two interesting observations arise from considering the last row (average !"#$!,! 

values) in the resilience map. First, we can pinpoint those mitigations that contribute 

significantly to overall resilience, that is, measures with a high average value, and 

subsequently ensure that these mitigations are available and ready to be deployed when 

needed. Second, by focusing on those measures that have high average !"#$!,! values, 

we propose that one way to improve resilience is to combine some or all these highly-

effective mitigations so that the resulting “super-set” mitigation strategy is effective 

across a range of disruptions. 
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Figure 5.7 Phase 4 Resilience Map for naval warfare SoS (! = 0.27)3 
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present specific visual guidance on where the SoS is lacking resilience and where 

resilience is adequate. 

 

5.2 Case Study 2: Urban transportation SoS 

Infrastructure SoSs such as water, power, and transportation provide important services 

to urban populations. Disruptions of these services have serious consequences for public 

safety and mobility. For example, Hurricane Sandy impacted electric, communications, 

and transportation services in New York City for several days in 2012 [NYC, 2013]. 

While studies have called for an integrated approach to manage the resilience of the 

nation’s critical infrastructure networks, (e.g., NIPP [2006] and PPD [2013]), a recent 

GAO assessment [GAO, 2014] of the various resilience assessment tools and models 

used by sub-agencies and contractors of the Department of Homeland Security (DHS) 

highlights drawbacks of current approaches. For instance, the report states that at present 

DHS is “not well positioned to integrate relevant assessments to identify priorities for 

protective and support measures”. Also, there is a lack of guidance in terms of ensuring 

that “the areas that DHS deems most important are captured in [these] assessment tools 

and methods”. In other work, Righi et al. [2015] emphasize that to advance the state of 

resilience engineering, researchers and practitioners need practical guidance on how 

“descriptions” of resilience can be translated into “prescriptions”. Clearly a key gap in 

managing resilience is the lack of a structured way to bring together information from 

different resilience assessment tools and to subsequently motivate resource allocation. 

We argue that the SIM-based design framework provides a step in this direction.  

 

To highlight how the proposed approach can be used to obtain meaningful information 

and guide decision-making, we provide a partial resilience assessment of Boston’s urban 

transportation network. As mentioned previously, the purpose of this case study is to 

illustrate the usefulness of the information that can be gleaned from the results of the 

resilience framework. We provide a brief discussion on methods that can be used to 
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determine the relevant inputs (resilience curves and potential disruptions), and then offer 

a detailed description of the design guidance obtained from the resilience maps.  

5.2.1 Determining Potential Disruptions and their Impacts 

The Massachusetts Bay Transportation Authority (MBTA) oversees the fifth largest mass 

transit system in the United States. To provide service within the city, the Authority 

maintains the following modes of transportation: (1) rapid transit using heavy rail, light 

rail, and streetcars, (2) commuter rail (typically connecting the city center to the suburbs) 

using locomotives and coaches, (3) bus service, and (4) commuter boat that provides 

ferry rides between various points in inner Boston harbor. Figure 5.8 provides an 

overview of the urban transportation network in Boston.  
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Figure 5.8 Overview of Boston Urban Transportation SoS [MBTA, 2014a] 
 

Different types of instigating events can disrupt transportation services in a city. For 

instance, instigating events can be organization-related (e.g. strikes by bus drivers and 

ticket takers), weather-related (e.g. snowstorms and hurricanes), due to mechanical 

failures (e.g. power loss and brake failures), or terrorist attacks. These events can cause a 

wide range of disruptions. For example, a mechanical failure may only impact one bus or 

one train, while a snowstorm can ground multiple modes of transportation.  

The task of identifying potential disruptions can be carried out by a team of analysts and 

using relevant methods such as brainstorming in a group setting and by leveraging 



100 
 

 

100 

historical data (e.g. age of vehicles, maintenance data, weather information, policy 

changes) to determine a list of potential disruptions.  

Next, for an urban transportation network, there are several ways to assess the impacts of 

unmitigated and mitigated disruptions. Examples include simulation software, analytical 

models, and statistical estimation techniques. Most authorities that oversee the transit 

services either have in-house tools that are used to carry out various studies regarding 

network level metrics such as on-time performance and average delays, or have such 

evaluations carried out by consultants (e.g. RAILSIM software [SYSTRA, 2014]). 

Additionally, transportation related research has resulted in models that specifically 

simulate urban transit services (see for example, Balakrishna et al. [2008] and 

Koutsopoulos and Wang [2007]) Similar to our use of the agent-based model in the 

previous case study, these simulation tools and analytical models can be directly 

leveraged to assess the impacts of different disruptions.  

 

A popular metric of interest to quantify SoS level performance in urban transportation 

networks is unlinked passenger ridership, that is, the number of passengers who board 

public transportation vehicles [MBTA, 2014b]. Passengers are counted each time they 

board vehicles irrespective of the number of vehicles they use to travel from their origin 

to their destination. Table 5.4 summarizes typical passenger ridership on weekdays as 

published by the MBTA [2014b].  

 

Table 5.4 Typical weekday ridership in 2013 on the select modes of transportation in 
Boston  [MBTA, 2014] 

Mode Line Typical Weekday Ridership 

Subway 

Red Line 272,684  
Orange Line 203,406  

Blue Line 63,225  

Green Line 227,645  

Bus 
Silver Line 29,839  

Trackless Trolley 11,588  
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Mode Line Typical Weekday Ridership 

Bus 346,388  

Commuter Boat Ferry 4439  
 

5.2.2 Reading the Resilience Map 

In this section, we discuss pertinent information that can be obtained from resilience 

maps of the Boston urban transportation network. Assuming we have determined the 

values of the SIMs using the equations presented in Chapter 4, we then use example 

resilience maps to indicate how resilience-related design improvements can be made. 

First, a note about determining an initial decision threshold for urban transportation 

networks. In these SoSs, ! can be specified as the product of two parameters: (1) 

minimum acceptable SoS performance level, and (2) maximum acceptable time to 

mitigation. These parameters can be estimated as follows: 

1. The first parameter is driven by the specific measure used to evaluate SoS 

performance. For example, if the SoS performance is measured as passenger 

ridership, the decision-maker can specify a minimum acceptable level of ridership 

that the SoS needs to satisfy in the event of a disruption. 

2. The second parameter can be estimated in different ways based on stakeholder 

preferences. For example, one approach is to study historical data and determine 

how long, on average, are passengers willing to wait after a disruption (see, for 

example, Kaufman et al. [2012]).  

Figure 5.9 shows a partial resilience map with some subset of the total disruptions and a 

subset of potential mitigation measures. This map explores the state of SoS resilience 

when certain modes or lines of transportation are disrupted and how well the remaining 

transit services handle the spillover ridership. We assume here that the SoS here does not 

provide any explicit means (e.g., shuttle buses) to transport stranded passengers to other 

links. Hence, the only factors driving the effectiveness of the mitigation strategies are 
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proximity to the disrupted line and ability of alternate modes to handle the extra 

passenger traffic.  

 

For example, when the Orange Line (south) is disrupted, three alternate modes of transit 

(Silver Line, buses in Zone 3, and the commuter rail in Zone 3) are able to partially 

mitigate the impact. The commuter rail is quite effective in handling spillover traffic from 

the Orange Line (as indicated by the dark green cell) since it runs parallel to the disrupted 

line and has several stations collocated with those of the Orange Line. Thus, the 

passengers who intended to travel on the disrupted Orange line have relatively easy 

access to an alternate mode of transportation. However, the other two mitigation modes 

of transport (Silver Line and the bus service in Zone 3) are less effective in mitigating the 

impact of the disrupted subway line as (1) they do not run the length of the Orange Line 

and hence do not serve the same locations, meaning passengers would be delayed or 

inconvenienced with respect to getting to their final locations, and/or (2) they do not have 

sufficient capacity to handle the extra demand from the Orange Line.  

 

How does the resilience map guide decision-making in the context of the urban 

transportation SoS? We list key observations, describe the problems or opportunities they 

indicate, and point to potential design principles (refer to Table 3.3) to address them.  

1. Observation: Average !"#$!,!  values in red indicate that the corresponding 

disruptions are not adequately mitigated.  

Specific problem (a): The mitigation measures (i.e., alternate transportation 

modes) have insufficient capacity to handle the spillover demand. 

Potential solutions: Physical redundancy and functional redundancy can 

improve the capacity of the mitigation measures. 

• One way to realize physical redundancy is to maintain spare subways and 

buses, which can be called in to service when there is a disruption on the 

respective lines.  

• Functional redundancy for disrupted subway lines can be realized by using 

“bus bridges” [Kepaptsoglou and Karlaftis, 2009]. Bus bridges provide 
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short-term bus routes between rail (subway or commuter) stations in the 

event of a disruption. Buses can be mobilized from depots (spare buses) or 

retracted from existing routes to establish the bus bridges.  

An opportunity that arises from considering both principles (physical and 

functional redundancy) is the ability to combine mitigations across multiple 

transportation modes. For instance, investment in spare buses (a relatively 

cheaper option than investing in spare trains) is useful to address bus disruptions 

(deploy the spare bus when a primary bus is disrupted – physical redundancy) as 

well as rail disruptions (deploy spare buses to establish bus bridges between 

subway stations – functional redundancy). 

Specific problem (b): Passengers have limited access to these alternate modes. 

Potential solutions:  

• Inter-node interaction can improve access to the mitigation measures. This 

principle can be realized by providing shuttle services to the nearest 

alternate mode of transportation (e.g., from the disrupted subway stations 

to the nearest bus or commuter rail facilities). Another method to increase 

inter-node interaction is to improve bicycle infrastructure. Suitably located 

bicycle stations can allow some passengers to cycle to the nearest alternate 

mode.  

• Improved communication at the organizational level can improve access 

to the mitigation measures. Well-established emergency plans that clearly 

facilitate timely and effective sharing of information between regulatory 

authorities, operators, and passengers can help minimize performance 

impacts on the transportation network. Thus, passengers can be evacuated 

safely and re-directed to other modes of transport efficiently. 

 

2. Observation: The presence of red and green cells in columns Commuter Rail 

Zone 1 and Commuter Rail Zone 2 indicate that commuter rail services in both 

these zones provide adequate mitigations in some instances and inadequate 

mitigation in other instances. For example, the commuter rail line in Zone 2 
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provides effective partial recovery when the Orange Line (North) is disrupted but 

not when the Blue Line is disrupted.  

Specific problem: The alternate modes are unable to provide adequate mitigation 

because passengers have limited access to them. 

Potential solutions: Inter-node interaction can improve access to the mitigation 

measures.  

• One way to realize this principle in Zone 1 is to maintain bus stops within 

walking distance of commuter stations. However, making this change 

would require a redesign of existing bus routes so that the stops are co-

located with rail stations. A relatively cheaper option is to provide shuttle 

services between bus stops and the commuter rail stations. However, this 

option needs pre-planning in terms of personnel co-ordination and the 

availability of shuttles to be deployed in a timely manner. 

• The principle of inter-node interaction can be realized in Zone 2 by co-

locating subway and rail stations. In fact, this design is already seen on the 

Orange Line (North) where several transfer facilities are provided between 

commuter rail service and subway stations. Such a provision allows 

passengers to switch modes relatively easily. Again, since this might be a 

challenging change to make in the SoS design (extensive structural and 

procedural modifications of the transit services are required), operating 

shuttle buses between the stations of the two modes may be a more cost-

effective option.  

 

3. Observation: The presence of multiple red cells in column Ferry indicates that 

this service contributes inadequately to mitigating the impacts of multiple 

disruptions.  

Specific problem: While it seems that this mode can be leveraged to mitigate 

disruptive impacts across several (more than three) adverse events, the passenger 

capacity of the Ferry service is insufficient.  
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Potential solution: Physical redundancy can improve the passenger ridership 

capacity of the mitigation measures. One way to realize this principle in this 

instance is to maintain spare ferries, which are called in to service when there is a 

disruption. For example, in the aftermath of Hurricane Sandy in New York, an 

extra ferry was introduced between Manhattan and Staten Island to compensate 

for the railway disruption [Kaufman et al., 2012]. 

 

4. Observation: Commuter rail in Zone 1 can mitigate disruption of the Green Line 

(B), while the Green Line (B) mitigates the disruption Red Line (North).  

Opportunity: It may be possible to improve the SoS design such that Commuter 

Rail in Zone 1 can be leveraged to mitigate a Red Line (North) disruption.  

Potential solution: Inter-node interaction can facilitate movement of passengers 

from the Red Line to the Commuter Rail. As before, timely shuttle services can 

provide the required transfer capabilities between the disrupted subway and 

mitigating rail modes.  

 

5. Observation: The grey cell in average !"#$!,! column indicates that none of the 

mitigation measures address the disruption of Green Line (D).  

Specific problem: Passengers affected by the disruption are unable to access 

alternate transit modes.  

Suggested improvement: The resilience map does not point to specific 

improvements. The decision-maker needs to carefully study the reasons for the 

current inability to mitigate this disruption and identify potential mitigation 

measures. 
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Figure 5.10 shows another example of a partial resilience map for the Boston urban 

transportation SoS. This map reflects a more resilient SoS with better mitigation 

measures that have been realized, for example, by implementing the functional 

redundancy and inter-node interaction suggestions from the previous discussion. Now, 

how does this resilience map guide decision-making for the SoS? As before, we list key 

observations, and then point to potential design principles to address them. However, 

here, we do not discuss implications of red cells in the map. These cells can be 

interpreted in a similar fashion as the previous resilience map. Instead, we focus on the 

green cells and describe the opportunities they suggest for resilience improvement. 

1. Observation: The presence of light green cells in the mitigation columns for bus 

service (Zones 1, 2, and 3) and commuter rail (Zones 1, 2, and 3) indicate that 

these two modes are reasonably well equipped to provide mitigation when 

disruptions occur.  

Opportunity: While many of the cells are light green, there is room for further 

improvement (that is, to make them dark green), ensuring even better mitigation 

of the disruptions. However it may be the case that we have reached maximum 

feasible effectiveness in terms of additional capacity to carry passengers and 

providing passengers with access to these alternate modes. In such situations, one 

way to improve the resilience further is to focus on delaying or reducing the 

impact of the disruption. 

Potential solutions: System-level properties and drift correction can improve the 

capacity of the mitigation measures. 

• One way to leverage system-level properties is to improve the robustness 

of the subway design by either deploying inflatable flood barriers in 

subway tunnels or constructing raised entrances at flood-prone stations. 

Another technique, with a focus on road design, is to upgrade pavements 

using materials that can withstand extreme weather. This improvement 

allows continued bus service during winter weather storms.   

• One way to realize drift-correction is to deploy sensors in subway tunnels 

to detect rising water levels and automatically activate water pumps. Thus, 
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pre-emptive initiation of mitigation allows subway services to continue for 

a longer duration of time before being halted than would otherwise be 

possible.  

 

2. Observation: When considered together, the bus service (Bus Zone 1, Bus Zone 

2, and Bus Zone 3) and commuter rail (Commuter Rail Zone 1, Commuter Rail 

Zone 2, and Commuter Rail Zone 3) are able to adequately mitigate all the 

disruptions in identified set.  

Opportunity: A useful next step would be to assess what minimum combination of these 

six mitigation strategies could be the most effective. For instance, the bus service and 

commuter rail in Zone 3 sufficiently address the same disruptions. Decision-makers can 

now explore if either of these can be downgraded slightly in order to allocate resources to 

transportation facilities in other zones.. 
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5.2.3 Summary of Case Study 2 

The resilience framework has application in resilience management of infrastructure 

networks such as urban transportation. The design framework provides transit authorities 

with a systematic approach to evaluating SoS resilience and determining suitable 

improvements.  

 

Results of a recent survey of 48 international transit agencies  [Pender et al., 2013] 

concluded that many of these organizations do not have adequate parallel transportation 

networks in the event of subway disruptions. In addition, it was observed that the primary 

focus of existing mitigation measures is to provide crossover tracks that facilitate the 

quick removal of the disrupted vehicles and thereby allow spare trains to provide service. 

While there is consideration of using multiple mitigation alternatives, these measures are 

typically determined in an ad-hoc manner based on immediate needs of the SoS. For 

example, in the aftermath of Hurricane Sandy, the MTA implemented a system of “bus 

bridges” from Brooklyn to Manhattan designed as a substitute for subway lines that cross 

the East River. However, since at first the operation of these buses was not streamlined, 

long waits (more than an hour) were reported for subway shuttle buses in Brooklyn 

[Kaufman et al., 2012]. If instead, the use of these shuttle buses was planned for as part 

of emergency transportation procedures, it is likely that the operations would have been 

executed with less delay for the traveling public.  

 

In summary, the SIM-based resilience design can contribute to the development of 

organizational and contingency plans in the event of disruptions. The resilience map, in 

particular, helps identify un-resilient modes and point to ways to address them.  
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK 

Systems-of-systems are ubiquitous and here to stay. The services provided by SoSs are 

typically vital and time-sensitive. It is therefore essential that these networks be made 

resilient to adverse events. This thesis revolves around the issues of managing resilience 

in systems-of-systems. A comprehensive treatment of the topic should address the 

following three questions:  

1. What is resilience in the context of an SoS and when is it appropriate? 

• How can resilience be distinguished from other system-level attributes? 

2. How can resilience be designed?  

• What level of resilience is desirable and how resilient is the SoS currently?  

• What principles can be applied to achieve resilience in SoS design? 

3. How can resilience be maintained over the SoS lifetime? 

• When does resilience change? 

• How can adverse impacts of changing resilience be observed and mitigated? 

In this research, we addressed questions 1 and 2. First, we reviewed the concept of 

resilience as discussed in various domains, and then provided a comparison with related 

engineering attributes such as reliability, robustness, and flexibility. We argue that 

characterizing the purpose of the different attributes and in some cases disentangling the 

definition of resilience from related system-level attributes is useful in enriching overall 

SoS design.  
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Next, we focused on the second question: how can SoS resilience be designed? Methods, 

tools, and processes that can be applied to designing resilient SoSs were categorized and 

discussed. We observed that while traditional risk and reliability tools have use in 

assessing resilience, their application has limitations. Instead recent multi-disciplinary 

research that has made significant strides in modeling and evaluating SoSs can be 

leveraged more effectively to answer the question. Based on this review, we concluded 

that the biggest gap is in providing design guidance for resilience and that there exists a 

need to facilitate informed decision-making at the SoS level. 

 

This thesis has developed an aid to design that provides specific guidance on where and 

how resources need to be targeted. Specifically, we adapted the traditional risk-based 

design process to include two SoS-focused features. First, system importance measures 

(SIMs) determine the relative importance of different systems based on their impacts on 

SoS-level performance. Second, suggestions for resilience improvement draw from 

design options that leverage SoS-specific characteristics, such as the ability to adapt 

quickly (such as add new systems or re-task existing ones) and to provide partial recovery 

of performance in the aftermath of a disruption.  

 

More broadly, the design process: 

• Allows rapid understanding of different areas of concern within the SoS. The 

visual nature of the resilience map (a key outcome of the SIM analysis) provides a 

useful way to summarize the current resilience of the SoS as well as point to key 

systems of concern.  

• Provides a structured approach to resilience management. Using the design 

framework, decision-makers are guided through the analysis of SoS resilience in a 

systematic way, starting from the identification of disruptions to iterating in a 

group setting to improve SoS resilience.  

• Provides a platform for multiple analysts and decision-makers to study, modify, 

discuss and document options for SoS.  
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6.1 Recommendations for Future Work  

The SIM-based design approach presented in this thesis is one step towards formalizing 

the resilience design process. The following areas provide promising topics for future 

work. 

6.1.1 Value of Design Improvements 

While the resilience framework allows us to determine potential design improvements, 

the next step is to conduct a suitable analysis of alternatives. One way is to use the SIMs 

to evaluate the benefit of potential improvements in a traditional cost-benefit analysis. 

For instance, we can incorporate the marginal cost of implementing a particular 

mitigation by dividing each system importance measure by the corresponding cost 

associated with it. Such a SIM/cost metric would allow us to compare different mitigation 

strategies and determine which ones provide the most mitigation effectiveness for the 

least cost.  

6.1.2 Non-linearity of Performance and Time 

The System Importance Measures presented in Chapter 4 assume a linear importance of 

performance over the course of some time frame. However, this linearity may not always 

be observed – the performance drop may become less significant as time passes. For 

instance, as mentioned previously, in some cases providing even poor alternative 

transportation modes during rush hour may be better than waiting for better modes.  

 

One avenue to address this issue is by using a family of nonlinear functions to represent 

the temporal and performance level importance of SoS performance.  

6.1.3 Broader Application of the Resilience Design Process  

The SIMs are domain-agnostic and have a generic formulation based on performance and 

time. These features permit wider application of the SIMs, for instance, at the system 

level. Here, while the SIMs can be used to evaluate system resilience, the principles and 
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design choices that drive resilience improvement are system-dependent. Hence, while the 

resilience design process remains the same, how the design is done is based on system-

level considerations.  

6.1.4 Uncertainties and Complex Effects  

The SIMs presented in this thesis are calculated assuming that a disruption does occur 

and that the mitigation measure is available to provide temporary recovery. However, in 

many cases, these two assumptions may not hold and so in this section we discuss how 

some uncertainties and complex effects can be factored in to the system importance 

measures.  

 

Expected System Importance Measures (SIMs) 

 

Here, we consider two aspects of uncertainty: the uncertainty regarding the occurrence of 

a disruption and the availability of a mitigation measure: 

1. Uncertainty in disruptions. The same instigating event can result in different 

disruptions. For example, moderate snowfall in Atlanta has a higher likelihood of 

disrupting Atlanta Hartsfield-Jackson International Airport (ATL) while Chicago 

O’Hare International Airport (ORD) is reasonably well equipped to handle the 

same level of snowfall. The likelihood of being adversely affected is not only a 

function of the disruptive event itself but also of the available resources 

(infrastructure, emergency personnel, organizational flexibility). 

2. Availability of mitigation measure. In some situations, mitigation strategies may 

not be available. For example, a blizzard can impact two airports in a particular 

metroplex, rendering both unable to handle diverted flights (a mitigation measure 

which would otherwise have been possible if one airport was disrupted by a 

hostile attack while the other was not).  

To account for the above factors we develop the expected System Importance Measures. 

Now, we can express the outcomes of an instigating event as a decision tree (see Figure 



115 
 

 

115 

6.1). There are three possible outcomes: the “nominal curve” (refer to Figure 4.8), the 

“disruption curve” (refer to Figure 4.10), and the “resilience curve” (refer to Figure 4.16). 

Recall that !"#! measures the disruption curve, while !"#$!,! and !"#$!,! represent 

the resilience curve. Also, ! is a disruption and ! is a mitigation measure.  

 

 

Figure 6.1 Event tree for expected SIMs 
 

Now, referring to the “resilience curve” outcome in the decision tree, the expected value 

of !"#$!,! can be expressed by eq. (8): 

 

 ! !"#$!,! = !"#$!,! ∙ !(!) ∙ !(!|!) (8) 

 

Where !(!) is the probability that the disruption D occurs and !(!|!) is the probability 

that the mitigation measure is unavailable given D has occurred  

Expanding the conditional probability and if ! ! > 0, we obtain eq. (9).  

 

 !(!|!) = !(!! ∩ !)
!(!!)  (9) 

 

Substituting eq. (9) in eq. (8), the expected value reduces to eq. (10). 

 

Ins$ga$ng'event'

No'Disrup$on'

Disrup$on'

Mi$ga$on'

OUTCOME'
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No'Mi$ga$on'
Disrup1on(curve(

Resilience(curve(



116 
 

 

116 

 ! !"#$!,! = !"#$!,! ∙ !(! ∩ !) (10) 

 

Now, if !  and !  are independent events then ! ! ∩ ! = !(!) ∙ !(!) . Thus, the 

expected !"#$!,! can be expressed as eq. (11).  

 

 ! !"#$!,! = !"#$!,! ∙ !(!) ∙ !(!) (11) 

 

In many instances, the above equation is reasonable. For example, disruption of subway 

service in New York City due to flooding of rail tunnels most likely will not affect the 

ability of extra bus service to compensate for the rail. SoS engineers can use either 

historical data to determine the disruption and mitigation probabilities, or model them as 

random variables using appropriate distributions. However, when !  and !  are not 

mutually independent, such as in the case of common cause disruptions (a single 

instigating event causes the disruption of multiple systems) and cascading disruptions 

(disruption of one system adversely impacts other systems), careful consideration needs 

to be made to determine the join probability!!(! ∩ !).  
 

Similar to !(!"#$!,!), the expected !"#$!,! can be determined as shown in eq. (12):  

 

 ! !"#$!,! = !"#$!,! ∙ !(!) ∙ !(! ∩ !) (12) 

 

Again, when ! and ! are independent events, eq. (12) reduces to eq. (13): 

 

 ! !"#$!,! = !"#$!,! ∙ !(!) ∙ !(!) (13) 

 

Returning to the resilience design process, if the relevant probabilities are available or 

can be estimated, Phases 3 and 4 can be carried out using these expected SIMs as before 

to determine the expected resilience maps.  
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6.2 Further Considerations for Research in Resilience based on SoS Characteristics 

In this thesis, we presented one approach to facilitating decision making in the context of 

SoS resilience. However, there are several other avenues to advance the state of resilience 

research. Here we use the characteristics of SoSs to identify design questions and suggest 

potential research directions, as summarized in Table 6.1.  

 

Table 6.1 Key questions in designing resilient SoSs 

SoS characteristic Specific design questions 

Large-scale with 
heterogeneous systems  

• How can sufficiently detailed models be developed that do not over-
simplify the problem?  

• How can models capture cross-domain coupling effectively?  
• How can the computational challenges associated with large models 

be dealt with efficiently? 

Uncertainties in SoS 
evolution and operating 
environment 

• How can internal and external uncertainties be modeled? 
• Where should resilience be added? 
• Will there be any unintended consequences of resilience improvement 

measures? 
• What is an acceptable or suitable level of resilience for a particular 

SoS?  

Multiple stakeholders 
and/or partial control 
of SoS 

• How can we develop strategies that incentivize and facilitate 
resilience improvement measures for the overall SoS in a climate of 
uneven distribution of costs and benefits, and uncertain realization of 
benefits? 

 

6.2.1 SoSs are typically large-scale networks that consist of a variety of heterogeneous 

systems 

The ability of SoSs to provide capabilities that single systems cannot stems from their 

inherent diversity, that is, the variety of their constituent systems (heterogeneous nature 

of SoSs) and, in many cases, the geographical distribution of these systems (large-scale 

feature of SoSs). While these characteristics are essential to achieving SoS goals, they 

present challenges that can stymie efforts to effectively analyze SoSs, particularly with 

respect to modeling SoS resilience. These issues include modeling the interactions within 

and between SoSs, and computational challenges associated with large models. 
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All complex systems pose a modeling challenge, which essentially comes down to 

determining what the minimum level of fidelity is that will still provide useful results 

(and whether this fidelity is computationally tractable). This problem is especially tough 

in the case of SoSs, where even low-fidelity models can rapidly become very large and 

hence computationally challenging and difficulty to verify and validate. Several 

researchers have been addressing this problem by modeling SoSs as networks, which 

enables them to leverage network theory. But this approach requires that nodes be 

identical, or that only a few types of nodes be considered. Other work has extended 

modeling and measurement efforts to include performance levels of heterogeneous nodes 

rather than just flows between nodes in a network. However, most of these studies tend to 

be infrastructure-specific, and hence have limited use. Given the above discussion (see 

also Section 3.2), it is fair to ask:  

 

How can we develop sufficiently detailed models to analyze SoS resilience? 

 

The first set of research questions relates to developing models of adequate fidelity to 

analyze SoS resilience. Specifically: (1) How can we develop sufficiently detailed models 

that do not over-simplify the problem? (2) How we can we efficiently capture cross-

domain coupling? and (3) How do we deal with computational challenges associated with 

large models? Answers to these questions will provide useful contributions to the SoS 

engineering community. Some routes to solving these questions are: 

• Use pattern recognition to model evolution of SoS operations. One promising 

approach is to leverage advances in “Big Data” tools and techniques to the 

analysis of resilience in SoSs. This method has been used effectively in weather 

prediction and modeling. Computer software is used to identify previous weather 

patterns that closely resemble the current conditions, and then the predicted 

outcome is based on some weighted combination of the previous, similar, 

outcomes. Similarly, exploring response patterns of existing SoSs to previous 

disruptions could be used to evaluate new architectures. For example, Kalawsky 

et al. [2013] use pattern recognition to model emergency response (SoS 
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comprising police departments, fire brigades, and ambulance services) for a major 

incident in the UK.  

• Use cloud-based computing to facilitate the development of large SoS models. 

Some advantages of using this approach include: (1) the ability to separately 

develop various aspects of the larger model (co-locating simulations and 

resources is no longer a constraint), and (2) the ability to involve multiple, 

distributed contributors and expertise simultaneously (researchers need not 

“reinvent the wheel”: existing models can be used and built upon remotely). 

• Use Meta-models that consider multiple models, multiple experts, and shared 

variables and parameters to represent and analyze SoSs. For example, 

consider the case of a rise in sea level due to climate change and its impact on 

saltwater intrusion into coastal groundwater aquifer systems. Haimes [2012] 

describes three system models to analyze this phenomenon: hydrological (water 

modeling), agricultural-social (impacts on agriculture and domestic water 

supplies), and regional economic models (economic impacts). All three models 

draw inputs from the same database (here, external climatological models). In 

other work, Filippini and Silva [2015] present a modeling language (I®ML) to 

facilitate analysis of interdependencies with the aim to improve SoS (in particular, 

critical infrastructure) resilience. The authors also provide a discussion of other 

useful models, such as the functional resonance analysis model [Hollnagel, 2012] 

and an interdependency model based on failures and repairs [Johansson and 

Hassel, 2010]. Carley [2003] presents the concept of Dynamic Network Analysis 

to evaluate network evolution and change propagation in large-scale, dynamic 

networks; this approach provides fertile ground for the development of SoS-

focused meta-models.  

• Leverage Human-System Integration research to improve SoS design and 

accessibility for human operators. As SoSs continue to grow in size and 

complexity, the integration of humans with software and systems becomes 

increasingly significant. Currently, human capabilities and limitations and their 

implications on the design, deployment, operation, and maintenance of SoSs are 
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typically not explicitly addressed in SoS engineering and acquisition lifecycles 

[Madni, 2010]. This challenge can be addressed by incorporating human-system 

integration (HSI) ideas such as cognitive compatibility, identification of HSI 

patterns, and human performance modeling. For example, one specific ongoing 

project [Rouse, 2012] explicitly models human behavior and performance as part 

of a larger effort to improve the application of systems engineering to SoSs.  

• Develop metrics for the price of uncertainty to provide guidance in 

establishing modeling requirements. Apart from building SoS resilience models, 

a key challenge is evaluating the models themselves. Specifically, what level of 

model fidelity can provide the required quality of guidance to decision-makers? 

One way to answer this question is through the development of suitable metrics 

and methods that help assess this price of uncertainty.  

6.2.2 SoSs operate in environments of high degrees of uncertainty  

Traditionally, system optimization has sought to identify the “best” point design given a 

fixed set of constraints for the entire lifetime of the system. However, in the case of long-

lasting SoSs, such as infrastructure and transportation networks, this approach of 

deterministic optimization over a single period cannot be solved in a permanent sense. 

The key hurdle to identifying an optimal solution is the uncertain environment, both 

endogenous (internal) and exogenous (external), in which SoSs typically operate. 

Endogenous uncertainty includes SoS evolution in terms of phasing out of old systems, 

inclusion of new systems, upgrades to existing systems, and changes to the underlying 

communication (cyber). Exogenous uncertainty is driven by changes in the external 

environment, such as new types of threats, new requirements to interface with other SoSs, 

and changing stakeholder needs. Further, this uncertainty ranges from the well-defined 

(e.g., we know that Boston will most likely experience several blizzards every winter), to 

the much more difficult “unknown-unknowns”. So, the second set of research challenges 

stem from the following question:  

 



121 
 

 

121 

Given the uncertainties in hazards, technologies, and SoS structure, how can we make 

SoSs optimally resilient? 

 

The uncertainties mentioned above have a significant impact on modeling and managing 

SoS resilience. Specific questions that decision-makers need to address include: (1) How 

can internal and external uncertainties be modeled? (2) Will there be any unintended 

consequences of resilience improvement measures? and (3) What is an acceptable or 

suitable level of resilience for a particular SoS? An SoS that is optimally resilient now to 

a certain class of threats may not be optimally resilient in the future as its constituent 

systems and the external threats change in time (there is also the question of what 

“optimally resilient” means). For example, in recent years airports have been made more 

resilient to terrorist attacks (through improved screening and emergency response 

procedures). However, as global-warming induced changes affect weather patterns, these 

airports may not be resilient to blizzards and rainstorms that may occur with higher 

frequency in the future. Also, specifically with respect to infrastructure SoSs, engineers 

and designers seldom have the opportunity to design an SoS “from scratch” – these SoSs 

typically evolve over many decades as systems are acquired, upgraded, and/or removed. 

And so a fourth question arises: is it possible to upgrade a formerly un-resilient SoS into 

a resilient one? 

 

Addressing unforeseen changes is a challenging task primarily because identifying 

“unknown unknowns” by definition is impossible. However, while we do not always 

know why or how systems and processes might be disrupted, we can improve 

anticipation and recovery efforts through improved SoS modeling. For example, tools 

that facilitate the analysis of multi-system failures are valuable in directing resilience 

improvement resources. Similarly, as it is likely that different systems will come back 

online at different times (e.g., refer to previous example of impact of different rate of 

recovery of aviation and rail transportation in New York city in the aftermath of 

Hurricane Sandy), such tools would be useful to mitigate the harmful impact of 

asynchronous recoveries. 
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These situations highlight the need for discussions about the acceptable level of resilience 

an SoS needs to maintain and over what range of scenarios this resilience should be 

available. Another factor that has significant implications for managing resilience under 

uncertainty is the inherently multi-dimensional aspect of resilience: performance and time. 

As a result, in many cases decisions about resilience improvement must consider where 

the resilience should be placed, that is, following a disruption, should we improve the 

performance considerably albeit after a significant downtime or should we ensure a 

timely recovery with minimum performance recovery? 

 

We believe that the abovementioned challenges offer opportunities to “creatively” tackle 

the issue of SoS resilience, and here, suggest a few ways to approach this thorny 

challenge:  

• Identify “resilience pathways” that allow an SoS to remain resilient over long 

time periods. As threats and the constituent systems of the SoS evolve 

stochastically over the lifetime of the SoS, the necessary optimization must put 

the SoS on a “path to resilience”, that is, it must allow for incremental changes 

that can maintain resilience of the SoS over time.  

• Use the concept of multiple equilibria from ecology to design engineering 

resilience. As the interdependencies between SoSs, and not just between their 

constituent systems, grow, the concept of multiple equilibria from ecology (ability 

of a system to move into a different equilibrium or stable state to maintain 

functionality in the face of a disruption [Holling, 1973]) could provide an 

interesting approach to developing resilient SoSs. For example, can we design 

transportation networks that allow demand to be shifted over and sustained on the 

bus networks in the event of a major railway disturbance, thereby shifting the 

“equilibrium” from rail to road? These studies would need to also take into 

account social behavior and preference patterns of the general public, further 

strengthening the idea that multiple disciplines as widely diverse as engineering 

and psychology, for example, would need to be corralled to analyze SoS 

resilience in its entirety [Jackson, 2007].  
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6.2.3 SoS operations involve multiple stakeholders and in many cases partial control 

over the SoS 

The constituent systems in most civilian SoSs, such as infrastructure and transportation 

networks, are typically owned and operated by different entities and/or organizations. 

Similarly, in the military domain, although SoSs exhibit a defined structure with respect 

to their operations, a variety of stakeholders are involved in the development of the 

constituent systems. Hence, attempts to improve the resilience of SoSs may result in 

situations where some stakeholders are required to accept greater costs. The following 

question drives the third set of research challenges:  

 

How can we develop strategies that incentivize and facilitate resilience improvement 

measures for the overall SoS in a climate of uneven distribution of costs and benefits, 

and uncertain realization of benefits? 

 

Since the human element is a significant part of the development, operation, and 

maintenance of resilient SoSs addressing the above question can improve discussions 

about resilience improvement strategies. Some suggestions are provided below: 

• Develop tools to support decision-making and information exchange between 

stakeholders. From a technological perspective, better decision-making tools that 

support stakeholder collaboration efforts are needed to improve the quality of 

resilience-related discussions. These tools can be developed by adopting recent 

advances in fields such as collaboration technology, information abstraction, 

visual analytics, and data sharing [Provan and Kenis, 2008; Neches and Madni, 

2012]. Additionally, existing frameworks such as DoDAF [DoD, 2010] and the 

Open Group Architecture Framework (TOGAF) [Open Group, 2011] can be 

leveraged to facilitate SoS visualization and communication between analysts and 

stakeholders. 

• Improve stakeholder risk perception through the development of risk 

communication tools. For the overall SoS to be made resilient, some fraction of 
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the constituent systems must include features to mitigate effects of disruptions. 

This uneven spread of resilience requirements implies a disproportionate spread 

of stakeholder benefits and costs. Further, the value of a particular resilience 

strategy is only realized when the disruptions or failures actually occur. As a 

result, improved risk communication tools need to be developed (as highlighted in 

Aven [2013b]) to improve risk perception and to help stakeholders make 

decisions. 

• Develop common standards to facilitate SoS development. Just as common 

standards enable the concurrent but separate development of subsystems (e.g., 

testing standards ensure that all subsystems meet minimum electromagnetic 

compatibility requirements), common standards may enable multiple stakeholders 

to work together more effectively to develop systems-of-systems. Obvious 

standards include selecting SI or English units—however, could more 

sophisticated standards be helpful? For example, would using the System 

Modeling Language (SML) contribute to faster or otherwise more effective 

development? Similarly, do the lessons and benefits of concurrent engineering 

transfer to SoS level engineering?  

• Develop strategies to minimize cost-benefit imbalances to stakeholders. 

Resilience improvement measures at the SoS-level can result in an uneven 

distribution of costs and benefits across stakeholders, which may make some 

reluctant to participate. Given these potential imbalances, new approaches are 

needed to determine which strategies are most appropriate to persuading 

stakeholders to make the necessary changes or upgrades to their systems. For 

example, Marais and Weigel [2006] present a framework to encourage successful 

technology transition in civil aviation. Specifically, the authors use cost, benefit, 

and value distributions across stakeholders and over time to determine which 

strategies are most appropriate to persuading aircraft operators to adopt new 

equipage. Specific strategies could include phased implementation of resilience 

improvement measures, positive incentives such as monetary benefits or tax 

breaks to early participants, and mandates and punitive approaches. 
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