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Abstract

The growth of computer vision technology has been marked by attempts to imi-

tate human behavior to impart robustness and confidence to the decision making

process of automated systems. Examples of disciplines in computer vision that

have been targets of such efforts are Automatic Target Recognition (ATR) and

fusion. ATR is the process of aided or unaided target detection and recognition

using data from different sensors. Usually, it is synonymous with its military ap-

plication of recognizing battlefield targets using imaging sensors. Fusion is the

process of integrating information from different sources at the data or decision

levels so as to provide a single robust decision as opposed to multiple individual

results. This thesis combines these two research areas to provide improved clas-

sification accuracy in recognizing civilian targets. The results obtained reaffirm

that fusion techniques tend to improve the recognition rates of ATR systems.

Previous work in ATR has mainly dealt with military targets and single level

of data fusion. Expensive sensors and time-consuming algorithms are generally

used to improve system performance. In this thesis, civilian target recognition,

which is considered to be harder than military target recognition, is performed.

Inexpensive sensors are used to keep the system cost low. In order to compensate

for the reduced system ability, fusion is performed at two different levels of the

ATR system – event level and sensor level. Only preliminary image processing

and pattern recognition techniques have been used so as to maintain low oper-

ation times. High classification rates are obtained using data fusion techniques

alone. Another contribution of this thesis is the provision of a single framework to

perform all operations from target data acquisition to the final decision making.

The Sensor Fusion Testbed (SFTB) designed by Northrop Grumman Systems
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has been used by the Night Vision & Electronic Sensors Directorate to obtain im-

ages of seven different types of civilian targets. Image segmentation is performed

using background subtraction. The seven invariant moments are extracted from

the segmented image and basic classification is performed using k Nearest Neigh-

bor method. Cross-validation is used to provide a better idea of the classifica-

tion ability of the system. Temporal fusion at the event level is performed using

majority voting and sensor level fusion is done using Behavior-Knowledge Space

method.

Two separate databases were used. The first database uses seven targets (2

cars, 2 SUVs, 2 trucks and 1 stake body light truck). Individual frame, temporal

fusion and BKS fusion results are around 65%, 70% and 77% respectively. The

second database has three targets (cars, SUVs and trucks) formed by combining

classes from the first database. Higher classification accuracies are observed here.

75%, 90% and 95% recognition rates are obtained at frame, event and sensor

levels. It can be seen that, on an average, recognition accuracy improves with

increasing levels of fusion. Also, distance-based classification was performed to

study the variation of system performace with the distance of the target from

the cameras. The results are along expected lines and indicate the efficacy of

fusion techniques for the ATR problem. Future work using more complex image

processing and pattern recognition routines can further improve the classification

performance of the system. The SFTB can be equipped with these algorithms

and field-tested to check real-time performance.
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Chapter 1

Introduction

Advances in science and technology have always been directed towards developing

smarter and efficient systems. In this approach, humans have long been trying

to mimic the Human Visual System (HVS) so as to enable machines to look at

their environment and act accordingly. Insofar, it can be safely concluded that

no machine has been built that can match the durability and dexterity of the

HVS. Decades of research and billions of dollars have been spent on attempts

to develop systems that can detect and recognize objects of interest amongst an

irrelevant or uninteresting background. Automatic Target Recognition (ATR) is

the process of aided or unaided target detection and recognition using data from

different sensors. Usually, ATR algorithms work towards developing better image

segmentation techniques or image features to improve the classification accuracy.

ATR is a term generally associated with its military application of recognizing

battlefield targets using imaging sensors.

With the development of cheaper sensors, many approaches of ATR now con-

centrate on using different sensors to monitor the same event. Information from

these sensors is used to provide a single reliable decision. The inherent advantage

of this method compared to the HVS is the ability to sense signals that cover a

wider frequency range – the HVS is limited to the visual spectrum. The usage of

different sensors also requires some technique to combine the various information

sensed. The best example of an efficient fusion system is the human perception

system which combines visual, auditory and sensory information to make robust
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decisions. While trying to design ATR and fusion systems with the aim of match-

ing human capabilities, it must be kept in mind that the human brain is a huge,

parallel-connected neural network with years of training.

In this thesis, ATR is performed on civilian targets. Civilian targets are con-

sidered to be harder to classify than military targets. This is because their spectral

content usually contains peaks at higher frequencies compared to military targets.

Military targets are louder than civilian vehicles and hence the low frequencies

tend to dominate. Commercial vehicles have a smaller engine and higher RPM

rates, thereby causing high frequency audio signals. Also, commercial vehicles

have better muffling which makes the low frequencies harder to observe. Thus,

civilian target detection and recognition provide a harder classification problem

than their military counterparts. The image processing algorithms that are used

in this thesis are simple. High classification accuracy is achieved by using data

fusion. Two levels of fusion, event-level and sensor-level, are performed and it is

shown that each level of fusion improves the classification accuracy.

This chapter of the thesis introduces the reader to the topic of the thesis and

explains the motivation behind the thesis, its objectives, contributions and the

required background details.

1.1 Motivation

ATR is a multi-faceted problem with a variety of applications in the military and

industrial areas. Military systems that perform targeting, detection, tracking or

surveillance need ATR capabilities. ATR also reduces the workload of human

operators in intense battleground situations. Since ATR is an automation of the

human cognitive process, current approaches try to emulate human behavior for

ATR. This provides insights into the powers of perception and recognition of

humans and animals. Thus it can be seen that ATR is an important area of

study with a lot of scope for research. However, ATR algorithms typically use

non-portable and expensive sensors with computationally complex algorithms to

boost their performance levels. This increases the system cost and processing

time. Data and sensor fusion provide the ability to arrive at more reliable and
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robust decisions at a cheaper cost and processing time. The redundancy and

complementarity of sensors are desirable features.

This thesis combines ATR and data fusion for recognizing civilian targets. As

mentioned earlier, ATR for military targets is a well-studied research area. ATR

of civilian targets is however a relatively new field of study with many potential

applications. The motivation of this thesis is to perform reliable recognition of

civilian targets using easily accessible sensors. Reliability is achieved using data

fusion techniques.

In collecting the dataset, the Sensor Fusion Testbed (SFTB) developed by the

NVESD has been used. This testbed was developed in order to collect imaging

and auditory information simultaneously so that a reliable dataset and ground

truth information could be recorded. This dataset would then be used to test and

develop algorithms for moving target ATR. Also, the development of the testbed

establishes the necessary techniques and equipments needed to collect ground

truth information of the targets.

1.2 Automatic Target Recognition

Automatic Target Recognition is the process of detecting and recognizing a target

from the input sensory data. This technique is used to reduce human workload by

attempting to replace the HVS in demanding situations like battlefield conditions.

The goal is to develop ATR systems that can support lock-on-after-launch (LOAL)

systems and fire-and-forget systems [4] that can operate consistently well.

Typically, ATR is used to perform tasks like image acquisition, target detec-

tion, tracking and recognition. In primitive ATR systems, only target acquisition

is performed autonomously leaving the rest of the tracking and recognition to

the human operator. This process is known as aided ATR or target cueing [2].

Depending on the complexity of the ATR system and/or algorithm, it can per-

form relatively simple tasks like cueing the target for the human operator or can

perform target recognition itself. In the autonomous mode of operation, the ATR

system is wholly responsible for identification of the target also. Current ATR

systems are not capable of autonomous ATR. In the military and medicinal fields,
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which are typical applications of ATR, tolerance for false detections is very low.

It is quite obvious that human-in-loop systems will be used until autonomous

ATR can be demonstrated as having consistently superior performance. Hence

the failure rate of current autonomous ATR systems makes them unsuitable for

practical usage.

In addition to classifying ATR systems on the basis of the level of human

intervention as aided and autonomous, they can can also be classified based on

their output values as binary and multivalued [1]. In binary ATR systems, the

system answers to target detection scenarios with a yes or no i.e the system either

classifies the region-of-interest (RoI) as a target or not a target. Multivalued ATR

systems assign a number to the RoI to indicate the likelihood that it is a target.

For example, the multivalued system assigns a probability ranging from 0.0 to 1.0

to the RoI to indicate if it is a target.

Though the HVS is the oldest and probably the most efficient sensor we know

of, it has certain shortcomings. It is sensitive only to a certain frequency band

(the visual band) and it can detect only illuminated, relatively close and clear

targets. Also, humans are error-prone when continuous and repetitive tasks are

at hand. ATR systems can overcome these limitations by using different sensing

modalities and by automating the tasks of target detection and identification.

ATR systems can have one or more sensors. Typical sensors used for ATR

are visual cameras, forward-looking infrared sensors (FLIR), RADAR sensors and

LASERs. In recent years, sensors like Synthetic Aperture RADAR (SAR), Inverse

Synthetic Aperture RADAR (ISAR), LASER RADAR (LADAR) and multispec-

tral sensors have gained in importance. The number and type of sensors used

depends on the ATR algorithm, processing ability and the application where the

system is to be deployed. These sensors view the scene and detect possible in-

stances of the target. An ATR system can be described using the block diagram

shown in Figure 1.1. A typical ATR algorithm localizes the region of interest (RoI)

and extracts features of the target from the input data provided by the sensors.

These features are compared against those of the possible classes to which the

target may belong. Based on previous learning experiences or a target database,

the target is then classified into a particular class. The ATR system is trained to

4
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Figure 1.1: Process flow for ATR

recognize the targets using supervised or unsupervised training methods. Com-

parison of the target’s feature vector with those of the training samples help in

classifying and recognizing the target.

The performance of an ATR system depends on many associated technologies.

These include hardware technologies (sensors and hardware evaluation and archi-

tecture), software technologies (algorithm development, software evaluation and

architectures), theoretical concepts (statistical pattern recognition, neural net-

works, genetic algorithms, adaptive learning systems and model based vision),

image processing techniques (image segmentation and feature extraction) and

physical principles (detection theory, multiresolution processing and statistical

techniques).

1.2.1 Requirements for ATR

Feature selection, extraction and matching for ATR systems is a complicated

process. This is mainly due to the infinite variations that are possible in the target

signatures. Typical variables include relative orientation of the target and sensor,

image resolution, target camouflage, time of the day, season,terrain conditions and
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vegetation. In addition, the target may vary from time to time; for example, the

turrets of tanks may be angled differently and doors of vehicles may be opened

or closed. Another major problem for ATR systems is the presence of clutter.

Clutter refers to all the information content present in a scene that is not related

to the target. This can be caused by noise in the atmosphere, weather conditions,

sensing limitation of the sensor or sensor noise. In order to address all these

problems, ATR algorithms have to meet certain requirements [8, 24]. Some of

these are listed below.

1. Sensors with high resolution are needed to capture more information from

the scene.

2. High speed processors were needed to work on all the information provided

by the sensors. This need is now obsolete with the advent of high-speed

chips and processors.

3. Collateral information, i.e. information from other sources, should be used

for better performance.

4. Low false alarm rates are desired. For military applications, it is neces-

sary that only the right targets are detected so that background or friendly

objects are not fired upon.

5. High and reliable detection rates must be maintained. In military terms,

the cost of a low detection rate would be the loss of an aircraft or tank.

6. Real-time operation is desirable. Hence the magnitude of calculations in the

algorithm should be manageable for the hardware of the system.

7. The classification algorithm should be capable of incorporating new target

information during operation. This ensures that the algorithm need not

be trained again to accommodate new targets or different version of an old

target.

8. The system must be capable of representing cases when it cannot confidently

classify a target and alert the human operator.
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9. The ATR system must be capable of identifying new targets.

10. The ATR system must work as independently of the clutter as possible.

1.2.2 Sensing Modalities for ATR

Sensors are the connecting blocks between the ATR system and the real world.

They convert environmental and target parameters into data that can be used

by the system. The sensors used by an ATR system are selected based on the

resolution needed and the current application. For example, for aided ATR in

which the ATR system has to locate possible target areas, low quality sensors may

be sufficient. If the system is expected to identify the target and suggest possible

matches, higher quality of images and sensors will be needed. The following is

a list of sensors that are typically used for ATR. These sensors are usually used

individually or in some combination.

• Forward Looking InfraRed (FLIR)

• Video cameras

• Radio Aided Detection and Ranging (RADAR)

• Sound Navigation and Ranging (SONAR)

• Light Amplification by Stimulated Emission of Radiation (LASER)

• LASER RADAR (LADAR)

• Synthetic Aperture Radar (SAR)

• Inverse Synthetic Aperture Radar (ISAR)

• Microwave/Millimeter wave (MMW)

• Acoustic

• Seismic

• Multispectral
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Figure 1.2: Operation of sensors [4]

• Hyperspectral

The sensors can be active sensors or passive sensors depending on their mode of

operation. Passive sensors work by measuring signals emitted or reflected by the

targets, like brightness or heat. Active sensors emit signals towards the target to

calculate their features. Table 1.1 lists different sensors, their information content

and the feature they sense [2, 4].

Sensors like LASERs, LADARs, MMW and acoustic sensors can be active

sensors. FLIR and visible sensors are passive by nature. The resultant images

obtained from them show the relative brightness or surface temperature of the

objects in the scene. LASER sensors emit a coherent beam of light towards the

target, and the reflected beam is captured and time of travel is measured. This

gives features like range, velocity and angular resolution of the target. Similarly,

RADAR beams can measure range and velocity using the time of travel and

Doppler’s Effect. Acoustic sensors use a high frequency beam of sound waves

to achieve a similar purpose. The operation of different sensors with respect to

information content, ease of operation and information extraction is shown in

Figure 1.2.

The description and performance characteristics of sensors are discussed be-

low [2,14].
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Table 1.1: Sensors and features sensed

Sensor Type Information con-
tent

Feature Sensed

Acoustic Passive Low Range, velocity

SONAR Active Moderate Range, velocity

Visible sensor Passive Low/Moderate Color

FLIR Passive Moderate Temperature

LASER Active Moderate 3D shape, range,
velocity

RADAR Active Moderate/High Motion

Seismic Passive Moderate Vibration

MMW Active Moderate/High Distance

High resolution
imaging

Active/ Passive High Shape, color

Multi/hyper
spectral imaging

Active/ Passive High Depending
on spectrum
covered
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Visible Sensors These cover the 780-380nm range of the electromagnetic spec-

trum. The visible light reflected by the target and the environment is sensed.

The image that is obtained from these sensors represents the brightness or

intensity of the scene at every pixel. Though high resolution images can be

obtained using visible sensors, their operation is dependent on the level of

illumination present. Hence, they are suitable only for daytime operation.

Also, the target must be clearly visible to the sensor for proper detection.

Occlusion and inclement weather conditions affect the operation of the sen-

sor adversely. They are generally used as low-cost sensors to sense easily

visible targets. Typical uses include multispectral arrays, video cameras and

LADARs.

Acoustic These sensors cover the 1-10KHz frequency range. The audible signal

of the target is sensed if the sensor is a passive acoustic sensor. In case

of active sensors, a short high-bandwidth pulse is sent towards the target

and the reflected signal is studied to obtain range and velocity information

(SONAR). These can be used during day or night times. The resolution of

these sensors are poor and the sensing distances are short – a few meters in

air and several hundred meters in water. The signal attenuation is high and

depends on the distance, atmospheric conditions and frequency used.These

sensors are usually used in SONAR systems, seismometers and acoustic

detectors.

FLIR These sensors can detect signals between 300nm-1 micron. They detect

the thermal signature of the scene. Since they do not depend on the light

intensity of the scene, they can be used for day and night operations. How-

ever, it must be kept in mind that the signal level varies with the time of

the day. High angular resolution can be obtained using these sensors. Their

operation is limited by atmospheric conditions like rain and fog. Also, they

have poor foliage penetration capabilities like visible sensors. When used

from the sky, they can have an effective range of 10-15km. They are typically

used in infrared cameras, multispectral arrays and focal plane arrays.

LASER Moderate to high resolution range data can be obtained using LASER
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sensors. The sensors work by sending out a concentrated beam of light in

different directions. The reflected beam is studied to find accurate range and

texture information. These sensors can also be used for day and night time

operations. Again, their operation is affected by the weather conditions.

RADAR The principle of operation of these sensors is the same as that of LASER

sensors. These sensors use radio waves to study target information. MMW

RADARs typically use frequencies between 30-300GHz to find range, veloc-

ity and intensity data. Though the resolution of the image is not high, these

sensors can cover a large area, especially when used from the sky. SARs and

ISARs are usually used from airplanes. These sensors also have good foliage

penetration and adverse weather does not affect these sensors as much as

others.

Multi/hyper spectral sensors These sensors use a combination of the above

for achieving target information at different frequencies. For example, a

multispectral sensor using visual, IR and RADAR frequencies can obtain

brightness, thermal and range information. The imaging data obtained is

of extremely high resolution. These sensors are gaining in importance with

the rise of fusion systems used in ATR.

Examples of images sensed by a few sensors are shown in Figure 1.3.

1.2.3 Challenges in ATR

Though research in ATR has been carried out for well over two decades now, there

are still no ATR systems that are deployable in the real field. This is because the

ATR process is plagued with many problems. All the early papers discussing ATR

talk about the practical concerns of implementing ATR systems [1, 2, 4, 8, 17].

The major problem is target and scene variability. There are many different

possible combinations of target signatures for a single target. This can vary de-

pending on the target orientation towards the sensor, distance, rotation, time of

day, weather, illumination, terrain, vegetation, different models of the same target

(different make or manufacturer), optional target equipments, aspect, clutter and
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(a) Image in passive
infrared region

(b) LASER RADAR
image of same region
as (a)

(c) 2D display
of RADAR
range data

(d) SAR image

Figure 1.3: Examples of images sensed by different sensors [17]
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other such features. In case of military targets like tanks, further variation in

target signature is caused by keeping the hatches open or closed and with various

angles of the turret. It is practically impossible to train the ATR system with a

dataset that represents all these variations and then deploy it. The total number

of images that will be required for training is the product of the number of images

required to represent each feature.

In addition to the non-availability of a representative database, it is often not

clear as to what the ATR system is expected to achieve. There are no metrics

to define the objective and performance of ATR systems. This problem can be

thought of as one that is carried over from the image processing domain, in which

the quality of the image has no objective metric measure but is often subjectively

measured by the human observer looking at it. Another problem in ATR is the ab-

sence of robust algorithms that can provide high detection rates while maintaining

low false alarm rates. This performance is affected by the presence of high clutter

in typical ATR environments, such as battlefields. Also, typical ATR systems are

incapable of identifying new targets or even indicating that the current target is

new. ATR systems usually return the nearest match because distance measures

in the feature space are usually used to classify the target. Hence the output of

the system will be the target in the database that best matches the target under

observation. This may prove to be a big setback since the new target may or may

not be hostile, and a false alarm may be as costly as an undetected target.

The problems faced in the area of ATR are listed below, followed by a brief

description.

1. Target signature variability: As mentioned above, the target signatures can

vary a lot. The ATR system has to effectively capture all important vari-

ations and detect targets beyond such changes. Though humans deal with

target variation easily, making ATR systems adapt to these changes is a

very tough problem.

2. Non-representative databases: A database that represents the infinite vari-

ability of the target and background clutter cannot be generated practi-

cally. Even if such a database was generated, the training time would be

13



huge. Also, once such a system was deployed, introducing a new target or

adding another feature to the database would usually require the system to

be retrained (unless the system can be trained on-the-fly).

3. Feature selection: Choosing the features that are to be extracted must de-

pend on the application, target environment and sensors used. The number

of features to be used must be decided by the programmer. Usually, the

more the features chosen, the better the classification accuracy.

4. Number of samples: The number of samples that are to be used in training

the ATR system needs to be chosen carefully. Selecting too few samples will

deteriorate the classification accuracy, while using too many could result in

overfitting and large training time.

5. Algorithms: New algorithms have to be developed that can provide high

detection rates without compromising on the false alarm rates. For this,

the algorithm must be clutter independent and have hardware with high

computational power. In this direction, new techniques like adaptive learn-

ing systems, knowledge based systems, neural networks and model based

systems are being tested.

6. Measurement metrics: Proper metrics have to be defined to measure the

performance of the ATR system. Also, the objective of the ATR system

must be specified. This helps the programmer to have a fixed goal instead

of a human measure that is difficult to translate into a program. Metrics for

input image complexity will also be useful, since these can be used to define

the expected performance of the system. Images that are more complex, in

terms of clutter, cannot be expected to provide as good results as those that

are simpler.

7. New targets: The algorithm must be capable of handling new targets and

indicating to the human operator that a new target has been sighted. This

problem arises when the classification is done solely on the basis of the

distance of the features of the target from the features of the classes in the
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database. As discussed, neither false alarms nor non-detections are good

and in the actual application, both of them might prove to be too costly.

8. Camouflaging: In military applications, each target is controlled by an in-

telligent adversary who will try to evade attempts to be recognized. In

addition to the already existing target variations, the ATR system will have

to negotiate camouflaging attempts.

9. Sensor limitations: Usually, it is desirable to use ATR systems that can

work with sensors that are easily available and simple. So, it is often the case

that specific sensors cannot be tailor-made with the design objective in mind.

Instead, available sensors are used and hence efficiency is compromised since

the resolution and other image parameters cannot be chosen to the best

ability.

10. Architectures: Since ATR requires a huge amount of processing power, mem-

ory and database, it is necessary to design smart hardware and software

architectures for ATR. With the advent of VLSI technology, current chips

are able to provide more processing power on a smaller wafer of silicon.

1.2.4 Performance Metrics

Performance metrics constitute an important area of concern for ATR systems. In

image processing applications, there have not been objective means of measuring

image quality. Similarly in the ATR field, there are no concrete metrics to measure

the input image complexity or the performance of ATR systems. Usually, measures

like the number of edge points, entropy, uniformity and structural measures have

been used to characterize the input of an ATR system. However, these measures

do not provide a knowledge of the image behavior and are not very helpful in

characterizing the target and the clutter present in the image. There are some

probabilities that are used to denote the effectiveness of the ATR algorithm. These

are defined in terms of the ability of the system to detect, classify, recognize and

identify the target. There are also additional metrics to define the performance

of ATR algorithms [17]. These definitions are listed below.
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1. Probability of detection: This is the probability of correctly detecting the

presence of the target amidst a background containing clutter.

2. Probability of classification: This is the probability of correctly determining

the class of the target. For example, this means the ability to detect if the

target is wheeled or a tracked target.

3. Probability of recognition: This is one step ahead of classification. The

target is recognized as belonging to a particular sub-class. For example, the

tracked vehicle is then recognized as being a tank or an armored personnel

carrier

4. Probability of identification: This is the probability of determining the iden-

tity of the target i.e. to classify it to the smallest sub-class level possible.

For example, the make of the tank is identified in this stage.

5. False alarm probability: This is the probability of false detection. It is

required in practical applications that this probability value remains low.

6. Signal to Noise Ratio (SNR): It is defined as the ratio of difference between

the target and background intensities to the background intensity. If Ib

represents the intensity of the background and It represents the intensity of

the target, then the SNR is given by (It − Ib)/Ib

7. Receiver Operator Curve (ROC): It is a plot of true positives versus false

positives i.e. a plot of detection rate versus the false alarm rate. This graph

is plotted as a function of the Signal to Noise ratio.

8. Confusion matrix: The confusion matrix is a two dimensional array that

lists the number of times a particular target was classified under various

classes. By definition, the confusion matrix is always a square matrix. The

diagonal entries of the confusion matrix indicate the correct classification

values. For example, in a case containing possible targets as tanks, armored

carriers and trucks, the confusion matrix lists the number of times a tank

was classified as a tank, an armored carrier and a truck. In case of a two
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target system, the confusion matrix lists the probabilities of true and false

detections.

9. Consistency: This metric denotes the consistency of the classification process.

For scenes with similar content, it measures how often the classifier classifies

it under the same class. This gives an idea of the clutter dependence of the

classifying algorithm since the difference between these scenes is caused by

the noise of the atmosphere or the sensor.

It is interesting and is of practical importance to compare the performance

of ATR systems and humans. The results in Table 1.2 are those of an experi-

ment which was performed in low-clutter, forced choice environment [17]. The

term forced choice indicates that nearest match was returned for any given tar-

get, that is, the humans were forced to make a choice. Though it is seen that

the performance of the ATR systems is inferior compared to humans, the use of

ATR systems is justified by the fact that humans cannot perform repetitive tasks

efficiently over a long period of time. It is known that the best performance can

be obtained by using aided ATR. This is justified by the data in the table which

indicates that humans and ATR systems have similar detection rates, but the

ATR system cannot classify the targets as accurately as humans. The last two

columns give the probability of eight class and three class classification for ATR

systems and humans.

Performance measurement is not entirely dependent on the information content

of the image. For example, if the input scene has been captured from a high clutter

Table 1.2: Comparison of humans and ATR systems in target classification [17]
Classifier TP FP P(8 class) P(3 class)
ATR Max prob. 0.869 13.323 0.353 0.732
ATR Min prob. 0.604 3.532 0.268 0.541
ATR Mean prob. 0.688 8.195 0.289 0.705
Human Max Prob. 0.833 0.9 0.814 0.798
Human Min Prob. 0.52 0.017 0.298 0.343
Human Mean Prob. 0.683 0.234 0.586 0.663
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Table 1.3: A new approach to ATR algorithm evaluation [1]
Ground Truth Panel ATR Current practice New practice

T T T Detection Detection
T T N Miss Miss
N N T False detection False detection
N N N No change No change
T N N Miss No change
N T T False detection Detection
T N T Detection Stop
N T N No change Stop

environment, the ATR system cannot be expected to perform as well as in a low

clutter image. Hence, comparing the performance of the ATR system from these

two scenes which have similar information content is not fair. Though the scenes

have been captured for the same target, the information retrieved from the scenes

differ. So, when the result of the ATR system is compared against the ground

truth, it may seem that the consistency of the system is less. A new approach

has been put forward to measure the performance of ATR systems in [1]. The

following Table 1.3 shows this method of performance evaluation. T represents

correct labelling of the target and N represents incorrect labelling of the target.

In this method, the performance of the ATR systems is not compared against

the ground truth. Instead, a panel of experts classifies the same image, and the

performance of the ATR system is compared against that of the panel. Hence,

the comparison is now against human performance which is what ATR systems

seek to replace.

It is seen that though the ATR result is only required to conform with the

result of the panel. In case the panel result and the ground truth are the same

but the ATR result is different, some corrective measures have to be taken to

change the output of the ATR system. However, when the ATR system and the

ground truth are in agreement and the panel differs, no changes have to be made

to the system. This ensures that the ATR system performs better than the panel.

This approach is quite similar to the implementation of the Behavior-Knowledge

Space (BKS) algorithm for data fusion. This algorithm will be discussed in later
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chapters of this thesis.

1.2.5 Techniques for ATR

Early techniques for ATR were based on heuristic methods. Initially in the early

1980s, target detection was performed using the contrast box method. An arbi-

trary box was drawn around the RoI and the contrast of the RoI was compared

to that of the background. The contrast box target acquisition technique [22] can

be described as

C(i, j) =
(µt − µb)

2 + σ2
t

σb

(1.1)

where µt, σ
2
t are the mean and variance within the box; µb, σ

2
b are the mean and

variance within the border.

Once target acquisition was performed, the next stage was to segment the

RoI and classify it. This was performed using edge-detectors, broken edge con-

nectors (using morphological operators), binarization, feature extraction of fore-

ground and classification. The techniques that were used for classification in-

cluded methods like Bayesian, k Nearest Neighbor or Parzen window methods.

The performance of this generation of ATR algorithms was not very good, espe-

cially in the presence of clutter and detection rates did not cross 70% [17]. The

low performance of these methods can be ascribed to the method of choosing the

features and processing algorithms. Scene information, image formation physics

and other intuitive information that is used in biological recognition systems were

not used. Methods were chosen for individual processes, and the best of these

techniques were put together without taking into consideration the application

being studied. In the late 1980s and early 1990s, knowledge-based systems and

template-matching systems began to be used. RoI detection and target classifi-

cation were the two major stages of these techniques. Filtering techniques were

used for the former and template matching was performed for the latter. This

increased the detection rates to the 80% level in medium and low clutter environ-

ments [17] though the false alarm rate was still high. Recently, adaptive learning

and model based approaches are being tested since they try to mimic human clas-
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sification methods. Multisensor fusion techniques have been introduced to boost

the classification rates to even higher levels.

One method used to study ATR performance and possibly improve it is using

artificial imagery. A synthetic image is created and submitted as the input to

an ATR system [1]. This helps the programmer to study the response of the

system to a known input. The same image is also given to a panel of experts

and their output is compared against that of the system. Unlike normal images,

the response of the panel does not indicate the ground truth. Here, it is merely

a question of which labelling is superior – the expert panel or the system. The

advantage of this method is that images are not required to be provided from the

field in order to train the system. Hence, huge cost savings is achieved here. In

another technique, test imagery data is generated using real world images [22].

These images are manipulated to represent variations like different resolution,

range, terrain, target aspects, etc. Bilinear interpolation technique was used to

achieve these perturbations in the image. The ATR algorithm is expected to

classify the target to the same class irrespective of the changes in the image.

The ATR algorithm classifies the feature vector of the target based on some a-

priori knowledge. This knowledge is usually through supervised or unsupervised

learning. In the learning process, the ATR system is fed different inputs and the

system parameters are adjusted so that the correct output is obtained. Thus, at

the end of the learning process, the system is expected to be modified enough

from its initial configuration so that it can present correct outputs for similar

inputs. Usually, the system is trained with the help of a domain engineer or

knowledge engineer. There are three areas to which learning can contribute in

ATR systems [24]. The first is in the initial acquisition of the domain theory.

The second area to which learning can be applied is the usage of already known

domain theory for new scenarios. This could include using the domain theory to

detect targets in new weather conditions or different time of day than was present

while developing the domain theory. This process is called transfer. The third

area where learning can be applied is in the training of the system to learn a new

feature. For example, adding a new feature that can help to detect the target

even in low visibility. This is different from the transfer process since this involves
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the addition of a new feature to the domain theory and not just adapting the

already existing domain theory for a new scenario. Typically, in ATR systems,

supervised learning occurs and a domain engineer or knowledge engineer is present

when the system is being trained. It is preferred to use the contextual data and

have adaptive algorithms that can learn from previous experiences. The major

objectives of learning in ATR systems is to be able to detect and recognize the

target consistently with the ability to accommodate new features and targets

in real time and the ability to alert the human operator when a new target is

detected.

Learning in ATR systems is usually implemented using Artificial neural net-

works (ANNs). These networks try to model the neural networks in the human

brain. ANNs have various nodes called neurons that are densely interconnected

at different layers. Each neuron has many inputs and one output. The neurons

between different layers are connected using weighted links. The output of the

any node, and the network itself, is a number between zero and one indicating the

confidence of the classification. The node is associated with an activation function

that is responsible for providing outputs based on the inputs received. A network

may have more than one output neuron, one for each class of targets, and the

classification is then done based on the neuron having the highest output value.

During the learning or training process, inputs are provided to the ANN and the

output is continuously monitored. The weights in the networks are continuously

changed until the desired set of outputs is obtained for the inputs presented to

the network. When this is done, the ANN is said to be trained and is ready to be

used for target classification.

Learning in neural networks can be supervised or unsupervised. In the former,

a human operator assists the network during the training stage and monitors

the weights of the network until the desired outputs are obtained. Examples of

supervised learning algorithms include the delta rule and the backpropagation

rule. In case of unsupervised learning, the weight adjustments is done by the

system itself. Examples of this learning include Kohonen learning. Feedforward

and backpropagation neural networks are commonly used. The difference between

them is that in the latter, there is a path from the output to the input providing
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a feedback so that learning is faster. The advantage of using neural networks

for learning is that they can perform unsupervised learning and lend themselves

naturally to recognizing typical ATR targets. However, they have a long training

time and hence cannot be retrained to accommodate new features and targets

during run-time. Also, they are highly sensitive to noise and cannot identify new

targets since they are minimum distance classifiers.

Explanation-based learning (EBL) [24] is a deductive learning process in which

the system tries to learn from the current scenario. An EBL system is presented

with four different inputs. The first is the training sample or its corresponding

features. The second input is the goal concept or the target. The third is an

opearationality criterion which describes which features are useful in identifying

the target. The last input is the domain theory that describes the relation between

the input and the output. After presenting these inputs to the system, it is allowed

to learn and identify the important discriminants that allow it to correctly classify

the data. In this method, the system can learn from different scenarios on its own

and hence can react better to new situations. The disadvantage of EBL is that

generating the training set is difficult. Also, it cannot identify a new target.

Adaptive algorithms for the image processing techniques like segmentation and

feature extraction will be helpful in achieving better results. These blocks will help

the system to learn parameters and concepts from the training and testing data

provided. The ability to adapt adds robustness to the system. Another advantage

of adaptive systems is that the system need not be retrained if it can adaptively

learn on-the-fly.

Recently, model-based techniques are being tried for ATR [9]. Model-based

techniques can be data-driven, goal-driven or model-driven while normal tech-

niques are usually only data-driven. Model-based vision (MBV) paradigm of

ATR falls in between the two other categories – Prescreen, Segment and Classify

(PSC) and Matched Filter (MF). In PSC, no a-priori information is used and

RoI detection is performed without any information on target shape. MF is the

other extreme in which the image is compared against a template at all possible

target-like shapes. MBV is the intermediate category in which PSC is performed

to reduce the target area and then MF techniques are used for actual target de-
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Figure 1.4: Performance of ATR over the years [17]

tection. It can be seen that MBV is the category under which most ATR systems

fall. The idea of model-based systems is not only to model the target, but also

form models of clutter, noise, sensors, background, heat flow, atmospheric physics

and countermeasures.

1.2.6 Growth of ATR

Over the years, with the advance in technology and algorithm development, the

detection, recognition and classification rates in ATR have improved. The follow-

ing graphs follow the trend of ATR in different ares. Figure 1.4 gives an indication

of the performance of ATR algorithms over the years. The false alarm rate for

the first two years is zero, since a no clutter environment was used. The projected

growth of processor computation rate against the years for single and parallel

processors is shown in Figure 1.5. Figure 1.6 shows the feasible progression of

ATR technology.

Other new developments in the ATR field include fusion of data from different

sensors. As previously discussed, collateral information helps in detecting targets

better. Hyperspectral and multispectral sensors provide information over different
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Figure 1.5: Processor computation rate versus chronology [17]

Figure 1.6: Progression of ATR processing technology [4]
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spectral bands, hence different materials can be sensed based on the wavelength

that they are sensitive to. In such cases, the emphasis is on identifying the spec-

tral bands that are useful and reducing the amount of redundant information

transmitted from the sensors. Data fusion is also performed to accommodate in-

formation from different sensors. Fusion can be performed at various levels, like

pixel fusion and decision fusion. As mentioned in this report, current performance

of ATR systems is still far from human performance. Detection can be performed

accurately for low and medium clutter environments. However, new targets and

scenarios continue to be a problem to ATR systems. Utilizing new sensors and

information may hold the key to improving ATR system performance.

1.3 Data Fusion

Data fusion is another instance of imitating biological behavior to incorporate

intelligence in automated systems. Human recognition of many objects and events

is typically based on fusing visual, auditory and perceptible information. This

enables robust decision making. Animals also regularly perform tasks based on

information from multiple sensors. For example, multi-sensor integration has been

recorded in pit vipers and rattlesnakes [21]. Infrared information is sensed by the

pit organ and visual information is sensed by the eyes of a rattlesnake. The

optic tectum of the rattlesnake is responsive to both these data and some neurons

respond to different combinations of infrared and visual data.

Data fusion combines diverse techniques like statistical signal processing, pat-

tern recognition, artificial intelligence and information theory to derive better de-

cisions than stand-alone sensors, though exposed to the same target data. Multi-

sensor fusion is differentiated from the more general aspect of multi-sensor inte-

gration by Luo in [21]. The latter involves the integration of multiple sensors at

different levels of the system architecture. Fusion is seen as mathematical or sta-

tistical issues that are involved in the actual combination or fusion of information

from multiple sensors.

In systems with multiple sensors, fusion is a natural method of combining

information or decisions of the different sensors. With the advent of sensor net-
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works and distributed processing paradigms, data fusion techniques are now being

widely implemented to improve the classification of different processes. This sec-

tion introduces the concept of data fusion and explains the various issues that

have to be dealt with in fusing information in a sensor network.

1.3.1 Distributed Sensor Networks

Microprocessor and silicon technologies have been rapidly improving in accor-

dance with Moore’s Law. This has triggered an era of cheaper sensors with more

processing capability. From the days of tracking events using single and high-

performance sensors, it is now seen that using multiple sensors, albeit with lesser

processing capability, can help in obtaining better detection and classification

rates. The major reasons for the spurt in distributed sensor networks (DSNs) are

the relatively low cost of sensors, inherent redundancy capabilities, presence of

high speed communication networks and higher processing power [21].

DSNs can be setup using two different paradigms – centralized and decentral-

ized. In centralized DSNs, each sensor communicates the information that it has

sensed to a central processor. The fusion of disparate information is performed

here. Decentralized DSNs perform local operations on the sensed data at each

sensor. The results of the processing are sent to the next sensor until it reaches

the fusion center. Thus, intelligence is present at every node of the network. The

centralized processing scheme, though simple in implementation, has many disad-

vantages. It may not perform well in cases when the coverage area of the network

is too large, especially if sensors have non-overlapping areas of coverage. Also,

it places a heavy demand on the bandwidth of the communication network since

all the raw data has to be transferred to the central processor. The decentralized

DSNs have lower bandwidth requirements, faster response times, reduced cost

and increased reliability. Hence, the current trend is to use distributed processing

paradigms in sensor networks.

One of the important issues in setting up the sensor network is to decide on

the network topology. This defines the positioning of sensors and the flow of in-

formation between them. Typical topologies that are used are serial, parallel with
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fusion center, parallel without fusion center and tree topologies. Consider a sensor

network in which the event H is sensed by N sensors. The input to each sensor

S1, S2, . . . , SN is represented by the variables y1, y2, . . . , yN respectively. The out-

put of every sensor is given as u1, u2, . . . uN . Figure 1.7 illustrates the different

serial and parallel network topologies used in sensor networks. The SFTB is used

only for data collection and hence is a network that uses centralized processing.

However, addition of some local processing at each node can quickly convert the

SFTB to a decentralized network with a parallel topology with a fusion center.

1.3.2 Types of Sensors

To better understand issues related to data fusion from different sensors, it is nec-

essary to define the different kinds of sensors [3]. Firstly, the concept of abstract

sensor is introduced. This is defined as the sensing aspect of the sensor and is

removed from the idea of the physical sensing device which are called concrete

sensors. This abstraction helps in identifying the theoretical limits of the sensors

and their sensitivity without being restricted by hardware limitations and partic-

ular kind of sensors. Based on the interaction of different sensors in the network,

sensors can be divided into different types.

Complementary sensors These sensors provide a better and complete picture

of the sensing area when taken together. They do not depend on each

other directly. An example of complementary sensors would be a network of

cameras in which each camera covers a different area. Each camera provides

visual information of some area, but when taken together, they give a more

complete and generalized picture of the entire region. Fusion of information

from complementary sensors is simple since it usually involves appending

data from different sensors.

Competitive sensors In this case, each sensor provides information about the

same event. Since they are providing information about the same phenom-

enon, the sensors are in competition with each other as to which sensor’s

decision must be believed. These sensors need not necessarily sense the same

27



Event H


Sensor 
S

1


Sensor S

2


Sensor S

N


y
2
y
1
 y
N


u

1


u

2


u
N


u

N-


1


(a) Serial topology

Event H


Sensor 
S

1


Sensor S

2


Sensor S

N


y

2


y

1


y

N


Fusion Center


u
1
 u

2


u

N


u

0


(b) Parallel topology with fusion center

Event H


Sensor 
S

1


Sensor S

2


Sensor S

N


y
2
y
1
 y
N


u

1


u

2
 u


N


(c) Parallel topology without fusion center

Figure 1.7: Serial and parallel network topologies in sensor networks

28



information, i.e. the network can consist of visual, infrared and RADAR sen-

sors. The important criterion is that they derive their information from the

same event.

Cooperative sensors The network consists of sensors which provide information

in such a way that when individual data of each sensor is taken together, it

provides information unavailable to the individual sensors. Complementary

sensors can extract final decisions, though less reliably, from the data of

a single sensor. In the previous example, video information from a single

camera can still be used for surveillance. However, in cooperative sensors,

final decision cannot be made from the sensed data of any single sensor.

For example, consider a sensor network consisting of pressure sensors along

a line. Each sensor provides information about the pressure at each point,

but the network can derive information about pressure changes along the

line.

Individual sensors Those sensor networks that do not match any of the above

categories are termed individual sensors. The information sensed by each

sensor might not be fused together in the strictest sense. Sensed data that

have no relevance to each other can be obtained and stored together. This

is treated as a separate case since this frequently occurs in practise.

1.3.3 Benefits and Limitations

Data fusion provides many qualitative and quantitative benefits when performed

properly [3, 14]. These benefits are listed below.

1. The problem of inaccuracy of single sensors is successfully mitigated. The

classification and decision making of the system is limited by the accuracy of

the information sensed by the sensors. Since more than one sensor is used,

the inaccuracy of the sensor makes a lesser impact.

2. Using multiple sensors also improves the sensitivity of the system to noise.

The fusion of decisions from different sensors enables robust performance

even in the presence of noise.
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3. Reliability of the system is improved since the decisions are more robust and

accurate. When more than one sensor infer a similar decision, the chances of

the final decision being wrong are lesser. The ambiguity in decision making

is removed, or at least reduced.

4. Multi-sensor fusion reduces the cost of the system since cheaper sensors can

be used to replace single, high-performance and costlier sensors.

5. Extended coverage of the region can be obtained using multiple sensors.

This increases the surveillance area and detection chances.

6. Presence of multiple sensors ensures graceful degradation of the system. The

sensing system will not die out suddenly and unexpectedly, and can continue

to operate even when one or two sensors in the network fail.

7. Using many sensors improves the survivability of the system since it is more

resistant to chances of failure due to enemy action or natural phenomena.

The observability of single sensors is limited.

Multi-sensor networks have these advantages at a price. Their very nature

implies that information from multiple sensors have to be combined to arrive

at the final conclusion. This translates to an increased need for computational

power and intelligence for decision making. Also, the information overload in

the system has to be successfully dealt with in order to perform effective sensor

fusion. The system architecture must provide means to manage the excessive

information. Sensor fusion need not necessarily provide better results than single

sensor systems. Though many sensors are used, this does not imply improved

sensibility, since the limitations in sensing exist in every sensor. Using many

sensors cannot substitute into using a single, robust and error-free sensor. Errors

in sensing cannot be negotiated by fusion since the information provided to the

fusion algorithm itself is flawed. Again, there is no perfect data fusion algorithm

that can perform optimally under all situations.
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1.3.4 Applications

Data fusion architectures and algorithms are used in a variety of applications

which include industrial, medicinal, military, remote sensing, aeronautical and

other areas [3, 14, 21]. In general, any signal processing application can use data

fusion techniques. Military applications include command and control of battle

management systems, target detection and tracking applications, object recog-

nition systems, border control, surveillance and strategic warning systems. Law

enforcement agencies can also use fusion algorithms for issues like traffic con-

trol, border surveillance and transportation applications. Remote sensing using

multi-spectral and hyper-spectral sensors use data fusion techniques to locate and

identify mineral deposits and study environmental conditions. In addition, fusion

has important applications in aeronautical, manufacturing and industrial areas

for processes like material handling, part fabrication, inspection and assembly

lines. Automatic fault diagnosis and identification and obstacle location can also

be performed by such systems. Medicinal applications of data fusion algorithms

include diagnosis of diseases, location of tumors and physical condition evaluation

using sensors placed on, in or around the body.

1.3.5 Hierarchy and Levels of Data Fusion

The input to sensor systems consists of raw sensed information and the final

output is usually a specific estimate of the identity or location details of the

target or event. The transition of data within the system from raw input to the

processed output is interesting to study. It gives an idea of the techniques and

inference levels that are used in the system architecture. This section describes

the different hierarchical inference levels and the Joint Directors of Laboratories

(JDL) data fusion model [13, 14].

At the lowest inference level, the raw sensor data is used to estimate or detect

the presence of an entity or target. This is the first step in trying to obtain

the final desired output. The second level of inference would be to determine

the position or velocity details of the target using multiple data. This estimate

is usually given in terms of six vectors, three for position and three for velocity
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Figure 1.8: Hierarchy of data fusion

information of the target. This is the minimum requirement to represent the

state of the target or event that is used to predict the future state. At the

next level, the identity of the target is determined. This involves estimating the

target class or sub-class. Pattern recognition techniques and statistical methods

are used to convert the parametric data into the target class estimate. Higher

inference levels involve assessment of the situation, behavior of the entity and

threat analysis which usually use heuristic methods like templating or expert

systems [14]. Figure 1.8 shows the different inference levels and the types of data

and processes used for them.

Different kinds of models can be used to represent and study the data fusion

process. These include functional models, architectural models, process models,

formal models and mathematical models. One of the important models that is

used is the Joint Directors of Laboratories (JDL) data fusion group’s model of

data fusion. This was developed to reduce the confusion in terminology used by

different groups of data fusion system developers. This is a functional model,

which means that it shows the primary functions, relevant databases and the

interconnectivity between blocks to explain data fusion. It incorporates the levels
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one, two and three of the data fusion group’s terminology. Figure 1.9 shows the

JDL data fusion model. The figure on the top is the first version of the data fusion

model. The block diagram at the bottom is the revised JDL data fusion model.

Both the JDL fusion models are almost similar. The objective of the revision

in the model was to provide a useful categorization to represent different problems

and to maintain the terminology. The different levels of processing in the first data

fusion model as explained as follows [14].

Preprocessing Information overload is a common problem in data fusion sys-

tems. Preliminary filtering provides an way to control the flow of data into

the fusion model. Data can be grouped into categories based on the sensor

type, target signature or location so that subsequent processing of data is

simpler.

Level 1 Processing This is the object assessment level. Data from different

sensors is fused together to obtain the details of the target like position,

velocity and identity. This uses pattern recognition processes and statistical

methods. This level of data processing consists of four distinct processes –

data alignment, data association, tracking and identification.

Level 2 Processing This seeks a higher level of inference from level one process-

ing. This level deals with situation refinement. Reasoning methods and

heuristic techniques are used to determine the relationships among the dif-

ferent entities found on scene and interpret the meaning of the observations.

Level 3 Processing Threat refinement is performed at this stage. The current

observations and situations are projected into the future to find possible

threats. The fused data is observed from the point of view of the adversary.

This helps in identifying possible threats much more easily. This is an

inferential process.

Level 4 Processing This is a meta-process level. As can be observed from Fig-

ure 1.9, this block lies partially within and partially outside the data fusion

domain. This is a process refinement level that monitors the processes to

improve the results.
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Figure 1.9: JDL data fusion model [13]
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Level 5 Processing This stage is termed as cognitive refinement. This level was

included to incorporate the interaction between the human-in-the-loop and

the fusion system.

Database management systems The creation and maintenance of the support

and fusion databases is performed by these systems. The results of different

levels of fusion are recorded in these databases.

1.4 Thesis Contribution

This thesis is primarily motivated towards providing increased classification for

the civilian target recognition problem. Towards this goal, the recently developed

fusion techniques are used. The thesis thoroughly reviews the existing methods

and issues related to ATR and fusion. The important contribution of this thesis

is that it uses decision fusion methods at different architectural levels to improve

the accuracy of the ATR model. The image processing routines used in this thesis

are basic and simple. Advanced methods are now available that can provide in-

creased pattern recognition capabilities. However, the final classification accuracy

is raised to high levels using fusion techniques. The presence of the fusion hierar-

chy also compensates for using inexpensive infrared and color cameras in place of

more sophisticated sensors. The targets of interest in this thesis are not military

targets, but civilian vehicles. Successful classification of civilian targets can open

a wide variety of applications for ATR in our daily lives. Another important con-

tribution is the provision of a single modular framework for detecting, segmenting

and identifying different targets. Complex algorithms for image segmentation,

feature extraction and data fusion can easily be incorporated merely by writing

new routines and including them in the main program. The system works in a

cost-effective and computationally simple manner. The classification process uses

little computation time (less than 0.5 seconds when all the frames are present for

classification) and this makes the system capable of real-time performance.
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1.5 Thesis Outline

This thesis is organized as follows. The basics of ATR and data fusion have already

been covered in this chapter. The hardware and software architecture that are

used for ATR are presented and discussed in Chapter two. This chapter describes

in detail the SFTB and the positioning of nodes to capture images of the targets.

The method of data storage and operating conditions are discussed. The software

architecture shows the data flow from the sensors to the final decision making

stages. For any ATR system, image processing is very important since this com-

prises the “eyes” of the system. The image processing routines and techniques are

presented in Chapter three. The outputs of different image processing operations

are shown. Once frame-level classification results are obtained, the next process

that is performed is data fusion. This comprises Chapter four. Temporal and

BKS fusion are explained in detail and the fusion algorithms are discussed here.

Chapter five consists of the results of the different experiments that were per-

formed and discusses these results. Finally, the thesis ends with the conclusions

and scope for future work in Chapter six.
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Chapter 2

Data Acquisition

In the previous chapter of this thesis, the research problem and background were

introduced. The motivation of the thesis was explained and the objectives were

stated. To achieve these objectives, a hardware and software architecture must

be designed and implemented to convert real-world phenomena and data into a

form that can be used for automated classification. This architecture will contain

different units to perform functions like sensing, data acquisition, feature extrac-

tion, feature vector database formation, image processing techniques and pattern

recognition techniques. A general overview of the different processes involved in

creating the database from the scene is shown in Figure 2.1. Image data is ac-

quired for this work using the SFTB. The description and setup of the testbed,

node placement issues, target details, conditions of data capture and formation of

the feature vector database are explained in this chapter.
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Figure 2.1: Database creation from the scene
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2.1 Sensor Fusion Testbed

The database for this research work was collected using the Sensor Fusion Test-

Bed (SFTB). The Night Vision and Electronics Sensors Directorate (NVESD)

selected Northrop Grumman Mission Systems to develop the SFTB. The testbed

contains acoustic and imaging sensors that capture target information. Testbeds

are strategically deployed so that the sensors can be placed along the roads on

which the targets will travel. The information thus sensed is converted into a

database of feature vectors which is used for classification. The objectives of cre-

ating the SFTB are two-fold. Firstly, it creates a framework to collect a set of

acoustical and imaging data for testing and developing moving target Automatic

Target Recognition (ATR) data fusion algorithms. Another important objective

of developing the SFTB is to develop the means to record and collect the ground

truth information.

The architectural and functional details of the SFTB are discussed in [6].

The system consists of three nodes and one base station. The SFTB has two

modes of operation – an attended acquisition system or an autonomous data

collection system. The latter mode was used for the data used in this thesis. The

SFTB also has a software suite that contains a framework to perform ATR and

target tracking. The Multiple Signal Classification (MUSIC) algorithm is used to

determine the direction of arrival of the target and is a built-in function provided

with the SFTB. New algorithms can be easily added to the system since each

application is responsible for its own operation and integration time is low.

2.1.1 Nodes

The testbed contains three data collection nodes. Each node has an imaging

sensor and a acoustic sensor array consisting of seven acoustic microphones in a

hexagonal pattern. Among the three nodes, two of them (nodes 1 and 3) have

uncooled IR cameras and the other (node 2) has a color camera. Although node

2 has a color camera, the images that are obtained from this node are grayscale

images. The objective of using the non imaging sensor in the nodes is to detect

the target. Once a target is detected using the acoustic data, the direction of

38



Figure 2.2: Position of different nodes [7]

approach is estimated using the MUSIC algorithm, and the imaging sensors can

be turned on. The three nodes are deployed in the testing area so as to enable

roadside monitoring of the targets. The nodes are all stationary and point towards

the south-east corner of the map shown in Figure 2.2.

The nodes are in constant communication with the base station which controls

their operation. The data collected at the nodes correspond to four types of

information from the scenario – acoustic, infrared, grayscale and meteorological.

The acoustic, infrared and grayscale information constitute the target information

captured and meteorological information is used to generate the ground truth

information. The following data collection equipments are used. The first three

components are used to collect target details while the last two are used to record

the ground truth information.

• Knowles (Emkay) BL-1994 ceramic microphone and Burr-Brown PGA103

programmable gain amplifier (preamp for the microphone)

• Indigo Alpha uncooled micro bolometer FPA camera

The spectral sensitivity of this camera extends from 7.5 to 13.5 microns. The

camera has a horizontal FoV of 40 degrees and can operate in a temperature

range of 0 to 35 degrees Celsius. The image are captured at a frame rate of
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30Hz and have a size of 160x120 pixels. Each pixel is represented using 16

bits where the most significant nibble is set to zero.

• Pulnix TMC-7DSP color video camera

Images are captured by this camera at a frame rate of 30Hz. The image

size is 160x120 pixels, which is also the size of the images captured by the

infrared camera. However, each pixel is represented using 8 bits per color

channel. So, the color image has 24 bits per pixel. The grayscale image has

only 8 bits per pixel.

• Garmin global positioning units

• Texas Weather Instruments weather station

These sensors are illustrated in Figure 2.3. In this research work, only images

from nodes 2 and 3 have been used. This is because node 1 is positioned further

away from the road so that the target area in the images captured by node 1 is

very small. Image segmentation of images from node 1 does not yield substantial

target details to aid in recognition. The audio signals are not used.

2.1.2 Targets

Seven non-military vehicles are used in this experiment. These are listed below.

• Target 1 Honda CRX (Car)

• Target 2 Chevy Cavalier (Car)

• Target 3 Toyota Pickup (Light truck)

• Target 4 GMC Pickup (Light truck)

• Target 5 Xterra (SUV)

• Target 6 Toyota 4runner (SUV)

• Target 7 Stake Body (Truck)

Figure 2.4 shows examples of frames captured by nodes 2 (grayscale image)

and 3 (infrared image) for the seven different targets.
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Figure 2.3: Images of different sensors and node [6]
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Figure 2.4: Examples of frames captured using infrared (left column) and color
video (right column) cameras for target 1 (top) to target 7 (bottom)
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2.1.3 Scenarios

There are three different scenarios present in the final database. These scenarios

are labeled scenarios 1, 6 and 25. Each scenario is a variation in the motion of

the target. The scenarios are described as follows.

In scenario 1, the target moves from the far end of the field-of-view (FoV)

of the nodes towards the near end (south-east to north-west in the map). The

vehicle travels at a constant speed and stops outside the FoV of the nodes.

In scenario 6, the target again moves from the far end of the FoV of the nodes

towards the near end (south-east to north-west). In this case, the target stops

within the FoV of the nodes for a brief interval of time (manual count of 10

seconds) and resumes its motion and finally stops outside the FoV of the sensor.

In scenario 25, the target moves in the opposite direction i.e. the target moves

from the near end of the FoV towards the far end of the FoV of the nodes (north-

west to south-east). The target stops within the FoV of the nodes and resumes

its motion after a manual count of 10 seconds.

2.1.4 Operating Conditions

For facilitating data capture, the following operating conditions were maintained [7].

1. The targets move on gravel or asphalt roads.

2. Targets are fully exposed unless obstructed by roadside vegetation or other

vehicles.

3. The license plate numbers on the targets are covered and are not readable.

4. The targets move at the same speed within the FoV of the sensors. If the

target stops within the FoV, then it does so with a constant acceleration

and deceleration, and stops within the FoV for a manual count of ten.

5. Each target travels at a constant speed of 5, 10, 15 or 20 mph.

6. The targets start and stop outside the FoV of the sensors.
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7. The target motion and the number of vehicles that appear on the scene are

dependent on the scenario.

8. The sensors are stationary.

9. The data collection is carried out during daytime only.

10. Data is collected for a basic time of three minutes.

2.2 Data Capture

Each node contains a local data repository in which it stores the sensed data.

The data is collected from the nodes at the end of the data collection day and

composed into a central database. All the data is stored in an ASCII or binary

format. Infrared imagery, color imagery and acoustic signature files are stored in

the binary format. These files may consist of one or more records of binary data

and each block of data is preceded by a header. The ASCII format is used to

store the weather information.

The infrared and color imagery data are stored in the Automatic Target Recog-

nition Working Group Raster Format (ARF) [27]. This is a universal format that

is easily readable by different applications running on different machines. The

ARF format is portable, extensible, supports eleven image formats and is easy

to work with. It supports multiple frame files and a wide variety of integer and

floating point image formats. It uses the External Data Representation (XDR)

format to represent data with the exception of one and two byte integer pixels.

Basically each ARF image consists of a main header, possibly some sub-headers

and footers and one or more image frames. This is illustrated in Figure 2.5

The main header contains information like ARF version number, number of

rows and columns, image type, number of frames, image offset (number of bytes

used by header and subheaders) and subheader flags. Each subheader contains

the following information – ARF information (image source, capture rate, capture

time, sensor name, sensor FoV, etc.), ARF colomap, ARF multiband information

and so on. The image data follows the header information.
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Figure 2.5: Content of an ARF file
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For database creation, the individual frames have to recovered from the .arf

files and converted into a machine readable format. In order to accomplish this,

the ImageJ software is used. This converts the .arf files into a group of raw files.

These raw files are read into the C++ program and are used for feature extraction

and database creation. Since the filename of each .arf file is based only on the node

ID, node number, scenario number and target number, it is possible to read in

frames of interest into the C++ program when the user feeds in these information

to the program.

2.3 Database Creation

The nodes 2 and 3 capture the images of targets when the targets are within their

FoV. Suitable frames are selected from the images captured so that substantial

target details are observed and reliable feature extraction can be performed.

Initially, the use of instantaneous frames were studied i.e. frames captured by

both nodes at the same instant of time were used. However, the node positioning

is such that the target area of images from node 3 is quite negligible at the times

when node 2 observes the target well. Similarly, when the target is clearly visible

to node 3, node 2 does not see the target. Hence, the idea of simultaneous frame

fusion was dropped.

Since the idea was to fuse the results of nodes 2 and 3, it was decided to

perform temporal fusion at these nodes individually and fuse the temporal results

at the sensor level. Therefore, at the event level, frames captured by one node

would be fused locally to obtain a reliable result for that node. When both

nodes had individually decided on the target, these decisions were fused together

(multimodality or multisensor fusion) to arrive at the final decision.

In order to achieve this, frames were selected from each node such that the

target was as close to the camera as possible. From the speed of the targets

and the positioning of the nodes, it was decided that thirty frames would be

selected in which the target was as close to the node as possible. The frames are

spaced out in time (one in five or one in two frames are grabbed) so as to obtain

temporal data. These frames were subjected to image processing techniques so
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as to extract features from the target in the image. These feature vectors were

then used for classification and the classification accuracy was calculated. The

following flowchart in Figure. 2.6 describes the database creation process. This

process is followed at both the nodes.

The number of columns in the database depends on the number of feature

vectors extracted. In our case, there are seven feature vectors (invariant moments).

In addition to the features, the target number and scenario number are appended

at the end of each row. Hence, nine columns are present in the database. The

number of rows is fixed and depends on the number of nodes, targets and scenarios.

This can be explained as given below.

• Number of nodes = 2

• Number of scenarios = 3

• Number of targets = 7

• Number of frames per target = 30

Hence, for every scenario, there are 7x30 = 210 frames in the database.

for every node, there are 210x3 = 630 frames in the database.

There are two databases – one for each node and each containing 630 frames.
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Figure 2.6: Flowchart describing the formation of the feature dataset
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Chapter 3

Image Processing and Pattern

Recognition

ATR is a term synonymous with image processing. Current ATR systems use

imaging sensors to obtain real-world data and hence image processing and pattern

recognition techniques are an integral part of ATR systems. Every recognition

system consists of filtering, segmentation, feature extraction and classification

modules. These modules are discussed in this chapter. In this research work,

simple image processing algorithms have been implemented. The classification

accuracy of a single image frame is not significantly high. Increased recognition

rates are obtained using data fusion techniques.

3.1 Image Preprocessing

The data captured by any sensor is usually corrupted by a variety of noises –

atmospheric noise, instrument noise, quantization error and others. These noises

can be removed using low pass filters by smoothening the high frequency noise.

There are different kinds of low pass filters that are used for noise removal which

can be broadly classified as spectral and spatial filters. The former work in the

frequency domain and the latter work in the spatial domain.

In order to remove noise from the images obtained from the SFTB, the median

filter and averaging filter were used. Both are spatial filters. The averaging filter
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Figure 3.1: Applying a low pass filter to an image [25]

is linear and uses a filter mask for operation. The median filter is a non-linear

filter. A section of the image of the same size as the filter mask is convolved with

the mask to obtain the low-pass filtered value for each pixel. This is shown in

Figure 3.1. The kernel on the left is the image and the one on the right is the

filter mask. The weighted sum of the overlapping elements of these kernels gives

the value of the output pixel.

The averaging filter is described by Equation 3.1. The numerator of this

equation is a general expression representing all linear filters. When this is divided

by the sum of the mask elements, it gives the averaging filter. In this filter, each

output pixel value is found as the average of the sum of the overlapping pixel

values. That is, each output pixel value is the average of a small neighborhood

of pixels in the original image. This removes sharp transitions in the image by

blurring and makes the original image less noisy. However, the averaging filter

does not work well in all cases, and the blur introduced in the image is undesirable.
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g(x, y) =

∑a
s=−a

∑b
t=−b w(s, t)f(x + s, y + t)∑a
s=−a

∑b
t=−b w(s, t)

(3.1)

where g(x, y) is the output image; f(x, y) is the input image of size M,N; w(s, t)

is the filter mask of size m,n; a = (m − 1)/2, b = (n − 1)/2; x = 0, 1, . . . , M − 1

and y = 0, 1, . . . , N − 1.

The median filter performs filtering by choosing the median pixel value in

a small neighborhood of the original image and assigning this median value as

the output pixel value. The output pixel value is not a weighted average, but is

simply the median value of the pixels in its neighborhood. The advantage of using

a median filter is that it preserves edges and does not introduce as much of a blur

as the averaging filter.

Figure 3.2 shows the output results of averaging and median filters on input

images obtained from the SFTB. Filter masks of size 3x3 were used for the averag-

ing and median filters. It can be seen that the median filter can effectively remove

the black strips that are present in the input infrared image. The averaging filter

tries to blur this strip but is not effective in removing it. Also, the blurring of the

averaging filter is clearly seen.

3.2 Target Segmentation

Once the noise has been removed from the input image, the next step is to isolate

the region of interest (RoI) from the clutter. This is done using image segmen-

tation techniques. This process divides the image into constituent parts and the

RoI is alone considered for further image processing modules. Segmentation is

usually based on similarities or the discontinuities in the image. For example,

thresholding and texture based segmentation are based on identifying similar re-

gions while edge-based segmentation and active contours work on discontinuities

present in the image. Connected component analysis, region growing and water-

shed methods are hybrid methods of segmentation. In our case, segmenting the

images obtained from the nodes should result in only the targets being present

in the image. When this is accomplished, the features of the target can be ex-
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(a) IR input image (b) Grayscale input image

(c) IR averaging filter out-
put

(d) Grayscale averaging fil-
ter output

(e) IR median filter output (f) Grayscale median filter
output

Figure 3.2: Output images of averaging and median filter for target 4, scenario 25
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Figure 3.3: Double difference image – Motion based segmentation

tracted and used for classification. Segmentation is a very important part of any

image processing application since its accuracy affects the further analysis of the

image and ultimately decides on the efficiency of the system. Different segmenta-

tion techniques like motion-based segmentation and background subtraction were

implemented. The best segmentation algorithm was chosen and included in the

final program. Since the software architecture is modular, it is easy to substitute

another segmentation routine in the process so that classification accuracy can be

improved. The different algorithms and their results are discussed in the following

parts of this section.

For motion-based segmentation, double difference images were used [29]. Three

image frames are used to obtain two difference images. These difference images

emphasize the regions where movement is observed since they show the difference

of two successive frames. The AND operation is performed on these two difference

images to obtain the final segmentation result, which is called the double difference

image. This process is illustrated in Figure 3.3.

Another simple segmentation technique is background subtraction. This can
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be used in situations where the camera is stationary and the RoI moves against

a fairly constant background. The background image is captured and stored

when the target is not present in the FoV of the camera. The segmented result

is obtained by subtracting an image containing the target from the background

image. Since the background is fairly non-changing, the difference image will

consist of the target alone. In order for this method to work well, the background

image is updated frequently so as to reflect the current illumination and clutter

conditions. Another approach would be to normalize the background and the

obtained images to compensate for these variations. Practically, the background

method seldom works since it is hard to maintain a constant background. This

method can be used in assembly lines and conveyor belts where the background can

be easily formulated. Using filtering techniques to remove the irregularities caused

by small background changes can help in improving the segmented image. In our

case, the background subtraction and double difference segmentation routines

were followed by a neighborhood operation to improve the segmentation results

and remove random noise pixels. This method is similar to morphological filtering.

The 3x3 neighborhood of every foreground pixel of the segmented image is checked.

Only those pixels with a preset number of foreground pixels in its neighborhood

were classified as foreground pixels in the final image. This removed stray white

specks and noise considerably. Figure 3.4 shows an example of the results obtained

after segmentation and neighborhood operation. It can be seen that background

segmentation provides a better output than the double difference segmentation

technique. Hence the background segmentation algorithm was used for developing

the feature vector database.

3.3 Feature Extraction

In order for the ATR system to recognize targets, it is necessary to characterize

them in a way that the system would understand. For this, mathematical methods

are used to extract the features of the targets. These features describe the targets

uniquely and distinguish different targets from each other. Target characteristics

like 2D and 3D shape, color and texture can be used to describe the targets. Shape-
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(a) Input image (b) Background image

(c) Motion based segmenta-
tion result

(d) (c) after neighborhood
operation

(e) Background subtraction
result

(f) (e) after neighborhood
operation

Figure 3.4: Segmentation results for target 4, scenario 25
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based classification uses a set of descriptors that describe target features like scalar

descriptors (perimeter, area, thinness, compactness), fourier descriptors, invariant

moments and boundary chain encoding. The features that are chosen are usually

application-dependent.

Scalar descriptors consist of a single real number that describe a particular

aspect of the target shape. The perimeter (P ) counts the number of boundary

pixels of the shape and the area (A) measures the number of pixels that make up

the target. The thinness of a shape can be mathematically defined as given in

Equation 3.2.

ThinnessA =
P 2

A− 4π

ThinnessB =
P

A
(3.2)

Statistical features like amplitude and shape statistics can be derived from the

image signature. The signature of a shape is a single dimensional representation of

the boundary of the shape [11]. This is easier to describe than the two dimensional

boundary of the shape. An example of deriving the signature is to record the

distance of all perimeter pixels from the centroid of the shape. The amplitude and

shape statistics can be calculated using this set of distances. These features define

the mean, standard deviation, skewness and kurtosis of the shape. Amplitude and

shape statistics are global features of the shape and they do not provide any local

information. The amplitude statistics are given in Equation 3.3 and the shape

statistics are shown in Equation 3.4.
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µamp =

∑N
i=1 F (i)

N

σamp =

√∑N
i=1(F (i)− µamp)2

N

γamp =

∑N
i=1

(F (i)−µamp)

σamp

3

N

βamp =

∑N
i=1

(F (i)−µamp)

σamp

4

N
− 3 (3.3)

where F (i) is the relative fluorescence at the ith time points; N is the number of

time points.

µshape =

∑N
i=1 F (i)

N

θshape =

√∑N
i=1(i− µshape)2F (i)

S

γshape =

∑N
i=1

(i−µshape)

θshape

3
F (i)

S

βshape =

∑N
i=1

(i−µshape)

θ4
shape

F (i)

S
− 3 (3.4)

where F (i) is the relative fluorescence at the ith point; N is the number of time

points; S =
∑N

i=1 F (i).

The features that have been used to generate the database are Hu’s moments.

Hu developed the mathematical foundation for invariant moments in 1962 and

explained their relevance to shape recognition. There are seven moments that are

derived from the central moments. These moments are invariant to translation,

rotation and scaling of the shape [19]. Translation invariance is achieved by nor-

malizing the image with respect to the center of gravity of the image by using

central moments. Size invariance is achieved by normalizing the image using al-

gebraic invariants. Due to their invariant nature, they are called Hu’s invariant
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moments.

The moments are computed from the information of the shape boundary and

the region encompassed by the shape. The following set of equations explain

the procedure to calculate the invariant moments for an image [10]. Consider a

two dimensional image plane, f , then the moment of order (p + q) is defined as

Equation 3.5.

mpq =
rows∑
x=1

columns∑
y=1

xpyqf(x, y) (3.5)

Based on the moments calculation, the central moments are given as in Equa-

tion 3.6.

µpq =
rows∑
x=1

columns∑
y=1

(x−mh)
p(y −mv)

qf(x, y) (3.6)

where mh = m10

m00
is center of gravity in the horizontal direction; mv = m01

m00
is

center of gravity in the vertical direction. These central moments are translation

invariant since they are normalized with respect to the centroid of the image.

The moments can also be normalized with respect to scale using the following

expression.

ηpq =
µpq

µγ
00

where γ = p+q
2

+ 1.

The set of equations in Equation 3.7 is used to calculate the seven invariant

moments that are used to characterize the shape of an object in the image.
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φ1 = η20 + η02

φ2 = (η20 − η02)
2 + 4η2

11

φ3 = (η30 − 3η12)
2 + (3η21 − η03)

2

φ4 = (η30 + η12)
2 + (η21 + η03)

2

φ5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2

−3(η21 + η03)
2] + (3η21 − η03)(η21 + η03) (3.7)

[3(η30 − 3η12)
2 − (η21 + η03)

2]

φ6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2]

+4η11(η30 + η12)(η21 + η03)

φ7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2

−3(η21 + η03)
2] + (3η12 − η30)(η21 + η03)

[3(η30 + η12)
2 − (η21 + η03)

2]

These seven moments are the features that have been used to classify the

targets in the images captured by the SFTB. It is to be expected that as the

target moves towards or away from the nodes, its orientation and scale will change.

Hence, the moments provide the means to characterize them even when these

changes are present and the moments are the features best suited for representing

the target shape. The moments, target number and node number are written into

a database file from which the features are later used for classification.

3.4 Classification

Many classification techniques are based on human approaches to learning. Neural

networks and genetic algorithms are examples of methods designed to imitate

human learning behavior. Studies of biological learning systems have shown that

any predictive-learning system consists of two main phases [18]. The first part

is called induction which involves learning and estimating dependencies in the
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system from the inputs. Induction tries to estimate the input-output behavior of

the system from a limited number of observation points (training data) so that

this can be modelled and applied to future inputs (testing data). The formulation

of this function usually involves the use of a-priori information. The second part

is deduction which uses these estimated dependencies to predict the future output.

There are two different types of inductive learning systems - supervised and

unsupervised [18]. Supervised learning assumes the presence of a teacher or a

learning model which will provide the outputs of the system to the training data.

This output is compared against that of the learning system, and subsequent

changes are made in the system to make these outputs as similar as possible.

It can be seen that the system is a closed-loop feedback system. Using a set of

training data and constant changes, the system is made to follow the output of

the teacher as closely as possible. Once this is accomplished, the training of the

learning system is said to be complete. The performance of the system is usually

computed in terms of the mean squared error function or the sum of squared

error function over the training samples. Now, real-world or testing data can be

fed to the system, and the output of the system is expected to be close to the

actual output. In case of unsupervised learning systems, there is no feedback or

a teacher. The inputs are fed to the learning machine and the system is made

to look for regularities in the input data and form internal representations for

recognizing similar input samples. Examples of unsupervised learning systems

include cluster analysis and some neural networks.

Learning in inductive systems involves the use of density functions and models.

These are used to predict the behavior of the inputs and estimate the future

outputs. Depending on the availability of a-priori knowledge, these methods

can be divided into parametric and non-parametric density estimations [26]. In

parametric estimation, the statistics are partially known or assumed. Usually,

a-priori and class conditional density are known. The common parametric forms

rarely fit the densities that are actually encountered in practice. Also, classical

parametric densities are unimodal while practical problems are usually multimodal

densities. Examples are Maximum-Likelihood estimate (MLE), Minimum Mean

Square Error (MMSE) estimate, Maximum a Priori (MAP) estimate and Bayesian
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learning inference. In non-parametric techniques, data statistics are unknown.

These methods estimate the density function directly from the data. There is

no assumption that the density function has a particular functional form and

are hence more general methods. However, these require a large amount of data

for training. Examples include Parzen window and k Nearest Neighbor (kNN)

techniques.

The kNN algorithm is used to classify frames obtained from the SFTB. For

the 30 frames that are obtained for each target, 3 frames are used for testing

and the remaining 27 are using for training. Thus, for every scenario, out of 210

feature vectors, there are 21 testing vectors and 189 training vectors. And in the

database, there are 630 feature vectors with 567 training vectors and 63 testing

vectors.

For individual frame classification of a scenario, let us consider x1, x2, . . . , x630

to be the feature vectors. The first 63 vectors x1, x2, . . . , x63 are used for testing

and the remaining are used for testing. In order to obtain the classification result

for x1, a similarity or difference measure is computed between x1 and all the

training vectors. This measure is usually a distance measure like the Euclidean

distance. Let these distances be d1,64, d1,65, . . . , d1,630. The k shortest distances

(nearest neighbors) are chosen and the target class that appears most often in

these k neighbors is assigned to x1. In the 2D scale, if d1,63, d1,64, . . . , d1,630 were

points plotted on the xy-axis, a cell would be centered at x1 and allowed to be

grown until it encompasses k nearest points. The most well-represented class

among these neighbors is assigned to x1. The value of k is usually taken to be√
n, where n represents the number of training vectors.

The aim of classification is to predict how well the classifier would work when

it is given an input it has not seen before. Hence, it is desirable to keep aside a

subset of the training data solely for testing without exposing the classifier to it.

Thus, this subset of data can be used as ‘new data’ for testing. This is the idea

behind cross-validation techniques. The simplest kind of cross-validation is called

holdout method in which a set of data is kept aside and used only for testing. This

method is not preferred since it reduces the amount of training data available and

its results depend on which data is used for testing and training. An improvement
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over this method is the K-fold cross-validation. In this technique, the dataset is

divided into k subsets. For every run of the classification routine, one subset is

held separately for classification. Each run is repeated with a separate subset for

testing, and a new run is carried out until each subset has been for testing once

and only once. Each data point gets to be in the testing set once and in the

training set k − 1 times. The classification accuracy is averaged over the k runs.

The disadvantage of this method is that it needs k times as much computation

and time. In this thesis work, K-fold cross-validation is used to provide a better

representation of the classification accuracy.
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Chapter 4

Data Fusion

The process of combining decisions from multiple classifiers to obtain one robust

final results has been given different names in the technical literature [15, 20] –

classifier fusion, mixture of experts, consensus aggregation, classifier ensembles,

divide-and-conquer classifiers, combination of multiple experts, etc. Fusion of

individual decisions involves the use of mathematical methods like Bayes method,

Dempster Shafer techniques and other probabilistic techniques or the use of ad

hoc methods like majority voting. In either case, the fusion technique is based

on some mathematical foundations and assumptions. For example, probabilistic

techniques usually assume that the classifiers use mutually independent subset of

features or commit independent classification errors. This chapter presents the

mathematics behind fusion and explains some of the widely used fusion techniques.

Behavior-Knowledge Space (BKS) fusion algorithm is explained in detail and this

technique is used in performing sensor-level fusion in this thesis work.

4.1 Techniques for Fusion

The mathematical notations and expressions that are used here are based on [20].

Let x ∈ <n be a feature vector. The vector can be obtained from any one of the

c classes of targets present. Every mapping that satisfies the condition

D : <n → [0, 1]c − {0}
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is called a classifier. In other words, the classifier converts a real number or

feature vector into a value between zero and one. The output of the classifier is

called class label and is denoted as µi
D(x) = [µ1

D(x), . . . , µc
D(x)]T , µi

D(x) ∈ [0, 1].

Each class label consists of numbers that represent the a-posteriori probabilities

for each target class. Based on the nature of the class labels, classifiers can be

classified under the following types.

1. Crisp classifiers are those that assign a specific class label or target class to

the output decision variable. Mathematically,

µi
D(x) ∈ {0, 1},

c∑
i=1

µi
D(x) = 1,∀x ∈ <n

2. Fuzzy classifiers are those that assign a probability value to every class that

denotes the chance of that class matching the target. For these classifiers,

µi
D(x) ∈ [0, 1],

c∑
i=1

µi
D(x) = 1, ∀x ∈ <n

3. Possibilistic classifiers can be described as

µi
D(x) ∈ {0, 1},

c∑
i=1

µi
D(x) > 0,∀x ∈ <n

In order to convert any decision into a crisp label, which is called hardening,

the maximum membership rule or majority voting rule can be used. This assigns

the output to that class which has the maximum probability value. This rule is

given in Equation 4.1.

D(x) = k ⇔ µk
D(x) = maxi=1,...,c{µi

D(x)} (4.1)

For the case of fusing decisions from L classifiers denoted as {D1, D2, . . . , DL}
to obtain the fused result D̂(x), the decision profile (DP) is formed. Each row

of the DP is a class label and hence the DP has L rows. Every ith column of
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the DP has the probabilities of the ith class of every classifier. The DP can be

represented as

DP (x) =




d1,1(x) . . . d1,j(x) . . . d1,C(x)

. . . . . . . . . . . . . . .

di,1(x) . . . di,j(x) . . . di,C(x)

. . . . . . . . . . . . . . .

dL,1(x) . . . dL,j(x) . . . dL,C(x)




Class-conscious and Class-indifferent data fusion methods can be defined

based on the method by which they calculate the support or belief for each class

from the DP. Methods that calculate the support for the ith class using only the

ith column of the DP are class-conscious methods. They take into account only

the probabilities of that class. Examples of such methods include averaging, min-

imum, maximum and product operators. Class-indifferent methods use the entire

DP to calculate the support or belief for each class. For these methods, a second

level of fusion is used to classify the elements of the DP to give the final class label

D̂(x). Examples of this method include neural networks, Fisher linear discrimi-

nant analysis, Dempster Shafer analysis, etc. The former method uses the context

of the DP but uses only a part of the entire information which is available. The

latter method uses all the available information but fails to use context-relevant

information, which might be a costly loss. A method that does not fall into either

extreme category uses decision templates [20]. Some methods require the pres-

ence of crisp class labels for fusion. Examples of such methods include majority

voting, naive Bayes classification and BKS fusion. Fusion methods can also be

classified based on the level at which information combination occurs. Data-level,

feature-level and decision-level fusion processes are possible.

Majority voting is the process of hardening the class labels to obtain crisp

labels. In this method, each classifier is allowed to “vote” for a target based on its

probability values. The class that obtains the most number of votes is declared to

be the target class. In case more than one class obtain the same number of votes,

the tie is broken by randomly choosing a target class from the tied classes. This

method does not require any training and can be implemented as such using only

the decisions of individual classifiers. Temporal fusion of frames obtained from the
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SFTB is performed using majority voting. Individual frame classification results

are obtained using the kNN technique. The decisions of all the testing frames

of that particular event are taken together and majority voting is performed on

these labels. The output of the majority voting gives the temporal fusion result.

Classical inference is one of the basic statistical techniques that can be used for

data fusion [14]. To derive the final output, the training data is observed and an

empirical probabilistic model is formed that can be used to predict the outputs

of future states. Empirical probability calculates the probability of occurrence

of an event as the limit of the result of an individual experiment run infinitely

many times. Thus, it can be seen that this method cannot be used for single

event cases. There are two possible hypotheses – null hypothesis H0 which states

that the observed data is caused by the event E, and the alternate hypothesis H1

which states that the observed data is not caused by the event E. The decision

on how to select the null or alternate hypothesis is based on some decision rules

like Maximum a posteriori (MAP) rule, Maximum Likelihood Estimate (MLE),

Neyman-Pearson rule or Bayes rule. MAP rule concludes that the hypothesis H0

is true if the a-posteriori probability of H0 given y is greater than that of H1 given

y. MLE decides on H0 if p(y|H0) > p(y|H1). For the Bayes selection rule, a cost

function is established that helps to choose between H0 and H1. An example of a

cost function is

C = C00P (H0)Pa + C01P (H0)Pb + C10P (H1)PcP (H1)Pd

where P (H0) and P (H1) are the a-priori probabilities of the hypotheses H0 and

H1, Pa and Pc are detection probabilities and Pb and Pd are false alarm probabil-

ities. Cij are randomly chosen constants and the Bayes method attempts to find

the hypothesis that reduces the cost function C.

Bayes inference is based on the conditional probability density calculation as

given in the famous Bayes rule. Consider an event E which can be described using

the mutually exclusive and exhaustive hypotheses H1, H2, . . . , Hj. The statement

of Bayes theorem can be described using Equation 4.2.
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P (Hi|E) =
P (E|Hi)P (Hi)∑
i P (E|Hi)P (Hi)∑

i

P (Hi) = 1 (4.2)

where P (Hi|E) is the a-posteriori probability that Hi is true given the event E;

P (Hi) is the a-priori probability that the hypothesis Hi is true; P (E|Hi) is the

probability of the event E occurring when it is known that Hi is true.

Bayes rule gives the probability that a given hypothesis is true when a known

event has occurred. Classical inference only gives a probability of relating an

observation to an event given as assumed hypothesis. Also, the Bayes inference

allows us to incorporate the a-priori knowledge that the given hypothesis is true.

However, implementing the Bayes rule has some disadvantages. The definition

of the prior probabilities is an issue. One of the major issues with the Bayesian

inference method is the necessity for independence of the hypotheses and events.

Each hypotheses must be mutually exclusive and also exhaustive.

4.2 BKS Fusion

The BKS method was developed by the Concordia OCR Group [15] for the recogni-

tion of handwritten characters. This technique avoids the independence assump-

tion by deriving its information from a “knowledge” space which concurrently

records the decision of each classifier on each training sample. The behavior of

the classifiers is recorded in the knowledge space, and hence the method is called

Behavior-Knowledge Space.

The terminology used in this section is defined here. ek represents each clas-

sifier or expert k, where k = 1, 2, . . . , K and K is the total number of experts

available. The total number of classes that are present in the dataset is given

by the variable M and the data for each class is given by the mutually exclusive

and exhaustive set of patterns C1, C2, . . . , CM . Λ = {1, 2, . . . ,M} is the set of all

possible classes. The input feature vector to the classification system is denoted

67



as x and the output of the expert k is represented as ek = jk. This means that the

kth classifier has assigned the input vector x to the class jk, where jk ∈ Λ. The

objective of the classification module is to find what combination of the individual

classifier results will produce the best final classification decision.

The BKS is a K-dimensional space, with each classifier’s decision forming one

dimension. Each classifier can produce M + 1 distinct outputs, M for each one

of the target classes and another output value for rejecting classification. This

extra output value can be used to identify new classes. Each unit in the BKS

accumulates the number of samples for each class at the intersection of the decision

of each classifier. Each unit consists of three different types of information. These

include the total number of incoming samples, the best representative class and

the total number of incoming samples per class.

The BKS fusion algorithm operates in two stages. These are termed knowledge

modeling and decision making.

4.2.1 Knowledge Modeling

In the first state, a BKS lookup table is generated by exposing the training data

to each individual classifier and recording their individual classification results.

Let BKS(e(1), e(2), . . . , e(K)) be a unit of the BKS which records the decisions

of classifiers one to K. Let the total number of incoming samples for class m

in BKS(e(1), e(2), . . . , e(K)) be given as ne(1),...,e(K)(m). The toal number of

incoming samples in BKS(e(1), e(2), . . . , e(K)) is given as

Te(1),...,e(K) =
M∑

m=1

ne(1),...,e(K)(m)

and the best representative class for BKS(e(1), e(2), . . . , e(K)) is given as

Re(1),...,e(K) = {j|ne(1),...,e(K)(j) = max1≤m≤Mne(1),...,e(K)}

Using these values, the lookup table of the BKS is computed. The lookup

table has three columns. The first column serves as an index and is represented

by the set of temporal fusion results. Each row of the lookup table contains these
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Table 4.1: Example of BKS lookup table
Class combination Class concentration Cell label

1,1 6/1/2 1
1,2 4/9/6 2
2,1 8/8/6 1,2
2,2 0/0/0 random

entries - number of times that index has been encountered for every class and a

single class label which is the most encountered class among all training samples.

An example of a possible BKS lookup table for a two-class, two-classifier system

with 50 training samples is shown in Table 4.1.

To generate the lookup table for BKS, the classification processes for frame-

level and temporal fusion are performed. An event is chosen, and testing and

training sets are laid out for this event. Frame-level classification results are

combined to form the temporal fusion results. The event level fusion results

are obtained for both nodes – the infrared and color camera nodes. The set of

temporal fusion result from each node is used to index the lookup table. Thus,

each node serves as a separate classifier in our case.

4.2.2 Decision Making

Once the lookup table has been populated, the system is now ready to perform

BKS fusion on the testing dataset. For any set of input frames for both nodes,

frame-level and event-level results are obtained as before. The temporal fusion

results of both nodes are used to find the row in the BKS lookup table that is

of interest. The last column of that row contains the classification result of the

sensor-level fusion. The final decision rule can be stated mathematically as

E(x) =

{
Re(1),...,e(K), when Te(1),...,e(K) > 0 and

ne(1),...,e(K)(Re(1),...,e(K))

Te(1),...,e(K)
≥ λ

M + 1, otherwise

}
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where λ is a threshold such that 0 ≤ λ ≤ 1. This factor controls the reliability of

the final decision and is usually set heuristically. It can be seen that the decision

modeling stage of the BKS needs to be performed only once over a set of training

samples. For every set of testing vectors that are based on the same training

database, the decision making stage has to be run repeatedly to obtain their

fusion results.

4.2.3 Discussion

The BKS fusion algorithm performs better than other techniques like majority

voting, classical inference and naive Bayes method. Also, it is not bound by

the independence assumption unlike most probabilistic methods and it has some

good properties like automatic thresholding and optimality [15]. However, the

BKS fusion algorithm has its limitations. It needs a huge amount of training

data so that the lookup table is well populated and is representative of the actual

scenario. If only a few samples are considered for computing the lookup table,

and failing careful selection of samples, the desirable qualities of the BKS method

cannot be guaranteed. With the issue of a large training set comes the problem of

overfitting. Since a large database is required for proper calculation of the lookup

table, the BKS algorithm is prone to overfitting. Hence, it may perform well on

the training data while not meeting expectation when run on the testing data.

Four fusion methods were tested in [15]. These were majority voting, Bayesian

classification, Dempster Shafer fusion and BKS fusion. It was observed that BKS

outperforms the other techniques except in cases of low substitution rates.
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Chapter 5

Results and Discussions

The previous chapters have explained the premises and implementation of this

research work. Data acquisition from the SFTB, image processing and feature

extraction, formation of the database of feature vectors and the classification

processes involved have been discussed. In this chapter, the different experiments

that have been carried out are put forth and their results are presented and ex-

plained. The classification routines were coded in MATLAB while the image

processing algorithms and database generation were implemented using GNU’s

C++ compiler. The use of different techniques and algorithms are justified using

these results.

5.1 Classification Levels and Databases

In the classification of the civilian target images obtained using the SFTB, three

different levels of classification and two different databases have been used. In

addition to this, frames were chosen in different ways – successively and intermit-

tently. It was seen that for a realistic classification scenario, the frames must not

be successive since nearby frames have high correlation. Hence using one frame

for testing and its neighboring frames for training would always provide a high

classification accuracy, although this would not be reflective of the practical case.

Therefore intermitted frames were used to generate the database entries.

The three different levels of classification that were performed are frame-level
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classification, temporal fusion classification and BKS fusion classification. Tem-

poral fusion and BKS fusion can be mapped to the event level and sensor level

fusion. It is expected that as the level of decision making goes higher, the classi-

fication accuracy and the reliability will increase. The results obtained prove this

trend. The two different databases that have been used for classification differ in

their target classes and the number of samples per target that they contain. In

the first database, the seven targets were treated as individual classes and classifi-

cation results were obtained (7 class case). In this case, as discussed earlier, each

target has 30 frames per event. In the second database, cars were combined to

form class 1, SUVs were combined to form class 2 and light trucks were combined

to form class 3 (3 class case). Target 7 (Stake body truck) was not included in the

second database. So, there are three classes present in total and for each of the

three classes present, 60 frames are available per event. This increases the number

of training samples present and classification is expected to be easier since similar

classes have been grouped together. This grouping helps in differentiating between

similar looking cars or SUVs since only the vehicle type has to be differentiated.

As expected, the results were better for the second database. The first database

performs target recognition while the second performs target identification.

For each level of classification, a different classification technique is used. At

the frame level, kNN is used to classify the testing data and the process is repeated

to achieve cross-validation. Temporal fusion results are obtained by fusing frame-

level results using the majority voting technique. BKS fusion results are obtained

using temporal fusion results and the BKS lookup table. The total number of

feature vectors, training vectors and testing vectors in the two different databases

are listed below.

First database – 7 class (Target Recognition)

Frame-level

Number of samples per target per event = 30

Number of training samples per target per event = 3

Number of testing samples per target per event = 27

Event-level
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Number of samples per target per scenario = 210

Number of training samples per target per scenario = 189

Number of testing samples per target per scenario = 21

Sensor-level

Number of samples per sensor = 630

Number of training samples per sensor = 567

Number of testing samples per sensor = 63

Second database – 3 class (Target Identification)

Frame-level

Number of samples per target per event = 60

Number of training samples per target per event = 5

Number of testing samples per target per event = 55

Event-level

Number of samples per target per scenario = 180

Number of training samples per target per scenario = 15

Number of testing samples per target per scenario = 165

Sensor-level

Number of samples per sensor = 540

Number of training samples per sensor = 45

Number of testing samples per sensor = 495

At the individual frame level, the features of the input testing frame are com-

pared against those of all the training frames. The distances are calculated and

the ‘k’ nearest neighbors are studied to identify the target class of the testing

frame. At the event level, all the testing frames of the same target captured by

the same node are used to form a single decision. The individual frame decisions

are combined using majority voting method. At the sensor level, the correspond-

ing temporal fusion results of both the nodes are used to form one final result.

The different classification levels are illustrated with respect to the first database
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(7 class) in Figure. 5.1. The process holds good for the second database (3 class)

with a change in the number of training and testing vectors.

5.2 Training and Testing

In general, the classification program can be divided into two parts based on the

implementation of the BKS algorithm. The first part of the program deals with

the knowledge modeling stage of BKS. In this part, the dataset is used to construct

the BKS lookup table using the classification results and the ground truth. Once

the lookup table is obtained, the second part of the program is executed. This

part is called the decision making stage. In this stage, random testing vectors are

given as input to the classification algorithm and the fused results are obtained

using the lookup table. These stages of the BKS algorithm have been discussed

earlier.

For the knowledge modeling stage, the infrared and color video datasets are

split into testing and training vectors as mentioned in Section 5.1. K-fold cross-

validation is performed on the database. The number of runs of the classification

algorithm needed for cross-validation is equal to the ratio of total number of

samples in the database to the number of testing samples in one run. Thus, the

number of runs for the 7 class and 3 class databases are 10 and 12 respectively.

This ensures that all frames are used for obtaining the lookup table entries. Once

the lookup table is populated using the above method, the program is ready to

classify any given set of test vectors. The testing vectors for each run is not chosen

randomly. If five vectors are to be chosen for testing from a total of 60 vectors,

five equally spaced vectors are taken from the database, with the index of the first

vector equalling the run number. Therefore, for the first run, vectors 1, 13, 25,

37, and 49 are chosen for testing while for the second run, vectors 2, 14, 26, 38

and 50 are chosen for testing. The last run would consist of vectors 12, 24, 36, 48

and 60. A similar process is followed to chose 3 training vectors per run from a

total of 30 vectors.

To model the decision making stage, a set of testing vectors is chosen randomly

from the database. The number of vectors chosen depends on the database used
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Figure 5.1: Classification levels with respect to the first database (7 class)
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since this will match the number of testing vectors that were used for each run

during the formation of the lookup table. The difference in the testing vector set

used for lookup table formation and testing vector set used for classification is

that the latter is not carefully chosen but are random. Hence, the probability of

using the same set of vectors for lookup table formation and final classification is

less. It is important to note that the number of training and testing samples per

node or per event does not apply in the decision making stage. Out of the entire

database, one event (scenario and target) is chosen randomly. A set of testing

vectors is chosen randomly for this event from both nodes. The three levels of

classification accuracies that are obtained as described here.

Individual frame classification These testing vectors are classified and their

individual classification accuracy is obtained by comparing the classification

result against the ground truth.

Temporal fusion For every event, all the testing vectors are fused temporally

using majority voting. This result is compared against the ground truth

data to obtain the classification result at this level of fusion.

BKS fusion The temporal fusion results from both the nodes are taken and the

index vector for the lookup table is formed. The last column for this index

vector in the lookup table contains the classification result. This result is

compared against the ground truth to obtain the classification accuracy for

the sensor fusion stage.

For the first database (7 class), this process gives six classification results at

the frame level (three per node), two results at the event level (one per node)

and one classification result at the sensor level. Within the program, the decision

making loop is run 50 times to get a better idea of the classification accuracy, i.e.

the classification accuracy is averaged over 50 sets of testing vectors. The program

itself was executed 20 times so as to extract a mean and standard deviation for

the classification accuracy.
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5.3 Classification Results

The results of the three levels of classification are presented in this section. As

mentioned earlier, the classification algorithm was run twenty times to obtain

twenty sets of accuracies at the frame, event and sensor levels. Examples of the

confusion matrices obtained for the 3 classification levels of the 7 class and 3

class databases are shown in Tables 5.1 to 5.6. The confusion matrices for the

7 class and 3 class case are shown graphically for k = 11 in Figures 5.2 and 5.3

and class-wise results are given in Figures 5.4 and 5.5. The mean and standard

deviation of these twenty classification values were calculated. These values have

been tabulated in Tables 5.7 and 5.8 and shown graphically in Figures 5.6 and

5.7. Each row entry of these tables corresponds to the results obtained for each of

the twenty runs of the classification routine. From these tables, it can be inferred

that the second database has better classification accuracy than the first. This is

because it is easier to differentiate cars, SUVs and light trucks from each other

than differentiate different types of cars, SUVs and light trucks. Also, it can be

seen that the classification accuracy at the event level is greater than that at

the frame level and the classification accuracy at the sensor level is greater than

that at the event level i.e. temporal fusion performs better than frame based

classification and BKS fusion performs better than temporal fusion. Hence, it can

be substantiated that fusion improves target classification and the higher the level

of fusion, the better the accuracy.

In addition to classification accuracy, the time taken for feature extraction and

classification was also recorded. The time taken for feature extraction is calculated

by averaging thirty runs of the algorithm on different input frames. It has been

explained that the classification algorithm runs fifty times and averages the results

obtained during all those runs. The time taken to obtain the BKS fusion result

for each of these fifty runs was recorded and averaged. These timings are given

below.

Feature extraction: This was performed on a Pentium III machine running on

Red Hat Linux using the GNU C++ compiler.

1. Time taken to extract features and write into database file after segmenta-
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Table 5.1: Confusion matrix - 7 class; individual frame classification; k=11; Clas-
sification accuracy=67.67%

T1 T2 T3 T4 T5 T6 T7
T1 48 4 12 2 3 1 5
T2 1 44 0 1 0 2 0
T3 4 0 45 1 1 5 3
T4 0 5 0 34 0 1 2
T5 6 2 3 2 12 7 5
T6 0 5 6 1 2 13 2
T7 1 0 0 1 0 1 7

Table 5.2: Confusion matrix - 7 class; temporal fusion classification; k=11; Clas-
sification accuracy=74.00%

T1 T2 T3 T4 T5 T6 T7
T1 19 2 5 0 1 1 3
T2 0 17 0 1 0 2 0
T3 0 0 16 0 0 1 1
T4 0 1 0 13 0 1 1
T5 1 0 0 0 4 2 1
T6 0 0 1 0 1 3 0
T7 0 0 0 0 0 0 2

Table 5.3: Confusion matrix - 7 class; BKS fusion classification; k=11; Classifica-
tion accuracy=86.00%

T1 T2 T3 T4 T5 T6 T7
T1 9 0 1 0 0 1 0
T2 0 9 0 0 0 1 0
T3 0 0 9 0 0 0 0
T4 0 0 0 7 0 0 0
T5 1 0 0 0 3 0 1
T6 0 0 1 0 0 3 0
T7 0 1 0 0 0 0 3
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Table 5.4: Confusion matrix - 3 class; individual frame classification; k=11; Clas-
sification accuracy=75.00%

Car SUV Light truck
Car 165 19 14
SUV 17 129 15

Light truck 28 32 81

Table 5.5: Confusion matrix - 3 class; temporal fusion classification; k=11; Clas-
sification accuracy=88.00%

Car SUV Light truck
Car 38 2 1
SUV 2 31 2

Light truck 2 3 19

Table 5.6: Confusion matrix - 3 class; BKS fusion classification; k=11; Classifica-
tion accuracy=96.00%

Car SUV Light truck
Car 21 1 1
SUV 0 17 0

Light truck 0 0 10
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Table 5.7: Classification accuracy (%) for 7 class case with mean and standard
deviation of accuracy, k=11

Frame Level Event Level Sensor Level
Individual frame Temporal fusion BKS fusion

73.00 79.00 82.00
61.33 64.00 66.00
69.00 79.00 84.00
66.33 72.00 82.00
67.67 74.00 84.00
64.67 72.00 84.00
60.67 66.00 82.00
59.00 65.00 70.00
65.67 72.00 86.00
67.33 73.00 80.00
63.67 67.00 74.00
63.67 65.00 76.00
62.67 67.00 74.00
62.33 66.00 76.00
66.67 67.00 68.00
65.33 73.00 84.00
65.67 74.00 78.00
59.67 64.00 72.00
64.33 68.00 78.00
72.67 75.00 74.00

MEAN
65.0675 70.1000 77.7000

STANDARD DEVIATION
3.7707 4.7782 5.8858
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Table 5.8: Classification accuracy (%) for 3 class case with mean and standard
deviation of accuracy, k=11

Frame Level Event Level Sensor Level
Individual frame Temporal fusion BKS fusion

75.00 90.00 94.00
73.60 87.00 88.00
77.00 91.00 98.00
74.00 93.00 94.00
74.20 89.00 94.00
76.40 90.00 94.00
77.80 95.00 96.00
74.40 89.00 90.00
74.80 88.00 90.00
75.00 92.00 96.00
76.60 90.00 90.00
77.00 90.00 96.00
74.80 89.00 98.00
73.80 92.00 94.00
75.20 91.00 100.00
76.20 88.00 96.00
73.80 86.00 96.00
75.00 87.00 98.00
78.80 92.00 98.00
76.40 91.00 96.00

MEAN
75.49 90.00 94.80

STANDARD DEVIATION
1.4574 2.2243 3.2053
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Figure 5.2: Confusion matrix for 7 class case, k=11
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Figure 5.3: Confusion matrix for 3 class case, k=11
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Figure 5.4: Class-wise classification accuracy for 7 class case, k=11

Figure 5.5: Class-wise classification accuracy for 3 class case, k=11
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Figure 5.6: Target recognition mean and standard deviation for different classifi-
cation levels, k=11

Figure 5.7: Target identification mean and standard deviation for different classi-
fication levels, k=11
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tion, averaged over 30 runs is .253333 seconds

2. Time taken to normalize a feature vector database containing 60 feature

vectors is 0.03 seconds

Classification: This was performed on a Pentium M 1.6GHz machine with

512Mb RAM running on Microsoft Windows XP. The program was written and

executed using MATLAB.

1. Time taken to obtain BKS fusion (sensor-level) result averaged over 50 runs

for the 7 class case with k=11 is 0.0439 seconds

2. Time taken to obtain BKS fusion (sensor-level) result averaged over 50 runs

for the 3 class case with k=11 is 0.0993 seconds

Image preprocessing, segmentation and feature extraction is done in about

250 milliseconds. Normalizing the database is needed only for training and not

required when the system has been deployed. The time taken for classification

is well below 50 milliseconds for the 7 class case, and below 100 milliseconds

for the 3 class case. The second database exhibits higher classification time due

to the presence of increased training vectors compared to the first database. In

either case, the time taken to classify the feature vector is significantly less and

is well-suited for real-time operation of the fusion algorithm. Hence, this thesis

work demonstrates that fusion techniques for the civilian ATR problem provides

high classification accuracy at very high processing speeds suitable for real-time

operation.

5.4 Distance-based Classification

In order to study the effect of distance on classification accuracy, the classification

of civilian targets was performed based on the distance of the target from the

sensor nodes. Previously, once the classifier was trained and the lookup table

for the BKS algorithm was formed, testing was performed using a random set

of vectors from the database. For distance-based classification, the training and
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lookup table formation is the same. For testing, random images are not taken.

Instead, three groups of images are used for every event – images when target is

close to the camera, moderately far and very far.

For the 7-class classification, each image group consists of 3 images (temporal

fusion is performed on 3 images per event) and each group of images is separated

by around 12 frames (approximately 2.5 meters).

For the 3-class classification, each image group consists of 5 images (temporal

fusion is performed on 5 images per event) and each group of images is separated

by around 8 frames (approximately 3 meters).

Two different values of k (number of nearest neighbors) were used – k=9

and k=11. It is expected that when the target is at a moderate distance from

the cameras, the classification accuracy would be highest. Also, the increase in

accuracy from individual frame-based classification to temporal and BKS fusion

is expected. These trends are generally observed in the results. Very near and

far targets have lesser classification accuracy compared to near targets. However,

it can also be seen that the accuracy is much lesser than the one obtained using

random vectors for classification (which was discussed in the previous report).

When random vectors were used for testing, the classification accuracies ranged

from 70% (for individual frame classification) to 95% (for BKS fusion). There is

one possible reason for this. When the testing vectors are chosen randomly, they

are usually chosen well-spaced apart. Hence, the remaining vectors in the database

provide a good means for distance-calculation and comparison. However, when

a group of vectors from one part of the database is chosen for testing, as in this

case, there are no nearby vectors left in the database for comparison. Therefore,

good classification accuracy is hard to obtain. As the size of the group increases,

the number of nearby frames for comparison and accuracy will fall. For example,

if frames 3, 4 and 5 are used for testing (size of group is 3), then the frames left

behind for comparison which give a good representation of the testing frames are

frames 1, 2, 6 and 7. If frames 2, 3, 4, 5 and 6 are used for testing (size of group is

5), then the frames left behind for proper comparison are reduced to only frames 1

and 7. Tables 5.9 to 5.12 show the classification accuracies obtained. Figures 5.8

and 5.9 show the graphical version of Tables 5.10 and 5.12.

86



Table 5.9: 7 class classification accuracy(%), k=9
Distance Frame Temporal Fusion BKS Fusion
Very near 53.97 57.14 57.14

Near 59.52 59.52 61.90
Far 35.71 35.71 42.86

Table 5.10: 7 class classification accuracy(%), k=11
Distance Frame Temporal Fusion BKS Fusion
Very near 50.79 52.38 52.38

Near 60.32 59.52 61.90
Far 35.71 33.33 57.14

Table 5.11: 3 class classification accuracy(%), k=9
Distance Frame Temporal Fusion BKS Fusion
Very near 61.11 66.67 66.67

Near 60.00 61.11 66.67
Far 51.11 44.44 44.44

Table 5.12: 3 class classification accuracy(%), k=11
Distance Frame Temporal Fusion BKS Fusion
Very near 60.00 66.67 66.67

Near 61.11 61.11 77.78
Far 50.00 44.44 66.67
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Figure 5.8: Classification accuracy for 7 class case, k=11

Figure 5.9: Classification accuracy for 3 class case, k=11
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In addition to the classification accuracy, it is often convenient and handy to

study misclassification also. This can be done using the confusion matrix. The

rows represent the ground truth and the columns indicate classification results

obtained. VN, N and F stand for ‘Very Near’, ‘Near’ and ‘Far’ cases.

Confusion matrices of the above classifications for the seven class case and

a ‘k’ value of 9 are displayed in Tables 5.13 to 5.21. {T1,T2...,T7} indicate

the seven targets – Honda CRX, Chevy Cavalier, Toyota Pickup, GMC Pickup,

Xterra, Toyota Forerunner and Stake body light truck.

Confusion matrices of the above classifications for the three class case and a ‘k’

value of 9 are displayed in Tables 5.22 to 5.24. T1, T2 and T3 indicate cars, SUVs

and light truck targets respectively. For example, in the first confusion matrix for

the ‘Very Near’ targets, cars have been classified as cars 17 times, SUVs 8 times

and light trucks 5 times. Thus the classification accuracy would be 17/(17+8+5)

= 56.67%.
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Table 5.13: Confusion matrix - 7 class; individual frame classification; distance
very near; k=9

T1 T2 T3 T4 T5 T6 T7
T1 9 0 7 0 3 0 3
T2 1 14 0 0 0 1 0
T3 3 0 9 1 0 1 1
T4 1 3 0 14 2 0 0
T5 2 0 1 2 10 6 4
T6 1 1 0 1 2 5 6
T7 1 0 1 0 1 5 4

Table 5.14: Confusion matrix - 7 class; individual frame classification; distance
near; k=9

T1 T2 T3 T4 T5 T6 T7
T1 12 0 4 0 1 0 6
T2 0 15 0 1 0 0 0
T3 1 0 12 1 5 2 0
T4 0 0 0 14 0 0 3
T5 5 2 1 2 5 4 4
T6 0 1 1 0 4 12 0
T7 0 0 0 0 3 0 5

Table 5.15: Confusion matrix - 7 class; individual frame classification; distance
far; k=9

T1 T2 T3 T4 T5 T6 T7
T1 11 1 0 5 5 0 0
T2 0 11 0 0 0 1 1
T3 4 0 15 0 4 2 5
T4 0 4 0 9 3 3 2
T5 2 1 2 1 4 3 0
T6 0 1 1 1 2 6 3
T7 1 0 0 2 0 3 7
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Table 5.16: Confusion matrix - 7 class; temporal fusion classification; distance
very near; k=9

T1 T2 T3 T4 T5 T6 T7
T1 4 0 3 0 1 0 1
T2 1 5 0 0 0 0 0
T3 1 0 3 0 0 0 0
T4 0 1 0 6 1 0 0
T5 0 0 0 0 3 2 2
T6 0 0 0 0 1 2 2
T7 0 0 0 0 0 2 1

Table 5.17: Confusion matrix - 7 class; temporal fusion classification; distance
near; k=9

T1 T2 T3 T4 T5 T6 T7
T1 4 0 2 0 0 0 2
T2 0 5 0 1 0 0 0
T3 0 0 4 0 2 1 0
T4 0 0 0 5 0 0 1
T5 2 1 0 0 1 1 1
T6 0 0 0 0 2 4 0
T7 0 0 0 0 1 0 2

Table 5.18: Confusion matrix - 7 class; temporal fusion classification; distance far;
k=9

T1 T2 T3 T4 T5 T6 T7
T1 4 0 0 3 2 0 0
T2 0 4 0 0 0 0 0
T3 1 0 6 0 1 1 2
T4 0 2 0 3 1 1 1
T5 1 0 0 0 2 1 0
T6 0 0 0 0 0 2 1
T7 0 0 0 0 0 1 2
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Table 5.19: Confusion matrix - 7 class; BKS fusion classification; distance very
near; k=9

T1 T2 T3 T4 T5 T6 T7
T1 1 0 1 0 1 0 1
T2 1 2 0 0 0 0 0
T3 0 0 2 0 0 0 0
T4 0 0 0 3 0 0 0
T5 0 1 0 0 1 1 1
T6 0 0 0 0 0 1 0
T7 1 0 0 0 1 1 1

Table 5.20: Confusion matrix - 7 class; BKS fusion classification; distance near;
k=9

T1 T2 T3 T4 T5 T6 T7
T1 1 0 0 0 1 0 0
T2 0 2 0 0 0 0 0
T3 0 0 3 0 1 0 0
T4 0 0 0 3 0 0 0
T5 2 0 0 0 0 0 2
T6 0 1 0 0 1 3 0
T7 0 0 0 0 0 0 1

Table 5.21: Confusion matrix - 7 class; BKS fusion classification; distance far;
k=9

T1 T2 T3 T4 T5 T6 T7
T1 1 0 0 0 0 0 1
T2 0 1 0 0 0 0 0
T3 1 0 3 0 0 0 0
T4 0 0 0 3 1 0 0
T5 1 2 0 0 2 0 0
T6 0 0 0 0 0 2 1
T7 0 0 0 0 0 1 1
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Table 5.22: Confusion matrix - 3 class; individual frame classification; distances
very near, near and far; k=9

VN T1 T2 T3 N T1 T2 T3 F T1 T2 T3
T1 17 8 5 T1 16 6 0 T1 15 2 7
T2 5 15 3 T2 2 17 8 T2 5 17 10
T3 8 7 22 T3 12 7 22 T3 10 11 13

Table 5.23: Confusion matrix - 3 class; temporal fusion classification; distances
very near, near and far; k=9

VN T1 T2 T3 N T1 T2 T3 F T1 T2 T3
T1 4 2 1 T1 3 1 0 T1 3 1 1
T2 1 3 0 T2 1 4 2 T2 1 3 3
T3 1 1 5 T3 2 1 4 T3 2 2 2

Table 5.24: Confusion matrix - 3 class; BKS fusion classification; distances very
near, near and far; k=9

VN T1 T2 T3 N T1 T2 T3 F T1 T2 T3
T1 2 1 1 T1 2 0 0 T1 2 0 1
T2 1 2 0 T2 1 3 1 T2 1 3 1
T3 0 0 2 T3 0 0 2 T3 0 0 1
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Chapter 6

Conclusions

ATR is an important application of computer vision. It uses techniques from a

variety of fields like image processing, pattern recognition, statistical methods and

data fusion techniques and is based on different hardware technologies. This field

has been researched for well over two decades now, and though there is no definite

answer to the problem of clutter and effective target recognition, the results are

improving with technology. One of the recent advances in the ATR field has been

to use multiple sensors to look at the target data and fuse the data or results from

these multiple sensors. This has been shown to improve the detection accuracies

and reduce the system cost by using inexpensive hardware.

This thesis has researched the ATR process as applied to civilian targets. Civil-

ian targets are generally considered harder to classify than their military coun-

terparts due to the nature of their power spectral density. In order to underline

the growing importance of fusion in ATR applications and reduce computation

time and system cost, this thesis work has mainly used basic and simple image

processing techniques for target segmentation and classification. The high over-

all classification accuracy is obtained by performing decision-level fusion at two

stages. First, the individual frame classification results are fused over time us-

ing the simple majority voting technique. This simple fusion technique shows a

marked increase, on an average, in the target identification ability of the system.

To further boost the accuracy, sensor level fusion is performed using the BKS

algorithm. The increase in performance is clearly demonstrated in the results
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presented. From the classification rates that have been tabulated earlier, it can

be seen that temporal fusion results are better than individual frame classifica-

tion, and sensor fusion results are better than the temporal fusion results. Thus,

the superiority of data fusion techniques and the increase in performance with the

level of fusion have been successfully demonstrated. In addition to the improved

classification rates, introduction of fusion into the recognition system also reduces

the cost of the ATR system by removing the need for complex and costly sensors,

and highly computational and iterative algorithms. The time taken by the system

for classification is recorded. It is observed that the classification time is small

enough implement the algorithms in real time. Distance-based classification was

also performed to study the effect of distance on the classification ability of the

system.

As course of future work in this area, advanced image processing algorithms

can be added to the framework that has been provided. This should improve the

system performance rates to even higher levels. Also, different fusion techniques

can be tried and tested. The best combination of algorithms can be coded together

and stored in the SFTB so that the testbed can act as an effective target recog-

nition network. The current classification system can be integrated in the SFTB

and field-tested for real-time requirements. This would create a customizable and

effective ATR system that can provide immediate and accurate classification.
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