9,839 research outputs found

    WiseEye: next generation expandable and programmable camera trap platform for wildlife research

    Get PDF
    Funding: The work was supported by the RCUK Digital Economy programme to the dot.rural Digital Economy Hub; award reference: EP/G066051/1. The work of S. Newey and RJI was part funded by the Scottish Government's Rural and Environment Science and Analytical Services (RESAS). Details published as an Open Source Toolkit, PLOS Journals at: http://dx.doi.org/10.1371/journal.pone.0169758Peer reviewedPublisher PD

    Civilian Target Recognition using Hierarchical Fusion

    Get PDF
    The growth of computer vision technology has been marked by attempts to imitate human behavior to impart robustness and confidence to the decision making process of automated systems. Examples of disciplines in computer vision that have been targets of such efforts are Automatic Target Recognition (ATR) and fusion. ATR is the process of aided or unaided target detection and recognition using data from different sensors. Usually, it is synonymous with its military application of recognizing battlefield targets using imaging sensors. Fusion is the process of integrating information from different sources at the data or decision levels so as to provide a single robust decision as opposed to multiple individual results. This thesis combines these two research areas to provide improved classification accuracy in recognizing civilian targets. The results obtained reaffirm that fusion techniques tend to improve the recognition rates of ATR systems. Previous work in ATR has mainly dealt with military targets and single level of data fusion. Expensive sensors and time-consuming algorithms are generally used to improve system performance. In this thesis, civilian target recognition, which is considered to be harder than military target recognition, is performed. Inexpensive sensors are used to keep the system cost low. In order to compensate for the reduced system ability, fusion is performed at two different levels of the ATR system { event level and sensor level. Only preliminary image processing and pattern recognition techniques have been used so as to maintain low operation times. High classification rates are obtained using data fusion techniques alone. Another contribution of this thesis is the provision of a single framework to perform all operations from target data acquisition to the final decision making. The Sensor Fusion Testbed (SFTB) designed by Northrop Grumman Systems has been used by the Night Vision & Electronic Sensors Directorate to obtain images of seven different types of civilian targets. Image segmentation is performed using background subtraction. The seven invariant moments are extracted from the segmented image and basic classification is performed using k Nearest Neighbor method. Cross-validation is used to provide a better idea of the classification ability of the system. Temporal fusion at the event level is performed using majority voting and sensor level fusion is done using Behavior-Knowledge Space method. Two separate databases were used. The first database uses seven targets (2 cars, 2 SUVs, 2 trucks and 1 stake body light truck). Individual frame, temporal fusion and BKS fusion results are around 65%, 70% and 77% respectively. The second database has three targets (cars, SUVs and trucks) formed by combining classes from the first database. Higher classification accuracies are observed here. 75%, 90% and 95% recognition rates are obtained at frame, event and sensor levels. It can be seen that, on an average, recognition accuracy improves with increasing levels of fusion. Also, distance-based classification was performed to study the variation of system performance with the distance of the target from the cameras. The results are along expected lines and indicate the efficacy of fusion techniques for the ATR problem. Future work using more complex image processing and pattern recognition routines can further improve the classification performance of the system. The SFTB can be equipped with these algorithms and field-tested to check real-time performance

    Vision Science and Technology at NASA: Results of a Workshop

    Get PDF
    A broad review is given of vision science and technology within NASA. The subject is defined and its applications in both NASA and the nation at large are noted. A survey of current NASA efforts is given, noting strengths and weaknesses of the NASA program

    Wide area detection system: Conceptual design study

    Get PDF
    An integrated sensor for traffic surveillance on mainline sections of urban freeways is described. Applicable imaging and processor technology is surveyed and the functional requirements for the sensors and the conceptual design of the breadboard sensors are given. Parameters measured by the sensors include lane density, speed, and volume. The freeway image is also used for incident diagnosis

    Automatic segmentation of plantar thermograms using adaptive C means technique

    Get PDF
    Diabetic foot ulcer (DFU) is one of the major concern of diabetes and it is rapidly increasing, in worst case scenario this may lead to amputation. The DFU can be avoided by the early detection and proper diagnosis. Many of the studies carried out highlights that, thermography is the most useful technique to measure the changes in the temperature of plantar surface and alerts to indicate the risk associated with DFU. The distribution of temperature does not have a fixed pattern across the patients, hence it makes the difficulty in measuring the appropriate changes. This gap will provide a scope to improve the analysis technique so as to measure the plantar surface temperature effectively and identify any abnormal changes. In this paper, the segmentation algorithm namely adaptive C means (ACM) for the image segmentation is discussed. ACM is based on the spatial information and this method includes the two stage implementation. In the first stage, nonlocal spatial information is added and in the second stage, spatial shape information is used in order to refine the constraint of local spatial. Outcome of the proposed method shows that ACM is very much effective and it outperforms the other existing methods

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    Investigation related to multispectral imaging systems

    Get PDF
    A summary of technical progress made during a five year research program directed toward the development of operational information systems based on multispectral sensing and the use of these systems in earth-resource survey applications is presented. Efforts were undertaken during this program to: (1) improve the basic understanding of the many facets of multispectral remote sensing, (2) develop methods for improving the accuracy of information generated by remote sensing systems, (3) improve the efficiency of data processing and information extraction techniques to enhance the cost-effectiveness of remote sensing systems, (4) investigate additional problems having potential remote sensing solutions, and (5) apply the existing and developing technology for specific users and document and transfer that technology to the remote sensing community
    corecore